Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright The Asahi Linux Contributors
   4 *
   5 * Based on irq-lpc32xx:
   6 *   Copyright 2015-2016 Vladimir Zapolskiy <vz@mleia.com>
   7 * Based on irq-bcm2836:
   8 *   Copyright 2015 Broadcom
   9 */
  10
  11/*
  12 * AIC is a fairly simple interrupt controller with the following features:
  13 *
  14 * - 896 level-triggered hardware IRQs
  15 *   - Single mask bit per IRQ
  16 *   - Per-IRQ affinity setting
  17 *   - Automatic masking on event delivery (auto-ack)
  18 *   - Software triggering (ORed with hw line)
  19 * - 2 per-CPU IPIs (meant as "self" and "other", but they are
  20 *   interchangeable if not symmetric)
  21 * - Automatic prioritization (single event/ack register per CPU, lower IRQs =
  22 *   higher priority)
  23 * - Automatic masking on ack
  24 * - Default "this CPU" register view and explicit per-CPU views
  25 *
  26 * In addition, this driver also handles FIQs, as these are routed to the same
  27 * IRQ vector. These are used for Fast IPIs, the ARMv8 timer IRQs, and
  28 * performance counters (TODO).
  29 *
  30 * Implementation notes:
  31 *
  32 * - This driver creates two IRQ domains, one for HW IRQs and internal FIQs,
  33 *   and one for IPIs.
  34 * - Since Linux needs more than 2 IPIs, we implement a software IRQ controller
  35 *   and funnel all IPIs into one per-CPU IPI (the second "self" IPI is unused).
  36 * - FIQ hwirq numbers are assigned after true hwirqs, and are per-cpu.
  37 * - DT bindings use 3-cell form (like GIC):
  38 *   - <0 nr flags> - hwirq #nr
  39 *   - <1 nr flags> - FIQ #nr
  40 *     - nr=0  Physical HV timer
  41 *     - nr=1  Virtual HV timer
  42 *     - nr=2  Physical guest timer
  43 *     - nr=3  Virtual guest timer
  44 */
  45
  46#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  47
  48#include <linux/bits.h>
  49#include <linux/bitfield.h>
  50#include <linux/cpuhotplug.h>
  51#include <linux/io.h>
  52#include <linux/irqchip.h>
  53#include <linux/irqchip/arm-vgic-info.h>
  54#include <linux/irqdomain.h>
  55#include <linux/jump_label.h>
  56#include <linux/limits.h>
  57#include <linux/of_address.h>
  58#include <linux/slab.h>
  59#include <asm/apple_m1_pmu.h>
  60#include <asm/cputype.h>
  61#include <asm/exception.h>
  62#include <asm/sysreg.h>
  63#include <asm/virt.h>
  64
  65#include <dt-bindings/interrupt-controller/apple-aic.h>
  66
  67/*
  68 * AIC v1 registers (MMIO)
  69 */
  70
  71#define AIC_INFO		0x0004
  72#define AIC_INFO_NR_IRQ		GENMASK(15, 0)
  73
  74#define AIC_CONFIG		0x0010
  75
  76#define AIC_WHOAMI		0x2000
  77#define AIC_EVENT		0x2004
  78#define AIC_EVENT_DIE		GENMASK(31, 24)
  79#define AIC_EVENT_TYPE		GENMASK(23, 16)
  80#define AIC_EVENT_NUM		GENMASK(15, 0)
  81
  82#define AIC_EVENT_TYPE_FIQ	0 /* Software use */
  83#define AIC_EVENT_TYPE_IRQ	1
  84#define AIC_EVENT_TYPE_IPI	4
  85#define AIC_EVENT_IPI_OTHER	1
  86#define AIC_EVENT_IPI_SELF	2
  87
  88#define AIC_IPI_SEND		0x2008
  89#define AIC_IPI_ACK		0x200c
  90#define AIC_IPI_MASK_SET	0x2024
  91#define AIC_IPI_MASK_CLR	0x2028
  92
  93#define AIC_IPI_SEND_CPU(cpu)	BIT(cpu)
  94
  95#define AIC_IPI_OTHER		BIT(0)
  96#define AIC_IPI_SELF		BIT(31)
  97
  98#define AIC_TARGET_CPU		0x3000
  99
 100#define AIC_CPU_IPI_SET(cpu)	(0x5008 + ((cpu) << 7))
 101#define AIC_CPU_IPI_CLR(cpu)	(0x500c + ((cpu) << 7))
 102#define AIC_CPU_IPI_MASK_SET(cpu) (0x5024 + ((cpu) << 7))
 103#define AIC_CPU_IPI_MASK_CLR(cpu) (0x5028 + ((cpu) << 7))
 104
 105#define AIC_MAX_IRQ		0x400
 106
 107/*
 108 * AIC v2 registers (MMIO)
 109 */
 110
 111#define AIC2_VERSION		0x0000
 112#define AIC2_VERSION_VER	GENMASK(7, 0)
 113
 114#define AIC2_INFO1		0x0004
 115#define AIC2_INFO1_NR_IRQ	GENMASK(15, 0)
 116#define AIC2_INFO1_LAST_DIE	GENMASK(27, 24)
 117
 118#define AIC2_INFO2		0x0008
 119
 120#define AIC2_INFO3		0x000c
 121#define AIC2_INFO3_MAX_IRQ	GENMASK(15, 0)
 122#define AIC2_INFO3_MAX_DIE	GENMASK(27, 24)
 123
 124#define AIC2_RESET		0x0010
 125#define AIC2_RESET_RESET	BIT(0)
 126
 127#define AIC2_CONFIG		0x0014
 128#define AIC2_CONFIG_ENABLE	BIT(0)
 129#define AIC2_CONFIG_PREFER_PCPU	BIT(28)
 130
 131#define AIC2_TIMEOUT		0x0028
 132#define AIC2_CLUSTER_PRIO	0x0030
 133#define AIC2_DELAY_GROUPS	0x0100
 134
 135#define AIC2_IRQ_CFG		0x2000
 136
 137/*
 138 * AIC2 registers are laid out like this, starting at AIC2_IRQ_CFG:
 139 *
 140 * Repeat for each die:
 141 *   IRQ_CFG: u32 * MAX_IRQS
 142 *   SW_SET: u32 * (MAX_IRQS / 32)
 143 *   SW_CLR: u32 * (MAX_IRQS / 32)
 144 *   MASK_SET: u32 * (MAX_IRQS / 32)
 145 *   MASK_CLR: u32 * (MAX_IRQS / 32)
 146 *   HW_STATE: u32 * (MAX_IRQS / 32)
 147 *
 148 * This is followed by a set of event registers, each 16K page aligned.
 149 * The first one is the AP event register we will use. Unfortunately,
 150 * the actual implemented die count is not specified anywhere in the
 151 * capability registers, so we have to explicitly specify the event
 152 * register as a second reg entry in the device tree to remain
 153 * forward-compatible.
 154 */
 155
 156#define AIC2_IRQ_CFG_TARGET	GENMASK(3, 0)
 157#define AIC2_IRQ_CFG_DELAY_IDX	GENMASK(7, 5)
 158
 159#define MASK_REG(x)		(4 * ((x) >> 5))
 160#define MASK_BIT(x)		BIT((x) & GENMASK(4, 0))
 161
 162/*
 163 * IMP-DEF sysregs that control FIQ sources
 164 */
 165
 166/* IPI request registers */
 167#define SYS_IMP_APL_IPI_RR_LOCAL_EL1	sys_reg(3, 5, 15, 0, 0)
 168#define SYS_IMP_APL_IPI_RR_GLOBAL_EL1	sys_reg(3, 5, 15, 0, 1)
 169#define IPI_RR_CPU			GENMASK(7, 0)
 170/* Cluster only used for the GLOBAL register */
 171#define IPI_RR_CLUSTER			GENMASK(23, 16)
 172#define IPI_RR_TYPE			GENMASK(29, 28)
 173#define IPI_RR_IMMEDIATE		0
 174#define IPI_RR_RETRACT			1
 175#define IPI_RR_DEFERRED			2
 176#define IPI_RR_NOWAKE			3
 177
 178/* IPI status register */
 179#define SYS_IMP_APL_IPI_SR_EL1		sys_reg(3, 5, 15, 1, 1)
 180#define IPI_SR_PENDING			BIT(0)
 181
 182/* Guest timer FIQ enable register */
 183#define SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2	sys_reg(3, 5, 15, 1, 3)
 184#define VM_TMR_FIQ_ENABLE_V		BIT(0)
 185#define VM_TMR_FIQ_ENABLE_P		BIT(1)
 186
 187/* Deferred IPI countdown register */
 188#define SYS_IMP_APL_IPI_CR_EL1		sys_reg(3, 5, 15, 3, 1)
 189
 190/* Uncore PMC control register */
 191#define SYS_IMP_APL_UPMCR0_EL1		sys_reg(3, 7, 15, 0, 4)
 192#define UPMCR0_IMODE			GENMASK(18, 16)
 193#define UPMCR0_IMODE_OFF		0
 194#define UPMCR0_IMODE_AIC		2
 195#define UPMCR0_IMODE_HALT		3
 196#define UPMCR0_IMODE_FIQ		4
 197
 198/* Uncore PMC status register */
 199#define SYS_IMP_APL_UPMSR_EL1		sys_reg(3, 7, 15, 6, 4)
 200#define UPMSR_IACT			BIT(0)
 201
 202/* MPIDR fields */
 203#define MPIDR_CPU(x)			MPIDR_AFFINITY_LEVEL(x, 0)
 204#define MPIDR_CLUSTER(x)		MPIDR_AFFINITY_LEVEL(x, 1)
 205
 206#define AIC_IRQ_HWIRQ(die, irq)	(FIELD_PREP(AIC_EVENT_DIE, die) | \
 207				 FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_IRQ) | \
 208				 FIELD_PREP(AIC_EVENT_NUM, irq))
 209#define AIC_FIQ_HWIRQ(x)	(FIELD_PREP(AIC_EVENT_TYPE, AIC_EVENT_TYPE_FIQ) | \
 210				 FIELD_PREP(AIC_EVENT_NUM, x))
 211#define AIC_HWIRQ_IRQ(x)	FIELD_GET(AIC_EVENT_NUM, x)
 212#define AIC_HWIRQ_DIE(x)	FIELD_GET(AIC_EVENT_DIE, x)
 213#define AIC_NR_FIQ		6
 214#define AIC_NR_SWIPI		32
 215
 216/*
 217 * FIQ hwirq index definitions: FIQ sources use the DT binding defines
 218 * directly, except that timers are special. At the irqchip level, the
 219 * two timer types are represented by their access method: _EL0 registers
 220 * or _EL02 registers. In the DT binding, the timers are represented
 221 * by their purpose (HV or guest). This mapping is for when the kernel is
 222 * running at EL2 (with VHE). When the kernel is running at EL1, the
 223 * mapping differs and aic_irq_domain_translate() performs the remapping.
 224 */
 225
 226#define AIC_TMR_EL0_PHYS	AIC_TMR_HV_PHYS
 227#define AIC_TMR_EL0_VIRT	AIC_TMR_HV_VIRT
 228#define AIC_TMR_EL02_PHYS	AIC_TMR_GUEST_PHYS
 229#define AIC_TMR_EL02_VIRT	AIC_TMR_GUEST_VIRT
 230
 231static DEFINE_STATIC_KEY_TRUE(use_fast_ipi);
 232
 233struct aic_info {
 234	int version;
 235
 236	/* Register offsets */
 237	u32 event;
 238	u32 target_cpu;
 239	u32 irq_cfg;
 240	u32 sw_set;
 241	u32 sw_clr;
 242	u32 mask_set;
 243	u32 mask_clr;
 244
 245	u32 die_stride;
 246
 247	/* Features */
 248	bool fast_ipi;
 249};
 250
 251static const struct aic_info aic1_info __initconst = {
 252	.version	= 1,
 253
 254	.event		= AIC_EVENT,
 255	.target_cpu	= AIC_TARGET_CPU,
 256};
 257
 258static const struct aic_info aic1_fipi_info __initconst = {
 259	.version	= 1,
 260
 261	.event		= AIC_EVENT,
 262	.target_cpu	= AIC_TARGET_CPU,
 263
 264	.fast_ipi	= true,
 265};
 266
 267static const struct aic_info aic2_info __initconst = {
 268	.version	= 2,
 269
 270	.irq_cfg	= AIC2_IRQ_CFG,
 271
 272	.fast_ipi	= true,
 273};
 274
 275static const struct of_device_id aic_info_match[] = {
 276	{
 277		.compatible = "apple,t8103-aic",
 278		.data = &aic1_fipi_info,
 279	},
 280	{
 281		.compatible = "apple,aic",
 282		.data = &aic1_info,
 283	},
 284	{
 285		.compatible = "apple,aic2",
 286		.data = &aic2_info,
 287	},
 288	{}
 289};
 290
 291struct aic_irq_chip {
 292	void __iomem *base;
 293	void __iomem *event;
 294	struct irq_domain *hw_domain;
 295	struct irq_domain *ipi_domain;
 296	struct {
 297		cpumask_t aff;
 298	} *fiq_aff[AIC_NR_FIQ];
 299
 300	int nr_irq;
 301	int max_irq;
 302	int nr_die;
 303	int max_die;
 304
 305	struct aic_info info;
 306};
 307
 308static DEFINE_PER_CPU(uint32_t, aic_fiq_unmasked);
 309
 310static DEFINE_PER_CPU(atomic_t, aic_vipi_flag);
 311static DEFINE_PER_CPU(atomic_t, aic_vipi_enable);
 312
 313static struct aic_irq_chip *aic_irqc;
 314
 315static void aic_handle_ipi(struct pt_regs *regs);
 316
 317static u32 aic_ic_read(struct aic_irq_chip *ic, u32 reg)
 318{
 319	return readl_relaxed(ic->base + reg);
 320}
 321
 322static void aic_ic_write(struct aic_irq_chip *ic, u32 reg, u32 val)
 323{
 324	writel_relaxed(val, ic->base + reg);
 325}
 326
 327/*
 328 * IRQ irqchip
 329 */
 330
 331static void aic_irq_mask(struct irq_data *d)
 332{
 333	irq_hw_number_t hwirq = irqd_to_hwirq(d);
 334	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 335
 336	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
 337	u32 irq = AIC_HWIRQ_IRQ(hwirq);
 338
 339	aic_ic_write(ic, ic->info.mask_set + off + MASK_REG(irq), MASK_BIT(irq));
 340}
 341
 342static void aic_irq_unmask(struct irq_data *d)
 343{
 344	irq_hw_number_t hwirq = irqd_to_hwirq(d);
 345	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 346
 347	u32 off = AIC_HWIRQ_DIE(hwirq) * ic->info.die_stride;
 348	u32 irq = AIC_HWIRQ_IRQ(hwirq);
 349
 350	aic_ic_write(ic, ic->info.mask_clr + off + MASK_REG(irq), MASK_BIT(irq));
 351}
 352
 353static void aic_irq_eoi(struct irq_data *d)
 354{
 355	/*
 356	 * Reading the interrupt reason automatically acknowledges and masks
 357	 * the IRQ, so we just unmask it here if needed.
 358	 */
 359	if (!irqd_irq_masked(d))
 360		aic_irq_unmask(d);
 361}
 362
 363static void __exception_irq_entry aic_handle_irq(struct pt_regs *regs)
 364{
 365	struct aic_irq_chip *ic = aic_irqc;
 366	u32 event, type, irq;
 367
 368	do {
 369		/*
 370		 * We cannot use a relaxed read here, as reads from DMA buffers
 371		 * need to be ordered after the IRQ fires.
 372		 */
 373		event = readl(ic->event + ic->info.event);
 374		type = FIELD_GET(AIC_EVENT_TYPE, event);
 375		irq = FIELD_GET(AIC_EVENT_NUM, event);
 376
 377		if (type == AIC_EVENT_TYPE_IRQ)
 378			generic_handle_domain_irq(aic_irqc->hw_domain, event);
 379		else if (type == AIC_EVENT_TYPE_IPI && irq == 1)
 380			aic_handle_ipi(regs);
 381		else if (event != 0)
 382			pr_err_ratelimited("Unknown IRQ event %d, %d\n", type, irq);
 383	} while (event);
 384
 385	/*
 386	 * vGIC maintenance interrupts end up here too, so we need to check
 387	 * for them separately. This should never trigger if KVM is working
 388	 * properly, because it will have already taken care of clearing it
 389	 * on guest exit before this handler runs.
 390	 */
 391	if (is_kernel_in_hyp_mode() && (read_sysreg_s(SYS_ICH_HCR_EL2) & ICH_HCR_EN) &&
 392		read_sysreg_s(SYS_ICH_MISR_EL2) != 0) {
 393		pr_err_ratelimited("vGIC IRQ fired and not handled by KVM, disabling.\n");
 394		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
 395	}
 396}
 397
 398static int aic_irq_set_affinity(struct irq_data *d,
 399				const struct cpumask *mask_val, bool force)
 400{
 401	irq_hw_number_t hwirq = irqd_to_hwirq(d);
 402	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 403	int cpu;
 404
 405	BUG_ON(!ic->info.target_cpu);
 406
 407	if (force)
 408		cpu = cpumask_first(mask_val);
 409	else
 410		cpu = cpumask_any_and(mask_val, cpu_online_mask);
 411
 412	aic_ic_write(ic, ic->info.target_cpu + AIC_HWIRQ_IRQ(hwirq) * 4, BIT(cpu));
 413	irq_data_update_effective_affinity(d, cpumask_of(cpu));
 414
 415	return IRQ_SET_MASK_OK;
 416}
 417
 418static int aic_irq_set_type(struct irq_data *d, unsigned int type)
 419{
 420	/*
 421	 * Some IRQs (e.g. MSIs) implicitly have edge semantics, and we don't
 422	 * have a way to find out the type of any given IRQ, so just allow both.
 423	 */
 424	return (type == IRQ_TYPE_LEVEL_HIGH || type == IRQ_TYPE_EDGE_RISING) ? 0 : -EINVAL;
 425}
 426
 427static struct irq_chip aic_chip = {
 428	.name = "AIC",
 429	.irq_mask = aic_irq_mask,
 430	.irq_unmask = aic_irq_unmask,
 431	.irq_eoi = aic_irq_eoi,
 432	.irq_set_affinity = aic_irq_set_affinity,
 433	.irq_set_type = aic_irq_set_type,
 434};
 435
 436static struct irq_chip aic2_chip = {
 437	.name = "AIC2",
 438	.irq_mask = aic_irq_mask,
 439	.irq_unmask = aic_irq_unmask,
 440	.irq_eoi = aic_irq_eoi,
 441	.irq_set_type = aic_irq_set_type,
 442};
 443
 444/*
 445 * FIQ irqchip
 446 */
 447
 448static unsigned long aic_fiq_get_idx(struct irq_data *d)
 449{
 450	return AIC_HWIRQ_IRQ(irqd_to_hwirq(d));
 451}
 452
 453static void aic_fiq_set_mask(struct irq_data *d)
 454{
 455	/* Only the guest timers have real mask bits, unfortunately. */
 456	switch (aic_fiq_get_idx(d)) {
 457	case AIC_TMR_EL02_PHYS:
 458		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_P, 0);
 459		isb();
 460		break;
 461	case AIC_TMR_EL02_VIRT:
 462		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, VM_TMR_FIQ_ENABLE_V, 0);
 463		isb();
 464		break;
 465	default:
 466		break;
 467	}
 468}
 469
 470static void aic_fiq_clear_mask(struct irq_data *d)
 471{
 472	switch (aic_fiq_get_idx(d)) {
 473	case AIC_TMR_EL02_PHYS:
 474		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_P);
 475		isb();
 476		break;
 477	case AIC_TMR_EL02_VIRT:
 478		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2, 0, VM_TMR_FIQ_ENABLE_V);
 479		isb();
 480		break;
 481	default:
 482		break;
 483	}
 484}
 485
 486static void aic_fiq_mask(struct irq_data *d)
 487{
 488	aic_fiq_set_mask(d);
 489	__this_cpu_and(aic_fiq_unmasked, ~BIT(aic_fiq_get_idx(d)));
 490}
 491
 492static void aic_fiq_unmask(struct irq_data *d)
 493{
 494	aic_fiq_clear_mask(d);
 495	__this_cpu_or(aic_fiq_unmasked, BIT(aic_fiq_get_idx(d)));
 496}
 497
 498static void aic_fiq_eoi(struct irq_data *d)
 499{
 500	/* We mask to ack (where we can), so we need to unmask at EOI. */
 501	if (__this_cpu_read(aic_fiq_unmasked) & BIT(aic_fiq_get_idx(d)))
 502		aic_fiq_clear_mask(d);
 503}
 504
 505#define TIMER_FIRING(x)                                                        \
 506	(((x) & (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_MASK |            \
 507		 ARCH_TIMER_CTRL_IT_STAT)) ==                                  \
 508	 (ARCH_TIMER_CTRL_ENABLE | ARCH_TIMER_CTRL_IT_STAT))
 509
 510static void __exception_irq_entry aic_handle_fiq(struct pt_regs *regs)
 511{
 512	/*
 513	 * It would be really nice if we had a system register that lets us get
 514	 * the FIQ source state without having to peek down into sources...
 515	 * but such a register does not seem to exist.
 516	 *
 517	 * So, we have these potential sources to test for:
 518	 *  - Fast IPIs (not yet used)
 519	 *  - The 4 timers (CNTP, CNTV for each of HV and guest)
 520	 *  - Per-core PMCs (not yet supported)
 521	 *  - Per-cluster uncore PMCs (not yet supported)
 522	 *
 523	 * Since not dealing with any of these results in a FIQ storm,
 524	 * we check for everything here, even things we don't support yet.
 525	 */
 526
 527	if (read_sysreg_s(SYS_IMP_APL_IPI_SR_EL1) & IPI_SR_PENDING) {
 528		if (static_branch_likely(&use_fast_ipi)) {
 529			aic_handle_ipi(regs);
 530		} else {
 531			pr_err_ratelimited("Fast IPI fired. Acking.\n");
 532			write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
 533		}
 534	}
 535
 536	if (TIMER_FIRING(read_sysreg(cntp_ctl_el0)))
 537		generic_handle_domain_irq(aic_irqc->hw_domain,
 538					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS));
 539
 540	if (TIMER_FIRING(read_sysreg(cntv_ctl_el0)))
 541		generic_handle_domain_irq(aic_irqc->hw_domain,
 542					  AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT));
 543
 544	if (is_kernel_in_hyp_mode()) {
 545		uint64_t enabled = read_sysreg_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2);
 546
 547		if ((enabled & VM_TMR_FIQ_ENABLE_P) &&
 548		    TIMER_FIRING(read_sysreg_s(SYS_CNTP_CTL_EL02)))
 549			generic_handle_domain_irq(aic_irqc->hw_domain,
 550						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_PHYS));
 551
 552		if ((enabled & VM_TMR_FIQ_ENABLE_V) &&
 553		    TIMER_FIRING(read_sysreg_s(SYS_CNTV_CTL_EL02)))
 554			generic_handle_domain_irq(aic_irqc->hw_domain,
 555						  AIC_FIQ_HWIRQ(AIC_TMR_EL02_VIRT));
 556	}
 557
 558	if (read_sysreg_s(SYS_IMP_APL_PMCR0_EL1) & PMCR0_IACT) {
 559		int irq;
 560		if (cpumask_test_cpu(smp_processor_id(),
 561				     &aic_irqc->fiq_aff[AIC_CPU_PMU_P]->aff))
 562			irq = AIC_CPU_PMU_P;
 563		else
 564			irq = AIC_CPU_PMU_E;
 565		generic_handle_domain_irq(aic_irqc->hw_domain,
 566					  AIC_FIQ_HWIRQ(irq));
 567	}
 568
 569	if (FIELD_GET(UPMCR0_IMODE, read_sysreg_s(SYS_IMP_APL_UPMCR0_EL1)) == UPMCR0_IMODE_FIQ &&
 570			(read_sysreg_s(SYS_IMP_APL_UPMSR_EL1) & UPMSR_IACT)) {
 571		/* Same story with uncore PMCs */
 572		pr_err_ratelimited("Uncore PMC FIQ fired. Masking.\n");
 573		sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
 574				   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
 575	}
 576}
 577
 578static int aic_fiq_set_type(struct irq_data *d, unsigned int type)
 579{
 580	return (type == IRQ_TYPE_LEVEL_HIGH) ? 0 : -EINVAL;
 581}
 582
 583static struct irq_chip fiq_chip = {
 584	.name = "AIC-FIQ",
 585	.irq_mask = aic_fiq_mask,
 586	.irq_unmask = aic_fiq_unmask,
 587	.irq_ack = aic_fiq_set_mask,
 588	.irq_eoi = aic_fiq_eoi,
 589	.irq_set_type = aic_fiq_set_type,
 590};
 591
 592/*
 593 * Main IRQ domain
 594 */
 595
 596static int aic_irq_domain_map(struct irq_domain *id, unsigned int irq,
 597			      irq_hw_number_t hw)
 598{
 599	struct aic_irq_chip *ic = id->host_data;
 600	u32 type = FIELD_GET(AIC_EVENT_TYPE, hw);
 601	struct irq_chip *chip = &aic_chip;
 602
 603	if (ic->info.version == 2)
 604		chip = &aic2_chip;
 605
 606	if (type == AIC_EVENT_TYPE_IRQ) {
 607		irq_domain_set_info(id, irq, hw, chip, id->host_data,
 608				    handle_fasteoi_irq, NULL, NULL);
 609		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(irq)));
 610	} else {
 611		int fiq = FIELD_GET(AIC_EVENT_NUM, hw);
 612
 613		switch (fiq) {
 614		case AIC_CPU_PMU_P:
 615		case AIC_CPU_PMU_E:
 616			irq_set_percpu_devid_partition(irq, &ic->fiq_aff[fiq]->aff);
 617			break;
 618		default:
 619			irq_set_percpu_devid(irq);
 620			break;
 621		}
 622
 623		irq_domain_set_info(id, irq, hw, &fiq_chip, id->host_data,
 624				    handle_percpu_devid_irq, NULL, NULL);
 625	}
 626
 627	return 0;
 628}
 629
 630static int aic_irq_domain_translate(struct irq_domain *id,
 631				    struct irq_fwspec *fwspec,
 632				    unsigned long *hwirq,
 633				    unsigned int *type)
 634{
 635	struct aic_irq_chip *ic = id->host_data;
 636	u32 *args;
 637	u32 die = 0;
 638
 639	if (fwspec->param_count < 3 || fwspec->param_count > 4 ||
 640	    !is_of_node(fwspec->fwnode))
 641		return -EINVAL;
 642
 643	args = &fwspec->param[1];
 644
 645	if (fwspec->param_count == 4) {
 646		die = args[0];
 647		args++;
 648	}
 649
 650	switch (fwspec->param[0]) {
 651	case AIC_IRQ:
 652		if (die >= ic->nr_die)
 653			return -EINVAL;
 654		if (args[0] >= ic->nr_irq)
 655			return -EINVAL;
 656		*hwirq = AIC_IRQ_HWIRQ(die, args[0]);
 657		break;
 658	case AIC_FIQ:
 659		if (die != 0)
 660			return -EINVAL;
 661		if (args[0] >= AIC_NR_FIQ)
 662			return -EINVAL;
 663		*hwirq = AIC_FIQ_HWIRQ(args[0]);
 664
 665		/*
 666		 * In EL1 the non-redirected registers are the guest's,
 667		 * not EL2's, so remap the hwirqs to match.
 668		 */
 669		if (!is_kernel_in_hyp_mode()) {
 670			switch (args[0]) {
 671			case AIC_TMR_GUEST_PHYS:
 672				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_PHYS);
 673				break;
 674			case AIC_TMR_GUEST_VIRT:
 675				*hwirq = AIC_FIQ_HWIRQ(AIC_TMR_EL0_VIRT);
 676				break;
 677			case AIC_TMR_HV_PHYS:
 678			case AIC_TMR_HV_VIRT:
 679				return -ENOENT;
 680			default:
 681				break;
 682			}
 683		}
 684		break;
 685	default:
 686		return -EINVAL;
 687	}
 688
 689	*type = args[1] & IRQ_TYPE_SENSE_MASK;
 690
 691	return 0;
 692}
 693
 694static int aic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
 695				unsigned int nr_irqs, void *arg)
 696{
 697	unsigned int type = IRQ_TYPE_NONE;
 698	struct irq_fwspec *fwspec = arg;
 699	irq_hw_number_t hwirq;
 700	int i, ret;
 701
 702	ret = aic_irq_domain_translate(domain, fwspec, &hwirq, &type);
 703	if (ret)
 704		return ret;
 705
 706	for (i = 0; i < nr_irqs; i++) {
 707		ret = aic_irq_domain_map(domain, virq + i, hwirq + i);
 708		if (ret)
 709			return ret;
 710	}
 711
 712	return 0;
 713}
 714
 715static void aic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
 716				unsigned int nr_irqs)
 717{
 718	int i;
 719
 720	for (i = 0; i < nr_irqs; i++) {
 721		struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
 722
 723		irq_set_handler(virq + i, NULL);
 724		irq_domain_reset_irq_data(d);
 725	}
 726}
 727
 728static const struct irq_domain_ops aic_irq_domain_ops = {
 729	.translate	= aic_irq_domain_translate,
 730	.alloc		= aic_irq_domain_alloc,
 731	.free		= aic_irq_domain_free,
 732};
 733
 734/*
 735 * IPI irqchip
 736 */
 737
 738static void aic_ipi_send_fast(int cpu)
 739{
 740	u64 mpidr = cpu_logical_map(cpu);
 741	u64 my_mpidr = read_cpuid_mpidr();
 742	u64 cluster = MPIDR_CLUSTER(mpidr);
 743	u64 idx = MPIDR_CPU(mpidr);
 744
 745	if (MPIDR_CLUSTER(my_mpidr) == cluster)
 746		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx),
 747			       SYS_IMP_APL_IPI_RR_LOCAL_EL1);
 748	else
 749		write_sysreg_s(FIELD_PREP(IPI_RR_CPU, idx) | FIELD_PREP(IPI_RR_CLUSTER, cluster),
 750			       SYS_IMP_APL_IPI_RR_GLOBAL_EL1);
 751	isb();
 752}
 753
 754static void aic_ipi_mask(struct irq_data *d)
 755{
 756	u32 irq_bit = BIT(irqd_to_hwirq(d));
 757
 758	/* No specific ordering requirements needed here. */
 759	atomic_andnot(irq_bit, this_cpu_ptr(&aic_vipi_enable));
 760}
 761
 762static void aic_ipi_unmask(struct irq_data *d)
 763{
 764	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 765	u32 irq_bit = BIT(irqd_to_hwirq(d));
 766
 767	atomic_or(irq_bit, this_cpu_ptr(&aic_vipi_enable));
 768
 769	/*
 770	 * The atomic_or() above must complete before the atomic_read()
 771	 * below to avoid racing aic_ipi_send_mask().
 772	 */
 773	smp_mb__after_atomic();
 774
 775	/*
 776	 * If a pending vIPI was unmasked, raise a HW IPI to ourselves.
 777	 * No barriers needed here since this is a self-IPI.
 778	 */
 779	if (atomic_read(this_cpu_ptr(&aic_vipi_flag)) & irq_bit) {
 780		if (static_branch_likely(&use_fast_ipi))
 781			aic_ipi_send_fast(smp_processor_id());
 782		else
 783			aic_ic_write(ic, AIC_IPI_SEND, AIC_IPI_SEND_CPU(smp_processor_id()));
 784	}
 785}
 786
 787static void aic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
 788{
 789	struct aic_irq_chip *ic = irq_data_get_irq_chip_data(d);
 790	u32 irq_bit = BIT(irqd_to_hwirq(d));
 791	u32 send = 0;
 792	int cpu;
 793	unsigned long pending;
 794
 795	for_each_cpu(cpu, mask) {
 796		/*
 797		 * This sequence is the mirror of the one in aic_ipi_unmask();
 798		 * see the comment there. Additionally, release semantics
 799		 * ensure that the vIPI flag set is ordered after any shared
 800		 * memory accesses that precede it. This therefore also pairs
 801		 * with the atomic_fetch_andnot in aic_handle_ipi().
 802		 */
 803		pending = atomic_fetch_or_release(irq_bit, per_cpu_ptr(&aic_vipi_flag, cpu));
 804
 805		/*
 806		 * The atomic_fetch_or_release() above must complete before the
 807		 * atomic_read() below to avoid racing aic_ipi_unmask().
 808		 */
 809		smp_mb__after_atomic();
 810
 811		if (!(pending & irq_bit) &&
 812		    (atomic_read(per_cpu_ptr(&aic_vipi_enable, cpu)) & irq_bit)) {
 813			if (static_branch_likely(&use_fast_ipi))
 814				aic_ipi_send_fast(cpu);
 815			else
 816				send |= AIC_IPI_SEND_CPU(cpu);
 817		}
 818	}
 819
 820	/*
 821	 * The flag writes must complete before the physical IPI is issued
 822	 * to another CPU. This is implied by the control dependency on
 823	 * the result of atomic_read_acquire() above, which is itself
 824	 * already ordered after the vIPI flag write.
 825	 */
 826	if (send)
 827		aic_ic_write(ic, AIC_IPI_SEND, send);
 828}
 829
 830static struct irq_chip ipi_chip = {
 831	.name = "AIC-IPI",
 832	.irq_mask = aic_ipi_mask,
 833	.irq_unmask = aic_ipi_unmask,
 834	.ipi_send_mask = aic_ipi_send_mask,
 835};
 836
 837/*
 838 * IPI IRQ domain
 839 */
 840
 841static void aic_handle_ipi(struct pt_regs *regs)
 842{
 843	int i;
 844	unsigned long enabled, firing;
 845
 846	/*
 847	 * Ack the IPI. We need to order this after the AIC event read, but
 848	 * that is enforced by normal MMIO ordering guarantees.
 849	 *
 850	 * For the Fast IPI case, this needs to be ordered before the vIPI
 851	 * handling below, so we need to isb();
 852	 */
 853	if (static_branch_likely(&use_fast_ipi)) {
 854		write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
 855		isb();
 856	} else {
 857		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_OTHER);
 858	}
 859
 860	/*
 861	 * The mask read does not need to be ordered. Only we can change
 862	 * our own mask anyway, so no races are possible here, as long as
 863	 * we are properly in the interrupt handler (which is covered by
 864	 * the barrier that is part of the top-level AIC handler's readl()).
 865	 */
 866	enabled = atomic_read(this_cpu_ptr(&aic_vipi_enable));
 867
 868	/*
 869	 * Clear the IPIs we are about to handle. This pairs with the
 870	 * atomic_fetch_or_release() in aic_ipi_send_mask(), and needs to be
 871	 * ordered after the aic_ic_write() above (to avoid dropping vIPIs) and
 872	 * before IPI handling code (to avoid races handling vIPIs before they
 873	 * are signaled). The former is taken care of by the release semantics
 874	 * of the write portion, while the latter is taken care of by the
 875	 * acquire semantics of the read portion.
 876	 */
 877	firing = atomic_fetch_andnot(enabled, this_cpu_ptr(&aic_vipi_flag)) & enabled;
 878
 879	for_each_set_bit(i, &firing, AIC_NR_SWIPI)
 880		generic_handle_domain_irq(aic_irqc->ipi_domain, i);
 881
 882	/*
 883	 * No ordering needed here; at worst this just changes the timing of
 884	 * when the next IPI will be delivered.
 885	 */
 886	if (!static_branch_likely(&use_fast_ipi))
 887		aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
 888}
 889
 890static int aic_ipi_alloc(struct irq_domain *d, unsigned int virq,
 891			 unsigned int nr_irqs, void *args)
 892{
 893	int i;
 894
 895	for (i = 0; i < nr_irqs; i++) {
 896		irq_set_percpu_devid(virq + i);
 897		irq_domain_set_info(d, virq + i, i, &ipi_chip, d->host_data,
 898				    handle_percpu_devid_irq, NULL, NULL);
 899	}
 900
 901	return 0;
 902}
 903
 904static void aic_ipi_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
 905{
 906	/* Not freeing IPIs */
 907}
 908
 909static const struct irq_domain_ops aic_ipi_domain_ops = {
 910	.alloc = aic_ipi_alloc,
 911	.free = aic_ipi_free,
 912};
 913
 914static int __init aic_init_smp(struct aic_irq_chip *irqc, struct device_node *node)
 915{
 916	struct irq_domain *ipi_domain;
 917	int base_ipi;
 918
 919	ipi_domain = irq_domain_create_linear(irqc->hw_domain->fwnode, AIC_NR_SWIPI,
 920					      &aic_ipi_domain_ops, irqc);
 921	if (WARN_ON(!ipi_domain))
 922		return -ENODEV;
 923
 924	ipi_domain->flags |= IRQ_DOMAIN_FLAG_IPI_SINGLE;
 925	irq_domain_update_bus_token(ipi_domain, DOMAIN_BUS_IPI);
 926
 927	base_ipi = __irq_domain_alloc_irqs(ipi_domain, -1, AIC_NR_SWIPI,
 928					   NUMA_NO_NODE, NULL, false, NULL);
 929
 930	if (WARN_ON(!base_ipi)) {
 931		irq_domain_remove(ipi_domain);
 932		return -ENODEV;
 933	}
 934
 935	set_smp_ipi_range(base_ipi, AIC_NR_SWIPI);
 936
 937	irqc->ipi_domain = ipi_domain;
 938
 939	return 0;
 940}
 941
 942static int aic_init_cpu(unsigned int cpu)
 943{
 944	/* Mask all hard-wired per-CPU IRQ/FIQ sources */
 945
 946	/* Pending Fast IPI FIQs */
 947	write_sysreg_s(IPI_SR_PENDING, SYS_IMP_APL_IPI_SR_EL1);
 948
 949	/* Timer FIQs */
 950	sysreg_clear_set(cntp_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
 951	sysreg_clear_set(cntv_ctl_el0, 0, ARCH_TIMER_CTRL_IT_MASK);
 952
 953	/* EL2-only (VHE mode) IRQ sources */
 954	if (is_kernel_in_hyp_mode()) {
 955		/* Guest timers */
 956		sysreg_clear_set_s(SYS_IMP_APL_VM_TMR_FIQ_ENA_EL2,
 957				   VM_TMR_FIQ_ENABLE_V | VM_TMR_FIQ_ENABLE_P, 0);
 958
 959		/* vGIC maintenance IRQ */
 960		sysreg_clear_set_s(SYS_ICH_HCR_EL2, ICH_HCR_EN, 0);
 961	}
 962
 963	/* PMC FIQ */
 964	sysreg_clear_set_s(SYS_IMP_APL_PMCR0_EL1, PMCR0_IMODE | PMCR0_IACT,
 965			   FIELD_PREP(PMCR0_IMODE, PMCR0_IMODE_OFF));
 966
 967	/* Uncore PMC FIQ */
 968	sysreg_clear_set_s(SYS_IMP_APL_UPMCR0_EL1, UPMCR0_IMODE,
 969			   FIELD_PREP(UPMCR0_IMODE, UPMCR0_IMODE_OFF));
 970
 971	/* Commit all of the above */
 972	isb();
 973
 974	if (aic_irqc->info.version == 1) {
 975		/*
 976		 * Make sure the kernel's idea of logical CPU order is the same as AIC's
 977		 * If we ever end up with a mismatch here, we will have to introduce
 978		 * a mapping table similar to what other irqchip drivers do.
 979		 */
 980		WARN_ON(aic_ic_read(aic_irqc, AIC_WHOAMI) != smp_processor_id());
 981
 982		/*
 983		 * Always keep IPIs unmasked at the hardware level (except auto-masking
 984		 * by AIC during processing). We manage masks at the vIPI level.
 985		 * These registers only exist on AICv1, AICv2 always uses fast IPIs.
 986		 */
 987		aic_ic_write(aic_irqc, AIC_IPI_ACK, AIC_IPI_SELF | AIC_IPI_OTHER);
 988		if (static_branch_likely(&use_fast_ipi)) {
 989			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF | AIC_IPI_OTHER);
 990		} else {
 991			aic_ic_write(aic_irqc, AIC_IPI_MASK_SET, AIC_IPI_SELF);
 992			aic_ic_write(aic_irqc, AIC_IPI_MASK_CLR, AIC_IPI_OTHER);
 993		}
 994	}
 995
 996	/* Initialize the local mask state */
 997	__this_cpu_write(aic_fiq_unmasked, 0);
 998
 999	return 0;
1000}
1001
1002static struct gic_kvm_info vgic_info __initdata = {
1003	.type			= GIC_V3,
1004	.no_maint_irq_mask	= true,
1005	.no_hw_deactivation	= true,
1006};
1007
1008static void build_fiq_affinity(struct aic_irq_chip *ic, struct device_node *aff)
1009{
1010	int i, n;
1011	u32 fiq;
1012
1013	if (of_property_read_u32(aff, "apple,fiq-index", &fiq) ||
1014	    WARN_ON(fiq >= AIC_NR_FIQ) || ic->fiq_aff[fiq])
1015		return;
1016
1017	n = of_property_count_elems_of_size(aff, "cpus", sizeof(u32));
1018	if (WARN_ON(n < 0))
1019		return;
1020
1021	ic->fiq_aff[fiq] = kzalloc(sizeof(*ic->fiq_aff[fiq]), GFP_KERNEL);
1022	if (!ic->fiq_aff[fiq])
1023		return;
1024
1025	for (i = 0; i < n; i++) {
1026		struct device_node *cpu_node;
1027		u32 cpu_phandle;
1028		int cpu;
1029
1030		if (of_property_read_u32_index(aff, "cpus", i, &cpu_phandle))
1031			continue;
1032
1033		cpu_node = of_find_node_by_phandle(cpu_phandle);
1034		if (WARN_ON(!cpu_node))
1035			continue;
1036
1037		cpu = of_cpu_node_to_id(cpu_node);
1038		of_node_put(cpu_node);
1039		if (WARN_ON(cpu < 0))
1040			continue;
1041
1042		cpumask_set_cpu(cpu, &ic->fiq_aff[fiq]->aff);
1043	}
1044}
1045
1046static int __init aic_of_ic_init(struct device_node *node, struct device_node *parent)
1047{
1048	int i, die;
1049	u32 off, start_off;
1050	void __iomem *regs;
1051	struct aic_irq_chip *irqc;
1052	struct device_node *affs;
1053	const struct of_device_id *match;
1054
1055	regs = of_iomap(node, 0);
1056	if (WARN_ON(!regs))
1057		return -EIO;
1058
1059	irqc = kzalloc(sizeof(*irqc), GFP_KERNEL);
1060	if (!irqc) {
1061		iounmap(regs);
1062		return -ENOMEM;
1063	}
1064
1065	irqc->base = regs;
1066
1067	match = of_match_node(aic_info_match, node);
1068	if (!match)
1069		goto err_unmap;
1070
1071	irqc->info = *(struct aic_info *)match->data;
1072
1073	aic_irqc = irqc;
1074
1075	switch (irqc->info.version) {
1076	case 1: {
1077		u32 info;
1078
1079		info = aic_ic_read(irqc, AIC_INFO);
1080		irqc->nr_irq = FIELD_GET(AIC_INFO_NR_IRQ, info);
1081		irqc->max_irq = AIC_MAX_IRQ;
1082		irqc->nr_die = irqc->max_die = 1;
1083
1084		off = start_off = irqc->info.target_cpu;
1085		off += sizeof(u32) * irqc->max_irq; /* TARGET_CPU */
1086
1087		irqc->event = irqc->base;
1088
1089		break;
1090	}
1091	case 2: {
1092		u32 info1, info3;
1093
1094		info1 = aic_ic_read(irqc, AIC2_INFO1);
1095		info3 = aic_ic_read(irqc, AIC2_INFO3);
1096
1097		irqc->nr_irq = FIELD_GET(AIC2_INFO1_NR_IRQ, info1);
1098		irqc->max_irq = FIELD_GET(AIC2_INFO3_MAX_IRQ, info3);
1099		irqc->nr_die = FIELD_GET(AIC2_INFO1_LAST_DIE, info1) + 1;
1100		irqc->max_die = FIELD_GET(AIC2_INFO3_MAX_DIE, info3);
1101
1102		off = start_off = irqc->info.irq_cfg;
1103		off += sizeof(u32) * irqc->max_irq; /* IRQ_CFG */
1104
1105		irqc->event = of_iomap(node, 1);
1106		if (WARN_ON(!irqc->event))
1107			goto err_unmap;
1108
1109		break;
1110	}
1111	}
1112
1113	irqc->info.sw_set = off;
1114	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_SET */
1115	irqc->info.sw_clr = off;
1116	off += sizeof(u32) * (irqc->max_irq >> 5); /* SW_CLR */
1117	irqc->info.mask_set = off;
1118	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_SET */
1119	irqc->info.mask_clr = off;
1120	off += sizeof(u32) * (irqc->max_irq >> 5); /* MASK_CLR */
1121	off += sizeof(u32) * (irqc->max_irq >> 5); /* HW_STATE */
1122
1123	if (irqc->info.fast_ipi)
1124		static_branch_enable(&use_fast_ipi);
1125	else
1126		static_branch_disable(&use_fast_ipi);
1127
1128	irqc->info.die_stride = off - start_off;
1129
1130	irqc->hw_domain = irq_domain_create_tree(of_node_to_fwnode(node),
1131						 &aic_irq_domain_ops, irqc);
1132	if (WARN_ON(!irqc->hw_domain))
1133		goto err_unmap;
1134
1135	irq_domain_update_bus_token(irqc->hw_domain, DOMAIN_BUS_WIRED);
1136
1137	if (aic_init_smp(irqc, node))
1138		goto err_remove_domain;
1139
1140	affs = of_get_child_by_name(node, "affinities");
1141	if (affs) {
1142		struct device_node *chld;
1143
1144		for_each_child_of_node(affs, chld)
1145			build_fiq_affinity(irqc, chld);
1146	}
1147	of_node_put(affs);
1148
1149	set_handle_irq(aic_handle_irq);
1150	set_handle_fiq(aic_handle_fiq);
1151
1152	off = 0;
1153	for (die = 0; die < irqc->nr_die; die++) {
1154		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1155			aic_ic_write(irqc, irqc->info.mask_set + off + i * 4, U32_MAX);
1156		for (i = 0; i < BITS_TO_U32(irqc->nr_irq); i++)
1157			aic_ic_write(irqc, irqc->info.sw_clr + off + i * 4, U32_MAX);
1158		if (irqc->info.target_cpu)
1159			for (i = 0; i < irqc->nr_irq; i++)
1160				aic_ic_write(irqc, irqc->info.target_cpu + off + i * 4, 1);
1161		off += irqc->info.die_stride;
1162	}
1163
1164	if (irqc->info.version == 2) {
1165		u32 config = aic_ic_read(irqc, AIC2_CONFIG);
1166
1167		config |= AIC2_CONFIG_ENABLE;
1168		aic_ic_write(irqc, AIC2_CONFIG, config);
1169	}
1170
1171	if (!is_kernel_in_hyp_mode())
1172		pr_info("Kernel running in EL1, mapping interrupts");
1173
1174	if (static_branch_likely(&use_fast_ipi))
1175		pr_info("Using Fast IPIs");
1176
1177	cpuhp_setup_state(CPUHP_AP_IRQ_APPLE_AIC_STARTING,
1178			  "irqchip/apple-aic/ipi:starting",
1179			  aic_init_cpu, NULL);
1180
1181	vgic_set_kvm_info(&vgic_info);
1182
1183	pr_info("Initialized with %d/%d IRQs * %d/%d die(s), %d FIQs, %d vIPIs",
1184		irqc->nr_irq, irqc->max_irq, irqc->nr_die, irqc->max_die, AIC_NR_FIQ, AIC_NR_SWIPI);
1185
1186	return 0;
1187
1188err_remove_domain:
1189	irq_domain_remove(irqc->hw_domain);
1190err_unmap:
1191	if (irqc->event && irqc->event != irqc->base)
1192		iounmap(irqc->event);
1193	iounmap(irqc->base);
1194	kfree(irqc);
1195	return -ENODEV;
1196}
1197
1198IRQCHIP_DECLARE(apple_aic, "apple,aic", aic_of_ic_init);
1199IRQCHIP_DECLARE(apple_aic2, "apple,aic2", aic_of_ic_init);