Loading...
Note: File does not exist in v4.6.
1// SPDX-License-Identifier: MIT
2/*
3 * Copyright(c) 2020 Intel Corporation.
4 */
5#include <linux/workqueue.h>
6#include "intel_pxp.h"
7#include "intel_pxp_irq.h"
8#include "intel_pxp_session.h"
9#include "intel_pxp_tee.h"
10#include "gem/i915_gem_context.h"
11#include "gt/intel_context.h"
12#include "i915_drv.h"
13
14/**
15 * DOC: PXP
16 *
17 * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
18 * It allows execution and flip to display of protected (i.e. encrypted)
19 * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
20 *
21 * Objects can opt-in to PXP encryption at creation time via the
22 * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
23 * correctly protected they must be used in conjunction with a context created
24 * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
25 * of those two uapi flags for details and restrictions.
26 *
27 * Protected objects are tied to a pxp session; currently we only support one
28 * session, which i915 manages and whose index is available in the uapi
29 * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
30 * protected objects.
31 * The session is invalidated by the HW when certain events occur (e.g.
32 * suspend/resume). When this happens, all the objects that were used with the
33 * session are marked as invalid and all contexts marked as using protected
34 * content are banned. Any further attempt at using them in an execbuf call is
35 * rejected, while flips are converted to black frames.
36 *
37 * Some of the PXP setup operations are performed by the Management Engine,
38 * which is handled by the mei driver; communication between i915 and mei is
39 * performed via the mei_pxp component module.
40 */
41
42struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp)
43{
44 return container_of(pxp, struct intel_gt, pxp);
45}
46
47bool intel_pxp_is_enabled(const struct intel_pxp *pxp)
48{
49 return pxp->ce;
50}
51
52bool intel_pxp_is_active(const struct intel_pxp *pxp)
53{
54 return pxp->arb_is_valid;
55}
56
57/* KCR register definitions */
58#define KCR_INIT _MMIO(0x320f0)
59/* Setting KCR Init bit is required after system boot */
60#define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14)
61
62static void kcr_pxp_enable(struct intel_gt *gt)
63{
64 intel_uncore_write(gt->uncore, KCR_INIT,
65 _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
66}
67
68static void kcr_pxp_disable(struct intel_gt *gt)
69{
70 intel_uncore_write(gt->uncore, KCR_INIT,
71 _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
72}
73
74static int create_vcs_context(struct intel_pxp *pxp)
75{
76 static struct lock_class_key pxp_lock;
77 struct intel_gt *gt = pxp_to_gt(pxp);
78 struct intel_engine_cs *engine;
79 struct intel_context *ce;
80 int i;
81
82 /*
83 * Find the first VCS engine present. We're guaranteed there is one
84 * if we're in this function due to the check in has_pxp
85 */
86 for (i = 0, engine = NULL; !engine; i++)
87 engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
88
89 GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
90
91 ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
92 I915_GEM_HWS_PXP_ADDR,
93 &pxp_lock, "pxp_context");
94 if (IS_ERR(ce)) {
95 drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n");
96 return PTR_ERR(ce);
97 }
98
99 pxp->ce = ce;
100
101 return 0;
102}
103
104static void destroy_vcs_context(struct intel_pxp *pxp)
105{
106 if (pxp->ce)
107 intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
108}
109
110static void pxp_init_full(struct intel_pxp *pxp)
111{
112 struct intel_gt *gt = pxp_to_gt(pxp);
113 int ret;
114
115 /*
116 * we'll use the completion to check if there is a termination pending,
117 * so we start it as completed and we reinit it when a termination
118 * is triggered.
119 */
120 init_completion(&pxp->termination);
121 complete_all(&pxp->termination);
122
123 intel_pxp_session_management_init(pxp);
124
125 ret = create_vcs_context(pxp);
126 if (ret)
127 return;
128
129 ret = intel_pxp_tee_component_init(pxp);
130 if (ret)
131 goto out_context;
132
133 drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
134
135 return;
136
137out_context:
138 destroy_vcs_context(pxp);
139}
140
141void intel_pxp_init(struct intel_pxp *pxp)
142{
143 struct intel_gt *gt = pxp_to_gt(pxp);
144
145 /* we rely on the mei PXP module */
146 if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP))
147 return;
148
149 /*
150 * If HuC is loaded by GSC but PXP is disabled, we can skip the init of
151 * the full PXP session/object management and just init the tee channel.
152 */
153 if (HAS_PXP(gt->i915))
154 pxp_init_full(pxp);
155 else if (intel_huc_is_loaded_by_gsc(>->uc.huc) && intel_uc_uses_huc(>->uc))
156 intel_pxp_tee_component_init(pxp);
157}
158
159void intel_pxp_fini(struct intel_pxp *pxp)
160{
161 pxp->arb_is_valid = false;
162
163 intel_pxp_tee_component_fini(pxp);
164
165 destroy_vcs_context(pxp);
166}
167
168void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
169{
170 pxp->arb_is_valid = false;
171 reinit_completion(&pxp->termination);
172}
173
174static void pxp_queue_termination(struct intel_pxp *pxp)
175{
176 struct intel_gt *gt = pxp_to_gt(pxp);
177
178 /*
179 * We want to get the same effect as if we received a termination
180 * interrupt, so just pretend that we did.
181 */
182 spin_lock_irq(gt->irq_lock);
183 intel_pxp_mark_termination_in_progress(pxp);
184 pxp->session_events |= PXP_TERMINATION_REQUEST;
185 queue_work(system_unbound_wq, &pxp->session_work);
186 spin_unlock_irq(gt->irq_lock);
187}
188
189static bool pxp_component_bound(struct intel_pxp *pxp)
190{
191 bool bound = false;
192
193 mutex_lock(&pxp->tee_mutex);
194 if (pxp->pxp_component)
195 bound = true;
196 mutex_unlock(&pxp->tee_mutex);
197
198 return bound;
199}
200
201/*
202 * the arb session is restarted from the irq work when we receive the
203 * termination completion interrupt
204 */
205int intel_pxp_start(struct intel_pxp *pxp)
206{
207 int ret = 0;
208
209 if (!intel_pxp_is_enabled(pxp))
210 return -ENODEV;
211
212 if (wait_for(pxp_component_bound(pxp), 250))
213 return -ENXIO;
214
215 mutex_lock(&pxp->arb_mutex);
216
217 if (pxp->arb_is_valid)
218 goto unlock;
219
220 pxp_queue_termination(pxp);
221
222 if (!wait_for_completion_timeout(&pxp->termination,
223 msecs_to_jiffies(250))) {
224 ret = -ETIMEDOUT;
225 goto unlock;
226 }
227
228 /* make sure the compiler doesn't optimize the double access */
229 barrier();
230
231 if (!pxp->arb_is_valid)
232 ret = -EIO;
233
234unlock:
235 mutex_unlock(&pxp->arb_mutex);
236 return ret;
237}
238
239void intel_pxp_init_hw(struct intel_pxp *pxp)
240{
241 kcr_pxp_enable(pxp_to_gt(pxp));
242 intel_pxp_irq_enable(pxp);
243}
244
245void intel_pxp_fini_hw(struct intel_pxp *pxp)
246{
247 kcr_pxp_disable(pxp_to_gt(pxp));
248
249 intel_pxp_irq_disable(pxp);
250}
251
252int intel_pxp_key_check(struct intel_pxp *pxp,
253 struct drm_i915_gem_object *obj,
254 bool assign)
255{
256 if (!intel_pxp_is_active(pxp))
257 return -ENODEV;
258
259 if (!i915_gem_object_is_protected(obj))
260 return -EINVAL;
261
262 GEM_BUG_ON(!pxp->key_instance);
263
264 /*
265 * If this is the first time we're using this object, it's not
266 * encrypted yet; it will be encrypted with the current key, so mark it
267 * as such. If the object is already encrypted, check instead if the
268 * used key is still valid.
269 */
270 if (!obj->pxp_key_instance && assign)
271 obj->pxp_key_instance = pxp->key_instance;
272
273 if (obj->pxp_key_instance != pxp->key_instance)
274 return -ENOEXEC;
275
276 return 0;
277}
278
279void intel_pxp_invalidate(struct intel_pxp *pxp)
280{
281 struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915;
282 struct i915_gem_context *ctx, *cn;
283
284 /* ban all contexts marked as protected */
285 spin_lock_irq(&i915->gem.contexts.lock);
286 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
287 struct i915_gem_engines_iter it;
288 struct intel_context *ce;
289
290 if (!kref_get_unless_zero(&ctx->ref))
291 continue;
292
293 if (likely(!i915_gem_context_uses_protected_content(ctx))) {
294 i915_gem_context_put(ctx);
295 continue;
296 }
297
298 spin_unlock_irq(&i915->gem.contexts.lock);
299
300 /*
301 * By the time we get here we are either going to suspend with
302 * quiesced execution or the HW keys are already long gone and
303 * in this case it is worthless to attempt to close the context
304 * and wait for its execution. It will hang the GPU if it has
305 * not already. So, as a fast mitigation, we can ban the
306 * context as quick as we can. That might race with the
307 * execbuffer, but currently this is the best that can be done.
308 */
309 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
310 intel_context_ban(ce, NULL);
311 i915_gem_context_unlock_engines(ctx);
312
313 /*
314 * The context has been banned, no need to keep the wakeref.
315 * This is safe from races because the only other place this
316 * is touched is context_release and we're holding a ctx ref
317 */
318 if (ctx->pxp_wakeref) {
319 intel_runtime_pm_put(&i915->runtime_pm,
320 ctx->pxp_wakeref);
321 ctx->pxp_wakeref = 0;
322 }
323
324 spin_lock_irq(&i915->gem.contexts.lock);
325 list_safe_reset_next(ctx, cn, link);
326 i915_gem_context_put(ctx);
327 }
328 spin_unlock_irq(&i915->gem.contexts.lock);
329}