Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright © 2010 Daniel Vetter
   3 * Copyright © 2011-2014 Intel Corporation
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice (including the next
  13 * paragraph) shall be included in all copies or substantial portions of the
  14 * Software.
  15 *
  16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  22 * IN THE SOFTWARE.
  23 *
  24 */
  25
 
 
 
 
 
  26#include <linux/seq_file.h>
  27#include <linux/stop_machine.h>
  28#include <drm/drmP.h>
  29#include <drm/i915_drm.h>
  30#include "i915_drv.h"
  31#include "i915_vgpu.h"
  32#include "i915_trace.h"
  33#include "intel_drv.h"
  34
  35/**
  36 * DOC: Global GTT views
  37 *
  38 * Background and previous state
  39 *
  40 * Historically objects could exists (be bound) in global GTT space only as
  41 * singular instances with a view representing all of the object's backing pages
  42 * in a linear fashion. This view will be called a normal view.
  43 *
  44 * To support multiple views of the same object, where the number of mapped
  45 * pages is not equal to the backing store, or where the layout of the pages
  46 * is not linear, concept of a GGTT view was added.
  47 *
  48 * One example of an alternative view is a stereo display driven by a single
  49 * image. In this case we would have a framebuffer looking like this
  50 * (2x2 pages):
  51 *
  52 *    12
  53 *    34
  54 *
  55 * Above would represent a normal GGTT view as normally mapped for GPU or CPU
  56 * rendering. In contrast, fed to the display engine would be an alternative
  57 * view which could look something like this:
  58 *
  59 *   1212
  60 *   3434
  61 *
  62 * In this example both the size and layout of pages in the alternative view is
  63 * different from the normal view.
  64 *
  65 * Implementation and usage
  66 *
  67 * GGTT views are implemented using VMAs and are distinguished via enum
  68 * i915_ggtt_view_type and struct i915_ggtt_view.
  69 *
  70 * A new flavour of core GEM functions which work with GGTT bound objects were
  71 * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
  72 * renaming  in large amounts of code. They take the struct i915_ggtt_view
  73 * parameter encapsulating all metadata required to implement a view.
  74 *
  75 * As a helper for callers which are only interested in the normal view,
  76 * globally const i915_ggtt_view_normal singleton instance exists. All old core
  77 * GEM API functions, the ones not taking the view parameter, are operating on,
  78 * or with the normal GGTT view.
  79 *
  80 * Code wanting to add or use a new GGTT view needs to:
  81 *
  82 * 1. Add a new enum with a suitable name.
  83 * 2. Extend the metadata in the i915_ggtt_view structure if required.
  84 * 3. Add support to i915_get_vma_pages().
  85 *
  86 * New views are required to build a scatter-gather table from within the
  87 * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
  88 * exists for the lifetime of an VMA.
  89 *
  90 * Core API is designed to have copy semantics which means that passed in
  91 * struct i915_ggtt_view does not need to be persistent (left around after
  92 * calling the core API functions).
  93 *
  94 */
  95
  96static int
  97i915_get_ggtt_vma_pages(struct i915_vma *vma);
  98
  99const struct i915_ggtt_view i915_ggtt_view_normal = {
 100	.type = I915_GGTT_VIEW_NORMAL,
 101};
 102const struct i915_ggtt_view i915_ggtt_view_rotated = {
 103	.type = I915_GGTT_VIEW_ROTATED,
 104};
 105
 106static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt)
 107{
 108	bool has_aliasing_ppgtt;
 109	bool has_full_ppgtt;
 110	bool has_full_48bit_ppgtt;
 111
 112	has_aliasing_ppgtt = INTEL_INFO(dev)->gen >= 6;
 113	has_full_ppgtt = INTEL_INFO(dev)->gen >= 7;
 114	has_full_48bit_ppgtt = IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9;
 115
 116	if (intel_vgpu_active(dev))
 117		has_full_ppgtt = false; /* emulation is too hard */
 118
 119	/*
 120	 * We don't allow disabling PPGTT for gen9+ as it's a requirement for
 121	 * execlists, the sole mechanism available to submit work.
 122	 */
 123	if (INTEL_INFO(dev)->gen < 9 &&
 124	    (enable_ppgtt == 0 || !has_aliasing_ppgtt))
 125		return 0;
 126
 127	if (enable_ppgtt == 1)
 128		return 1;
 129
 130	if (enable_ppgtt == 2 && has_full_ppgtt)
 131		return 2;
 132
 133	if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
 134		return 3;
 135
 136#ifdef CONFIG_INTEL_IOMMU
 137	/* Disable ppgtt on SNB if VT-d is on. */
 138	if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) {
 139		DRM_INFO("Disabling PPGTT because VT-d is on\n");
 140		return 0;
 141	}
 142#endif
 143
 144	/* Early VLV doesn't have this */
 145	if (IS_VALLEYVIEW(dev) && dev->pdev->revision < 0xb) {
 146		DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
 147		return 0;
 148	}
 149
 150	if (INTEL_INFO(dev)->gen >= 8 && i915.enable_execlists)
 151		return has_full_48bit_ppgtt ? 3 : 2;
 152	else
 153		return has_aliasing_ppgtt ? 1 : 0;
 154}
 155
 156static int ppgtt_bind_vma(struct i915_vma *vma,
 157			  enum i915_cache_level cache_level,
 158			  u32 unused)
 159{
 160	u32 pte_flags = 0;
 161
 162	/* Currently applicable only to VLV */
 163	if (vma->obj->gt_ro)
 164		pte_flags |= PTE_READ_ONLY;
 165
 166	vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start,
 167				cache_level, pte_flags);
 168
 169	return 0;
 170}
 171
 172static void ppgtt_unbind_vma(struct i915_vma *vma)
 173{
 174	vma->vm->clear_range(vma->vm,
 175			     vma->node.start,
 176			     vma->obj->base.size,
 177			     true);
 178}
 179
 180static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
 181				  enum i915_cache_level level,
 182				  bool valid)
 183{
 184	gen8_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
 185	pte |= addr;
 186
 187	switch (level) {
 188	case I915_CACHE_NONE:
 189		pte |= PPAT_UNCACHED_INDEX;
 190		break;
 191	case I915_CACHE_WT:
 192		pte |= PPAT_DISPLAY_ELLC_INDEX;
 193		break;
 194	default:
 195		pte |= PPAT_CACHED_INDEX;
 196		break;
 197	}
 198
 199	return pte;
 200}
 201
 202static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
 203				  const enum i915_cache_level level)
 204{
 205	gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
 206	pde |= addr;
 207	if (level != I915_CACHE_NONE)
 208		pde |= PPAT_CACHED_PDE_INDEX;
 209	else
 210		pde |= PPAT_UNCACHED_INDEX;
 211	return pde;
 212}
 213
 214#define gen8_pdpe_encode gen8_pde_encode
 215#define gen8_pml4e_encode gen8_pde_encode
 216
 217static gen6_pte_t snb_pte_encode(dma_addr_t addr,
 218				 enum i915_cache_level level,
 219				 bool valid, u32 unused)
 220{
 221	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
 222	pte |= GEN6_PTE_ADDR_ENCODE(addr);
 223
 224	switch (level) {
 225	case I915_CACHE_L3_LLC:
 226	case I915_CACHE_LLC:
 227		pte |= GEN6_PTE_CACHE_LLC;
 228		break;
 229	case I915_CACHE_NONE:
 230		pte |= GEN6_PTE_UNCACHED;
 231		break;
 232	default:
 233		MISSING_CASE(level);
 234	}
 235
 236	return pte;
 237}
 238
 239static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
 240				 enum i915_cache_level level,
 241				 bool valid, u32 unused)
 242{
 243	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
 244	pte |= GEN6_PTE_ADDR_ENCODE(addr);
 245
 246	switch (level) {
 247	case I915_CACHE_L3_LLC:
 248		pte |= GEN7_PTE_CACHE_L3_LLC;
 249		break;
 250	case I915_CACHE_LLC:
 251		pte |= GEN6_PTE_CACHE_LLC;
 252		break;
 253	case I915_CACHE_NONE:
 254		pte |= GEN6_PTE_UNCACHED;
 255		break;
 256	default:
 257		MISSING_CASE(level);
 258	}
 259
 260	return pte;
 261}
 262
 263static gen6_pte_t byt_pte_encode(dma_addr_t addr,
 264				 enum i915_cache_level level,
 265				 bool valid, u32 flags)
 266{
 267	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
 268	pte |= GEN6_PTE_ADDR_ENCODE(addr);
 269
 270	if (!(flags & PTE_READ_ONLY))
 271		pte |= BYT_PTE_WRITEABLE;
 272
 273	if (level != I915_CACHE_NONE)
 274		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
 275
 276	return pte;
 277}
 278
 279static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
 280				 enum i915_cache_level level,
 281				 bool valid, u32 unused)
 282{
 283	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
 284	pte |= HSW_PTE_ADDR_ENCODE(addr);
 285
 286	if (level != I915_CACHE_NONE)
 287		pte |= HSW_WB_LLC_AGE3;
 288
 289	return pte;
 290}
 291
 292static gen6_pte_t iris_pte_encode(dma_addr_t addr,
 293				  enum i915_cache_level level,
 294				  bool valid, u32 unused)
 295{
 296	gen6_pte_t pte = valid ? GEN6_PTE_VALID : 0;
 297	pte |= HSW_PTE_ADDR_ENCODE(addr);
 298
 299	switch (level) {
 300	case I915_CACHE_NONE:
 301		break;
 302	case I915_CACHE_WT:
 303		pte |= HSW_WT_ELLC_LLC_AGE3;
 304		break;
 305	default:
 306		pte |= HSW_WB_ELLC_LLC_AGE3;
 307		break;
 308	}
 309
 310	return pte;
 311}
 312
 313static int __setup_page_dma(struct drm_device *dev,
 314			    struct i915_page_dma *p, gfp_t flags)
 315{
 316	struct device *device = &dev->pdev->dev;
 317
 318	p->page = alloc_page(flags);
 319	if (!p->page)
 320		return -ENOMEM;
 321
 322	p->daddr = dma_map_page(device,
 323				p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
 324
 325	if (dma_mapping_error(device, p->daddr)) {
 326		__free_page(p->page);
 327		return -EINVAL;
 328	}
 329
 330	return 0;
 331}
 332
 333static int setup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
 334{
 335	return __setup_page_dma(dev, p, GFP_KERNEL);
 336}
 337
 338static void cleanup_page_dma(struct drm_device *dev, struct i915_page_dma *p)
 339{
 340	if (WARN_ON(!p->page))
 341		return;
 342
 343	dma_unmap_page(&dev->pdev->dev, p->daddr, 4096, PCI_DMA_BIDIRECTIONAL);
 344	__free_page(p->page);
 345	memset(p, 0, sizeof(*p));
 346}
 347
 348static void *kmap_page_dma(struct i915_page_dma *p)
 349{
 350	return kmap_atomic(p->page);
 351}
 352
 353/* We use the flushing unmap only with ppgtt structures:
 354 * page directories, page tables and scratch pages.
 355 */
 356static void kunmap_page_dma(struct drm_device *dev, void *vaddr)
 357{
 358	/* There are only few exceptions for gen >=6. chv and bxt.
 359	 * And we are not sure about the latter so play safe for now.
 360	 */
 361	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
 362		drm_clflush_virt_range(vaddr, PAGE_SIZE);
 363
 364	kunmap_atomic(vaddr);
 365}
 366
 367#define kmap_px(px) kmap_page_dma(px_base(px))
 368#define kunmap_px(ppgtt, vaddr) kunmap_page_dma((ppgtt)->base.dev, (vaddr))
 369
 370#define setup_px(dev, px) setup_page_dma((dev), px_base(px))
 371#define cleanup_px(dev, px) cleanup_page_dma((dev), px_base(px))
 372#define fill_px(dev, px, v) fill_page_dma((dev), px_base(px), (v))
 373#define fill32_px(dev, px, v) fill_page_dma_32((dev), px_base(px), (v))
 374
 375static void fill_page_dma(struct drm_device *dev, struct i915_page_dma *p,
 376			  const uint64_t val)
 377{
 378	int i;
 379	uint64_t * const vaddr = kmap_page_dma(p);
 380
 381	for (i = 0; i < 512; i++)
 382		vaddr[i] = val;
 383
 384	kunmap_page_dma(dev, vaddr);
 385}
 386
 387static void fill_page_dma_32(struct drm_device *dev, struct i915_page_dma *p,
 388			     const uint32_t val32)
 389{
 390	uint64_t v = val32;
 391
 392	v = v << 32 | val32;
 393
 394	fill_page_dma(dev, p, v);
 395}
 396
 397static struct i915_page_scratch *alloc_scratch_page(struct drm_device *dev)
 398{
 399	struct i915_page_scratch *sp;
 400	int ret;
 401
 402	sp = kzalloc(sizeof(*sp), GFP_KERNEL);
 403	if (sp == NULL)
 404		return ERR_PTR(-ENOMEM);
 405
 406	ret = __setup_page_dma(dev, px_base(sp), GFP_DMA32 | __GFP_ZERO);
 407	if (ret) {
 408		kfree(sp);
 409		return ERR_PTR(ret);
 410	}
 411
 412	set_pages_uc(px_page(sp), 1);
 413
 414	return sp;
 415}
 416
 417static void free_scratch_page(struct drm_device *dev,
 418			      struct i915_page_scratch *sp)
 419{
 420	set_pages_wb(px_page(sp), 1);
 421
 422	cleanup_px(dev, sp);
 423	kfree(sp);
 424}
 425
 426static struct i915_page_table *alloc_pt(struct drm_device *dev)
 427{
 428	struct i915_page_table *pt;
 429	const size_t count = INTEL_INFO(dev)->gen >= 8 ?
 430		GEN8_PTES : GEN6_PTES;
 431	int ret = -ENOMEM;
 432
 433	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
 434	if (!pt)
 435		return ERR_PTR(-ENOMEM);
 436
 437	pt->used_ptes = kcalloc(BITS_TO_LONGS(count), sizeof(*pt->used_ptes),
 438				GFP_KERNEL);
 439
 440	if (!pt->used_ptes)
 441		goto fail_bitmap;
 442
 443	ret = setup_px(dev, pt);
 444	if (ret)
 445		goto fail_page_m;
 446
 447	return pt;
 448
 449fail_page_m:
 450	kfree(pt->used_ptes);
 451fail_bitmap:
 452	kfree(pt);
 453
 454	return ERR_PTR(ret);
 455}
 456
 457static void free_pt(struct drm_device *dev, struct i915_page_table *pt)
 458{
 459	cleanup_px(dev, pt);
 460	kfree(pt->used_ptes);
 461	kfree(pt);
 462}
 463
 464static void gen8_initialize_pt(struct i915_address_space *vm,
 465			       struct i915_page_table *pt)
 466{
 467	gen8_pte_t scratch_pte;
 468
 469	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
 470				      I915_CACHE_LLC, true);
 471
 472	fill_px(vm->dev, pt, scratch_pte);
 473}
 474
 475static void gen6_initialize_pt(struct i915_address_space *vm,
 476			       struct i915_page_table *pt)
 477{
 478	gen6_pte_t scratch_pte;
 479
 480	WARN_ON(px_dma(vm->scratch_page) == 0);
 481
 482	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
 483				     I915_CACHE_LLC, true, 0);
 484
 485	fill32_px(vm->dev, pt, scratch_pte);
 486}
 487
 488static struct i915_page_directory *alloc_pd(struct drm_device *dev)
 489{
 490	struct i915_page_directory *pd;
 491	int ret = -ENOMEM;
 492
 493	pd = kzalloc(sizeof(*pd), GFP_KERNEL);
 494	if (!pd)
 495		return ERR_PTR(-ENOMEM);
 496
 497	pd->used_pdes = kcalloc(BITS_TO_LONGS(I915_PDES),
 498				sizeof(*pd->used_pdes), GFP_KERNEL);
 499	if (!pd->used_pdes)
 500		goto fail_bitmap;
 501
 502	ret = setup_px(dev, pd);
 503	if (ret)
 504		goto fail_page_m;
 505
 506	return pd;
 507
 508fail_page_m:
 509	kfree(pd->used_pdes);
 510fail_bitmap:
 511	kfree(pd);
 512
 513	return ERR_PTR(ret);
 514}
 515
 516static void free_pd(struct drm_device *dev, struct i915_page_directory *pd)
 517{
 518	if (px_page(pd)) {
 519		cleanup_px(dev, pd);
 520		kfree(pd->used_pdes);
 521		kfree(pd);
 522	}
 523}
 524
 525static void gen8_initialize_pd(struct i915_address_space *vm,
 526			       struct i915_page_directory *pd)
 527{
 528	gen8_pde_t scratch_pde;
 529
 530	scratch_pde = gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC);
 531
 532	fill_px(vm->dev, pd, scratch_pde);
 533}
 534
 535static int __pdp_init(struct drm_device *dev,
 536		      struct i915_page_directory_pointer *pdp)
 537{
 538	size_t pdpes = I915_PDPES_PER_PDP(dev);
 539
 540	pdp->used_pdpes = kcalloc(BITS_TO_LONGS(pdpes),
 541				  sizeof(unsigned long),
 542				  GFP_KERNEL);
 543	if (!pdp->used_pdpes)
 544		return -ENOMEM;
 545
 546	pdp->page_directory = kcalloc(pdpes, sizeof(*pdp->page_directory),
 547				      GFP_KERNEL);
 548	if (!pdp->page_directory) {
 549		kfree(pdp->used_pdpes);
 550		/* the PDP might be the statically allocated top level. Keep it
 551		 * as clean as possible */
 552		pdp->used_pdpes = NULL;
 553		return -ENOMEM;
 554	}
 555
 556	return 0;
 557}
 558
 559static void __pdp_fini(struct i915_page_directory_pointer *pdp)
 560{
 561	kfree(pdp->used_pdpes);
 562	kfree(pdp->page_directory);
 563	pdp->page_directory = NULL;
 564}
 565
 566static struct
 567i915_page_directory_pointer *alloc_pdp(struct drm_device *dev)
 568{
 569	struct i915_page_directory_pointer *pdp;
 570	int ret = -ENOMEM;
 571
 572	WARN_ON(!USES_FULL_48BIT_PPGTT(dev));
 573
 574	pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
 575	if (!pdp)
 576		return ERR_PTR(-ENOMEM);
 577
 578	ret = __pdp_init(dev, pdp);
 579	if (ret)
 580		goto fail_bitmap;
 581
 582	ret = setup_px(dev, pdp);
 583	if (ret)
 584		goto fail_page_m;
 585
 586	return pdp;
 587
 588fail_page_m:
 589	__pdp_fini(pdp);
 590fail_bitmap:
 591	kfree(pdp);
 592
 593	return ERR_PTR(ret);
 594}
 595
 596static void free_pdp(struct drm_device *dev,
 597		     struct i915_page_directory_pointer *pdp)
 598{
 599	__pdp_fini(pdp);
 600	if (USES_FULL_48BIT_PPGTT(dev)) {
 601		cleanup_px(dev, pdp);
 602		kfree(pdp);
 603	}
 604}
 605
 606static void gen8_initialize_pdp(struct i915_address_space *vm,
 607				struct i915_page_directory_pointer *pdp)
 608{
 609	gen8_ppgtt_pdpe_t scratch_pdpe;
 610
 611	scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
 612
 613	fill_px(vm->dev, pdp, scratch_pdpe);
 614}
 615
 616static void gen8_initialize_pml4(struct i915_address_space *vm,
 617				 struct i915_pml4 *pml4)
 618{
 619	gen8_ppgtt_pml4e_t scratch_pml4e;
 620
 621	scratch_pml4e = gen8_pml4e_encode(px_dma(vm->scratch_pdp),
 622					  I915_CACHE_LLC);
 623
 624	fill_px(vm->dev, pml4, scratch_pml4e);
 625}
 626
 627static void
 628gen8_setup_page_directory(struct i915_hw_ppgtt *ppgtt,
 629			  struct i915_page_directory_pointer *pdp,
 630			  struct i915_page_directory *pd,
 631			  int index)
 632{
 633	gen8_ppgtt_pdpe_t *page_directorypo;
 634
 635	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
 636		return;
 637
 638	page_directorypo = kmap_px(pdp);
 639	page_directorypo[index] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
 640	kunmap_px(ppgtt, page_directorypo);
 641}
 642
 643static void
 644gen8_setup_page_directory_pointer(struct i915_hw_ppgtt *ppgtt,
 645				  struct i915_pml4 *pml4,
 646				  struct i915_page_directory_pointer *pdp,
 647				  int index)
 648{
 649	gen8_ppgtt_pml4e_t *pagemap = kmap_px(pml4);
 650
 651	WARN_ON(!USES_FULL_48BIT_PPGTT(ppgtt->base.dev));
 652	pagemap[index] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
 653	kunmap_px(ppgtt, pagemap);
 654}
 655
 656/* Broadwell Page Directory Pointer Descriptors */
 657static int gen8_write_pdp(struct drm_i915_gem_request *req,
 658			  unsigned entry,
 659			  dma_addr_t addr)
 660{
 661	struct intel_engine_cs *ring = req->ring;
 662	int ret;
 663
 664	BUG_ON(entry >= 4);
 665
 666	ret = intel_ring_begin(req, 6);
 667	if (ret)
 668		return ret;
 669
 670	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
 671	intel_ring_emit_reg(ring, GEN8_RING_PDP_UDW(ring, entry));
 672	intel_ring_emit(ring, upper_32_bits(addr));
 673	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
 674	intel_ring_emit_reg(ring, GEN8_RING_PDP_LDW(ring, entry));
 675	intel_ring_emit(ring, lower_32_bits(addr));
 676	intel_ring_advance(ring);
 677
 678	return 0;
 679}
 680
 681static int gen8_legacy_mm_switch(struct i915_hw_ppgtt *ppgtt,
 682				 struct drm_i915_gem_request *req)
 683{
 684	int i, ret;
 685
 686	for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
 687		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
 688
 689		ret = gen8_write_pdp(req, i, pd_daddr);
 690		if (ret)
 691			return ret;
 692	}
 693
 694	return 0;
 695}
 696
 697static int gen8_48b_mm_switch(struct i915_hw_ppgtt *ppgtt,
 698			      struct drm_i915_gem_request *req)
 699{
 700	return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
 701}
 702
 703static void gen8_ppgtt_clear_pte_range(struct i915_address_space *vm,
 704				       struct i915_page_directory_pointer *pdp,
 705				       uint64_t start,
 706				       uint64_t length,
 707				       gen8_pte_t scratch_pte)
 708{
 709	struct i915_hw_ppgtt *ppgtt =
 710		container_of(vm, struct i915_hw_ppgtt, base);
 711	gen8_pte_t *pt_vaddr;
 712	unsigned pdpe = gen8_pdpe_index(start);
 713	unsigned pde = gen8_pde_index(start);
 714	unsigned pte = gen8_pte_index(start);
 715	unsigned num_entries = length >> PAGE_SHIFT;
 716	unsigned last_pte, i;
 717
 718	if (WARN_ON(!pdp))
 719		return;
 720
 721	while (num_entries) {
 722		struct i915_page_directory *pd;
 723		struct i915_page_table *pt;
 724
 725		if (WARN_ON(!pdp->page_directory[pdpe]))
 726			break;
 
 727
 728		pd = pdp->page_directory[pdpe];
 729
 730		if (WARN_ON(!pd->page_table[pde]))
 731			break;
 732
 733		pt = pd->page_table[pde];
 734
 735		if (WARN_ON(!px_page(pt)))
 736			break;
 737
 738		last_pte = pte + num_entries;
 739		if (last_pte > GEN8_PTES)
 740			last_pte = GEN8_PTES;
 741
 742		pt_vaddr = kmap_px(pt);
 743
 744		for (i = pte; i < last_pte; i++) {
 745			pt_vaddr[i] = scratch_pte;
 746			num_entries--;
 747		}
 748
 749		kunmap_px(ppgtt, pt);
 750
 751		pte = 0;
 752		if (++pde == I915_PDES) {
 753			if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
 754				break;
 755			pde = 0;
 756		}
 757	}
 758}
 759
 760static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
 761				   uint64_t start,
 762				   uint64_t length,
 763				   bool use_scratch)
 764{
 765	struct i915_hw_ppgtt *ppgtt =
 766		container_of(vm, struct i915_hw_ppgtt, base);
 767	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
 768						 I915_CACHE_LLC, use_scratch);
 769
 770	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
 771		gen8_ppgtt_clear_pte_range(vm, &ppgtt->pdp, start, length,
 772					   scratch_pte);
 773	} else {
 774		uint64_t pml4e;
 775		struct i915_page_directory_pointer *pdp;
 776
 777		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
 778			gen8_ppgtt_clear_pte_range(vm, pdp, start, length,
 779						   scratch_pte);
 780		}
 781	}
 782}
 783
 784static void
 785gen8_ppgtt_insert_pte_entries(struct i915_address_space *vm,
 786			      struct i915_page_directory_pointer *pdp,
 787			      struct sg_page_iter *sg_iter,
 788			      uint64_t start,
 789			      enum i915_cache_level cache_level)
 790{
 791	struct i915_hw_ppgtt *ppgtt =
 792		container_of(vm, struct i915_hw_ppgtt, base);
 793	gen8_pte_t *pt_vaddr;
 794	unsigned pdpe = gen8_pdpe_index(start);
 795	unsigned pde = gen8_pde_index(start);
 796	unsigned pte = gen8_pte_index(start);
 797
 798	pt_vaddr = NULL;
 799
 800	while (__sg_page_iter_next(sg_iter)) {
 801		if (pt_vaddr == NULL) {
 802			struct i915_page_directory *pd = pdp->page_directory[pdpe];
 803			struct i915_page_table *pt = pd->page_table[pde];
 804			pt_vaddr = kmap_px(pt);
 805		}
 806
 807		pt_vaddr[pte] =
 808			gen8_pte_encode(sg_page_iter_dma_address(sg_iter),
 809					cache_level, true);
 810		if (++pte == GEN8_PTES) {
 811			kunmap_px(ppgtt, pt_vaddr);
 812			pt_vaddr = NULL;
 813			if (++pde == I915_PDES) {
 814				if (++pdpe == I915_PDPES_PER_PDP(vm->dev))
 815					break;
 816				pde = 0;
 817			}
 818			pte = 0;
 819		}
 820	}
 821
 822	if (pt_vaddr)
 823		kunmap_px(ppgtt, pt_vaddr);
 824}
 825
 826static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
 827				      struct sg_table *pages,
 828				      uint64_t start,
 829				      enum i915_cache_level cache_level,
 830				      u32 unused)
 831{
 832	struct i915_hw_ppgtt *ppgtt =
 833		container_of(vm, struct i915_hw_ppgtt, base);
 834	struct sg_page_iter sg_iter;
 835
 836	__sg_page_iter_start(&sg_iter, pages->sgl, sg_nents(pages->sgl), 0);
 837
 838	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
 839		gen8_ppgtt_insert_pte_entries(vm, &ppgtt->pdp, &sg_iter, start,
 840					      cache_level);
 841	} else {
 842		struct i915_page_directory_pointer *pdp;
 843		uint64_t pml4e;
 844		uint64_t length = (uint64_t)pages->orig_nents << PAGE_SHIFT;
 845
 846		gen8_for_each_pml4e(pdp, &ppgtt->pml4, start, length, pml4e) {
 847			gen8_ppgtt_insert_pte_entries(vm, pdp, &sg_iter,
 848						      start, cache_level);
 849		}
 850	}
 851}
 852
 853static void gen8_free_page_tables(struct drm_device *dev,
 854				  struct i915_page_directory *pd)
 855{
 856	int i;
 857
 858	if (!px_page(pd))
 859		return;
 860
 861	for_each_set_bit(i, pd->used_pdes, I915_PDES) {
 862		if (WARN_ON(!pd->page_table[i]))
 863			continue;
 864
 865		free_pt(dev, pd->page_table[i]);
 866		pd->page_table[i] = NULL;
 867	}
 868}
 869
 870static int gen8_init_scratch(struct i915_address_space *vm)
 871{
 872	struct drm_device *dev = vm->dev;
 873
 874	vm->scratch_page = alloc_scratch_page(dev);
 875	if (IS_ERR(vm->scratch_page))
 876		return PTR_ERR(vm->scratch_page);
 877
 878	vm->scratch_pt = alloc_pt(dev);
 879	if (IS_ERR(vm->scratch_pt)) {
 880		free_scratch_page(dev, vm->scratch_page);
 881		return PTR_ERR(vm->scratch_pt);
 882	}
 883
 884	vm->scratch_pd = alloc_pd(dev);
 885	if (IS_ERR(vm->scratch_pd)) {
 886		free_pt(dev, vm->scratch_pt);
 887		free_scratch_page(dev, vm->scratch_page);
 888		return PTR_ERR(vm->scratch_pd);
 889	}
 890
 891	if (USES_FULL_48BIT_PPGTT(dev)) {
 892		vm->scratch_pdp = alloc_pdp(dev);
 893		if (IS_ERR(vm->scratch_pdp)) {
 894			free_pd(dev, vm->scratch_pd);
 895			free_pt(dev, vm->scratch_pt);
 896			free_scratch_page(dev, vm->scratch_page);
 897			return PTR_ERR(vm->scratch_pdp);
 898		}
 899	}
 900
 901	gen8_initialize_pt(vm, vm->scratch_pt);
 902	gen8_initialize_pd(vm, vm->scratch_pd);
 903	if (USES_FULL_48BIT_PPGTT(dev))
 904		gen8_initialize_pdp(vm, vm->scratch_pdp);
 905
 906	return 0;
 907}
 908
 909static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
 910{
 911	enum vgt_g2v_type msg;
 912	struct drm_device *dev = ppgtt->base.dev;
 913	struct drm_i915_private *dev_priv = dev->dev_private;
 914	int i;
 915
 916	if (USES_FULL_48BIT_PPGTT(dev)) {
 917		u64 daddr = px_dma(&ppgtt->pml4);
 918
 919		I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
 920		I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
 921
 922		msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
 923				VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
 924	} else {
 925		for (i = 0; i < GEN8_LEGACY_PDPES; i++) {
 926			u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
 927
 928			I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
 929			I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
 930		}
 931
 932		msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
 933				VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
 934	}
 935
 936	I915_WRITE(vgtif_reg(g2v_notify), msg);
 937
 938	return 0;
 939}
 940
 941static void gen8_free_scratch(struct i915_address_space *vm)
 942{
 943	struct drm_device *dev = vm->dev;
 944
 945	if (USES_FULL_48BIT_PPGTT(dev))
 946		free_pdp(dev, vm->scratch_pdp);
 947	free_pd(dev, vm->scratch_pd);
 948	free_pt(dev, vm->scratch_pt);
 949	free_scratch_page(dev, vm->scratch_page);
 950}
 951
 952static void gen8_ppgtt_cleanup_3lvl(struct drm_device *dev,
 953				    struct i915_page_directory_pointer *pdp)
 954{
 955	int i;
 956
 957	for_each_set_bit(i, pdp->used_pdpes, I915_PDPES_PER_PDP(dev)) {
 958		if (WARN_ON(!pdp->page_directory[i]))
 959			continue;
 960
 961		gen8_free_page_tables(dev, pdp->page_directory[i]);
 962		free_pd(dev, pdp->page_directory[i]);
 963	}
 964
 965	free_pdp(dev, pdp);
 966}
 967
 968static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
 969{
 970	int i;
 971
 972	for_each_set_bit(i, ppgtt->pml4.used_pml4es, GEN8_PML4ES_PER_PML4) {
 973		if (WARN_ON(!ppgtt->pml4.pdps[i]))
 974			continue;
 975
 976		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, ppgtt->pml4.pdps[i]);
 977	}
 978
 979	cleanup_px(ppgtt->base.dev, &ppgtt->pml4);
 980}
 981
 982static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
 983{
 984	struct i915_hw_ppgtt *ppgtt =
 985		container_of(vm, struct i915_hw_ppgtt, base);
 986
 987	if (intel_vgpu_active(vm->dev))
 988		gen8_ppgtt_notify_vgt(ppgtt, false);
 989
 990	if (!USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
 991		gen8_ppgtt_cleanup_3lvl(ppgtt->base.dev, &ppgtt->pdp);
 992	else
 993		gen8_ppgtt_cleanup_4lvl(ppgtt);
 994
 995	gen8_free_scratch(vm);
 996}
 997
 998/**
 999 * gen8_ppgtt_alloc_pagetabs() - Allocate page tables for VA range.
1000 * @vm:	Master vm structure.
1001 * @pd:	Page directory for this address range.
1002 * @start:	Starting virtual address to begin allocations.
1003 * @length:	Size of the allocations.
1004 * @new_pts:	Bitmap set by function with new allocations. Likely used by the
1005 *		caller to free on error.
1006 *
1007 * Allocate the required number of page tables. Extremely similar to
1008 * gen8_ppgtt_alloc_page_directories(). The main difference is here we are limited by
1009 * the page directory boundary (instead of the page directory pointer). That
1010 * boundary is 1GB virtual. Therefore, unlike gen8_ppgtt_alloc_page_directories(), it is
1011 * possible, and likely that the caller will need to use multiple calls of this
1012 * function to achieve the appropriate allocation.
1013 *
1014 * Return: 0 if success; negative error code otherwise.
1015 */
1016static int gen8_ppgtt_alloc_pagetabs(struct i915_address_space *vm,
1017				     struct i915_page_directory *pd,
1018				     uint64_t start,
1019				     uint64_t length,
1020				     unsigned long *new_pts)
1021{
1022	struct drm_device *dev = vm->dev;
1023	struct i915_page_table *pt;
1024	uint32_t pde;
1025
1026	gen8_for_each_pde(pt, pd, start, length, pde) {
1027		/* Don't reallocate page tables */
1028		if (test_bit(pde, pd->used_pdes)) {
1029			/* Scratch is never allocated this way */
1030			WARN_ON(pt == vm->scratch_pt);
1031			continue;
1032		}
1033
1034		pt = alloc_pt(dev);
1035		if (IS_ERR(pt))
1036			goto unwind_out;
1037
1038		gen8_initialize_pt(vm, pt);
1039		pd->page_table[pde] = pt;
1040		__set_bit(pde, new_pts);
1041		trace_i915_page_table_entry_alloc(vm, pde, start, GEN8_PDE_SHIFT);
1042	}
1043
1044	return 0;
1045
1046unwind_out:
1047	for_each_set_bit(pde, new_pts, I915_PDES)
1048		free_pt(dev, pd->page_table[pde]);
1049
1050	return -ENOMEM;
1051}
1052
1053/**
1054 * gen8_ppgtt_alloc_page_directories() - Allocate page directories for VA range.
1055 * @vm:	Master vm structure.
1056 * @pdp:	Page directory pointer for this address range.
1057 * @start:	Starting virtual address to begin allocations.
1058 * @length:	Size of the allocations.
1059 * @new_pds:	Bitmap set by function with new allocations. Likely used by the
1060 *		caller to free on error.
1061 *
1062 * Allocate the required number of page directories starting at the pde index of
1063 * @start, and ending at the pde index @start + @length. This function will skip
1064 * over already allocated page directories within the range, and only allocate
1065 * new ones, setting the appropriate pointer within the pdp as well as the
1066 * correct position in the bitmap @new_pds.
1067 *
1068 * The function will only allocate the pages within the range for a give page
1069 * directory pointer. In other words, if @start + @length straddles a virtually
1070 * addressed PDP boundary (512GB for 4k pages), there will be more allocations
1071 * required by the caller, This is not currently possible, and the BUG in the
1072 * code will prevent it.
1073 *
1074 * Return: 0 if success; negative error code otherwise.
1075 */
1076static int
1077gen8_ppgtt_alloc_page_directories(struct i915_address_space *vm,
1078				  struct i915_page_directory_pointer *pdp,
1079				  uint64_t start,
1080				  uint64_t length,
1081				  unsigned long *new_pds)
1082{
1083	struct drm_device *dev = vm->dev;
1084	struct i915_page_directory *pd;
1085	uint32_t pdpe;
1086	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1087
1088	WARN_ON(!bitmap_empty(new_pds, pdpes));
1089
1090	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1091		if (test_bit(pdpe, pdp->used_pdpes))
1092			continue;
1093
1094		pd = alloc_pd(dev);
1095		if (IS_ERR(pd))
1096			goto unwind_out;
1097
1098		gen8_initialize_pd(vm, pd);
1099		pdp->page_directory[pdpe] = pd;
1100		__set_bit(pdpe, new_pds);
1101		trace_i915_page_directory_entry_alloc(vm, pdpe, start, GEN8_PDPE_SHIFT);
1102	}
1103
1104	return 0;
1105
1106unwind_out:
1107	for_each_set_bit(pdpe, new_pds, pdpes)
1108		free_pd(dev, pdp->page_directory[pdpe]);
 
1109
1110	return -ENOMEM;
 
1111}
1112
1113/**
1114 * gen8_ppgtt_alloc_page_dirpointers() - Allocate pdps for VA range.
1115 * @vm:	Master vm structure.
1116 * @pml4:	Page map level 4 for this address range.
1117 * @start:	Starting virtual address to begin allocations.
1118 * @length:	Size of the allocations.
1119 * @new_pdps:	Bitmap set by function with new allocations. Likely used by the
1120 *		caller to free on error.
1121 *
1122 * Allocate the required number of page directory pointers. Extremely similar to
1123 * gen8_ppgtt_alloc_page_directories() and gen8_ppgtt_alloc_pagetabs().
1124 * The main difference is here we are limited by the pml4 boundary (instead of
1125 * the page directory pointer).
1126 *
1127 * Return: 0 if success; negative error code otherwise.
1128 */
1129static int
1130gen8_ppgtt_alloc_page_dirpointers(struct i915_address_space *vm,
1131				  struct i915_pml4 *pml4,
1132				  uint64_t start,
1133				  uint64_t length,
1134				  unsigned long *new_pdps)
1135{
1136	struct drm_device *dev = vm->dev;
1137	struct i915_page_directory_pointer *pdp;
1138	uint32_t pml4e;
1139
1140	WARN_ON(!bitmap_empty(new_pdps, GEN8_PML4ES_PER_PML4));
1141
1142	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1143		if (!test_bit(pml4e, pml4->used_pml4es)) {
1144			pdp = alloc_pdp(dev);
1145			if (IS_ERR(pdp))
1146				goto unwind_out;
1147
1148			gen8_initialize_pdp(vm, pdp);
1149			pml4->pdps[pml4e] = pdp;
1150			__set_bit(pml4e, new_pdps);
1151			trace_i915_page_directory_pointer_entry_alloc(vm,
1152								      pml4e,
1153								      start,
1154								      GEN8_PML4E_SHIFT);
1155		}
1156	}
1157
1158	return 0;
 
 
1159
1160unwind_out:
1161	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1162		free_pdp(dev, pml4->pdps[pml4e]);
1163
1164	return -ENOMEM;
1165}
1166
1167static void
1168free_gen8_temp_bitmaps(unsigned long *new_pds, unsigned long *new_pts)
1169{
1170	kfree(new_pts);
1171	kfree(new_pds);
1172}
1173
1174/* Fills in the page directory bitmap, and the array of page tables bitmap. Both
1175 * of these are based on the number of PDPEs in the system.
1176 */
1177static
1178int __must_check alloc_gen8_temp_bitmaps(unsigned long **new_pds,
1179					 unsigned long **new_pts,
1180					 uint32_t pdpes)
1181{
1182	unsigned long *pds;
1183	unsigned long *pts;
1184
1185	pds = kcalloc(BITS_TO_LONGS(pdpes), sizeof(unsigned long), GFP_TEMPORARY);
1186	if (!pds)
1187		return -ENOMEM;
1188
1189	pts = kcalloc(pdpes, BITS_TO_LONGS(I915_PDES) * sizeof(unsigned long),
1190		      GFP_TEMPORARY);
1191	if (!pts)
1192		goto err_out;
1193
1194	*new_pds = pds;
1195	*new_pts = pts;
1196
1197	return 0;
1198
1199err_out:
1200	free_gen8_temp_bitmaps(pds, pts);
1201	return -ENOMEM;
1202}
1203
1204/* PDE TLBs are a pain to invalidate on GEN8+. When we modify
1205 * the page table structures, we mark them dirty so that
1206 * context switching/execlist queuing code takes extra steps
1207 * to ensure that tlbs are flushed.
1208 */
1209static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
1210{
1211	ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.dev)->ring_mask;
1212}
1213
1214static int gen8_alloc_va_range_3lvl(struct i915_address_space *vm,
1215				    struct i915_page_directory_pointer *pdp,
1216				    uint64_t start,
1217				    uint64_t length)
1218{
1219	struct i915_hw_ppgtt *ppgtt =
1220		container_of(vm, struct i915_hw_ppgtt, base);
1221	unsigned long *new_page_dirs, *new_page_tables;
1222	struct drm_device *dev = vm->dev;
1223	struct i915_page_directory *pd;
1224	const uint64_t orig_start = start;
1225	const uint64_t orig_length = length;
1226	uint32_t pdpe;
1227	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1228	int ret;
1229
1230	/* Wrap is never okay since we can only represent 48b, and we don't
1231	 * actually use the other side of the canonical address space.
1232	 */
1233	if (WARN_ON(start + length < start))
1234		return -ENODEV;
1235
1236	if (WARN_ON(start + length > vm->total))
1237		return -ENODEV;
1238
1239	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1240	if (ret)
1241		return ret;
1242
1243	/* Do the allocations first so we can easily bail out */
1244	ret = gen8_ppgtt_alloc_page_directories(vm, pdp, start, length,
1245						new_page_dirs);
1246	if (ret) {
1247		free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1248		return ret;
1249	}
1250
1251	/* For every page directory referenced, allocate page tables */
1252	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1253		ret = gen8_ppgtt_alloc_pagetabs(vm, pd, start, length,
1254						new_page_tables + pdpe * BITS_TO_LONGS(I915_PDES));
1255		if (ret)
1256			goto err_out;
1257	}
1258
1259	start = orig_start;
1260	length = orig_length;
1261
1262	/* Allocations have completed successfully, so set the bitmaps, and do
1263	 * the mappings. */
1264	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1265		gen8_pde_t *const page_directory = kmap_px(pd);
1266		struct i915_page_table *pt;
1267		uint64_t pd_len = length;
1268		uint64_t pd_start = start;
1269		uint32_t pde;
1270
1271		/* Every pd should be allocated, we just did that above. */
1272		WARN_ON(!pd);
1273
1274		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1275			/* Same reasoning as pd */
1276			WARN_ON(!pt);
1277			WARN_ON(!pd_len);
1278			WARN_ON(!gen8_pte_count(pd_start, pd_len));
1279
1280			/* Set our used ptes within the page table */
1281			bitmap_set(pt->used_ptes,
1282				   gen8_pte_index(pd_start),
1283				   gen8_pte_count(pd_start, pd_len));
1284
1285			/* Our pde is now pointing to the pagetable, pt */
1286			__set_bit(pde, pd->used_pdes);
1287
1288			/* Map the PDE to the page table */
1289			page_directory[pde] = gen8_pde_encode(px_dma(pt),
1290							      I915_CACHE_LLC);
1291			trace_i915_page_table_entry_map(&ppgtt->base, pde, pt,
1292							gen8_pte_index(start),
1293							gen8_pte_count(start, length),
1294							GEN8_PTES);
1295
1296			/* NB: We haven't yet mapped ptes to pages. At this
1297			 * point we're still relying on insert_entries() */
1298		}
1299
1300		kunmap_px(ppgtt, page_directory);
1301		__set_bit(pdpe, pdp->used_pdpes);
1302		gen8_setup_page_directory(ppgtt, pdp, pd, pdpe);
1303	}
1304
1305	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1306	mark_tlbs_dirty(ppgtt);
1307	return 0;
1308
1309err_out:
1310	while (pdpe--) {
1311		unsigned long temp;
1312
1313		for_each_set_bit(temp, new_page_tables + pdpe *
1314				BITS_TO_LONGS(I915_PDES), I915_PDES)
1315			free_pt(dev, pdp->page_directory[pdpe]->page_table[temp]);
1316	}
1317
1318	for_each_set_bit(pdpe, new_page_dirs, pdpes)
1319		free_pd(dev, pdp->page_directory[pdpe]);
1320
1321	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
1322	mark_tlbs_dirty(ppgtt);
1323	return ret;
1324}
1325
1326static int gen8_alloc_va_range_4lvl(struct i915_address_space *vm,
1327				    struct i915_pml4 *pml4,
1328				    uint64_t start,
1329				    uint64_t length)
1330{
1331	DECLARE_BITMAP(new_pdps, GEN8_PML4ES_PER_PML4);
1332	struct i915_hw_ppgtt *ppgtt =
1333			container_of(vm, struct i915_hw_ppgtt, base);
1334	struct i915_page_directory_pointer *pdp;
1335	uint64_t pml4e;
1336	int ret = 0;
1337
1338	/* Do the pml4 allocations first, so we don't need to track the newly
1339	 * allocated tables below the pdp */
1340	bitmap_zero(new_pdps, GEN8_PML4ES_PER_PML4);
1341
1342	/* The pagedirectory and pagetable allocations are done in the shared 3
1343	 * and 4 level code. Just allocate the pdps.
1344	 */
1345	ret = gen8_ppgtt_alloc_page_dirpointers(vm, pml4, start, length,
1346						new_pdps);
1347	if (ret)
1348		return ret;
1349
1350	WARN(bitmap_weight(new_pdps, GEN8_PML4ES_PER_PML4) > 2,
1351	     "The allocation has spanned more than 512GB. "
1352	     "It is highly likely this is incorrect.");
1353
1354	gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1355		WARN_ON(!pdp);
1356
1357		ret = gen8_alloc_va_range_3lvl(vm, pdp, start, length);
1358		if (ret)
1359			goto err_out;
1360
1361		gen8_setup_page_directory_pointer(ppgtt, pml4, pdp, pml4e);
1362	}
1363
1364	bitmap_or(pml4->used_pml4es, new_pdps, pml4->used_pml4es,
1365		  GEN8_PML4ES_PER_PML4);
1366
1367	return 0;
1368
1369err_out:
1370	for_each_set_bit(pml4e, new_pdps, GEN8_PML4ES_PER_PML4)
1371		gen8_ppgtt_cleanup_3lvl(vm->dev, pml4->pdps[pml4e]);
1372
1373	return ret;
1374}
1375
1376static int gen8_alloc_va_range(struct i915_address_space *vm,
1377			       uint64_t start, uint64_t length)
1378{
1379	struct i915_hw_ppgtt *ppgtt =
1380		container_of(vm, struct i915_hw_ppgtt, base);
1381
1382	if (USES_FULL_48BIT_PPGTT(vm->dev))
1383		return gen8_alloc_va_range_4lvl(vm, &ppgtt->pml4, start, length);
1384	else
1385		return gen8_alloc_va_range_3lvl(vm, &ppgtt->pdp, start, length);
1386}
1387
1388static void gen8_dump_pdp(struct i915_page_directory_pointer *pdp,
1389			  uint64_t start, uint64_t length,
1390			  gen8_pte_t scratch_pte,
1391			  struct seq_file *m)
1392{
1393	struct i915_page_directory *pd;
1394	uint32_t pdpe;
1395
1396	gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1397		struct i915_page_table *pt;
1398		uint64_t pd_len = length;
1399		uint64_t pd_start = start;
1400		uint32_t pde;
1401
1402		if (!test_bit(pdpe, pdp->used_pdpes))
1403			continue;
1404
1405		seq_printf(m, "\tPDPE #%d\n", pdpe);
1406		gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1407			uint32_t  pte;
1408			gen8_pte_t *pt_vaddr;
1409
1410			if (!test_bit(pde, pd->used_pdes))
1411				continue;
1412
1413			pt_vaddr = kmap_px(pt);
1414			for (pte = 0; pte < GEN8_PTES; pte += 4) {
1415				uint64_t va =
1416					(pdpe << GEN8_PDPE_SHIFT) |
1417					(pde << GEN8_PDE_SHIFT) |
1418					(pte << GEN8_PTE_SHIFT);
1419				int i;
1420				bool found = false;
1421
1422				for (i = 0; i < 4; i++)
1423					if (pt_vaddr[pte + i] != scratch_pte)
1424						found = true;
1425				if (!found)
1426					continue;
1427
1428				seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1429				for (i = 0; i < 4; i++) {
1430					if (pt_vaddr[pte + i] != scratch_pte)
1431						seq_printf(m, " %llx", pt_vaddr[pte + i]);
1432					else
1433						seq_puts(m, "  SCRATCH ");
1434				}
1435				seq_puts(m, "\n");
1436			}
1437			/* don't use kunmap_px, it could trigger
1438			 * an unnecessary flush.
1439			 */
1440			kunmap_atomic(pt_vaddr);
1441		}
1442	}
1443}
1444
1445static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1446{
1447	struct i915_address_space *vm = &ppgtt->base;
1448	uint64_t start = ppgtt->base.start;
1449	uint64_t length = ppgtt->base.total;
1450	gen8_pte_t scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
1451						 I915_CACHE_LLC, true);
1452
1453	if (!USES_FULL_48BIT_PPGTT(vm->dev)) {
1454		gen8_dump_pdp(&ppgtt->pdp, start, length, scratch_pte, m);
1455	} else {
1456		uint64_t pml4e;
1457		struct i915_pml4 *pml4 = &ppgtt->pml4;
1458		struct i915_page_directory_pointer *pdp;
1459
1460		gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1461			if (!test_bit(pml4e, pml4->used_pml4es))
1462				continue;
1463
1464			seq_printf(m, "    PML4E #%llu\n", pml4e);
1465			gen8_dump_pdp(pdp, start, length, scratch_pte, m);
1466		}
1467	}
1468}
1469
1470static int gen8_preallocate_top_level_pdps(struct i915_hw_ppgtt *ppgtt)
1471{
1472	unsigned long *new_page_dirs, *new_page_tables;
1473	uint32_t pdpes = I915_PDPES_PER_PDP(dev);
1474	int ret;
1475
1476	/* We allocate temp bitmap for page tables for no gain
1477	 * but as this is for init only, lets keep the things simple
1478	 */
1479	ret = alloc_gen8_temp_bitmaps(&new_page_dirs, &new_page_tables, pdpes);
1480	if (ret)
1481		return ret;
1482
1483	/* Allocate for all pdps regardless of how the ppgtt
1484	 * was defined.
1485	 */
1486	ret = gen8_ppgtt_alloc_page_directories(&ppgtt->base, &ppgtt->pdp,
1487						0, 1ULL << 32,
1488						new_page_dirs);
1489	if (!ret)
1490		*ppgtt->pdp.used_pdpes = *new_page_dirs;
1491
1492	free_gen8_temp_bitmaps(new_page_dirs, new_page_tables);
 
 
1493
1494	return ret;
1495}
1496
1497/*
1498 * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1499 * with a net effect resembling a 2-level page table in normal x86 terms. Each
1500 * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1501 * space.
1502 *
1503 */
1504static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1505{
1506	int ret;
1507
1508	ret = gen8_init_scratch(&ppgtt->base);
1509	if (ret)
1510		return ret;
1511
1512	ppgtt->base.start = 0;
1513	ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1514	ppgtt->base.allocate_va_range = gen8_alloc_va_range;
1515	ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
1516	ppgtt->base.clear_range = gen8_ppgtt_clear_range;
1517	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1518	ppgtt->base.bind_vma = ppgtt_bind_vma;
1519	ppgtt->debug_dump = gen8_dump_ppgtt;
1520
1521	if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
1522		ret = setup_px(ppgtt->base.dev, &ppgtt->pml4);
1523		if (ret)
1524			goto free_scratch;
1525
1526		gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1527
1528		ppgtt->base.total = 1ULL << 48;
1529		ppgtt->switch_mm = gen8_48b_mm_switch;
1530	} else {
1531		ret = __pdp_init(ppgtt->base.dev, &ppgtt->pdp);
1532		if (ret)
1533			goto free_scratch;
1534
1535		ppgtt->base.total = 1ULL << 32;
1536		ppgtt->switch_mm = gen8_legacy_mm_switch;
1537		trace_i915_page_directory_pointer_entry_alloc(&ppgtt->base,
1538							      0, 0,
1539							      GEN8_PML4E_SHIFT);
1540
1541		if (intel_vgpu_active(ppgtt->base.dev)) {
1542			ret = gen8_preallocate_top_level_pdps(ppgtt);
1543			if (ret)
1544				goto free_scratch;
1545		}
1546	}
1547
1548	if (intel_vgpu_active(ppgtt->base.dev))
1549		gen8_ppgtt_notify_vgt(ppgtt, true);
1550
1551	return 0;
1552
1553free_scratch:
1554	gen8_free_scratch(&ppgtt->base);
1555	return ret;
1556}
1557
1558static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1559{
1560	struct i915_address_space *vm = &ppgtt->base;
1561	struct i915_page_table *unused;
1562	gen6_pte_t scratch_pte;
1563	uint32_t pd_entry;
1564	uint32_t  pte, pde, temp;
1565	uint32_t start = ppgtt->base.start, length = ppgtt->base.total;
1566
1567	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1568				     I915_CACHE_LLC, true, 0);
1569
1570	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde) {
1571		u32 expected;
1572		gen6_pte_t *pt_vaddr;
1573		const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1574		pd_entry = readl(ppgtt->pd_addr + pde);
1575		expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1576
1577		if (pd_entry != expected)
1578			seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1579				   pde,
1580				   pd_entry,
1581				   expected);
1582		seq_printf(m, "\tPDE: %x\n", pd_entry);
1583
1584		pt_vaddr = kmap_px(ppgtt->pd.page_table[pde]);
1585
1586		for (pte = 0; pte < GEN6_PTES; pte+=4) {
1587			unsigned long va =
1588				(pde * PAGE_SIZE * GEN6_PTES) +
1589				(pte * PAGE_SIZE);
1590			int i;
1591			bool found = false;
1592			for (i = 0; i < 4; i++)
1593				if (pt_vaddr[pte + i] != scratch_pte)
1594					found = true;
1595			if (!found)
1596				continue;
1597
1598			seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1599			for (i = 0; i < 4; i++) {
1600				if (pt_vaddr[pte + i] != scratch_pte)
1601					seq_printf(m, " %08x", pt_vaddr[pte + i]);
1602				else
1603					seq_puts(m, "  SCRATCH ");
1604			}
1605			seq_puts(m, "\n");
1606		}
1607		kunmap_px(ppgtt, pt_vaddr);
1608	}
1609}
1610
1611/* Write pde (index) from the page directory @pd to the page table @pt */
1612static void gen6_write_pde(struct i915_page_directory *pd,
1613			    const int pde, struct i915_page_table *pt)
1614{
1615	/* Caller needs to make sure the write completes if necessary */
1616	struct i915_hw_ppgtt *ppgtt =
1617		container_of(pd, struct i915_hw_ppgtt, pd);
1618	u32 pd_entry;
1619
1620	pd_entry = GEN6_PDE_ADDR_ENCODE(px_dma(pt));
1621	pd_entry |= GEN6_PDE_VALID;
1622
1623	writel(pd_entry, ppgtt->pd_addr + pde);
1624}
1625
1626/* Write all the page tables found in the ppgtt structure to incrementing page
1627 * directories. */
1628static void gen6_write_page_range(struct drm_i915_private *dev_priv,
1629				  struct i915_page_directory *pd,
1630				  uint32_t start, uint32_t length)
1631{
1632	struct i915_page_table *pt;
1633	uint32_t pde, temp;
1634
1635	gen6_for_each_pde(pt, pd, start, length, temp, pde)
1636		gen6_write_pde(pd, pde, pt);
1637
1638	/* Make sure write is complete before other code can use this page
1639	 * table. Also require for WC mapped PTEs */
1640	readl(dev_priv->gtt.gsm);
1641}
1642
1643static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1644{
1645	BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1646
1647	return (ppgtt->pd.base.ggtt_offset / 64) << 16;
1648}
1649
1650static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1651			 struct drm_i915_gem_request *req)
1652{
1653	struct intel_engine_cs *ring = req->ring;
1654	int ret;
1655
1656	/* NB: TLBs must be flushed and invalidated before a switch */
1657	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1658	if (ret)
1659		return ret;
1660
1661	ret = intel_ring_begin(req, 6);
1662	if (ret)
1663		return ret;
1664
1665	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1666	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1667	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1668	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1669	intel_ring_emit(ring, get_pd_offset(ppgtt));
1670	intel_ring_emit(ring, MI_NOOP);
1671	intel_ring_advance(ring);
1672
1673	return 0;
1674}
1675
1676static int vgpu_mm_switch(struct i915_hw_ppgtt *ppgtt,
1677			  struct drm_i915_gem_request *req)
1678{
1679	struct intel_engine_cs *ring = req->ring;
1680	struct drm_i915_private *dev_priv = to_i915(ppgtt->base.dev);
1681
1682	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1683	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1684	return 0;
1685}
1686
1687static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1688			  struct drm_i915_gem_request *req)
1689{
1690	struct intel_engine_cs *ring = req->ring;
1691	int ret;
1692
1693	/* NB: TLBs must be flushed and invalidated before a switch */
1694	ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1695	if (ret)
1696		return ret;
1697
1698	ret = intel_ring_begin(req, 6);
1699	if (ret)
1700		return ret;
1701
1702	intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
1703	intel_ring_emit_reg(ring, RING_PP_DIR_DCLV(ring));
1704	intel_ring_emit(ring, PP_DIR_DCLV_2G);
1705	intel_ring_emit_reg(ring, RING_PP_DIR_BASE(ring));
1706	intel_ring_emit(ring, get_pd_offset(ppgtt));
1707	intel_ring_emit(ring, MI_NOOP);
1708	intel_ring_advance(ring);
1709
1710	/* XXX: RCS is the only one to auto invalidate the TLBs? */
1711	if (ring->id != RCS) {
1712		ret = ring->flush(req, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
1713		if (ret)
1714			return ret;
1715	}
1716
1717	return 0;
1718}
1719
1720static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1721			  struct drm_i915_gem_request *req)
1722{
1723	struct intel_engine_cs *ring = req->ring;
1724	struct drm_device *dev = ppgtt->base.dev;
1725	struct drm_i915_private *dev_priv = dev->dev_private;
1726
1727
1728	I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
1729	I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
1730
1731	POSTING_READ(RING_PP_DIR_DCLV(ring));
1732
1733	return 0;
1734}
1735
1736static void gen8_ppgtt_enable(struct drm_device *dev)
1737{
1738	struct drm_i915_private *dev_priv = dev->dev_private;
1739	struct intel_engine_cs *ring;
1740	int j;
1741
1742	for_each_ring(ring, dev_priv, j) {
1743		u32 four_level = USES_FULL_48BIT_PPGTT(dev) ? GEN8_GFX_PPGTT_48B : 0;
1744		I915_WRITE(RING_MODE_GEN7(ring),
1745			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1746	}
1747}
1748
1749static void gen7_ppgtt_enable(struct drm_device *dev)
1750{
1751	struct drm_i915_private *dev_priv = dev->dev_private;
1752	struct intel_engine_cs *ring;
1753	uint32_t ecochk, ecobits;
1754	int i;
1755
1756	ecobits = I915_READ(GAC_ECO_BITS);
1757	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1758
1759	ecochk = I915_READ(GAM_ECOCHK);
1760	if (IS_HASWELL(dev)) {
1761		ecochk |= ECOCHK_PPGTT_WB_HSW;
1762	} else {
1763		ecochk |= ECOCHK_PPGTT_LLC_IVB;
1764		ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1765	}
1766	I915_WRITE(GAM_ECOCHK, ecochk);
1767
1768	for_each_ring(ring, dev_priv, i) {
1769		/* GFX_MODE is per-ring on gen7+ */
1770		I915_WRITE(RING_MODE_GEN7(ring),
1771			   _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1772	}
1773}
1774
1775static void gen6_ppgtt_enable(struct drm_device *dev)
1776{
1777	struct drm_i915_private *dev_priv = dev->dev_private;
1778	uint32_t ecochk, gab_ctl, ecobits;
1779
1780	ecobits = I915_READ(GAC_ECO_BITS);
1781	I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1782		   ECOBITS_PPGTT_CACHE64B);
1783
1784	gab_ctl = I915_READ(GAB_CTL);
1785	I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1786
1787	ecochk = I915_READ(GAM_ECOCHK);
1788	I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1789
1790	I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1791}
1792
1793/* PPGTT support for Sandybdrige/Gen6 and later */
1794static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1795				   uint64_t start,
1796				   uint64_t length,
1797				   bool use_scratch)
1798{
1799	struct i915_hw_ppgtt *ppgtt =
1800		container_of(vm, struct i915_hw_ppgtt, base);
1801	gen6_pte_t *pt_vaddr, scratch_pte;
1802	unsigned first_entry = start >> PAGE_SHIFT;
1803	unsigned num_entries = length >> PAGE_SHIFT;
1804	unsigned act_pt = first_entry / GEN6_PTES;
1805	unsigned first_pte = first_entry % GEN6_PTES;
1806	unsigned last_pte, i;
1807
1808	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
1809				     I915_CACHE_LLC, true, 0);
1810
1811	while (num_entries) {
1812		last_pte = first_pte + num_entries;
1813		if (last_pte > GEN6_PTES)
1814			last_pte = GEN6_PTES;
1815
1816		pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1817
1818		for (i = first_pte; i < last_pte; i++)
1819			pt_vaddr[i] = scratch_pte;
1820
1821		kunmap_px(ppgtt, pt_vaddr);
1822
1823		num_entries -= last_pte - first_pte;
1824		first_pte = 0;
1825		act_pt++;
1826	}
1827}
1828
1829static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1830				      struct sg_table *pages,
1831				      uint64_t start,
1832				      enum i915_cache_level cache_level, u32 flags)
1833{
1834	struct i915_hw_ppgtt *ppgtt =
1835		container_of(vm, struct i915_hw_ppgtt, base);
1836	gen6_pte_t *pt_vaddr;
1837	unsigned first_entry = start >> PAGE_SHIFT;
1838	unsigned act_pt = first_entry / GEN6_PTES;
1839	unsigned act_pte = first_entry % GEN6_PTES;
1840	struct sg_page_iter sg_iter;
1841
1842	pt_vaddr = NULL;
1843	for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
1844		if (pt_vaddr == NULL)
1845			pt_vaddr = kmap_px(ppgtt->pd.page_table[act_pt]);
1846
1847		pt_vaddr[act_pte] =
1848			vm->pte_encode(sg_page_iter_dma_address(&sg_iter),
1849				       cache_level, true, flags);
1850
1851		if (++act_pte == GEN6_PTES) {
1852			kunmap_px(ppgtt, pt_vaddr);
1853			pt_vaddr = NULL;
1854			act_pt++;
1855			act_pte = 0;
1856		}
1857	}
1858	if (pt_vaddr)
1859		kunmap_px(ppgtt, pt_vaddr);
1860}
1861
1862static int gen6_alloc_va_range(struct i915_address_space *vm,
1863			       uint64_t start_in, uint64_t length_in)
1864{
1865	DECLARE_BITMAP(new_page_tables, I915_PDES);
1866	struct drm_device *dev = vm->dev;
1867	struct drm_i915_private *dev_priv = dev->dev_private;
1868	struct i915_hw_ppgtt *ppgtt =
1869				container_of(vm, struct i915_hw_ppgtt, base);
1870	struct i915_page_table *pt;
1871	uint32_t start, length, start_save, length_save;
1872	uint32_t pde, temp;
1873	int ret;
1874
1875	if (WARN_ON(start_in + length_in > ppgtt->base.total))
1876		return -ENODEV;
1877
1878	start = start_save = start_in;
1879	length = length_save = length_in;
1880
1881	bitmap_zero(new_page_tables, I915_PDES);
1882
1883	/* The allocation is done in two stages so that we can bail out with
1884	 * minimal amount of pain. The first stage finds new page tables that
1885	 * need allocation. The second stage marks use ptes within the page
1886	 * tables.
1887	 */
1888	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1889		if (pt != vm->scratch_pt) {
1890			WARN_ON(bitmap_empty(pt->used_ptes, GEN6_PTES));
1891			continue;
1892		}
1893
1894		/* We've already allocated a page table */
1895		WARN_ON(!bitmap_empty(pt->used_ptes, GEN6_PTES));
1896
1897		pt = alloc_pt(dev);
1898		if (IS_ERR(pt)) {
1899			ret = PTR_ERR(pt);
1900			goto unwind_out;
1901		}
1902
1903		gen6_initialize_pt(vm, pt);
1904
1905		ppgtt->pd.page_table[pde] = pt;
1906		__set_bit(pde, new_page_tables);
1907		trace_i915_page_table_entry_alloc(vm, pde, start, GEN6_PDE_SHIFT);
1908	}
1909
1910	start = start_save;
1911	length = length_save;
1912
1913	gen6_for_each_pde(pt, &ppgtt->pd, start, length, temp, pde) {
1914		DECLARE_BITMAP(tmp_bitmap, GEN6_PTES);
1915
1916		bitmap_zero(tmp_bitmap, GEN6_PTES);
1917		bitmap_set(tmp_bitmap, gen6_pte_index(start),
1918			   gen6_pte_count(start, length));
1919
1920		if (__test_and_clear_bit(pde, new_page_tables))
1921			gen6_write_pde(&ppgtt->pd, pde, pt);
1922
1923		trace_i915_page_table_entry_map(vm, pde, pt,
1924					 gen6_pte_index(start),
1925					 gen6_pte_count(start, length),
1926					 GEN6_PTES);
1927		bitmap_or(pt->used_ptes, tmp_bitmap, pt->used_ptes,
1928				GEN6_PTES);
1929	}
1930
1931	WARN_ON(!bitmap_empty(new_page_tables, I915_PDES));
1932
1933	/* Make sure write is complete before other code can use this page
1934	 * table. Also require for WC mapped PTEs */
1935	readl(dev_priv->gtt.gsm);
1936
1937	mark_tlbs_dirty(ppgtt);
1938	return 0;
1939
1940unwind_out:
1941	for_each_set_bit(pde, new_page_tables, I915_PDES) {
1942		struct i915_page_table *pt = ppgtt->pd.page_table[pde];
1943
1944		ppgtt->pd.page_table[pde] = vm->scratch_pt;
1945		free_pt(vm->dev, pt);
1946	}
1947
1948	mark_tlbs_dirty(ppgtt);
1949	return ret;
1950}
1951
1952static int gen6_init_scratch(struct i915_address_space *vm)
1953{
1954	struct drm_device *dev = vm->dev;
1955
1956	vm->scratch_page = alloc_scratch_page(dev);
1957	if (IS_ERR(vm->scratch_page))
1958		return PTR_ERR(vm->scratch_page);
1959
1960	vm->scratch_pt = alloc_pt(dev);
1961	if (IS_ERR(vm->scratch_pt)) {
1962		free_scratch_page(dev, vm->scratch_page);
1963		return PTR_ERR(vm->scratch_pt);
1964	}
1965
1966	gen6_initialize_pt(vm, vm->scratch_pt);
1967
1968	return 0;
1969}
1970
1971static void gen6_free_scratch(struct i915_address_space *vm)
1972{
1973	struct drm_device *dev = vm->dev;
1974
1975	free_pt(dev, vm->scratch_pt);
1976	free_scratch_page(dev, vm->scratch_page);
1977}
1978
1979static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1980{
1981	struct i915_hw_ppgtt *ppgtt =
1982		container_of(vm, struct i915_hw_ppgtt, base);
1983	struct i915_page_table *pt;
1984	uint32_t pde;
1985
1986	drm_mm_remove_node(&ppgtt->node);
1987
1988	gen6_for_all_pdes(pt, ppgtt, pde) {
1989		if (pt != vm->scratch_pt)
1990			free_pt(ppgtt->base.dev, pt);
1991	}
1992
1993	gen6_free_scratch(vm);
1994}
1995
1996static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1997{
1998	struct i915_address_space *vm = &ppgtt->base;
1999	struct drm_device *dev = ppgtt->base.dev;
2000	struct drm_i915_private *dev_priv = dev->dev_private;
2001	bool retried = false;
2002	int ret;
2003
2004	/* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
2005	 * allocator works in address space sizes, so it's multiplied by page
2006	 * size. We allocate at the top of the GTT to avoid fragmentation.
2007	 */
2008	BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
2009
2010	ret = gen6_init_scratch(vm);
2011	if (ret)
2012		return ret;
2013
2014alloc:
2015	ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
2016						  &ppgtt->node, GEN6_PD_SIZE,
2017						  GEN6_PD_ALIGN, 0,
2018						  0, dev_priv->gtt.base.total,
2019						  DRM_MM_TOPDOWN);
2020	if (ret == -ENOSPC && !retried) {
2021		ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
2022					       GEN6_PD_SIZE, GEN6_PD_ALIGN,
2023					       I915_CACHE_NONE,
2024					       0, dev_priv->gtt.base.total,
2025					       0);
2026		if (ret)
2027			goto err_out;
2028
2029		retried = true;
2030		goto alloc;
2031	}
2032
2033	if (ret)
2034		goto err_out;
2035
2036
2037	if (ppgtt->node.start < dev_priv->gtt.mappable_end)
2038		DRM_DEBUG("Forced to use aperture for PDEs\n");
2039
2040	return 0;
2041
2042err_out:
2043	gen6_free_scratch(vm);
2044	return ret;
2045}
2046
2047static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
2048{
2049	return gen6_ppgtt_allocate_page_directories(ppgtt);
2050}
2051
2052static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
2053				  uint64_t start, uint64_t length)
2054{
2055	struct i915_page_table *unused;
2056	uint32_t pde, temp;
2057
2058	gen6_for_each_pde(unused, &ppgtt->pd, start, length, temp, pde)
2059		ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
2060}
2061
2062static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
2063{
2064	struct drm_device *dev = ppgtt->base.dev;
2065	struct drm_i915_private *dev_priv = dev->dev_private;
2066	int ret;
2067
2068	ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
2069	if (IS_GEN6(dev)) {
2070		ppgtt->switch_mm = gen6_mm_switch;
2071	} else if (IS_HASWELL(dev)) {
2072		ppgtt->switch_mm = hsw_mm_switch;
2073	} else if (IS_GEN7(dev)) {
2074		ppgtt->switch_mm = gen7_mm_switch;
2075	} else
2076		BUG();
2077
2078	if (intel_vgpu_active(dev))
2079		ppgtt->switch_mm = vgpu_mm_switch;
2080
2081	ret = gen6_ppgtt_alloc(ppgtt);
2082	if (ret)
2083		return ret;
2084
2085	ppgtt->base.allocate_va_range = gen6_alloc_va_range;
2086	ppgtt->base.clear_range = gen6_ppgtt_clear_range;
2087	ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
2088	ppgtt->base.unbind_vma = ppgtt_unbind_vma;
2089	ppgtt->base.bind_vma = ppgtt_bind_vma;
2090	ppgtt->base.cleanup = gen6_ppgtt_cleanup;
2091	ppgtt->base.start = 0;
2092	ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
2093	ppgtt->debug_dump = gen6_dump_ppgtt;
2094
2095	ppgtt->pd.base.ggtt_offset =
2096		ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
2097
2098	ppgtt->pd_addr = (gen6_pte_t __iomem *)dev_priv->gtt.gsm +
2099		ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
2100
2101	gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
2102
2103	gen6_write_page_range(dev_priv, &ppgtt->pd, 0, ppgtt->base.total);
2104
2105	DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
2106			 ppgtt->node.size >> 20,
2107			 ppgtt->node.start / PAGE_SIZE);
2108
2109	DRM_DEBUG("Adding PPGTT at offset %x\n",
2110		  ppgtt->pd.base.ggtt_offset << 10);
2111
2112	return 0;
2113}
2114
2115static int __hw_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2116{
2117	ppgtt->base.dev = dev;
2118
2119	if (INTEL_INFO(dev)->gen < 8)
2120		return gen6_ppgtt_init(ppgtt);
2121	else
2122		return gen8_ppgtt_init(ppgtt);
2123}
2124
2125static void i915_address_space_init(struct i915_address_space *vm,
2126				    struct drm_i915_private *dev_priv)
2127{
2128	drm_mm_init(&vm->mm, vm->start, vm->total);
2129	vm->dev = dev_priv->dev;
2130	INIT_LIST_HEAD(&vm->active_list);
2131	INIT_LIST_HEAD(&vm->inactive_list);
2132	list_add_tail(&vm->global_link, &dev_priv->vm_list);
2133}
2134
2135static void gtt_write_workarounds(struct drm_device *dev)
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138
2139	/* This function is for gtt related workarounds. This function is
2140	 * called on driver load and after a GPU reset, so you can place
2141	 * workarounds here even if they get overwritten by GPU reset.
2142	 */
2143	/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt */
2144	if (IS_BROADWELL(dev))
2145		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
2146	else if (IS_CHERRYVIEW(dev))
2147		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
2148	else if (IS_SKYLAKE(dev))
2149		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
2150	else if (IS_BROXTON(dev))
2151		I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
2152}
2153
2154int i915_ppgtt_init(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
2155{
2156	struct drm_i915_private *dev_priv = dev->dev_private;
2157	int ret = 0;
2158
2159	ret = __hw_ppgtt_init(dev, ppgtt);
2160	if (ret == 0) {
2161		kref_init(&ppgtt->ref);
2162		i915_address_space_init(&ppgtt->base, dev_priv);
2163	}
2164
2165	return ret;
2166}
2167
2168int i915_ppgtt_init_hw(struct drm_device *dev)
2169{
2170	gtt_write_workarounds(dev);
2171
2172	/* In the case of execlists, PPGTT is enabled by the context descriptor
2173	 * and the PDPs are contained within the context itself.  We don't
2174	 * need to do anything here. */
2175	if (i915.enable_execlists)
2176		return 0;
2177
2178	if (!USES_PPGTT(dev))
2179		return 0;
2180
2181	if (IS_GEN6(dev))
2182		gen6_ppgtt_enable(dev);
2183	else if (IS_GEN7(dev))
2184		gen7_ppgtt_enable(dev);
2185	else if (INTEL_INFO(dev)->gen >= 8)
2186		gen8_ppgtt_enable(dev);
2187	else
2188		MISSING_CASE(INTEL_INFO(dev)->gen);
2189
2190	return 0;
2191}
2192
2193int i915_ppgtt_init_ring(struct drm_i915_gem_request *req)
2194{
2195	struct drm_i915_private *dev_priv = req->ring->dev->dev_private;
2196	struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2197
2198	if (i915.enable_execlists)
2199		return 0;
2200
2201	if (!ppgtt)
2202		return 0;
2203
2204	return ppgtt->switch_mm(ppgtt, req);
2205}
2206
2207struct i915_hw_ppgtt *
2208i915_ppgtt_create(struct drm_device *dev, struct drm_i915_file_private *fpriv)
2209{
2210	struct i915_hw_ppgtt *ppgtt;
2211	int ret;
2212
2213	ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2214	if (!ppgtt)
2215		return ERR_PTR(-ENOMEM);
2216
2217	ret = i915_ppgtt_init(dev, ppgtt);
2218	if (ret) {
2219		kfree(ppgtt);
2220		return ERR_PTR(ret);
2221	}
2222
2223	ppgtt->file_priv = fpriv;
2224
2225	trace_i915_ppgtt_create(&ppgtt->base);
2226
2227	return ppgtt;
2228}
2229
2230void  i915_ppgtt_release(struct kref *kref)
2231{
2232	struct i915_hw_ppgtt *ppgtt =
2233		container_of(kref, struct i915_hw_ppgtt, ref);
2234
2235	trace_i915_ppgtt_release(&ppgtt->base);
2236
2237	/* vmas should already be unbound */
2238	WARN_ON(!list_empty(&ppgtt->base.active_list));
2239	WARN_ON(!list_empty(&ppgtt->base.inactive_list));
2240
2241	list_del(&ppgtt->base.global_link);
2242	drm_mm_takedown(&ppgtt->base.mm);
2243
2244	ppgtt->base.cleanup(&ppgtt->base);
2245	kfree(ppgtt);
2246}
2247
2248extern int intel_iommu_gfx_mapped;
2249/* Certain Gen5 chipsets require require idling the GPU before
2250 * unmapping anything from the GTT when VT-d is enabled.
2251 */
2252static bool needs_idle_maps(struct drm_device *dev)
2253{
2254#ifdef CONFIG_INTEL_IOMMU
2255	/* Query intel_iommu to see if we need the workaround. Presumably that
2256	 * was loaded first.
2257	 */
2258	if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
2259		return true;
2260#endif
2261	return false;
2262}
2263
2264static bool do_idling(struct drm_i915_private *dev_priv)
2265{
2266	bool ret = dev_priv->mm.interruptible;
2267
2268	if (unlikely(dev_priv->gtt.do_idle_maps)) {
2269		dev_priv->mm.interruptible = false;
2270		if (i915_gpu_idle(dev_priv->dev)) {
2271			DRM_ERROR("Couldn't idle GPU\n");
2272			/* Wait a bit, in hopes it avoids the hang */
2273			udelay(10);
2274		}
 
 
2275	}
2276
2277	return ret;
2278}
2279
2280static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
2281{
2282	if (unlikely(dev_priv->gtt.do_idle_maps))
2283		dev_priv->mm.interruptible = interruptible;
2284}
2285
2286void i915_check_and_clear_faults(struct drm_device *dev)
2287{
2288	struct drm_i915_private *dev_priv = dev->dev_private;
2289	struct intel_engine_cs *ring;
2290	int i;
2291
2292	if (INTEL_INFO(dev)->gen < 6)
2293		return;
2294
2295	for_each_ring(ring, dev_priv, i) {
2296		u32 fault_reg;
2297		fault_reg = I915_READ(RING_FAULT_REG(ring));
2298		if (fault_reg & RING_FAULT_VALID) {
2299			DRM_DEBUG_DRIVER("Unexpected fault\n"
2300					 "\tAddr: 0x%08lx\n"
2301					 "\tAddress space: %s\n"
2302					 "\tSource ID: %d\n"
2303					 "\tType: %d\n",
2304					 fault_reg & PAGE_MASK,
2305					 fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2306					 RING_FAULT_SRCID(fault_reg),
2307					 RING_FAULT_FAULT_TYPE(fault_reg));
2308			I915_WRITE(RING_FAULT_REG(ring),
2309				   fault_reg & ~RING_FAULT_VALID);
2310		}
2311	}
2312	POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
2313}
2314
2315static void i915_ggtt_flush(struct drm_i915_private *dev_priv)
2316{
2317	if (INTEL_INFO(dev_priv->dev)->gen < 6) {
2318		intel_gtt_chipset_flush();
2319	} else {
2320		I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2321		POSTING_READ(GFX_FLSH_CNTL_GEN6);
2322	}
2323}
2324
2325void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
2326{
2327	struct drm_i915_private *dev_priv = dev->dev_private;
2328
2329	/* Don't bother messing with faults pre GEN6 as we have little
2330	 * documentation supporting that it's a good idea.
2331	 */
2332	if (INTEL_INFO(dev)->gen < 6)
2333		return;
2334
2335	i915_check_and_clear_faults(dev);
2336
2337	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
2338				       dev_priv->gtt.base.start,
2339				       dev_priv->gtt.base.total,
2340				       true);
2341
2342	i915_ggtt_flush(dev_priv);
2343}
2344
2345int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
2346{
2347	if (!dma_map_sg(&obj->base.dev->pdev->dev,
2348			obj->pages->sgl, obj->pages->nents,
2349			PCI_DMA_BIDIRECTIONAL))
2350		return -ENOSPC;
2351
2352	return 0;
2353}
2354
2355static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2356{
2357#ifdef writeq
2358	writeq(pte, addr);
2359#else
2360	iowrite32((u32)pte, addr);
2361	iowrite32(pte >> 32, addr + 4);
2362#endif
2363}
2364
2365static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2366				     struct sg_table *st,
2367				     uint64_t start,
2368				     enum i915_cache_level level, u32 unused)
2369{
2370	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2371	unsigned first_entry = start >> PAGE_SHIFT;
2372	gen8_pte_t __iomem *gtt_entries =
2373		(gen8_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2374	int i = 0;
2375	struct sg_page_iter sg_iter;
2376	dma_addr_t addr = 0; /* shut up gcc */
2377	int rpm_atomic_seq;
2378
2379	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2380
2381	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2382		addr = sg_dma_address(sg_iter.sg) +
2383			(sg_iter.sg_pgoffset << PAGE_SHIFT);
2384		gen8_set_pte(&gtt_entries[i],
2385			     gen8_pte_encode(addr, level, true));
2386		i++;
2387	}
2388
2389	/*
2390	 * XXX: This serves as a posting read to make sure that the PTE has
2391	 * actually been updated. There is some concern that even though
2392	 * registers and PTEs are within the same BAR that they are potentially
2393	 * of NUMA access patterns. Therefore, even with the way we assume
2394	 * hardware should work, we must keep this posting read for paranoia.
2395	 */
2396	if (i != 0)
2397		WARN_ON(readq(&gtt_entries[i-1])
2398			!= gen8_pte_encode(addr, level, true));
2399
2400	/* This next bit makes the above posting read even more important. We
2401	 * want to flush the TLBs only after we're certain all the PTE updates
2402	 * have finished.
2403	 */
2404	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2405	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2406
2407	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2408}
2409
2410struct insert_entries {
2411	struct i915_address_space *vm;
2412	struct sg_table *st;
2413	uint64_t start;
2414	enum i915_cache_level level;
2415	u32 flags;
2416};
2417
2418static int gen8_ggtt_insert_entries__cb(void *_arg)
2419{
2420	struct insert_entries *arg = _arg;
2421	gen8_ggtt_insert_entries(arg->vm, arg->st,
2422				 arg->start, arg->level, arg->flags);
2423	return 0;
2424}
2425
2426static void gen8_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2427					  struct sg_table *st,
2428					  uint64_t start,
2429					  enum i915_cache_level level,
2430					  u32 flags)
2431{
2432	struct insert_entries arg = { vm, st, start, level, flags };
2433	stop_machine(gen8_ggtt_insert_entries__cb, &arg, NULL);
2434}
2435
2436/*
2437 * Binds an object into the global gtt with the specified cache level. The object
2438 * will be accessible to the GPU via commands whose operands reference offsets
2439 * within the global GTT as well as accessible by the GPU through the GMADR
2440 * mapped BAR (dev_priv->mm.gtt->gtt).
2441 */
2442static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2443				     struct sg_table *st,
2444				     uint64_t start,
2445				     enum i915_cache_level level, u32 flags)
2446{
2447	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2448	unsigned first_entry = start >> PAGE_SHIFT;
2449	gen6_pte_t __iomem *gtt_entries =
2450		(gen6_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
2451	int i = 0;
2452	struct sg_page_iter sg_iter;
2453	dma_addr_t addr = 0;
2454	int rpm_atomic_seq;
2455
2456	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2457
2458	for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
2459		addr = sg_page_iter_dma_address(&sg_iter);
2460		iowrite32(vm->pte_encode(addr, level, true, flags), &gtt_entries[i]);
2461		i++;
 
 
 
2462	}
2463
2464	/* XXX: This serves as a posting read to make sure that the PTE has
2465	 * actually been updated. There is some concern that even though
2466	 * registers and PTEs are within the same BAR that they are potentially
2467	 * of NUMA access patterns. Therefore, even with the way we assume
2468	 * hardware should work, we must keep this posting read for paranoia.
2469	 */
2470	if (i != 0) {
2471		unsigned long gtt = readl(&gtt_entries[i-1]);
2472		WARN_ON(gtt != vm->pte_encode(addr, level, true, flags));
2473	}
2474
2475	/* This next bit makes the above posting read even more important. We
2476	 * want to flush the TLBs only after we're certain all the PTE updates
2477	 * have finished.
2478	 */
2479	I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
2480	POSTING_READ(GFX_FLSH_CNTL_GEN6);
2481
2482	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2483}
2484
2485static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2486				  uint64_t start,
2487				  uint64_t length,
2488				  bool use_scratch)
2489{
2490	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2491	unsigned first_entry = start >> PAGE_SHIFT;
2492	unsigned num_entries = length >> PAGE_SHIFT;
2493	gen8_pte_t scratch_pte, __iomem *gtt_base =
2494		(gen8_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2495	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2496	int i;
2497	int rpm_atomic_seq;
2498
2499	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2500
2501	if (WARN(num_entries > max_entries,
2502		 "First entry = %d; Num entries = %d (max=%d)\n",
2503		 first_entry, num_entries, max_entries))
2504		num_entries = max_entries;
2505
2506	scratch_pte = gen8_pte_encode(px_dma(vm->scratch_page),
2507				      I915_CACHE_LLC,
2508				      use_scratch);
2509	for (i = 0; i < num_entries; i++)
2510		gen8_set_pte(&gtt_base[i], scratch_pte);
2511	readl(gtt_base);
2512
2513	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2514}
2515
2516static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2517				  uint64_t start,
2518				  uint64_t length,
2519				  bool use_scratch)
2520{
2521	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2522	unsigned first_entry = start >> PAGE_SHIFT;
2523	unsigned num_entries = length >> PAGE_SHIFT;
2524	gen6_pte_t scratch_pte, __iomem *gtt_base =
2525		(gen6_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
2526	const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
2527	int i;
2528	int rpm_atomic_seq;
2529
2530	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2531
2532	if (WARN(num_entries > max_entries,
2533		 "First entry = %d; Num entries = %d (max=%d)\n",
2534		 first_entry, num_entries, max_entries))
2535		num_entries = max_entries;
2536
2537	scratch_pte = vm->pte_encode(px_dma(vm->scratch_page),
2538				     I915_CACHE_LLC, use_scratch, 0);
2539
2540	for (i = 0; i < num_entries; i++)
2541		iowrite32(scratch_pte, &gtt_base[i]);
2542	readl(gtt_base);
2543
2544	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2545}
2546
2547static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2548				     struct sg_table *pages,
2549				     uint64_t start,
2550				     enum i915_cache_level cache_level, u32 unused)
2551{
2552	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2553	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2554		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2555	int rpm_atomic_seq;
2556
2557	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2558
2559	intel_gtt_insert_sg_entries(pages, start >> PAGE_SHIFT, flags);
2560
2561	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2562
2563}
2564
2565static void i915_ggtt_clear_range(struct i915_address_space *vm,
2566				  uint64_t start,
2567				  uint64_t length,
2568				  bool unused)
2569{
2570	struct drm_i915_private *dev_priv = vm->dev->dev_private;
2571	unsigned first_entry = start >> PAGE_SHIFT;
2572	unsigned num_entries = length >> PAGE_SHIFT;
2573	int rpm_atomic_seq;
2574
2575	rpm_atomic_seq = assert_rpm_atomic_begin(dev_priv);
2576
2577	intel_gtt_clear_range(first_entry, num_entries);
2578
2579	assert_rpm_atomic_end(dev_priv, rpm_atomic_seq);
2580}
2581
2582static int ggtt_bind_vma(struct i915_vma *vma,
2583			 enum i915_cache_level cache_level,
2584			 u32 flags)
2585{
2586	struct drm_i915_gem_object *obj = vma->obj;
2587	u32 pte_flags = 0;
2588	int ret;
2589
2590	ret = i915_get_ggtt_vma_pages(vma);
2591	if (ret)
2592		return ret;
2593
2594	/* Currently applicable only to VLV */
2595	if (obj->gt_ro)
2596		pte_flags |= PTE_READ_ONLY;
2597
2598	vma->vm->insert_entries(vma->vm, vma->ggtt_view.pages,
2599				vma->node.start,
2600				cache_level, pte_flags);
2601
2602	/*
2603	 * Without aliasing PPGTT there's no difference between
2604	 * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2605	 * upgrade to both bound if we bind either to avoid double-binding.
2606	 */
2607	vma->bound |= GLOBAL_BIND | LOCAL_BIND;
2608
2609	return 0;
2610}
2611
2612static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2613				 enum i915_cache_level cache_level,
2614				 u32 flags)
2615{
2616	struct drm_device *dev = vma->vm->dev;
2617	struct drm_i915_private *dev_priv = dev->dev_private;
2618	struct drm_i915_gem_object *obj = vma->obj;
2619	struct sg_table *pages = obj->pages;
2620	u32 pte_flags = 0;
2621	int ret;
2622
2623	ret = i915_get_ggtt_vma_pages(vma);
2624	if (ret)
2625		return ret;
2626	pages = vma->ggtt_view.pages;
2627
2628	/* Currently applicable only to VLV */
2629	if (obj->gt_ro)
2630		pte_flags |= PTE_READ_ONLY;
2631
2632
2633	if (flags & GLOBAL_BIND) {
2634		vma->vm->insert_entries(vma->vm, pages,
2635					vma->node.start,
2636					cache_level, pte_flags);
2637	}
2638
2639	if (flags & LOCAL_BIND) {
2640		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2641		appgtt->base.insert_entries(&appgtt->base, pages,
2642					    vma->node.start,
2643					    cache_level, pte_flags);
2644	}
2645
2646	return 0;
2647}
2648
2649static void ggtt_unbind_vma(struct i915_vma *vma)
2650{
2651	struct drm_device *dev = vma->vm->dev;
2652	struct drm_i915_private *dev_priv = dev->dev_private;
2653	struct drm_i915_gem_object *obj = vma->obj;
2654	const uint64_t size = min_t(uint64_t,
2655				    obj->base.size,
2656				    vma->node.size);
2657
2658	if (vma->bound & GLOBAL_BIND) {
2659		vma->vm->clear_range(vma->vm,
2660				     vma->node.start,
2661				     size,
2662				     true);
2663	}
2664
2665	if (dev_priv->mm.aliasing_ppgtt && vma->bound & LOCAL_BIND) {
2666		struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
2667
2668		appgtt->base.clear_range(&appgtt->base,
2669					 vma->node.start,
2670					 size,
2671					 true);
2672	}
2673}
2674
2675void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
2676{
2677	struct drm_device *dev = obj->base.dev;
2678	struct drm_i915_private *dev_priv = dev->dev_private;
2679	bool interruptible;
2680
2681	interruptible = do_idling(dev_priv);
2682
2683	dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents,
2684		     PCI_DMA_BIDIRECTIONAL);
2685
2686	undo_idling(dev_priv, interruptible);
2687}
2688
2689static void i915_gtt_color_adjust(struct drm_mm_node *node,
2690				  unsigned long color,
2691				  u64 *start,
2692				  u64 *end)
2693{
2694	if (node->color != color)
2695		*start += 4096;
2696
2697	if (!list_empty(&node->node_list)) {
2698		node = list_entry(node->node_list.next,
2699				  struct drm_mm_node,
2700				  node_list);
2701		if (node->allocated && node->color != color)
2702			*end -= 4096;
2703	}
2704}
2705
2706static int i915_gem_setup_global_gtt(struct drm_device *dev,
2707				     u64 start,
2708				     u64 mappable_end,
2709				     u64 end)
2710{
2711	/* Let GEM Manage all of the aperture.
2712	 *
2713	 * However, leave one page at the end still bound to the scratch page.
2714	 * There are a number of places where the hardware apparently prefetches
2715	 * past the end of the object, and we've seen multiple hangs with the
2716	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
2717	 * aperture.  One page should be enough to keep any prefetching inside
2718	 * of the aperture.
2719	 */
2720	struct drm_i915_private *dev_priv = dev->dev_private;
2721	struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
2722	struct drm_mm_node *entry;
2723	struct drm_i915_gem_object *obj;
2724	unsigned long hole_start, hole_end;
2725	int ret;
2726
2727	BUG_ON(mappable_end > end);
2728
2729	ggtt_vm->start = start;
2730
2731	/* Subtract the guard page before address space initialization to
2732	 * shrink the range used by drm_mm */
2733	ggtt_vm->total = end - start - PAGE_SIZE;
2734	i915_address_space_init(ggtt_vm, dev_priv);
2735	ggtt_vm->total += PAGE_SIZE;
2736
2737	if (intel_vgpu_active(dev)) {
2738		ret = intel_vgt_balloon(dev);
2739		if (ret)
2740			return ret;
2741	}
2742
2743	if (!HAS_LLC(dev))
2744		ggtt_vm->mm.color_adjust = i915_gtt_color_adjust;
2745
2746	/* Mark any preallocated objects as occupied */
2747	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
2748		struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
2749
2750		DRM_DEBUG_KMS("reserving preallocated space: %llx + %zx\n",
2751			      i915_gem_obj_ggtt_offset(obj), obj->base.size);
2752
2753		WARN_ON(i915_gem_obj_ggtt_bound(obj));
2754		ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
2755		if (ret) {
2756			DRM_DEBUG_KMS("Reservation failed: %i\n", ret);
2757			return ret;
2758		}
2759		vma->bound |= GLOBAL_BIND;
2760		__i915_vma_set_map_and_fenceable(vma);
2761		list_add_tail(&vma->vm_link, &ggtt_vm->inactive_list);
2762	}
2763
2764	/* Clear any non-preallocated blocks */
2765	drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
2766		DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2767			      hole_start, hole_end);
2768		ggtt_vm->clear_range(ggtt_vm, hole_start,
2769				     hole_end - hole_start, true);
2770	}
2771
2772	/* And finally clear the reserved guard page */
2773	ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true);
2774
2775	if (USES_PPGTT(dev) && !USES_FULL_PPGTT(dev)) {
2776		struct i915_hw_ppgtt *ppgtt;
2777
2778		ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
2779		if (!ppgtt)
2780			return -ENOMEM;
2781
2782		ret = __hw_ppgtt_init(dev, ppgtt);
2783		if (ret) {
2784			ppgtt->base.cleanup(&ppgtt->base);
2785			kfree(ppgtt);
2786			return ret;
2787		}
2788
2789		if (ppgtt->base.allocate_va_range)
2790			ret = ppgtt->base.allocate_va_range(&ppgtt->base, 0,
2791							    ppgtt->base.total);
2792		if (ret) {
2793			ppgtt->base.cleanup(&ppgtt->base);
2794			kfree(ppgtt);
2795			return ret;
2796		}
2797
2798		ppgtt->base.clear_range(&ppgtt->base,
2799					ppgtt->base.start,
2800					ppgtt->base.total,
2801					true);
2802
2803		dev_priv->mm.aliasing_ppgtt = ppgtt;
2804		WARN_ON(dev_priv->gtt.base.bind_vma != ggtt_bind_vma);
2805		dev_priv->gtt.base.bind_vma = aliasing_gtt_bind_vma;
2806	}
2807
2808	return 0;
2809}
2810
2811void i915_gem_init_global_gtt(struct drm_device *dev)
2812{
2813	struct drm_i915_private *dev_priv = dev->dev_private;
2814	u64 gtt_size, mappable_size;
2815
2816	gtt_size = dev_priv->gtt.base.total;
2817	mappable_size = dev_priv->gtt.mappable_end;
2818
2819	i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
2820}
2821
2822void i915_global_gtt_cleanup(struct drm_device *dev)
2823{
2824	struct drm_i915_private *dev_priv = dev->dev_private;
2825	struct i915_address_space *vm = &dev_priv->gtt.base;
2826
2827	if (dev_priv->mm.aliasing_ppgtt) {
2828		struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2829
2830		ppgtt->base.cleanup(&ppgtt->base);
2831	}
2832
2833	i915_gem_cleanup_stolen(dev);
2834
2835	if (drm_mm_initialized(&vm->mm)) {
2836		if (intel_vgpu_active(dev))
2837			intel_vgt_deballoon();
2838
2839		drm_mm_takedown(&vm->mm);
2840		list_del(&vm->global_link);
2841	}
2842
2843	vm->cleanup(vm);
2844}
2845
2846static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2847{
2848	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2849	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2850	return snb_gmch_ctl << 20;
2851}
2852
2853static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2854{
2855	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2856	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2857	if (bdw_gmch_ctl)
2858		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2859
2860#ifdef CONFIG_X86_32
2861	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2862	if (bdw_gmch_ctl > 4)
2863		bdw_gmch_ctl = 4;
2864#endif
2865
2866	return bdw_gmch_ctl << 20;
2867}
2868
2869static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2870{
2871	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2872	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2873
2874	if (gmch_ctrl)
2875		return 1 << (20 + gmch_ctrl);
2876
2877	return 0;
2878}
2879
2880static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2881{
2882	snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2883	snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2884	return snb_gmch_ctl << 25; /* 32 MB units */
2885}
2886
2887static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2888{
2889	bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2890	bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2891	return bdw_gmch_ctl << 25; /* 32 MB units */
2892}
2893
2894static size_t chv_get_stolen_size(u16 gmch_ctrl)
2895{
2896	gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2897	gmch_ctrl &= SNB_GMCH_GMS_MASK;
2898
2899	/*
2900	 * 0x0  to 0x10: 32MB increments starting at 0MB
2901	 * 0x11 to 0x16: 4MB increments starting at 8MB
2902	 * 0x17 to 0x1d: 4MB increments start at 36MB
2903	 */
2904	if (gmch_ctrl < 0x11)
2905		return gmch_ctrl << 25;
2906	else if (gmch_ctrl < 0x17)
2907		return (gmch_ctrl - 0x11 + 2) << 22;
2908	else
2909		return (gmch_ctrl - 0x17 + 9) << 22;
2910}
2911
2912static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2913{
2914	gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2915	gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2916
2917	if (gen9_gmch_ctl < 0xf0)
2918		return gen9_gmch_ctl << 25; /* 32 MB units */
2919	else
2920		/* 4MB increments starting at 0xf0 for 4MB */
2921		return (gen9_gmch_ctl - 0xf0 + 1) << 22;
2922}
2923
2924static int ggtt_probe_common(struct drm_device *dev,
2925			     size_t gtt_size)
2926{
2927	struct drm_i915_private *dev_priv = dev->dev_private;
2928	struct i915_page_scratch *scratch_page;
2929	phys_addr_t gtt_phys_addr;
2930
2931	/* For Modern GENs the PTEs and register space are split in the BAR */
2932	gtt_phys_addr = pci_resource_start(dev->pdev, 0) +
2933		(pci_resource_len(dev->pdev, 0) / 2);
2934
2935	/*
2936	 * On BXT writes larger than 64 bit to the GTT pagetable range will be
2937	 * dropped. For WC mappings in general we have 64 byte burst writes
2938	 * when the WC buffer is flushed, so we can't use it, but have to
2939	 * resort to an uncached mapping. The WC issue is easily caught by the
2940	 * readback check when writing GTT PTE entries.
2941	 */
2942	if (IS_BROXTON(dev))
2943		dev_priv->gtt.gsm = ioremap_nocache(gtt_phys_addr, gtt_size);
2944	else
2945		dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size);
2946	if (!dev_priv->gtt.gsm) {
2947		DRM_ERROR("Failed to map the gtt page table\n");
2948		return -ENOMEM;
2949	}
2950
2951	scratch_page = alloc_scratch_page(dev);
2952	if (IS_ERR(scratch_page)) {
2953		DRM_ERROR("Scratch setup failed\n");
2954		/* iounmap will also get called at remove, but meh */
2955		iounmap(dev_priv->gtt.gsm);
2956		return PTR_ERR(scratch_page);
2957	}
2958
2959	dev_priv->gtt.base.scratch_page = scratch_page;
2960
2961	return 0;
2962}
2963
2964/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2965 * bits. When using advanced contexts each context stores its own PAT, but
2966 * writing this data shouldn't be harmful even in those cases. */
2967static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2968{
2969	uint64_t pat;
2970
2971	pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2972	      GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2973	      GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2974	      GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2975	      GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2976	      GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2977	      GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2978	      GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2979
2980	if (!USES_PPGTT(dev_priv->dev))
2981		/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2982		 * so RTL will always use the value corresponding to
2983		 * pat_sel = 000".
2984		 * So let's disable cache for GGTT to avoid screen corruptions.
2985		 * MOCS still can be used though.
2986		 * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2987		 * before this patch, i.e. the same uncached + snooping access
2988		 * like on gen6/7 seems to be in effect.
2989		 * - So this just fixes blitter/render access. Again it looks
2990		 * like it's not just uncached access, but uncached + snooping.
2991		 * So we can still hold onto all our assumptions wrt cpu
2992		 * clflushing on LLC machines.
2993		 */
2994		pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2995
2996	/* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2997	 * write would work. */
2998	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2999	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3000}
3001
3002static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
3003{
3004	uint64_t pat;
3005
3006	/*
3007	 * Map WB on BDW to snooped on CHV.
3008	 *
3009	 * Only the snoop bit has meaning for CHV, the rest is
3010	 * ignored.
3011	 *
3012	 * The hardware will never snoop for certain types of accesses:
3013	 * - CPU GTT (GMADR->GGTT->no snoop->memory)
3014	 * - PPGTT page tables
3015	 * - some other special cycles
 
 
3016	 *
3017	 * As with BDW, we also need to consider the following for GT accesses:
3018	 * "For GGTT, there is NO pat_sel[2:0] from the entry,
3019	 * so RTL will always use the value corresponding to
3020	 * pat_sel = 000".
3021	 * Which means we must set the snoop bit in PAT entry 0
3022	 * in order to keep the global status page working.
3023	 */
3024	pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
3025	      GEN8_PPAT(1, 0) |
3026	      GEN8_PPAT(2, 0) |
3027	      GEN8_PPAT(3, 0) |
3028	      GEN8_PPAT(4, CHV_PPAT_SNOOP) |
3029	      GEN8_PPAT(5, CHV_PPAT_SNOOP) |
3030	      GEN8_PPAT(6, CHV_PPAT_SNOOP) |
3031	      GEN8_PPAT(7, CHV_PPAT_SNOOP);
3032
3033	I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
3034	I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
3035}
3036
3037static int gen8_gmch_probe(struct drm_device *dev,
3038			   u64 *gtt_total,
3039			   size_t *stolen,
3040			   phys_addr_t *mappable_base,
3041			   u64 *mappable_end)
3042{
3043	struct drm_i915_private *dev_priv = dev->dev_private;
3044	u64 gtt_size;
3045	u16 snb_gmch_ctl;
3046	int ret;
3047
3048	/* TODO: We're not aware of mappable constraints on gen8 yet */
3049	*mappable_base = pci_resource_start(dev->pdev, 2);
3050	*mappable_end = pci_resource_len(dev->pdev, 2);
3051
3052	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
3053		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
3054
3055	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3056
3057	if (INTEL_INFO(dev)->gen >= 9) {
3058		*stolen = gen9_get_stolen_size(snb_gmch_ctl);
3059		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3060	} else if (IS_CHERRYVIEW(dev)) {
3061		*stolen = chv_get_stolen_size(snb_gmch_ctl);
3062		gtt_size = chv_get_total_gtt_size(snb_gmch_ctl);
3063	} else {
3064		*stolen = gen8_get_stolen_size(snb_gmch_ctl);
3065		gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
3066	}
3067
3068	*gtt_total = (gtt_size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
3069
3070	if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3071		chv_setup_private_ppat(dev_priv);
3072	else
3073		bdw_setup_private_ppat(dev_priv);
3074
3075	ret = ggtt_probe_common(dev, gtt_size);
3076
3077	dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
3078	dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
3079	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3080	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3081
3082	if (IS_CHERRYVIEW(dev_priv))
3083		dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries__BKL;
3084
3085	return ret;
3086}
3087
3088static int gen6_gmch_probe(struct drm_device *dev,
3089			   u64 *gtt_total,
3090			   size_t *stolen,
3091			   phys_addr_t *mappable_base,
3092			   u64 *mappable_end)
3093{
3094	struct drm_i915_private *dev_priv = dev->dev_private;
3095	unsigned int gtt_size;
3096	u16 snb_gmch_ctl;
3097	int ret;
3098
3099	*mappable_base = pci_resource_start(dev->pdev, 2);
3100	*mappable_end = pci_resource_len(dev->pdev, 2);
3101
3102	/* 64/512MB is the current min/max we actually know of, but this is just
3103	 * a coarse sanity check.
3104	 */
3105	if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
3106		DRM_ERROR("Unknown GMADR size (%llx)\n",
3107			  dev_priv->gtt.mappable_end);
3108		return -ENXIO;
3109	}
3110
3111	if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
3112		pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
3113	pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
3114
3115	*stolen = gen6_get_stolen_size(snb_gmch_ctl);
3116
3117	gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
3118	*gtt_total = (gtt_size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
3119
3120	ret = ggtt_probe_common(dev, gtt_size);
3121
3122	dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
3123	dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
3124	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3125	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3126
3127	return ret;
3128}
3129
3130static void gen6_gmch_remove(struct i915_address_space *vm)
3131{
3132
3133	struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
3134
3135	iounmap(gtt->gsm);
3136	free_scratch_page(vm->dev, vm->scratch_page);
3137}
3138
3139static int i915_gmch_probe(struct drm_device *dev,
3140			   u64 *gtt_total,
3141			   size_t *stolen,
3142			   phys_addr_t *mappable_base,
3143			   u64 *mappable_end)
3144{
3145	struct drm_i915_private *dev_priv = dev->dev_private;
3146	int ret;
3147
3148	ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
3149	if (!ret) {
3150		DRM_ERROR("failed to set up gmch\n");
3151		return -EIO;
3152	}
3153
3154	intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
3155
3156	dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
3157	dev_priv->gtt.base.insert_entries = i915_ggtt_insert_entries;
3158	dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
3159	dev_priv->gtt.base.bind_vma = ggtt_bind_vma;
3160	dev_priv->gtt.base.unbind_vma = ggtt_unbind_vma;
3161
3162	if (unlikely(dev_priv->gtt.do_idle_maps))
3163		DRM_INFO("applying Ironlake quirks for intel_iommu\n");
3164
3165	return 0;
 
 
 
 
 
 
 
 
3166}
3167
3168static void i915_gmch_remove(struct i915_address_space *vm)
3169{
3170	intel_gmch_remove();
3171}
3172
3173int i915_gem_gtt_init(struct drm_device *dev)
3174{
3175	struct drm_i915_private *dev_priv = dev->dev_private;
3176	struct i915_gtt *gtt = &dev_priv->gtt;
3177	int ret;
3178
3179	if (INTEL_INFO(dev)->gen <= 5) {
3180		gtt->gtt_probe = i915_gmch_probe;
3181		gtt->base.cleanup = i915_gmch_remove;
3182	} else if (INTEL_INFO(dev)->gen < 8) {
3183		gtt->gtt_probe = gen6_gmch_probe;
3184		gtt->base.cleanup = gen6_gmch_remove;
3185		if (IS_HASWELL(dev) && dev_priv->ellc_size)
3186			gtt->base.pte_encode = iris_pte_encode;
3187		else if (IS_HASWELL(dev))
3188			gtt->base.pte_encode = hsw_pte_encode;
3189		else if (IS_VALLEYVIEW(dev))
3190			gtt->base.pte_encode = byt_pte_encode;
3191		else if (INTEL_INFO(dev)->gen >= 7)
3192			gtt->base.pte_encode = ivb_pte_encode;
3193		else
3194			gtt->base.pte_encode = snb_pte_encode;
3195	} else {
3196		dev_priv->gtt.gtt_probe = gen8_gmch_probe;
3197		dev_priv->gtt.base.cleanup = gen6_gmch_remove;
3198	}
3199
3200	gtt->base.dev = dev;
3201	gtt->base.is_ggtt = true;
3202
3203	ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
3204			     &gtt->mappable_base, &gtt->mappable_end);
3205	if (ret)
3206		return ret;
3207
3208	/*
3209	 * Initialise stolen early so that we may reserve preallocated
3210	 * objects for the BIOS to KMS transition.
3211	 */
3212	ret = i915_gem_init_stolen(dev);
3213	if (ret)
3214		goto out_gtt_cleanup;
3215
3216	/* GMADR is the PCI mmio aperture into the global GTT. */
3217	DRM_INFO("Memory usable by graphics device = %lluM\n",
3218		 gtt->base.total >> 20);
3219	DRM_DEBUG_DRIVER("GMADR size = %lldM\n", gtt->mappable_end >> 20);
3220	DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
3221#ifdef CONFIG_INTEL_IOMMU
3222	if (intel_iommu_gfx_mapped)
3223		DRM_INFO("VT-d active for gfx access\n");
3224#endif
3225	/*
3226	 * i915.enable_ppgtt is read-only, so do an early pass to validate the
3227	 * user's requested state against the hardware/driver capabilities.  We
3228	 * do this now so that we can print out any log messages once rather
3229	 * than every time we check intel_enable_ppgtt().
3230	 */
3231	i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt);
3232	DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
3233
3234	return 0;
3235
3236out_gtt_cleanup:
3237	gtt->base.cleanup(&dev_priv->gtt.base);
3238
3239	return ret;
3240}
3241
3242void i915_gem_restore_gtt_mappings(struct drm_device *dev)
3243{
3244	struct drm_i915_private *dev_priv = dev->dev_private;
3245	struct drm_i915_gem_object *obj;
3246	struct i915_address_space *vm;
3247	struct i915_vma *vma;
3248	bool flush;
3249
3250	i915_check_and_clear_faults(dev);
3251
3252	/* First fill our portion of the GTT with scratch pages */
3253	dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
3254				       dev_priv->gtt.base.start,
3255				       dev_priv->gtt.base.total,
3256				       true);
3257
3258	/* Cache flush objects bound into GGTT and rebind them. */
3259	vm = &dev_priv->gtt.base;
3260	list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
3261		flush = false;
3262		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3263			if (vma->vm != vm)
3264				continue;
3265
3266			WARN_ON(i915_vma_bind(vma, obj->cache_level,
3267					      PIN_UPDATE));
3268
3269			flush = true;
3270		}
3271
3272		if (flush)
3273			i915_gem_clflush_object(obj, obj->pin_display);
3274	}
3275
3276	if (INTEL_INFO(dev)->gen >= 8) {
3277		if (IS_CHERRYVIEW(dev) || IS_BROXTON(dev))
3278			chv_setup_private_ppat(dev_priv);
3279		else
3280			bdw_setup_private_ppat(dev_priv);
3281
3282		return;
3283	}
3284
3285	if (USES_PPGTT(dev)) {
3286		list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3287			/* TODO: Perhaps it shouldn't be gen6 specific */
3288
3289			struct i915_hw_ppgtt *ppgtt =
3290					container_of(vm, struct i915_hw_ppgtt,
3291						     base);
3292
3293			if (i915_is_ggtt(vm))
3294				ppgtt = dev_priv->mm.aliasing_ppgtt;
3295
3296			gen6_write_page_range(dev_priv, &ppgtt->pd,
3297					      0, ppgtt->base.total);
3298		}
3299	}
3300
3301	i915_ggtt_flush(dev_priv);
3302}
3303
3304static struct i915_vma *
3305__i915_gem_vma_create(struct drm_i915_gem_object *obj,
3306		      struct i915_address_space *vm,
3307		      const struct i915_ggtt_view *ggtt_view)
3308{
3309	struct i915_vma *vma;
3310
3311	if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
3312		return ERR_PTR(-EINVAL);
3313
3314	vma = kmem_cache_zalloc(to_i915(obj->base.dev)->vmas, GFP_KERNEL);
3315	if (vma == NULL)
3316		return ERR_PTR(-ENOMEM);
3317
3318	INIT_LIST_HEAD(&vma->vm_link);
3319	INIT_LIST_HEAD(&vma->obj_link);
3320	INIT_LIST_HEAD(&vma->exec_list);
3321	vma->vm = vm;
3322	vma->obj = obj;
3323	vma->is_ggtt = i915_is_ggtt(vm);
3324
3325	if (i915_is_ggtt(vm))
3326		vma->ggtt_view = *ggtt_view;
3327	else
3328		i915_ppgtt_get(i915_vm_to_ppgtt(vm));
3329
3330	list_add_tail(&vma->obj_link, &obj->vma_list);
3331
3332	return vma;
3333}
3334
3335struct i915_vma *
3336i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
3337				  struct i915_address_space *vm)
3338{
3339	struct i915_vma *vma;
3340
3341	vma = i915_gem_obj_to_vma(obj, vm);
3342	if (!vma)
3343		vma = __i915_gem_vma_create(obj, vm,
3344					    i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL);
3345
3346	return vma;
3347}
3348
3349struct i915_vma *
3350i915_gem_obj_lookup_or_create_ggtt_vma(struct drm_i915_gem_object *obj,
3351				       const struct i915_ggtt_view *view)
3352{
3353	struct i915_address_space *ggtt = i915_obj_to_ggtt(obj);
3354	struct i915_vma *vma;
3355
3356	if (WARN_ON(!view))
3357		return ERR_PTR(-EINVAL);
3358
3359	vma = i915_gem_obj_to_ggtt_view(obj, view);
3360
3361	if (IS_ERR(vma))
3362		return vma;
3363
3364	if (!vma)
3365		vma = __i915_gem_vma_create(obj, ggtt, view);
3366
3367	return vma;
3368
3369}
3370
3371static struct scatterlist *
3372rotate_pages(const dma_addr_t *in, unsigned int offset,
3373	     unsigned int width, unsigned int height,
3374	     unsigned int stride,
3375	     struct sg_table *st, struct scatterlist *sg)
3376{
3377	unsigned int column, row;
3378	unsigned int src_idx;
3379
3380	if (!sg) {
3381		st->nents = 0;
3382		sg = st->sgl;
3383	}
3384
3385	for (column = 0; column < width; column++) {
3386		src_idx = stride * (height - 1) + column;
3387		for (row = 0; row < height; row++) {
3388			st->nents++;
3389			/* We don't need the pages, but need to initialize
3390			 * the entries so the sg list can be happily traversed.
3391			 * The only thing we need are DMA addresses.
3392			 */
3393			sg_set_page(sg, NULL, PAGE_SIZE, 0);
3394			sg_dma_address(sg) = in[offset + src_idx];
3395			sg_dma_len(sg) = PAGE_SIZE;
3396			sg = sg_next(sg);
3397			src_idx -= stride;
3398		}
3399	}
3400
3401	return sg;
3402}
3403
3404static struct sg_table *
3405intel_rotate_fb_obj_pages(struct intel_rotation_info *rot_info,
3406			  struct drm_i915_gem_object *obj)
3407{
3408	unsigned int size_pages = rot_info->size >> PAGE_SHIFT;
3409	unsigned int size_pages_uv;
3410	struct sg_page_iter sg_iter;
3411	unsigned long i;
3412	dma_addr_t *page_addr_list;
3413	struct sg_table *st;
3414	unsigned int uv_start_page;
3415	struct scatterlist *sg;
3416	int ret = -ENOMEM;
3417
3418	/* Allocate a temporary list of source pages for random access. */
3419	page_addr_list = drm_malloc_ab(obj->base.size / PAGE_SIZE,
3420				       sizeof(dma_addr_t));
3421	if (!page_addr_list)
3422		return ERR_PTR(ret);
3423
3424	/* Account for UV plane with NV12. */
3425	if (rot_info->pixel_format == DRM_FORMAT_NV12)
3426		size_pages_uv = rot_info->size_uv >> PAGE_SHIFT;
3427	else
3428		size_pages_uv = 0;
3429
3430	/* Allocate target SG list. */
3431	st = kmalloc(sizeof(*st), GFP_KERNEL);
3432	if (!st)
3433		goto err_st_alloc;
3434
3435	ret = sg_alloc_table(st, size_pages + size_pages_uv, GFP_KERNEL);
3436	if (ret)
3437		goto err_sg_alloc;
3438
3439	/* Populate source page list from the object. */
3440	i = 0;
3441	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
3442		page_addr_list[i] = sg_page_iter_dma_address(&sg_iter);
3443		i++;
3444	}
3445
3446	/* Rotate the pages. */
3447	sg = rotate_pages(page_addr_list, 0,
3448		     rot_info->width_pages, rot_info->height_pages,
3449		     rot_info->width_pages,
3450		     st, NULL);
3451
3452	/* Append the UV plane if NV12. */
3453	if (rot_info->pixel_format == DRM_FORMAT_NV12) {
3454		uv_start_page = size_pages;
3455
3456		/* Check for tile-row un-alignment. */
3457		if (offset_in_page(rot_info->uv_offset))
3458			uv_start_page--;
3459
3460		rot_info->uv_start_page = uv_start_page;
3461
3462		rotate_pages(page_addr_list, uv_start_page,
3463			     rot_info->width_pages_uv,
3464			     rot_info->height_pages_uv,
3465			     rot_info->width_pages_uv,
3466			     st, sg);
3467	}
3468
3469	DRM_DEBUG_KMS(
3470		      "Created rotated page mapping for object size %zu (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0)).\n",
3471		      obj->base.size, rot_info->pitch, rot_info->height,
3472		      rot_info->pixel_format, rot_info->width_pages,
3473		      rot_info->height_pages, size_pages + size_pages_uv,
3474		      size_pages);
3475
3476	drm_free_large(page_addr_list);
3477
3478	return st;
3479
3480err_sg_alloc:
3481	kfree(st);
3482err_st_alloc:
3483	drm_free_large(page_addr_list);
3484
3485	DRM_DEBUG_KMS(
3486		      "Failed to create rotated mapping for object size %zu! (%d) (pitch=%u, height=%u, pixel_format=0x%x, %ux%u tiles, %u pages (%u plane 0))\n",
3487		      obj->base.size, ret, rot_info->pitch, rot_info->height,
3488		      rot_info->pixel_format, rot_info->width_pages,
3489		      rot_info->height_pages, size_pages + size_pages_uv,
3490		      size_pages);
3491	return ERR_PTR(ret);
3492}
3493
3494static struct sg_table *
3495intel_partial_pages(const struct i915_ggtt_view *view,
3496		    struct drm_i915_gem_object *obj)
3497{
3498	struct sg_table *st;
3499	struct scatterlist *sg;
3500	struct sg_page_iter obj_sg_iter;
3501	int ret = -ENOMEM;
3502
3503	st = kmalloc(sizeof(*st), GFP_KERNEL);
3504	if (!st)
3505		goto err_st_alloc;
3506
3507	ret = sg_alloc_table(st, view->params.partial.size, GFP_KERNEL);
3508	if (ret)
3509		goto err_sg_alloc;
3510
3511	sg = st->sgl;
3512	st->nents = 0;
3513	for_each_sg_page(obj->pages->sgl, &obj_sg_iter, obj->pages->nents,
3514		view->params.partial.offset)
3515	{
3516		if (st->nents >= view->params.partial.size)
3517			break;
3518
3519		sg_set_page(sg, NULL, PAGE_SIZE, 0);
3520		sg_dma_address(sg) = sg_page_iter_dma_address(&obj_sg_iter);
3521		sg_dma_len(sg) = PAGE_SIZE;
3522
3523		sg = sg_next(sg);
3524		st->nents++;
3525	}
3526
3527	return st;
3528
3529err_sg_alloc:
3530	kfree(st);
3531err_st_alloc:
3532	return ERR_PTR(ret);
3533}
3534
3535static int
3536i915_get_ggtt_vma_pages(struct i915_vma *vma)
3537{
3538	int ret = 0;
3539
3540	if (vma->ggtt_view.pages)
3541		return 0;
3542
3543	if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
3544		vma->ggtt_view.pages = vma->obj->pages;
3545	else if (vma->ggtt_view.type == I915_GGTT_VIEW_ROTATED)
3546		vma->ggtt_view.pages =
3547			intel_rotate_fb_obj_pages(&vma->ggtt_view.params.rotated, vma->obj);
3548	else if (vma->ggtt_view.type == I915_GGTT_VIEW_PARTIAL)
3549		vma->ggtt_view.pages =
3550			intel_partial_pages(&vma->ggtt_view, vma->obj);
3551	else
3552		WARN_ONCE(1, "GGTT view %u not implemented!\n",
3553			  vma->ggtt_view.type);
3554
3555	if (!vma->ggtt_view.pages) {
3556		DRM_ERROR("Failed to get pages for GGTT view type %u!\n",
3557			  vma->ggtt_view.type);
3558		ret = -EINVAL;
3559	} else if (IS_ERR(vma->ggtt_view.pages)) {
3560		ret = PTR_ERR(vma->ggtt_view.pages);
3561		vma->ggtt_view.pages = NULL;
3562		DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3563			  vma->ggtt_view.type, ret);
3564	}
3565
3566	return ret;
3567}
3568
3569/**
3570 * i915_vma_bind - Sets up PTEs for an VMA in it's corresponding address space.
3571 * @vma: VMA to map
3572 * @cache_level: mapping cache level
3573 * @flags: flags like global or local mapping
3574 *
3575 * DMA addresses are taken from the scatter-gather table of this object (or of
3576 * this VMA in case of non-default GGTT views) and PTE entries set up.
3577 * Note that DMA addresses are also the only part of the SG table we care about.
3578 */
3579int i915_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level,
3580		  u32 flags)
3581{
3582	int ret;
3583	u32 bind_flags;
3584
3585	if (WARN_ON(flags == 0))
3586		return -EINVAL;
3587
3588	bind_flags = 0;
3589	if (flags & PIN_GLOBAL)
3590		bind_flags |= GLOBAL_BIND;
3591	if (flags & PIN_USER)
3592		bind_flags |= LOCAL_BIND;
3593
3594	if (flags & PIN_UPDATE)
3595		bind_flags |= vma->bound;
3596	else
3597		bind_flags &= ~vma->bound;
3598
3599	if (bind_flags == 0)
3600		return 0;
3601
3602	if (vma->bound == 0 && vma->vm->allocate_va_range) {
3603		/* XXX: i915_vma_pin() will fix this +- hack */
3604		vma->pin_count++;
3605		trace_i915_va_alloc(vma);
3606		ret = vma->vm->allocate_va_range(vma->vm,
3607						 vma->node.start,
3608						 vma->node.size);
3609		vma->pin_count--;
3610		if (ret)
3611			return ret;
3612	}
3613
3614	ret = vma->vm->bind_vma(vma, cache_level, bind_flags);
3615	if (ret)
3616		return ret;
3617
3618	vma->bound |= bind_flags;
3619
3620	return 0;
3621}
3622
3623/**
3624 * i915_ggtt_view_size - Get the size of a GGTT view.
3625 * @obj: Object the view is of.
3626 * @view: The view in question.
3627 *
3628 * @return The size of the GGTT view in bytes.
3629 */
3630size_t
3631i915_ggtt_view_size(struct drm_i915_gem_object *obj,
3632		    const struct i915_ggtt_view *view)
3633{
3634	if (view->type == I915_GGTT_VIEW_NORMAL) {
3635		return obj->base.size;
3636	} else if (view->type == I915_GGTT_VIEW_ROTATED) {
3637		return view->params.rotated.size;
3638	} else if (view->type == I915_GGTT_VIEW_PARTIAL) {
3639		return view->params.partial.size << PAGE_SHIFT;
3640	} else {
3641		WARN_ONCE(1, "GGTT view %u not implemented!\n", view->type);
3642		return obj->base.size;
3643	}
3644}
v6.2
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2010 Daniel Vetter
  4 * Copyright © 2020 Intel Corporation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6
  7#include <linux/slab.h> /* fault-inject.h is not standalone! */
  8
  9#include <linux/fault-inject.h>
 10#include <linux/log2.h>
 11#include <linux/random.h>
 12#include <linux/seq_file.h>
 13#include <linux/stop_machine.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 14
 15#include <asm/set_memory.h>
 16#include <asm/smp.h>
 
 17
 18#include "display/intel_frontbuffer.h"
 19#include "gt/intel_gt.h"
 20#include "gt/intel_gt_requests.h"
 21
 22#include "i915_drv.h"
 23#include "i915_gem_evict.h"
 24#include "i915_scatterlist.h"
 25#include "i915_trace.h"
 26#include "i915_vgpu.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
 29			       struct sg_table *pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30{
 31	do {
 32		if (dma_map_sg_attrs(obj->base.dev->dev,
 33				     pages->sgl, pages->nents,
 34				     DMA_BIDIRECTIONAL,
 35				     DMA_ATTR_SKIP_CPU_SYNC |
 36				     DMA_ATTR_NO_KERNEL_MAPPING |
 37				     DMA_ATTR_NO_WARN))
 38			return 0;
 39
 40		/*
 41		 * If the DMA remap fails, one cause can be that we have
 42		 * too many objects pinned in a small remapping table,
 43		 * such as swiotlb. Incrementally purge all other objects and
 44		 * try again - if there are no more pages to remove from
 45		 * the DMA remapper, i915_gem_shrink will return 0.
 46		 */
 47		GEM_BUG_ON(obj->mm.pages == pages);
 48	} while (i915_gem_shrink(NULL, to_i915(obj->base.dev),
 49				 obj->base.size >> PAGE_SHIFT, NULL,
 50				 I915_SHRINK_BOUND |
 51				 I915_SHRINK_UNBOUND));
 
 
 
 
 
 
 52
 53	return -ENOSPC;
 54}
 55
 56void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
 57			       struct sg_table *pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58{
 59	struct drm_i915_private *i915 = to_i915(obj->base.dev);
 60	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 61
 62	/* XXX This does not prevent more requests being submitted! */
 63	if (unlikely(ggtt->do_idle_maps))
 64		/* Wait a bit, in the hope it avoids the hang */
 65		usleep_range(100, 250);
 66
 67	dma_unmap_sg(i915->drm.dev, pages->sgl, pages->nents,
 68		     DMA_BIDIRECTIONAL);
 69}
 70
 71/**
 72 * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
 73 * @vm: the &struct i915_address_space
 74 * @ww: An optional struct i915_gem_ww_ctx.
 75 * @node: the &struct drm_mm_node (typically i915_vma.mode)
 76 * @size: how much space to allocate inside the GTT,
 77 *        must be #I915_GTT_PAGE_SIZE aligned
 78 * @offset: where to insert inside the GTT,
 79 *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
 80 *          (@offset + @size) must fit within the address space
 81 * @color: color to apply to node, if this node is not from a VMA,
 82 *         color must be #I915_COLOR_UNEVICTABLE
 83 * @flags: control search and eviction behaviour
 84 *
 85 * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
 86 * the address space (using @size and @color). If the @node does not fit, it
 87 * tries to evict any overlapping nodes from the GTT, including any
 88 * neighbouring nodes if the colors do not match (to ensure guard pages between
 89 * differing domains). See i915_gem_evict_for_node() for the gory details
 90 * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
 91 * evicting active overlapping objects, and any overlapping node that is pinned
 92 * or marked as unevictable will also result in failure.
 93 *
 94 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
 95 * asked to wait for eviction and interrupted.
 96 */
 97int i915_gem_gtt_reserve(struct i915_address_space *vm,
 98			 struct i915_gem_ww_ctx *ww,
 99			 struct drm_mm_node *node,
100			 u64 size, u64 offset, unsigned long color,
101			 unsigned int flags)
102{
103	int err;
104
105	GEM_BUG_ON(!size);
106	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
107	GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
108	GEM_BUG_ON(range_overflows(offset, size, vm->total));
109	GEM_BUG_ON(vm == &to_gt(vm->i915)->ggtt->alias->vm);
110	GEM_BUG_ON(drm_mm_node_allocated(node));
111
112	node->size = size;
113	node->start = offset;
114	node->color = color;
115
116	err = drm_mm_reserve_node(&vm->mm, node);
117	if (err != -ENOSPC)
118		return err;
119
120	if (flags & PIN_NOEVICT)
121		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
123	err = i915_gem_evict_for_node(vm, ww, node, flags);
124	if (err == 0)
125		err = drm_mm_reserve_node(&vm->mm, node);
126
127	return err;
128}
129
130static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
 
 
 
 
 
 
 
131{
132	u64 range, addr;
133
134	GEM_BUG_ON(range_overflows(start, len, end));
135	GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136
137	range = round_down(end - len, align) - round_up(start, align);
138	if (range) {
139		if (sizeof(unsigned long) == sizeof(u64)) {
140			addr = get_random_u64();
141		} else {
142			addr = get_random_u32();
143			if (range > U32_MAX) {
144				addr <<= 32;
145				addr |= get_random_u32();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147		}
148		div64_u64_rem(addr, range, &addr);
149		start += addr;
150	}
151
152	return round_up(start, align);
153}
154
155/**
156 * i915_gem_gtt_insert - insert a node into an address_space (GTT)
157 * @vm: the &struct i915_address_space
158 * @ww: An optional struct i915_gem_ww_ctx.
159 * @node: the &struct drm_mm_node (typically i915_vma.node)
160 * @size: how much space to allocate inside the GTT,
161 *        must be #I915_GTT_PAGE_SIZE aligned
162 * @alignment: required alignment of starting offset, may be 0 but
163 *             if specified, this must be a power-of-two and at least
164 *             #I915_GTT_MIN_ALIGNMENT
165 * @color: color to apply to node
166 * @start: start of any range restriction inside GTT (0 for all),
167 *         must be #I915_GTT_PAGE_SIZE aligned
168 * @end: end of any range restriction inside GTT (U64_MAX for all),
169 *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
170 * @flags: control search and eviction behaviour
171 *
172 * i915_gem_gtt_insert() first searches for an available hole into which
173 * is can insert the node. The hole address is aligned to @alignment and
174 * its @size must then fit entirely within the [@start, @end] bounds. The
175 * nodes on either side of the hole must match @color, or else a guard page
176 * will be inserted between the two nodes (or the node evicted). If no
177 * suitable hole is found, first a victim is randomly selected and tested
178 * for eviction, otherwise then the LRU list of objects within the GTT
179 * is scanned to find the first set of replacement nodes to create the hole.
180 * Those old overlapping nodes are evicted from the GTT (and so must be
181 * rebound before any future use). Any node that is currently pinned cannot
182 * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
183 * active and #PIN_NONBLOCK is specified, that node is also skipped when
184 * searching for an eviction candidate. See i915_gem_evict_something() for
185 * the gory details on the eviction algorithm.
186 *
187 * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
188 * asked to wait for eviction and interrupted.
189 */
190int i915_gem_gtt_insert(struct i915_address_space *vm,
191			struct i915_gem_ww_ctx *ww,
192			struct drm_mm_node *node,
193			u64 size, u64 alignment, unsigned long color,
194			u64 start, u64 end, unsigned int flags)
195{
196	enum drm_mm_insert_mode mode;
197	u64 offset;
198	int err;
199
200	lockdep_assert_held(&vm->mutex);
201
202	GEM_BUG_ON(!size);
203	GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
204	GEM_BUG_ON(alignment && !is_power_of_2(alignment));
205	GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
206	GEM_BUG_ON(start >= end);
207	GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
208	GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
209	GEM_BUG_ON(vm == &to_gt(vm->i915)->ggtt->alias->vm);
210	GEM_BUG_ON(drm_mm_node_allocated(node));
 
 
 
 
 
 
 
 
211
212	if (unlikely(range_overflows(start, size, end)))
 
 
 
 
213		return -ENOSPC;
214
215	if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
216		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217
218	mode = DRM_MM_INSERT_BEST;
219	if (flags & PIN_HIGH)
220		mode = DRM_MM_INSERT_HIGHEST;
221	if (flags & PIN_MAPPABLE)
222		mode = DRM_MM_INSERT_LOW;
223
224	/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
225	 * so we know that we always have a minimum alignment of 4096.
226	 * The drm_mm range manager is optimised to return results
227	 * with zero alignment, so where possible use the optimal
228	 * path.
229	 */
230	BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
231	if (alignment <= I915_GTT_MIN_ALIGNMENT)
232		alignment = 0;
233
234	err = drm_mm_insert_node_in_range(&vm->mm, node,
235					  size, alignment, color,
236					  start, end, mode);
237	if (err != -ENOSPC)
238		return err;
239
240	if (mode & DRM_MM_INSERT_ONCE) {
241		err = drm_mm_insert_node_in_range(&vm->mm, node,
242						  size, alignment, color,
243						  start, end,
244						  DRM_MM_INSERT_BEST);
245		if (err != -ENOSPC)
246			return err;
247	}
248
249	if (flags & PIN_NOEVICT)
250		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
251
252	/*
253	 * No free space, pick a slot at random.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254	 *
255	 * There is a pathological case here using a GTT shared between
256	 * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257	 *
258	 *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
259	 *         (64k objects)             (448k objects)
260	 *
261	 * Now imagine that the eviction LRU is ordered top-down (just because
262	 * pathology meets real life), and that we need to evict an object to
263	 * make room inside the aperture. The eviction scan then has to walk
264	 * the 448k list before it finds one within range. And now imagine that
265	 * it has to search for a new hole between every byte inside the memcpy,
266	 * for several simultaneous clients.
267	 *
268	 * On a full-ppgtt system, if we have run out of available space, there
269	 * will be lots and lots of objects in the eviction list! Again,
270	 * searching that LRU list may be slow if we are also applying any
271	 * range restrictions (e.g. restriction to low 4GiB) and so, for
272	 * simplicity and similarilty between different GTT, try the single
273	 * random replacement first.
274	 */
275	offset = random_offset(start, end,
276			       size, alignment ?: I915_GTT_MIN_ALIGNMENT);
277	err = i915_gem_gtt_reserve(vm, ww, node, size, offset, color, flags);
278	if (err != -ENOSPC)
279		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280
281	if (flags & PIN_NOSEARCH)
282		return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
283
284	/* Randomly selected placement is pinned, do a search */
285	err = i915_gem_evict_something(vm, ww, size, alignment, color,
286				       start, end, flags);
287	if (err)
288		return err;
289
290	return drm_mm_insert_node_in_range(&vm->mm, node,
291					   size, alignment, color,
292					   start, end, DRM_MM_INSERT_EVICT);
293}
294
295#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
296#include "selftests/i915_gem_gtt.c"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
297#endif