Loading...
Note: File does not exist in v4.6.
1/*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Ke Yu
25 * Kevin Tian <kevin.tian@intel.com>
26 * Zhiyuan Lv <zhiyuan.lv@intel.com>
27 *
28 * Contributors:
29 * Min He <min.he@intel.com>
30 * Ping Gao <ping.a.gao@intel.com>
31 * Tina Zhang <tina.zhang@intel.com>
32 * Yulei Zhang <yulei.zhang@intel.com>
33 * Zhi Wang <zhi.a.wang@intel.com>
34 *
35 */
36
37#include <linux/slab.h>
38
39#include "i915_drv.h"
40#include "i915_reg.h"
41#include "gt/intel_engine_regs.h"
42#include "gt/intel_gpu_commands.h"
43#include "gt/intel_gt_regs.h"
44#include "gt/intel_lrc.h"
45#include "gt/intel_ring.h"
46#include "gt/intel_gt_requests.h"
47#include "gt/shmem_utils.h"
48#include "gvt.h"
49#include "i915_pvinfo.h"
50#include "trace.h"
51
52#include "gem/i915_gem_context.h"
53#include "gem/i915_gem_pm.h"
54#include "gt/intel_context.h"
55
56#define INVALID_OP (~0U)
57
58#define OP_LEN_MI 9
59#define OP_LEN_2D 10
60#define OP_LEN_3D_MEDIA 16
61#define OP_LEN_MFX_VC 16
62#define OP_LEN_VEBOX 16
63
64#define CMD_TYPE(cmd) (((cmd) >> 29) & 7)
65
66struct sub_op_bits {
67 int hi;
68 int low;
69};
70struct decode_info {
71 const char *name;
72 int op_len;
73 int nr_sub_op;
74 const struct sub_op_bits *sub_op;
75};
76
77#define MAX_CMD_BUDGET 0x7fffffff
78#define MI_WAIT_FOR_PLANE_C_FLIP_PENDING (1<<15)
79#define MI_WAIT_FOR_PLANE_B_FLIP_PENDING (1<<9)
80#define MI_WAIT_FOR_PLANE_A_FLIP_PENDING (1<<1)
81
82#define MI_WAIT_FOR_SPRITE_C_FLIP_PENDING (1<<20)
83#define MI_WAIT_FOR_SPRITE_B_FLIP_PENDING (1<<10)
84#define MI_WAIT_FOR_SPRITE_A_FLIP_PENDING (1<<2)
85
86/* Render Command Map */
87
88/* MI_* command Opcode (28:23) */
89#define OP_MI_NOOP 0x0
90#define OP_MI_SET_PREDICATE 0x1 /* HSW+ */
91#define OP_MI_USER_INTERRUPT 0x2
92#define OP_MI_WAIT_FOR_EVENT 0x3
93#define OP_MI_FLUSH 0x4
94#define OP_MI_ARB_CHECK 0x5
95#define OP_MI_RS_CONTROL 0x6 /* HSW+ */
96#define OP_MI_REPORT_HEAD 0x7
97#define OP_MI_ARB_ON_OFF 0x8
98#define OP_MI_URB_ATOMIC_ALLOC 0x9 /* HSW+ */
99#define OP_MI_BATCH_BUFFER_END 0xA
100#define OP_MI_SUSPEND_FLUSH 0xB
101#define OP_MI_PREDICATE 0xC /* IVB+ */
102#define OP_MI_TOPOLOGY_FILTER 0xD /* IVB+ */
103#define OP_MI_SET_APPID 0xE /* IVB+ */
104#define OP_MI_RS_CONTEXT 0xF /* HSW+ */
105#define OP_MI_LOAD_SCAN_LINES_INCL 0x12 /* HSW+ */
106#define OP_MI_DISPLAY_FLIP 0x14
107#define OP_MI_SEMAPHORE_MBOX 0x16
108#define OP_MI_SET_CONTEXT 0x18
109#define OP_MI_MATH 0x1A
110#define OP_MI_URB_CLEAR 0x19
111#define OP_MI_SEMAPHORE_SIGNAL 0x1B /* BDW+ */
112#define OP_MI_SEMAPHORE_WAIT 0x1C /* BDW+ */
113
114#define OP_MI_STORE_DATA_IMM 0x20
115#define OP_MI_STORE_DATA_INDEX 0x21
116#define OP_MI_LOAD_REGISTER_IMM 0x22
117#define OP_MI_UPDATE_GTT 0x23
118#define OP_MI_STORE_REGISTER_MEM 0x24
119#define OP_MI_FLUSH_DW 0x26
120#define OP_MI_CLFLUSH 0x27
121#define OP_MI_REPORT_PERF_COUNT 0x28
122#define OP_MI_LOAD_REGISTER_MEM 0x29 /* HSW+ */
123#define OP_MI_LOAD_REGISTER_REG 0x2A /* HSW+ */
124#define OP_MI_RS_STORE_DATA_IMM 0x2B /* HSW+ */
125#define OP_MI_LOAD_URB_MEM 0x2C /* HSW+ */
126#define OP_MI_STORE_URM_MEM 0x2D /* HSW+ */
127#define OP_MI_2E 0x2E /* BDW+ */
128#define OP_MI_2F 0x2F /* BDW+ */
129#define OP_MI_BATCH_BUFFER_START 0x31
130
131/* Bit definition for dword 0 */
132#define _CMDBIT_BB_START_IN_PPGTT (1UL << 8)
133
134#define OP_MI_CONDITIONAL_BATCH_BUFFER_END 0x36
135
136#define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
137#define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
138#define BATCH_BUFFER_ADR_SPACE_BIT(x) (((x) >> 8) & 1U)
139#define BATCH_BUFFER_2ND_LEVEL_BIT(x) ((x) >> 22 & 1U)
140
141/* 2D command: Opcode (28:22) */
142#define OP_2D(x) ((2<<7) | x)
143
144#define OP_XY_SETUP_BLT OP_2D(0x1)
145#define OP_XY_SETUP_CLIP_BLT OP_2D(0x3)
146#define OP_XY_SETUP_MONO_PATTERN_SL_BLT OP_2D(0x11)
147#define OP_XY_PIXEL_BLT OP_2D(0x24)
148#define OP_XY_SCANLINES_BLT OP_2D(0x25)
149#define OP_XY_TEXT_BLT OP_2D(0x26)
150#define OP_XY_TEXT_IMMEDIATE_BLT OP_2D(0x31)
151#define OP_XY_COLOR_BLT OP_2D(0x50)
152#define OP_XY_PAT_BLT OP_2D(0x51)
153#define OP_XY_MONO_PAT_BLT OP_2D(0x52)
154#define OP_XY_SRC_COPY_BLT OP_2D(0x53)
155#define OP_XY_MONO_SRC_COPY_BLT OP_2D(0x54)
156#define OP_XY_FULL_BLT OP_2D(0x55)
157#define OP_XY_FULL_MONO_SRC_BLT OP_2D(0x56)
158#define OP_XY_FULL_MONO_PATTERN_BLT OP_2D(0x57)
159#define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT OP_2D(0x58)
160#define OP_XY_MONO_PAT_FIXED_BLT OP_2D(0x59)
161#define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT OP_2D(0x71)
162#define OP_XY_PAT_BLT_IMMEDIATE OP_2D(0x72)
163#define OP_XY_SRC_COPY_CHROMA_BLT OP_2D(0x73)
164#define OP_XY_FULL_IMMEDIATE_PATTERN_BLT OP_2D(0x74)
165#define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT OP_2D(0x75)
166#define OP_XY_PAT_CHROMA_BLT OP_2D(0x76)
167#define OP_XY_PAT_CHROMA_BLT_IMMEDIATE OP_2D(0x77)
168
169/* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
170#define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
171 ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
172
173#define OP_STATE_PREFETCH OP_3D_MEDIA(0x0, 0x0, 0x03)
174
175#define OP_STATE_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x01)
176#define OP_STATE_SIP OP_3D_MEDIA(0x0, 0x1, 0x02)
177#define OP_3D_MEDIA_0_1_4 OP_3D_MEDIA(0x0, 0x1, 0x04)
178#define OP_SWTESS_BASE_ADDRESS OP_3D_MEDIA(0x0, 0x1, 0x03)
179
180#define OP_3DSTATE_VF_STATISTICS_GM45 OP_3D_MEDIA(0x1, 0x0, 0x0B)
181
182#define OP_PIPELINE_SELECT OP_3D_MEDIA(0x1, 0x1, 0x04)
183
184#define OP_MEDIA_VFE_STATE OP_3D_MEDIA(0x2, 0x0, 0x0)
185#define OP_MEDIA_CURBE_LOAD OP_3D_MEDIA(0x2, 0x0, 0x1)
186#define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD OP_3D_MEDIA(0x2, 0x0, 0x2)
187#define OP_MEDIA_GATEWAY_STATE OP_3D_MEDIA(0x2, 0x0, 0x3)
188#define OP_MEDIA_STATE_FLUSH OP_3D_MEDIA(0x2, 0x0, 0x4)
189#define OP_MEDIA_POOL_STATE OP_3D_MEDIA(0x2, 0x0, 0x5)
190
191#define OP_MEDIA_OBJECT OP_3D_MEDIA(0x2, 0x1, 0x0)
192#define OP_MEDIA_OBJECT_PRT OP_3D_MEDIA(0x2, 0x1, 0x2)
193#define OP_MEDIA_OBJECT_WALKER OP_3D_MEDIA(0x2, 0x1, 0x3)
194#define OP_GPGPU_WALKER OP_3D_MEDIA(0x2, 0x1, 0x5)
195
196#define OP_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
197#define OP_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
198#define OP_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
199#define OP_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
200#define OP_3DSTATE_VERTEX_BUFFERS OP_3D_MEDIA(0x3, 0x0, 0x08)
201#define OP_3DSTATE_VERTEX_ELEMENTS OP_3D_MEDIA(0x3, 0x0, 0x09)
202#define OP_3DSTATE_INDEX_BUFFER OP_3D_MEDIA(0x3, 0x0, 0x0A)
203#define OP_3DSTATE_VF_STATISTICS OP_3D_MEDIA(0x3, 0x0, 0x0B)
204#define OP_3DSTATE_VF OP_3D_MEDIA(0x3, 0x0, 0x0C) /* HSW+ */
205#define OP_3DSTATE_CC_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0E)
206#define OP_3DSTATE_SCISSOR_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x0F)
207#define OP_3DSTATE_VS OP_3D_MEDIA(0x3, 0x0, 0x10)
208#define OP_3DSTATE_GS OP_3D_MEDIA(0x3, 0x0, 0x11)
209#define OP_3DSTATE_CLIP OP_3D_MEDIA(0x3, 0x0, 0x12)
210#define OP_3DSTATE_SF OP_3D_MEDIA(0x3, 0x0, 0x13)
211#define OP_3DSTATE_WM OP_3D_MEDIA(0x3, 0x0, 0x14)
212#define OP_3DSTATE_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x15)
213#define OP_3DSTATE_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x16)
214#define OP_3DSTATE_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x17)
215#define OP_3DSTATE_SAMPLE_MASK OP_3D_MEDIA(0x3, 0x0, 0x18)
216#define OP_3DSTATE_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
217#define OP_3DSTATE_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
218#define OP_3DSTATE_HS OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
219#define OP_3DSTATE_TE OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
220#define OP_3DSTATE_DS OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
221#define OP_3DSTATE_STREAMOUT OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
222#define OP_3DSTATE_SBE OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
223#define OP_3DSTATE_PS OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
224#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
225#define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
226#define OP_3DSTATE_BLEND_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
227#define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
228#define OP_3DSTATE_BINDING_TABLE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
229#define OP_3DSTATE_BINDING_TABLE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
230#define OP_3DSTATE_BINDING_TABLE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
231#define OP_3DSTATE_BINDING_TABLE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
232#define OP_3DSTATE_BINDING_TABLE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
233#define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
234#define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
235#define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
236#define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
237#define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
238#define OP_3DSTATE_URB_VS OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
239#define OP_3DSTATE_URB_HS OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
240#define OP_3DSTATE_URB_DS OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
241#define OP_3DSTATE_URB_GS OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
242#define OP_3DSTATE_GATHER_CONSTANT_VS OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
243#define OP_3DSTATE_GATHER_CONSTANT_GS OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
244#define OP_3DSTATE_GATHER_CONSTANT_HS OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
245#define OP_3DSTATE_GATHER_CONSTANT_DS OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
246#define OP_3DSTATE_GATHER_CONSTANT_PS OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
247#define OP_3DSTATE_DX9_CONSTANTF_VS OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
248#define OP_3DSTATE_DX9_CONSTANTF_PS OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
249#define OP_3DSTATE_DX9_CONSTANTI_VS OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
250#define OP_3DSTATE_DX9_CONSTANTI_PS OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
251#define OP_3DSTATE_DX9_CONSTANTB_VS OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
252#define OP_3DSTATE_DX9_CONSTANTB_PS OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
253#define OP_3DSTATE_DX9_LOCAL_VALID_VS OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
254#define OP_3DSTATE_DX9_LOCAL_VALID_PS OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
255#define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
256#define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
257#define OP_3DSTATE_BINDING_TABLE_EDIT_VS OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
258#define OP_3DSTATE_BINDING_TABLE_EDIT_GS OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
259#define OP_3DSTATE_BINDING_TABLE_EDIT_HS OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
260#define OP_3DSTATE_BINDING_TABLE_EDIT_DS OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
261#define OP_3DSTATE_BINDING_TABLE_EDIT_PS OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
262
263#define OP_3DSTATE_VF_INSTANCING OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
264#define OP_3DSTATE_VF_SGVS OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
265#define OP_3DSTATE_VF_TOPOLOGY OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
266#define OP_3DSTATE_WM_CHROMAKEY OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
267#define OP_3DSTATE_PS_BLEND OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
268#define OP_3DSTATE_WM_DEPTH_STENCIL OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
269#define OP_3DSTATE_PS_EXTRA OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
270#define OP_3DSTATE_RASTER OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
271#define OP_3DSTATE_SBE_SWIZ OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
272#define OP_3DSTATE_WM_HZ_OP OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
273#define OP_3DSTATE_COMPONENT_PACKING OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
274
275#define OP_3DSTATE_DRAWING_RECTANGLE OP_3D_MEDIA(0x3, 0x1, 0x00)
276#define OP_3DSTATE_SAMPLER_PALETTE_LOAD0 OP_3D_MEDIA(0x3, 0x1, 0x02)
277#define OP_3DSTATE_CHROMA_KEY OP_3D_MEDIA(0x3, 0x1, 0x04)
278#define OP_SNB_3DSTATE_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x05)
279#define OP_3DSTATE_POLY_STIPPLE_OFFSET OP_3D_MEDIA(0x3, 0x1, 0x06)
280#define OP_3DSTATE_POLY_STIPPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x07)
281#define OP_3DSTATE_LINE_STIPPLE OP_3D_MEDIA(0x3, 0x1, 0x08)
282#define OP_3DSTATE_AA_LINE_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x0A)
283#define OP_3DSTATE_GS_SVB_INDEX OP_3D_MEDIA(0x3, 0x1, 0x0B)
284#define OP_3DSTATE_SAMPLER_PALETTE_LOAD1 OP_3D_MEDIA(0x3, 0x1, 0x0C)
285#define OP_3DSTATE_MULTISAMPLE_BDW OP_3D_MEDIA(0x3, 0x0, 0x0D)
286#define OP_SNB_3DSTATE_STENCIL_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0E)
287#define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x0F)
288#define OP_SNB_3DSTATE_CLEAR_PARAMS OP_3D_MEDIA(0x3, 0x1, 0x10)
289#define OP_3DSTATE_MONOFILTER_SIZE OP_3D_MEDIA(0x3, 0x1, 0x11)
290#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
291#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
292#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
293#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
294#define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
295#define OP_3DSTATE_SO_DECL_LIST OP_3D_MEDIA(0x3, 0x1, 0x17)
296#define OP_3DSTATE_SO_BUFFER OP_3D_MEDIA(0x3, 0x1, 0x18)
297#define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
298#define OP_3DSTATE_GATHER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
299#define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
300#define OP_3DSTATE_SAMPLE_PATTERN OP_3D_MEDIA(0x3, 0x1, 0x1C)
301#define OP_PIPE_CONTROL OP_3D_MEDIA(0x3, 0x2, 0x00)
302#define OP_3DPRIMITIVE OP_3D_MEDIA(0x3, 0x3, 0x00)
303
304/* VCCP Command Parser */
305
306/*
307 * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
308 * git://anongit.freedesktop.org/vaapi/intel-driver
309 * src/i965_defines.h
310 *
311 */
312
313#define OP_MFX(pipeline, op, sub_opa, sub_opb) \
314 (3 << 13 | \
315 (pipeline) << 11 | \
316 (op) << 8 | \
317 (sub_opa) << 5 | \
318 (sub_opb))
319
320#define OP_MFX_PIPE_MODE_SELECT OP_MFX(2, 0, 0, 0) /* ALL */
321#define OP_MFX_SURFACE_STATE OP_MFX(2, 0, 0, 1) /* ALL */
322#define OP_MFX_PIPE_BUF_ADDR_STATE OP_MFX(2, 0, 0, 2) /* ALL */
323#define OP_MFX_IND_OBJ_BASE_ADDR_STATE OP_MFX(2, 0, 0, 3) /* ALL */
324#define OP_MFX_BSP_BUF_BASE_ADDR_STATE OP_MFX(2, 0, 0, 4) /* ALL */
325#define OP_2_0_0_5 OP_MFX(2, 0, 0, 5) /* ALL */
326#define OP_MFX_STATE_POINTER OP_MFX(2, 0, 0, 6) /* ALL */
327#define OP_MFX_QM_STATE OP_MFX(2, 0, 0, 7) /* IVB+ */
328#define OP_MFX_FQM_STATE OP_MFX(2, 0, 0, 8) /* IVB+ */
329#define OP_MFX_PAK_INSERT_OBJECT OP_MFX(2, 0, 2, 8) /* IVB+ */
330#define OP_MFX_STITCH_OBJECT OP_MFX(2, 0, 2, 0xA) /* IVB+ */
331
332#define OP_MFD_IT_OBJECT OP_MFX(2, 0, 1, 9) /* ALL */
333
334#define OP_MFX_WAIT OP_MFX(1, 0, 0, 0) /* IVB+ */
335#define OP_MFX_AVC_IMG_STATE OP_MFX(2, 1, 0, 0) /* ALL */
336#define OP_MFX_AVC_QM_STATE OP_MFX(2, 1, 0, 1) /* ALL */
337#define OP_MFX_AVC_DIRECTMODE_STATE OP_MFX(2, 1, 0, 2) /* ALL */
338#define OP_MFX_AVC_SLICE_STATE OP_MFX(2, 1, 0, 3) /* ALL */
339#define OP_MFX_AVC_REF_IDX_STATE OP_MFX(2, 1, 0, 4) /* ALL */
340#define OP_MFX_AVC_WEIGHTOFFSET_STATE OP_MFX(2, 1, 0, 5) /* ALL */
341#define OP_MFD_AVC_PICID_STATE OP_MFX(2, 1, 1, 5) /* HSW+ */
342#define OP_MFD_AVC_DPB_STATE OP_MFX(2, 1, 1, 6) /* IVB+ */
343#define OP_MFD_AVC_SLICEADDR OP_MFX(2, 1, 1, 7) /* IVB+ */
344#define OP_MFD_AVC_BSD_OBJECT OP_MFX(2, 1, 1, 8) /* ALL */
345#define OP_MFC_AVC_PAK_OBJECT OP_MFX(2, 1, 2, 9) /* ALL */
346
347#define OP_MFX_VC1_PRED_PIPE_STATE OP_MFX(2, 2, 0, 1) /* ALL */
348#define OP_MFX_VC1_DIRECTMODE_STATE OP_MFX(2, 2, 0, 2) /* ALL */
349#define OP_MFD_VC1_SHORT_PIC_STATE OP_MFX(2, 2, 1, 0) /* IVB+ */
350#define OP_MFD_VC1_LONG_PIC_STATE OP_MFX(2, 2, 1, 1) /* IVB+ */
351#define OP_MFD_VC1_BSD_OBJECT OP_MFX(2, 2, 1, 8) /* ALL */
352
353#define OP_MFX_MPEG2_PIC_STATE OP_MFX(2, 3, 0, 0) /* ALL */
354#define OP_MFX_MPEG2_QM_STATE OP_MFX(2, 3, 0, 1) /* ALL */
355#define OP_MFD_MPEG2_BSD_OBJECT OP_MFX(2, 3, 1, 8) /* ALL */
356#define OP_MFC_MPEG2_SLICEGROUP_STATE OP_MFX(2, 3, 2, 3) /* ALL */
357#define OP_MFC_MPEG2_PAK_OBJECT OP_MFX(2, 3, 2, 9) /* ALL */
358
359#define OP_MFX_2_6_0_0 OP_MFX(2, 6, 0, 0) /* IVB+ */
360#define OP_MFX_2_6_0_8 OP_MFX(2, 6, 0, 8) /* IVB+ */
361#define OP_MFX_2_6_0_9 OP_MFX(2, 6, 0, 9) /* IVB+ */
362
363#define OP_MFX_JPEG_PIC_STATE OP_MFX(2, 7, 0, 0)
364#define OP_MFX_JPEG_HUFF_TABLE_STATE OP_MFX(2, 7, 0, 2)
365#define OP_MFD_JPEG_BSD_OBJECT OP_MFX(2, 7, 1, 8)
366
367#define OP_VEB(pipeline, op, sub_opa, sub_opb) \
368 (3 << 13 | \
369 (pipeline) << 11 | \
370 (op) << 8 | \
371 (sub_opa) << 5 | \
372 (sub_opb))
373
374#define OP_VEB_SURFACE_STATE OP_VEB(2, 4, 0, 0)
375#define OP_VEB_STATE OP_VEB(2, 4, 0, 2)
376#define OP_VEB_DNDI_IECP_STATE OP_VEB(2, 4, 0, 3)
377
378struct parser_exec_state;
379
380typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
381
382#define GVT_CMD_HASH_BITS 7
383
384/* which DWords need address fix */
385#define ADDR_FIX_1(x1) (1 << (x1))
386#define ADDR_FIX_2(x1, x2) (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
387#define ADDR_FIX_3(x1, x2, x3) (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
388#define ADDR_FIX_4(x1, x2, x3, x4) (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
389#define ADDR_FIX_5(x1, x2, x3, x4, x5) (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
390
391#define DWORD_FIELD(dword, end, start) \
392 FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
393
394#define OP_LENGTH_BIAS 2
395#define CMD_LEN(value) (value + OP_LENGTH_BIAS)
396
397static int gvt_check_valid_cmd_length(int len, int valid_len)
398{
399 if (valid_len != len) {
400 gvt_err("len is not valid: len=%u valid_len=%u\n",
401 len, valid_len);
402 return -EFAULT;
403 }
404 return 0;
405}
406
407struct cmd_info {
408 const char *name;
409 u32 opcode;
410
411#define F_LEN_MASK 3U
412#define F_LEN_CONST 1U
413#define F_LEN_VAR 0U
414/* value is const although LEN maybe variable */
415#define F_LEN_VAR_FIXED (1<<1)
416
417/*
418 * command has its own ip advance logic
419 * e.g. MI_BATCH_START, MI_BATCH_END
420 */
421#define F_IP_ADVANCE_CUSTOM (1<<2)
422 u32 flag;
423
424#define R_RCS BIT(RCS0)
425#define R_VCS1 BIT(VCS0)
426#define R_VCS2 BIT(VCS1)
427#define R_VCS (R_VCS1 | R_VCS2)
428#define R_BCS BIT(BCS0)
429#define R_VECS BIT(VECS0)
430#define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
431 /* rings that support this cmd: BLT/RCS/VCS/VECS */
432 intel_engine_mask_t rings;
433
434 /* devices that support this cmd: SNB/IVB/HSW/... */
435 u16 devices;
436
437 /* which DWords are address that need fix up.
438 * bit 0 means a 32-bit non address operand in command
439 * bit 1 means address operand, which could be 32-bit
440 * or 64-bit depending on different architectures.(
441 * defined by "gmadr_bytes_in_cmd" in intel_gvt.
442 * No matter the address length, each address only takes
443 * one bit in the bitmap.
444 */
445 u16 addr_bitmap;
446
447 /* flag == F_LEN_CONST : command length
448 * flag == F_LEN_VAR : length bias bits
449 * Note: length is in DWord
450 */
451 u32 len;
452
453 parser_cmd_handler handler;
454
455 /* valid length in DWord */
456 u32 valid_len;
457};
458
459struct cmd_entry {
460 struct hlist_node hlist;
461 const struct cmd_info *info;
462};
463
464enum {
465 RING_BUFFER_INSTRUCTION,
466 BATCH_BUFFER_INSTRUCTION,
467 BATCH_BUFFER_2ND_LEVEL,
468 RING_BUFFER_CTX,
469};
470
471enum {
472 GTT_BUFFER,
473 PPGTT_BUFFER
474};
475
476struct parser_exec_state {
477 struct intel_vgpu *vgpu;
478 const struct intel_engine_cs *engine;
479
480 int buf_type;
481
482 /* batch buffer address type */
483 int buf_addr_type;
484
485 /* graphics memory address of ring buffer start */
486 unsigned long ring_start;
487 unsigned long ring_size;
488 unsigned long ring_head;
489 unsigned long ring_tail;
490
491 /* instruction graphics memory address */
492 unsigned long ip_gma;
493
494 /* mapped va of the instr_gma */
495 void *ip_va;
496 void *rb_va;
497
498 void *ret_bb_va;
499 /* next instruction when return from batch buffer to ring buffer */
500 unsigned long ret_ip_gma_ring;
501
502 /* next instruction when return from 2nd batch buffer to batch buffer */
503 unsigned long ret_ip_gma_bb;
504
505 /* batch buffer address type (GTT or PPGTT)
506 * used when ret from 2nd level batch buffer
507 */
508 int saved_buf_addr_type;
509 bool is_ctx_wa;
510 bool is_init_ctx;
511
512 const struct cmd_info *info;
513
514 struct intel_vgpu_workload *workload;
515};
516
517#define gmadr_dw_number(s) \
518 (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
519
520static unsigned long bypass_scan_mask = 0;
521
522/* ring ALL, type = 0 */
523static const struct sub_op_bits sub_op_mi[] = {
524 {31, 29},
525 {28, 23},
526};
527
528static const struct decode_info decode_info_mi = {
529 "MI",
530 OP_LEN_MI,
531 ARRAY_SIZE(sub_op_mi),
532 sub_op_mi,
533};
534
535/* ring RCS, command type 2 */
536static const struct sub_op_bits sub_op_2d[] = {
537 {31, 29},
538 {28, 22},
539};
540
541static const struct decode_info decode_info_2d = {
542 "2D",
543 OP_LEN_2D,
544 ARRAY_SIZE(sub_op_2d),
545 sub_op_2d,
546};
547
548/* ring RCS, command type 3 */
549static const struct sub_op_bits sub_op_3d_media[] = {
550 {31, 29},
551 {28, 27},
552 {26, 24},
553 {23, 16},
554};
555
556static const struct decode_info decode_info_3d_media = {
557 "3D_Media",
558 OP_LEN_3D_MEDIA,
559 ARRAY_SIZE(sub_op_3d_media),
560 sub_op_3d_media,
561};
562
563/* ring VCS, command type 3 */
564static const struct sub_op_bits sub_op_mfx_vc[] = {
565 {31, 29},
566 {28, 27},
567 {26, 24},
568 {23, 21},
569 {20, 16},
570};
571
572static const struct decode_info decode_info_mfx_vc = {
573 "MFX_VC",
574 OP_LEN_MFX_VC,
575 ARRAY_SIZE(sub_op_mfx_vc),
576 sub_op_mfx_vc,
577};
578
579/* ring VECS, command type 3 */
580static const struct sub_op_bits sub_op_vebox[] = {
581 {31, 29},
582 {28, 27},
583 {26, 24},
584 {23, 21},
585 {20, 16},
586};
587
588static const struct decode_info decode_info_vebox = {
589 "VEBOX",
590 OP_LEN_VEBOX,
591 ARRAY_SIZE(sub_op_vebox),
592 sub_op_vebox,
593};
594
595static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
596 [RCS0] = {
597 &decode_info_mi,
598 NULL,
599 NULL,
600 &decode_info_3d_media,
601 NULL,
602 NULL,
603 NULL,
604 NULL,
605 },
606
607 [VCS0] = {
608 &decode_info_mi,
609 NULL,
610 NULL,
611 &decode_info_mfx_vc,
612 NULL,
613 NULL,
614 NULL,
615 NULL,
616 },
617
618 [BCS0] = {
619 &decode_info_mi,
620 NULL,
621 &decode_info_2d,
622 NULL,
623 NULL,
624 NULL,
625 NULL,
626 NULL,
627 },
628
629 [VECS0] = {
630 &decode_info_mi,
631 NULL,
632 NULL,
633 &decode_info_vebox,
634 NULL,
635 NULL,
636 NULL,
637 NULL,
638 },
639
640 [VCS1] = {
641 &decode_info_mi,
642 NULL,
643 NULL,
644 &decode_info_mfx_vc,
645 NULL,
646 NULL,
647 NULL,
648 NULL,
649 },
650};
651
652static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
653{
654 const struct decode_info *d_info;
655
656 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
657 if (d_info == NULL)
658 return INVALID_OP;
659
660 return cmd >> (32 - d_info->op_len);
661}
662
663static inline const struct cmd_info *
664find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
665 const struct intel_engine_cs *engine)
666{
667 struct cmd_entry *e;
668
669 hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
670 if (opcode == e->info->opcode &&
671 e->info->rings & engine->mask)
672 return e->info;
673 }
674 return NULL;
675}
676
677static inline const struct cmd_info *
678get_cmd_info(struct intel_gvt *gvt, u32 cmd,
679 const struct intel_engine_cs *engine)
680{
681 u32 opcode;
682
683 opcode = get_opcode(cmd, engine);
684 if (opcode == INVALID_OP)
685 return NULL;
686
687 return find_cmd_entry(gvt, opcode, engine);
688}
689
690static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
691{
692 return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
693}
694
695static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
696{
697 const struct decode_info *d_info;
698 int i;
699
700 d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
701 if (d_info == NULL)
702 return;
703
704 gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
705 cmd >> (32 - d_info->op_len), d_info->name);
706
707 for (i = 0; i < d_info->nr_sub_op; i++)
708 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
709 d_info->sub_op[i].low));
710
711 pr_err("\n");
712}
713
714static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
715{
716 return s->ip_va + (index << 2);
717}
718
719static inline u32 cmd_val(struct parser_exec_state *s, int index)
720{
721 return *cmd_ptr(s, index);
722}
723
724static inline bool is_init_ctx(struct parser_exec_state *s)
725{
726 return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
727}
728
729static void parser_exec_state_dump(struct parser_exec_state *s)
730{
731 int cnt = 0;
732 int i;
733
734 gvt_dbg_cmd(" vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
735 " ring_head(%08lx) ring_tail(%08lx)\n",
736 s->vgpu->id, s->engine->name,
737 s->ring_start, s->ring_start + s->ring_size,
738 s->ring_head, s->ring_tail);
739
740 gvt_dbg_cmd(" %s %s ip_gma(%08lx) ",
741 s->buf_type == RING_BUFFER_INSTRUCTION ?
742 "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
743 "CTX_BUFFER" : "BATCH_BUFFER"),
744 s->buf_addr_type == GTT_BUFFER ?
745 "GTT" : "PPGTT", s->ip_gma);
746
747 if (s->ip_va == NULL) {
748 gvt_dbg_cmd(" ip_va(NULL)");
749 return;
750 }
751
752 gvt_dbg_cmd(" ip_va=%p: %08x %08x %08x %08x\n",
753 s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
754 cmd_val(s, 2), cmd_val(s, 3));
755
756 print_opcode(cmd_val(s, 0), s->engine);
757
758 s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
759
760 while (cnt < 1024) {
761 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
762 for (i = 0; i < 8; i++)
763 gvt_dbg_cmd("%08x ", cmd_val(s, i));
764 gvt_dbg_cmd("\n");
765
766 s->ip_va += 8 * sizeof(u32);
767 cnt += 8;
768 }
769}
770
771static inline void update_ip_va(struct parser_exec_state *s)
772{
773 unsigned long len = 0;
774
775 if (WARN_ON(s->ring_head == s->ring_tail))
776 return;
777
778 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
779 s->buf_type == RING_BUFFER_CTX) {
780 unsigned long ring_top = s->ring_start + s->ring_size;
781
782 if (s->ring_head > s->ring_tail) {
783 if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
784 len = (s->ip_gma - s->ring_head);
785 else if (s->ip_gma >= s->ring_start &&
786 s->ip_gma <= s->ring_tail)
787 len = (ring_top - s->ring_head) +
788 (s->ip_gma - s->ring_start);
789 } else
790 len = (s->ip_gma - s->ring_head);
791
792 s->ip_va = s->rb_va + len;
793 } else {/* shadow batch buffer */
794 s->ip_va = s->ret_bb_va;
795 }
796}
797
798static inline int ip_gma_set(struct parser_exec_state *s,
799 unsigned long ip_gma)
800{
801 WARN_ON(!IS_ALIGNED(ip_gma, 4));
802
803 s->ip_gma = ip_gma;
804 update_ip_va(s);
805 return 0;
806}
807
808static inline int ip_gma_advance(struct parser_exec_state *s,
809 unsigned int dw_len)
810{
811 s->ip_gma += (dw_len << 2);
812
813 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
814 if (s->ip_gma >= s->ring_start + s->ring_size)
815 s->ip_gma -= s->ring_size;
816 update_ip_va(s);
817 } else {
818 s->ip_va += (dw_len << 2);
819 }
820
821 return 0;
822}
823
824static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
825{
826 if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
827 return info->len;
828 else
829 return (cmd & ((1U << info->len) - 1)) + 2;
830 return 0;
831}
832
833static inline int cmd_length(struct parser_exec_state *s)
834{
835 return get_cmd_length(s->info, cmd_val(s, 0));
836}
837
838/* do not remove this, some platform may need clflush here */
839#define patch_value(s, addr, val) do { \
840 *addr = val; \
841} while (0)
842
843static inline bool is_mocs_mmio(unsigned int offset)
844{
845 return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
846 ((offset >= 0xb020) && (offset <= 0xb0a0));
847}
848
849static int is_cmd_update_pdps(unsigned int offset,
850 struct parser_exec_state *s)
851{
852 u32 base = s->workload->engine->mmio_base;
853 return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
854}
855
856static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
857 unsigned int offset, unsigned int index)
858{
859 struct intel_vgpu *vgpu = s->vgpu;
860 struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
861 struct intel_vgpu_mm *mm;
862 u64 pdps[GEN8_3LVL_PDPES];
863
864 if (shadow_mm->ppgtt_mm.root_entry_type ==
865 GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
866 pdps[0] = (u64)cmd_val(s, 2) << 32;
867 pdps[0] |= cmd_val(s, 4);
868
869 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
870 if (!mm) {
871 gvt_vgpu_err("failed to get the 4-level shadow vm\n");
872 return -EINVAL;
873 }
874 intel_vgpu_mm_get(mm);
875 list_add_tail(&mm->ppgtt_mm.link,
876 &s->workload->lri_shadow_mm);
877 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
878 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
879 } else {
880 /* Currently all guests use PML4 table and now can't
881 * have a guest with 3-level table but uses LRI for
882 * PPGTT update. So this is simply un-testable. */
883 GEM_BUG_ON(1);
884 gvt_vgpu_err("invalid shared shadow vm type\n");
885 return -EINVAL;
886 }
887 return 0;
888}
889
890static int cmd_reg_handler(struct parser_exec_state *s,
891 unsigned int offset, unsigned int index, char *cmd)
892{
893 struct intel_vgpu *vgpu = s->vgpu;
894 struct intel_gvt *gvt = vgpu->gvt;
895 u32 ctx_sr_ctl;
896 u32 *vreg, vreg_old;
897
898 if (offset + 4 > gvt->device_info.mmio_size) {
899 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
900 cmd, offset);
901 return -EFAULT;
902 }
903
904 if (is_init_ctx(s)) {
905 struct intel_gvt_mmio_info *mmio_info;
906
907 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
908 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
909 if (mmio_info && mmio_info->write)
910 intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
911 return 0;
912 }
913
914 if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
915 gvt_vgpu_err("%s access to non-render register (%x)\n",
916 cmd, offset);
917 return -EBADRQC;
918 }
919
920 if (!strncmp(cmd, "srm", 3) ||
921 !strncmp(cmd, "lrm", 3)) {
922 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
923 offset == 0x21f0 ||
924 (IS_BROADWELL(gvt->gt->i915) &&
925 offset == i915_mmio_reg_offset(INSTPM)))
926 return 0;
927 else {
928 gvt_vgpu_err("%s access to register (%x)\n",
929 cmd, offset);
930 return -EPERM;
931 }
932 }
933
934 if (!strncmp(cmd, "lrr-src", 7) ||
935 !strncmp(cmd, "lrr-dst", 7)) {
936 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
937 return 0;
938 else {
939 gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
940 return -EPERM;
941 }
942 }
943
944 if (!strncmp(cmd, "pipe_ctrl", 9)) {
945 /* TODO: add LRI POST logic here */
946 return 0;
947 }
948
949 if (strncmp(cmd, "lri", 3))
950 return -EPERM;
951
952 /* below are all lri handlers */
953 vreg = &vgpu_vreg(s->vgpu, offset);
954
955 if (is_cmd_update_pdps(offset, s) &&
956 cmd_pdp_mmio_update_handler(s, offset, index))
957 return -EINVAL;
958
959 if (offset == i915_mmio_reg_offset(DERRMR) ||
960 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
961 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
962 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
963 }
964
965 if (is_mocs_mmio(offset))
966 *vreg = cmd_val(s, index + 1);
967
968 vreg_old = *vreg;
969
970 if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
971 u32 cmdval_new, cmdval;
972 struct intel_gvt_mmio_info *mmio_info;
973
974 cmdval = cmd_val(s, index + 1);
975
976 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
977 if (!mmio_info) {
978 cmdval_new = cmdval;
979 } else {
980 u64 ro_mask = mmio_info->ro_mask;
981 int ret;
982
983 if (likely(!ro_mask))
984 ret = mmio_info->write(s->vgpu, offset,
985 &cmdval, 4);
986 else {
987 gvt_vgpu_err("try to write RO reg %x\n",
988 offset);
989 ret = -EBADRQC;
990 }
991 if (ret)
992 return ret;
993 cmdval_new = *vreg;
994 }
995 if (cmdval_new != cmdval)
996 patch_value(s, cmd_ptr(s, index+1), cmdval_new);
997 }
998
999 /* only patch cmd. restore vreg value if changed in mmio write handler*/
1000 *vreg = vreg_old;
1001
1002 /* TODO
1003 * In order to let workload with inhibit context to generate
1004 * correct image data into memory, vregs values will be loaded to
1005 * hw via LRIs in the workload with inhibit context. But as
1006 * indirect context is loaded prior to LRIs in workload, we don't
1007 * want reg values specified in indirect context overwritten by
1008 * LRIs in workloads. So, when scanning an indirect context, we
1009 * update reg values in it into vregs, so LRIs in workload with
1010 * inhibit context will restore with correct values
1011 */
1012 if (GRAPHICS_VER(s->engine->i915) == 9 &&
1013 intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1014 !strncmp(cmd, "lri", 3)) {
1015 intel_gvt_read_gpa(s->vgpu,
1016 s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1017 /* check inhibit context */
1018 if (ctx_sr_ctl & 1) {
1019 u32 data = cmd_val(s, index + 1);
1020
1021 if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1022 intel_vgpu_mask_mmio_write(vgpu,
1023 offset, &data, 4);
1024 else
1025 vgpu_vreg(vgpu, offset) = data;
1026 }
1027 }
1028
1029 return 0;
1030}
1031
1032#define cmd_reg(s, i) \
1033 (cmd_val(s, i) & GENMASK(22, 2))
1034
1035#define cmd_reg_inhibit(s, i) \
1036 (cmd_val(s, i) & GENMASK(22, 18))
1037
1038#define cmd_gma(s, i) \
1039 (cmd_val(s, i) & GENMASK(31, 2))
1040
1041#define cmd_gma_hi(s, i) \
1042 (cmd_val(s, i) & GENMASK(15, 0))
1043
1044static int cmd_handler_lri(struct parser_exec_state *s)
1045{
1046 int i, ret = 0;
1047 int cmd_len = cmd_length(s);
1048
1049 for (i = 1; i < cmd_len; i += 2) {
1050 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1051 if (s->engine->id == BCS0 &&
1052 cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1053 ret |= 0;
1054 else
1055 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1056 }
1057 if (ret)
1058 break;
1059 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1060 if (ret)
1061 break;
1062 }
1063 return ret;
1064}
1065
1066static int cmd_handler_lrr(struct parser_exec_state *s)
1067{
1068 int i, ret = 0;
1069 int cmd_len = cmd_length(s);
1070
1071 for (i = 1; i < cmd_len; i += 2) {
1072 if (IS_BROADWELL(s->engine->i915))
1073 ret |= ((cmd_reg_inhibit(s, i) ||
1074 (cmd_reg_inhibit(s, i + 1)))) ?
1075 -EBADRQC : 0;
1076 if (ret)
1077 break;
1078 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1079 if (ret)
1080 break;
1081 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1082 if (ret)
1083 break;
1084 }
1085 return ret;
1086}
1087
1088static inline int cmd_address_audit(struct parser_exec_state *s,
1089 unsigned long guest_gma, int op_size, bool index_mode);
1090
1091static int cmd_handler_lrm(struct parser_exec_state *s)
1092{
1093 struct intel_gvt *gvt = s->vgpu->gvt;
1094 int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1095 unsigned long gma;
1096 int i, ret = 0;
1097 int cmd_len = cmd_length(s);
1098
1099 for (i = 1; i < cmd_len;) {
1100 if (IS_BROADWELL(s->engine->i915))
1101 ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1102 if (ret)
1103 break;
1104 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1105 if (ret)
1106 break;
1107 if (cmd_val(s, 0) & (1 << 22)) {
1108 gma = cmd_gma(s, i + 1);
1109 if (gmadr_bytes == 8)
1110 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1111 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1112 if (ret)
1113 break;
1114 }
1115 i += gmadr_dw_number(s) + 1;
1116 }
1117 return ret;
1118}
1119
1120static int cmd_handler_srm(struct parser_exec_state *s)
1121{
1122 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1123 unsigned long gma;
1124 int i, ret = 0;
1125 int cmd_len = cmd_length(s);
1126
1127 for (i = 1; i < cmd_len;) {
1128 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1129 if (ret)
1130 break;
1131 if (cmd_val(s, 0) & (1 << 22)) {
1132 gma = cmd_gma(s, i + 1);
1133 if (gmadr_bytes == 8)
1134 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1135 ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1136 if (ret)
1137 break;
1138 }
1139 i += gmadr_dw_number(s) + 1;
1140 }
1141 return ret;
1142}
1143
1144struct cmd_interrupt_event {
1145 int pipe_control_notify;
1146 int mi_flush_dw;
1147 int mi_user_interrupt;
1148};
1149
1150static const struct cmd_interrupt_event cmd_interrupt_events[] = {
1151 [RCS0] = {
1152 .pipe_control_notify = RCS_PIPE_CONTROL,
1153 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1154 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1155 },
1156 [BCS0] = {
1157 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1158 .mi_flush_dw = BCS_MI_FLUSH_DW,
1159 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1160 },
1161 [VCS0] = {
1162 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1163 .mi_flush_dw = VCS_MI_FLUSH_DW,
1164 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1165 },
1166 [VCS1] = {
1167 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1168 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1169 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1170 },
1171 [VECS0] = {
1172 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1173 .mi_flush_dw = VECS_MI_FLUSH_DW,
1174 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1175 },
1176};
1177
1178static int cmd_handler_pipe_control(struct parser_exec_state *s)
1179{
1180 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1181 unsigned long gma;
1182 bool index_mode = false;
1183 unsigned int post_sync;
1184 int ret = 0;
1185 u32 hws_pga, val;
1186
1187 post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1188
1189 /* LRI post sync */
1190 if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1191 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1192 /* post sync */
1193 else if (post_sync) {
1194 if (post_sync == 2)
1195 ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1196 else if (post_sync == 3)
1197 ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1198 else if (post_sync == 1) {
1199 /* check ggtt*/
1200 if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1201 gma = cmd_val(s, 2) & GENMASK(31, 3);
1202 if (gmadr_bytes == 8)
1203 gma |= (cmd_gma_hi(s, 3)) << 32;
1204 /* Store Data Index */
1205 if (cmd_val(s, 1) & (1 << 21))
1206 index_mode = true;
1207 ret |= cmd_address_audit(s, gma, sizeof(u64),
1208 index_mode);
1209 if (ret)
1210 return ret;
1211 if (index_mode) {
1212 hws_pga = s->vgpu->hws_pga[s->engine->id];
1213 gma = hws_pga + gma;
1214 patch_value(s, cmd_ptr(s, 2), gma);
1215 val = cmd_val(s, 1) & (~(1 << 21));
1216 patch_value(s, cmd_ptr(s, 1), val);
1217 }
1218 }
1219 }
1220 }
1221
1222 if (ret)
1223 return ret;
1224
1225 if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1226 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1227 s->workload->pending_events);
1228 return 0;
1229}
1230
1231static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1232{
1233 set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1234 s->workload->pending_events);
1235 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1236 return 0;
1237}
1238
1239static int cmd_advance_default(struct parser_exec_state *s)
1240{
1241 return ip_gma_advance(s, cmd_length(s));
1242}
1243
1244static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1245{
1246 int ret;
1247
1248 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1249 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1250 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1251 s->buf_addr_type = s->saved_buf_addr_type;
1252 } else if (s->buf_type == RING_BUFFER_CTX) {
1253 ret = ip_gma_set(s, s->ring_tail);
1254 } else {
1255 s->buf_type = RING_BUFFER_INSTRUCTION;
1256 s->buf_addr_type = GTT_BUFFER;
1257 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1258 s->ret_ip_gma_ring -= s->ring_size;
1259 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1260 }
1261 return ret;
1262}
1263
1264struct mi_display_flip_command_info {
1265 int pipe;
1266 int plane;
1267 int event;
1268 i915_reg_t stride_reg;
1269 i915_reg_t ctrl_reg;
1270 i915_reg_t surf_reg;
1271 u64 stride_val;
1272 u64 tile_val;
1273 u64 surf_val;
1274 bool async_flip;
1275};
1276
1277struct plane_code_mapping {
1278 int pipe;
1279 int plane;
1280 int event;
1281};
1282
1283static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1284 struct mi_display_flip_command_info *info)
1285{
1286 struct drm_i915_private *dev_priv = s->engine->i915;
1287 struct plane_code_mapping gen8_plane_code[] = {
1288 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1289 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1290 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1291 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1292 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1293 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1294 };
1295 u32 dword0, dword1, dword2;
1296 u32 v;
1297
1298 dword0 = cmd_val(s, 0);
1299 dword1 = cmd_val(s, 1);
1300 dword2 = cmd_val(s, 2);
1301
1302 v = (dword0 & GENMASK(21, 19)) >> 19;
1303 if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1304 return -EBADRQC;
1305
1306 info->pipe = gen8_plane_code[v].pipe;
1307 info->plane = gen8_plane_code[v].plane;
1308 info->event = gen8_plane_code[v].event;
1309 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1310 info->tile_val = (dword1 & 0x1);
1311 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1312 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1313
1314 if (info->plane == PLANE_A) {
1315 info->ctrl_reg = DSPCNTR(info->pipe);
1316 info->stride_reg = DSPSTRIDE(info->pipe);
1317 info->surf_reg = DSPSURF(info->pipe);
1318 } else if (info->plane == PLANE_B) {
1319 info->ctrl_reg = SPRCTL(info->pipe);
1320 info->stride_reg = SPRSTRIDE(info->pipe);
1321 info->surf_reg = SPRSURF(info->pipe);
1322 } else {
1323 drm_WARN_ON(&dev_priv->drm, 1);
1324 return -EBADRQC;
1325 }
1326 return 0;
1327}
1328
1329static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1330 struct mi_display_flip_command_info *info)
1331{
1332 struct drm_i915_private *dev_priv = s->engine->i915;
1333 struct intel_vgpu *vgpu = s->vgpu;
1334 u32 dword0 = cmd_val(s, 0);
1335 u32 dword1 = cmd_val(s, 1);
1336 u32 dword2 = cmd_val(s, 2);
1337 u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1338
1339 info->plane = PRIMARY_PLANE;
1340
1341 switch (plane) {
1342 case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1343 info->pipe = PIPE_A;
1344 info->event = PRIMARY_A_FLIP_DONE;
1345 break;
1346 case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1347 info->pipe = PIPE_B;
1348 info->event = PRIMARY_B_FLIP_DONE;
1349 break;
1350 case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1351 info->pipe = PIPE_C;
1352 info->event = PRIMARY_C_FLIP_DONE;
1353 break;
1354
1355 case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1356 info->pipe = PIPE_A;
1357 info->event = SPRITE_A_FLIP_DONE;
1358 info->plane = SPRITE_PLANE;
1359 break;
1360 case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1361 info->pipe = PIPE_B;
1362 info->event = SPRITE_B_FLIP_DONE;
1363 info->plane = SPRITE_PLANE;
1364 break;
1365 case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1366 info->pipe = PIPE_C;
1367 info->event = SPRITE_C_FLIP_DONE;
1368 info->plane = SPRITE_PLANE;
1369 break;
1370
1371 default:
1372 gvt_vgpu_err("unknown plane code %d\n", plane);
1373 return -EBADRQC;
1374 }
1375
1376 info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1377 info->tile_val = (dword1 & GENMASK(2, 0));
1378 info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1379 info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1380
1381 info->ctrl_reg = DSPCNTR(info->pipe);
1382 info->stride_reg = DSPSTRIDE(info->pipe);
1383 info->surf_reg = DSPSURF(info->pipe);
1384
1385 return 0;
1386}
1387
1388static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1389 struct mi_display_flip_command_info *info)
1390{
1391 u32 stride, tile;
1392
1393 if (!info->async_flip)
1394 return 0;
1395
1396 if (GRAPHICS_VER(s->engine->i915) >= 9) {
1397 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1398 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1399 GENMASK(12, 10)) >> 10;
1400 } else {
1401 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1402 GENMASK(15, 6)) >> 6;
1403 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1404 }
1405
1406 if (stride != info->stride_val)
1407 gvt_dbg_cmd("cannot change stride during async flip\n");
1408
1409 if (tile != info->tile_val)
1410 gvt_dbg_cmd("cannot change tile during async flip\n");
1411
1412 return 0;
1413}
1414
1415static int gen8_update_plane_mmio_from_mi_display_flip(
1416 struct parser_exec_state *s,
1417 struct mi_display_flip_command_info *info)
1418{
1419 struct drm_i915_private *dev_priv = s->engine->i915;
1420 struct intel_vgpu *vgpu = s->vgpu;
1421
1422 set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1423 info->surf_val << 12);
1424 if (GRAPHICS_VER(dev_priv) >= 9) {
1425 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1426 info->stride_val);
1427 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1428 info->tile_val << 10);
1429 } else {
1430 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1431 info->stride_val << 6);
1432 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1433 info->tile_val << 10);
1434 }
1435
1436 if (info->plane == PLANE_PRIMARY)
1437 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1438
1439 if (info->async_flip)
1440 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1441 else
1442 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1443
1444 return 0;
1445}
1446
1447static int decode_mi_display_flip(struct parser_exec_state *s,
1448 struct mi_display_flip_command_info *info)
1449{
1450 if (IS_BROADWELL(s->engine->i915))
1451 return gen8_decode_mi_display_flip(s, info);
1452 if (GRAPHICS_VER(s->engine->i915) >= 9)
1453 return skl_decode_mi_display_flip(s, info);
1454
1455 return -ENODEV;
1456}
1457
1458static int check_mi_display_flip(struct parser_exec_state *s,
1459 struct mi_display_flip_command_info *info)
1460{
1461 return gen8_check_mi_display_flip(s, info);
1462}
1463
1464static int update_plane_mmio_from_mi_display_flip(
1465 struct parser_exec_state *s,
1466 struct mi_display_flip_command_info *info)
1467{
1468 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1469}
1470
1471static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1472{
1473 struct mi_display_flip_command_info info;
1474 struct intel_vgpu *vgpu = s->vgpu;
1475 int ret;
1476 int i;
1477 int len = cmd_length(s);
1478 u32 valid_len = CMD_LEN(1);
1479
1480 /* Flip Type == Stereo 3D Flip */
1481 if (DWORD_FIELD(2, 1, 0) == 2)
1482 valid_len++;
1483 ret = gvt_check_valid_cmd_length(cmd_length(s),
1484 valid_len);
1485 if (ret)
1486 return ret;
1487
1488 ret = decode_mi_display_flip(s, &info);
1489 if (ret) {
1490 gvt_vgpu_err("fail to decode MI display flip command\n");
1491 return ret;
1492 }
1493
1494 ret = check_mi_display_flip(s, &info);
1495 if (ret) {
1496 gvt_vgpu_err("invalid MI display flip command\n");
1497 return ret;
1498 }
1499
1500 ret = update_plane_mmio_from_mi_display_flip(s, &info);
1501 if (ret) {
1502 gvt_vgpu_err("fail to update plane mmio\n");
1503 return ret;
1504 }
1505
1506 for (i = 0; i < len; i++)
1507 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1508 return 0;
1509}
1510
1511static bool is_wait_for_flip_pending(u32 cmd)
1512{
1513 return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1514 MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1515 MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1516 MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1517 MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1518 MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1519}
1520
1521static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1522{
1523 u32 cmd = cmd_val(s, 0);
1524
1525 if (!is_wait_for_flip_pending(cmd))
1526 return 0;
1527
1528 patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1529 return 0;
1530}
1531
1532static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1533{
1534 unsigned long addr;
1535 unsigned long gma_high, gma_low;
1536 struct intel_vgpu *vgpu = s->vgpu;
1537 int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1538
1539 if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1540 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1541 return INTEL_GVT_INVALID_ADDR;
1542 }
1543
1544 gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1545 if (gmadr_bytes == 4) {
1546 addr = gma_low;
1547 } else {
1548 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1549 addr = (((unsigned long)gma_high) << 32) | gma_low;
1550 }
1551 return addr;
1552}
1553
1554static inline int cmd_address_audit(struct parser_exec_state *s,
1555 unsigned long guest_gma, int op_size, bool index_mode)
1556{
1557 struct intel_vgpu *vgpu = s->vgpu;
1558 u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1559 int i;
1560 int ret;
1561
1562 if (op_size > max_surface_size) {
1563 gvt_vgpu_err("command address audit fail name %s\n",
1564 s->info->name);
1565 return -EFAULT;
1566 }
1567
1568 if (index_mode) {
1569 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1570 ret = -EFAULT;
1571 goto err;
1572 }
1573 } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1574 ret = -EFAULT;
1575 goto err;
1576 }
1577
1578 return 0;
1579
1580err:
1581 gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1582 s->info->name, guest_gma, op_size);
1583
1584 pr_err("cmd dump: ");
1585 for (i = 0; i < cmd_length(s); i++) {
1586 if (!(i % 4))
1587 pr_err("\n%08x ", cmd_val(s, i));
1588 else
1589 pr_err("%08x ", cmd_val(s, i));
1590 }
1591 pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1592 vgpu->id,
1593 vgpu_aperture_gmadr_base(vgpu),
1594 vgpu_aperture_gmadr_end(vgpu),
1595 vgpu_hidden_gmadr_base(vgpu),
1596 vgpu_hidden_gmadr_end(vgpu));
1597 return ret;
1598}
1599
1600static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1601{
1602 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1603 int op_size = (cmd_length(s) - 3) * sizeof(u32);
1604 int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1605 unsigned long gma, gma_low, gma_high;
1606 u32 valid_len = CMD_LEN(2);
1607 int ret = 0;
1608
1609 /* check ppggt */
1610 if (!(cmd_val(s, 0) & (1 << 22)))
1611 return 0;
1612
1613 /* check if QWORD */
1614 if (DWORD_FIELD(0, 21, 21))
1615 valid_len++;
1616 ret = gvt_check_valid_cmd_length(cmd_length(s),
1617 valid_len);
1618 if (ret)
1619 return ret;
1620
1621 gma = cmd_val(s, 2) & GENMASK(31, 2);
1622
1623 if (gmadr_bytes == 8) {
1624 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1625 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1626 gma = (gma_high << 32) | gma_low;
1627 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1628 }
1629 ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1630 return ret;
1631}
1632
1633static inline int unexpected_cmd(struct parser_exec_state *s)
1634{
1635 struct intel_vgpu *vgpu = s->vgpu;
1636
1637 gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1638
1639 return -EBADRQC;
1640}
1641
1642static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1643{
1644 return unexpected_cmd(s);
1645}
1646
1647static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1648{
1649 return unexpected_cmd(s);
1650}
1651
1652static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1653{
1654 return unexpected_cmd(s);
1655}
1656
1657static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1658{
1659 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1660 int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1661 sizeof(u32);
1662 unsigned long gma, gma_high;
1663 u32 valid_len = CMD_LEN(1);
1664 int ret = 0;
1665
1666 if (!(cmd_val(s, 0) & (1 << 22)))
1667 return ret;
1668
1669 /* check inline data */
1670 if (cmd_val(s, 0) & BIT(18))
1671 valid_len = CMD_LEN(9);
1672 ret = gvt_check_valid_cmd_length(cmd_length(s),
1673 valid_len);
1674 if (ret)
1675 return ret;
1676
1677 gma = cmd_val(s, 1) & GENMASK(31, 2);
1678 if (gmadr_bytes == 8) {
1679 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1680 gma = (gma_high << 32) | gma;
1681 }
1682 ret = cmd_address_audit(s, gma, op_size, false);
1683 return ret;
1684}
1685
1686static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1687{
1688 return unexpected_cmd(s);
1689}
1690
1691static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1692{
1693 return unexpected_cmd(s);
1694}
1695
1696static int cmd_handler_mi_conditional_batch_buffer_end(
1697 struct parser_exec_state *s)
1698{
1699 return unexpected_cmd(s);
1700}
1701
1702static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1703{
1704 return unexpected_cmd(s);
1705}
1706
1707static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1708{
1709 int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1710 unsigned long gma;
1711 bool index_mode = false;
1712 int ret = 0;
1713 u32 hws_pga, val;
1714 u32 valid_len = CMD_LEN(2);
1715
1716 ret = gvt_check_valid_cmd_length(cmd_length(s),
1717 valid_len);
1718 if (ret) {
1719 /* Check again for Qword */
1720 ret = gvt_check_valid_cmd_length(cmd_length(s),
1721 ++valid_len);
1722 return ret;
1723 }
1724
1725 /* Check post-sync and ppgtt bit */
1726 if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1727 gma = cmd_val(s, 1) & GENMASK(31, 3);
1728 if (gmadr_bytes == 8)
1729 gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1730 /* Store Data Index */
1731 if (cmd_val(s, 0) & (1 << 21))
1732 index_mode = true;
1733 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1734 if (ret)
1735 return ret;
1736 if (index_mode) {
1737 hws_pga = s->vgpu->hws_pga[s->engine->id];
1738 gma = hws_pga + gma;
1739 patch_value(s, cmd_ptr(s, 1), gma);
1740 val = cmd_val(s, 0) & (~(1 << 21));
1741 patch_value(s, cmd_ptr(s, 0), val);
1742 }
1743 }
1744 /* Check notify bit */
1745 if ((cmd_val(s, 0) & (1 << 8)))
1746 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1747 s->workload->pending_events);
1748 return ret;
1749}
1750
1751static void addr_type_update_snb(struct parser_exec_state *s)
1752{
1753 if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1754 (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1755 s->buf_addr_type = PPGTT_BUFFER;
1756 }
1757}
1758
1759
1760static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1761 unsigned long gma, unsigned long end_gma, void *va)
1762{
1763 unsigned long copy_len, offset;
1764 unsigned long len = 0;
1765 unsigned long gpa;
1766
1767 while (gma != end_gma) {
1768 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1769 if (gpa == INTEL_GVT_INVALID_ADDR) {
1770 gvt_vgpu_err("invalid gma address: %lx\n", gma);
1771 return -EFAULT;
1772 }
1773
1774 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1775
1776 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1777 I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1778
1779 intel_gvt_read_gpa(vgpu, gpa, va + len, copy_len);
1780
1781 len += copy_len;
1782 gma += copy_len;
1783 }
1784 return len;
1785}
1786
1787
1788/*
1789 * Check whether a batch buffer needs to be scanned. Currently
1790 * the only criteria is based on privilege.
1791 */
1792static int batch_buffer_needs_scan(struct parser_exec_state *s)
1793{
1794 /* Decide privilege based on address space */
1795 if (cmd_val(s, 0) & BIT(8) &&
1796 !(s->vgpu->scan_nonprivbb & s->engine->mask))
1797 return 0;
1798
1799 return 1;
1800}
1801
1802static const char *repr_addr_type(unsigned int type)
1803{
1804 return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1805}
1806
1807static int find_bb_size(struct parser_exec_state *s,
1808 unsigned long *bb_size,
1809 unsigned long *bb_end_cmd_offset)
1810{
1811 unsigned long gma = 0;
1812 const struct cmd_info *info;
1813 u32 cmd_len = 0;
1814 bool bb_end = false;
1815 struct intel_vgpu *vgpu = s->vgpu;
1816 u32 cmd;
1817 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1818 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1819
1820 *bb_size = 0;
1821 *bb_end_cmd_offset = 0;
1822
1823 /* get the start gm address of the batch buffer */
1824 gma = get_gma_bb_from_cmd(s, 1);
1825 if (gma == INTEL_GVT_INVALID_ADDR)
1826 return -EFAULT;
1827
1828 cmd = cmd_val(s, 0);
1829 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1830 if (info == NULL) {
1831 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1832 cmd, get_opcode(cmd, s->engine),
1833 repr_addr_type(s->buf_addr_type),
1834 s->engine->name, s->workload);
1835 return -EBADRQC;
1836 }
1837 do {
1838 if (copy_gma_to_hva(s->vgpu, mm,
1839 gma, gma + 4, &cmd) < 0)
1840 return -EFAULT;
1841 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1842 if (info == NULL) {
1843 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1844 cmd, get_opcode(cmd, s->engine),
1845 repr_addr_type(s->buf_addr_type),
1846 s->engine->name, s->workload);
1847 return -EBADRQC;
1848 }
1849
1850 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1851 bb_end = true;
1852 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1853 if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1854 /* chained batch buffer */
1855 bb_end = true;
1856 }
1857
1858 if (bb_end)
1859 *bb_end_cmd_offset = *bb_size;
1860
1861 cmd_len = get_cmd_length(info, cmd) << 2;
1862 *bb_size += cmd_len;
1863 gma += cmd_len;
1864 } while (!bb_end);
1865
1866 return 0;
1867}
1868
1869static int audit_bb_end(struct parser_exec_state *s, void *va)
1870{
1871 struct intel_vgpu *vgpu = s->vgpu;
1872 u32 cmd = *(u32 *)va;
1873 const struct cmd_info *info;
1874
1875 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1876 if (info == NULL) {
1877 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1878 cmd, get_opcode(cmd, s->engine),
1879 repr_addr_type(s->buf_addr_type),
1880 s->engine->name, s->workload);
1881 return -EBADRQC;
1882 }
1883
1884 if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1885 ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1886 (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1887 return 0;
1888
1889 return -EBADRQC;
1890}
1891
1892static int perform_bb_shadow(struct parser_exec_state *s)
1893{
1894 struct intel_vgpu *vgpu = s->vgpu;
1895 struct intel_vgpu_shadow_bb *bb;
1896 unsigned long gma = 0;
1897 unsigned long bb_size;
1898 unsigned long bb_end_cmd_offset;
1899 int ret = 0;
1900 struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1901 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1902 unsigned long start_offset = 0;
1903
1904 /* get the start gm address of the batch buffer */
1905 gma = get_gma_bb_from_cmd(s, 1);
1906 if (gma == INTEL_GVT_INVALID_ADDR)
1907 return -EFAULT;
1908
1909 ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1910 if (ret)
1911 return ret;
1912
1913 bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1914 if (!bb)
1915 return -ENOMEM;
1916
1917 bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1918
1919 /* the start_offset stores the batch buffer's start gma's
1920 * offset relative to page boundary. so for non-privileged batch
1921 * buffer, the shadowed gem object holds exactly the same page
1922 * layout as original gem object. This is for the convience of
1923 * replacing the whole non-privilged batch buffer page to this
1924 * shadowed one in PPGTT at the same gma address. (this replacing
1925 * action is not implemented yet now, but may be necessary in
1926 * future).
1927 * for prileged batch buffer, we just change start gma address to
1928 * that of shadowed page.
1929 */
1930 if (bb->ppgtt)
1931 start_offset = gma & ~I915_GTT_PAGE_MASK;
1932
1933 bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1934 round_up(bb_size + start_offset,
1935 PAGE_SIZE));
1936 if (IS_ERR(bb->obj)) {
1937 ret = PTR_ERR(bb->obj);
1938 goto err_free_bb;
1939 }
1940
1941 bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1942 if (IS_ERR(bb->va)) {
1943 ret = PTR_ERR(bb->va);
1944 goto err_free_obj;
1945 }
1946
1947 ret = copy_gma_to_hva(s->vgpu, mm,
1948 gma, gma + bb_size,
1949 bb->va + start_offset);
1950 if (ret < 0) {
1951 gvt_vgpu_err("fail to copy guest ring buffer\n");
1952 ret = -EFAULT;
1953 goto err_unmap;
1954 }
1955
1956 ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1957 if (ret)
1958 goto err_unmap;
1959
1960 i915_gem_object_unlock(bb->obj);
1961 INIT_LIST_HEAD(&bb->list);
1962 list_add(&bb->list, &s->workload->shadow_bb);
1963
1964 bb->bb_start_cmd_va = s->ip_va;
1965
1966 if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1967 bb->bb_offset = s->ip_va - s->rb_va;
1968 else
1969 bb->bb_offset = 0;
1970
1971 /*
1972 * ip_va saves the virtual address of the shadow batch buffer, while
1973 * ip_gma saves the graphics address of the original batch buffer.
1974 * As the shadow batch buffer is just a copy from the originial one,
1975 * it should be right to use shadow batch buffer'va and original batch
1976 * buffer's gma in pair. After all, we don't want to pin the shadow
1977 * buffer here (too early).
1978 */
1979 s->ip_va = bb->va + start_offset;
1980 s->ip_gma = gma;
1981 return 0;
1982err_unmap:
1983 i915_gem_object_unpin_map(bb->obj);
1984err_free_obj:
1985 i915_gem_object_put(bb->obj);
1986err_free_bb:
1987 kfree(bb);
1988 return ret;
1989}
1990
1991static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1992{
1993 bool second_level;
1994 int ret = 0;
1995 struct intel_vgpu *vgpu = s->vgpu;
1996
1997 if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1998 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1999 return -EFAULT;
2000 }
2001
2002 second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2003 if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2004 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2005 return -EFAULT;
2006 }
2007
2008 s->saved_buf_addr_type = s->buf_addr_type;
2009 addr_type_update_snb(s);
2010 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2011 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2012 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2013 } else if (second_level) {
2014 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2015 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2016 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2017 }
2018
2019 if (batch_buffer_needs_scan(s)) {
2020 ret = perform_bb_shadow(s);
2021 if (ret < 0)
2022 gvt_vgpu_err("invalid shadow batch buffer\n");
2023 } else {
2024 /* emulate a batch buffer end to do return right */
2025 ret = cmd_handler_mi_batch_buffer_end(s);
2026 if (ret < 0)
2027 return ret;
2028 }
2029 return ret;
2030}
2031
2032static int mi_noop_index;
2033
2034static const struct cmd_info cmd_info[] = {
2035 {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2036
2037 {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2038 0, 1, NULL},
2039
2040 {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2041 0, 1, cmd_handler_mi_user_interrupt},
2042
2043 {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2044 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2045
2046 {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2047
2048 {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2049 NULL},
2050
2051 {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2052 NULL},
2053
2054 {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2055 NULL},
2056
2057 {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2058 NULL},
2059
2060 {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2061 D_ALL, 0, 1, NULL},
2062
2063 {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2064 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2065 cmd_handler_mi_batch_buffer_end},
2066
2067 {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2068 0, 1, NULL},
2069
2070 {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2071 NULL},
2072
2073 {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2074 D_ALL, 0, 1, NULL},
2075
2076 {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2077 NULL},
2078
2079 {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2080 NULL},
2081
2082 {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2083 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2084
2085 {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2086 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2087
2088 {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2089
2090 {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2091 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2092
2093 {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2094 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2095 NULL, CMD_LEN(0)},
2096
2097 {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2098 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2099 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2100
2101 {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2102 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2103
2104 {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2105 0, 8, cmd_handler_mi_store_data_index},
2106
2107 {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2108 D_ALL, 0, 8, cmd_handler_lri},
2109
2110 {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2111 cmd_handler_mi_update_gtt},
2112
2113 {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2114 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2115 cmd_handler_srm, CMD_LEN(2)},
2116
2117 {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2118 cmd_handler_mi_flush_dw},
2119
2120 {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2121 10, cmd_handler_mi_clflush},
2122
2123 {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2124 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2125 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2126
2127 {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2128 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2129 cmd_handler_lrm, CMD_LEN(2)},
2130
2131 {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2132 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2133 cmd_handler_lrr, CMD_LEN(1)},
2134
2135 {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2136 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2137 8, NULL, CMD_LEN(2)},
2138
2139 {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2140 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2141
2142 {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2143 ADDR_FIX_1(2), 8, NULL},
2144
2145 {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2146 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2147
2148 {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2149 8, cmd_handler_mi_op_2f},
2150
2151 {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2152 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2153 cmd_handler_mi_batch_buffer_start},
2154
2155 {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2156 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2157 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2158
2159 {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2160 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2161
2162 {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2163 ADDR_FIX_2(4, 7), 8, NULL},
2164
2165 {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2166 0, 8, NULL},
2167
2168 {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2169 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2170
2171 {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2172
2173 {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2174 0, 8, NULL},
2175
2176 {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2177 ADDR_FIX_1(3), 8, NULL},
2178
2179 {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2180 D_ALL, 0, 8, NULL},
2181
2182 {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2183 ADDR_FIX_1(4), 8, NULL},
2184
2185 {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2186 ADDR_FIX_2(4, 5), 8, NULL},
2187
2188 {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2189 ADDR_FIX_1(4), 8, NULL},
2190
2191 {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2192 ADDR_FIX_2(4, 7), 8, NULL},
2193
2194 {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2195 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2196
2197 {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2198
2199 {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2200 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2201
2202 {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2203 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2204
2205 {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2206 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2207 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2208
2209 {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2210 D_ALL, ADDR_FIX_1(4), 8, NULL},
2211
2212 {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2213 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2214
2215 {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2216 D_ALL, ADDR_FIX_1(4), 8, NULL},
2217
2218 {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2219 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2220
2221 {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2222 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2223
2224 {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2225 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2226 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2227
2228 {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2229 ADDR_FIX_2(4, 5), 8, NULL},
2230
2231 {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2232 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2233
2234 {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2235 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2236 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237
2238 {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2239 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2240 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241
2242 {"3DSTATE_BLEND_STATE_POINTERS",
2243 OP_3DSTATE_BLEND_STATE_POINTERS,
2244 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245
2246 {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2247 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2248 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249
2250 {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2251 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2252 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2253
2254 {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2255 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2256 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2257
2258 {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2259 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2260 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261
2262 {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2263 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2264 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265
2266 {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2267 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2268 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2269
2270 {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2271 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2272 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273
2274 {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2275 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2276 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2277
2278 {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2279 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2280 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2281
2282 {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2283 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2284 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2285
2286 {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2287 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2288 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2289
2290 {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2291 0, 8, NULL},
2292
2293 {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2294 0, 8, NULL},
2295
2296 {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2297 0, 8, NULL},
2298
2299 {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2300 0, 8, NULL},
2301
2302 {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2303 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305 {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2306 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307
2308 {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2309 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311 {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2312 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314 {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2315 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316
2317 {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2318 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2319
2320 {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2321 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2322
2323 {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2324 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325
2326 {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2327 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328
2329 {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2330 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331
2332 {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2333 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334
2335 {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2336 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337
2338 {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2339 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340
2341 {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2342 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343
2344 {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2345 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2346
2347 {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2348 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2349
2350 {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2351 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2352
2353 {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2354 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2355
2356 {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2357 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2358
2359 {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2360 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2361
2362 {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2363 D_BDW_PLUS, 0, 8, NULL},
2364
2365 {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2366 NULL},
2367
2368 {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2369 D_BDW_PLUS, 0, 8, NULL},
2370
2371 {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2372 D_BDW_PLUS, 0, 8, NULL},
2373
2374 {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2375 8, NULL},
2376
2377 {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2378 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2379
2380 {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2381 8, NULL},
2382
2383 {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2384 NULL},
2385
2386 {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2387 NULL},
2388
2389 {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2390 NULL},
2391
2392 {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2393 D_BDW_PLUS, 0, 8, NULL},
2394
2395 {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2396 R_RCS, D_ALL, 0, 8, NULL},
2397
2398 {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2399 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2400
2401 {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2402 R_RCS, D_ALL, 0, 1, NULL},
2403
2404 {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2405
2406 {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2407 R_RCS, D_ALL, 0, 8, NULL},
2408
2409 {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2410 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2411
2412 {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2413
2414 {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2415
2416 {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2417
2418 {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2419 D_BDW_PLUS, 0, 8, NULL},
2420
2421 {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2422 D_BDW_PLUS, 0, 8, NULL},
2423
2424 {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2425 D_ALL, 0, 8, NULL},
2426
2427 {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2428 D_BDW_PLUS, 0, 8, NULL},
2429
2430 {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2431 D_BDW_PLUS, 0, 8, NULL},
2432
2433 {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2434
2435 {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2436
2437 {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2438
2439 {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2440 D_ALL, 0, 8, NULL},
2441
2442 {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2443
2444 {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2445
2446 {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2447 R_RCS, D_ALL, 0, 8, NULL},
2448
2449 {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2450 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2451
2452 {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2453 0, 8, NULL},
2454
2455 {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2456 D_ALL, ADDR_FIX_1(2), 8, NULL},
2457
2458 {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2459 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460
2461 {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2462 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2463
2464 {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2465 D_ALL, 0, 8, NULL},
2466
2467 {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2468 D_ALL, 0, 8, NULL},
2469
2470 {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2471 D_ALL, 0, 8, NULL},
2472
2473 {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2474 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2475
2476 {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2477 D_BDW_PLUS, 0, 8, NULL},
2478
2479 {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2480 D_ALL, ADDR_FIX_1(2), 8, NULL},
2481
2482 {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2483 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2484
2485 {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2486 R_RCS, D_ALL, 0, 8, NULL},
2487
2488 {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2489 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2490
2491 {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2492 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2493
2494 {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2495 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2496
2497 {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2498 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2499
2500 {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2501 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2502
2503 {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2504 R_RCS, D_ALL, 0, 8, NULL},
2505
2506 {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2507 D_ALL, 0, 9, NULL},
2508
2509 {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2510 ADDR_FIX_2(2, 4), 8, NULL},
2511
2512 {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2513 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2514 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2515
2516 {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2517 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2518
2519 {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2520 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2521 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2522
2523 {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2524 D_BDW_PLUS, 0, 8, NULL},
2525
2526 {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2527 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2528
2529 {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2530
2531 {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2532 1, NULL},
2533
2534 {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2535 ADDR_FIX_1(1), 8, NULL},
2536
2537 {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2538
2539 {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2540 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2541
2542 {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2543 ADDR_FIX_1(1), 8, NULL},
2544
2545 {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2546 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2547
2548 {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2549
2550 {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2551
2552 {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2553 0, 8, NULL},
2554
2555 {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2556 D_SKL_PLUS, 0, 8, NULL},
2557
2558 {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2559 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2560
2561 {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2562 0, 16, NULL},
2563
2564 {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2565 0, 16, NULL},
2566
2567 {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2568 0, 16, NULL},
2569
2570 {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2571
2572 {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2573 0, 16, NULL},
2574
2575 {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2576 0, 16, NULL},
2577
2578 {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2579 0, 16, NULL},
2580
2581 {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2582 0, 8, NULL},
2583
2584 {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2585 NULL},
2586
2587 {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2588 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2589
2590 {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2591 R_VCS, D_ALL, 0, 12, NULL},
2592
2593 {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2594 R_VCS, D_ALL, 0, 12, NULL},
2595
2596 {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2597 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2598
2599 {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2600 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2601
2602 {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2603 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2604
2605 {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2606
2607 {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2608 R_VCS, D_ALL, 0, 12, NULL},
2609
2610 {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2611 R_VCS, D_ALL, 0, 12, NULL},
2612
2613 {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2614 R_VCS, D_ALL, 0, 12, NULL},
2615
2616 {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2617 R_VCS, D_ALL, 0, 12, NULL},
2618
2619 {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2620 R_VCS, D_ALL, 0, 12, NULL},
2621
2622 {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2623 R_VCS, D_ALL, 0, 12, NULL},
2624
2625 {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2626 R_VCS, D_ALL, 0, 6, NULL},
2627
2628 {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2629 R_VCS, D_ALL, 0, 12, NULL},
2630
2631 {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2632 R_VCS, D_ALL, 0, 12, NULL},
2633
2634 {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2635 R_VCS, D_ALL, 0, 12, NULL},
2636
2637 {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2638 R_VCS, D_ALL, 0, 12, NULL},
2639
2640 {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2641 R_VCS, D_ALL, 0, 12, NULL},
2642
2643 {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2644 R_VCS, D_ALL, 0, 12, NULL},
2645
2646 {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2647 R_VCS, D_ALL, 0, 12, NULL},
2648 {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2649 R_VCS, D_ALL, 0, 12, NULL},
2650
2651 {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2652 R_VCS, D_ALL, 0, 12, NULL},
2653
2654 {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2655 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2656
2657 {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2658 R_VCS, D_ALL, 0, 12, NULL},
2659
2660 {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2661 R_VCS, D_ALL, 0, 12, NULL},
2662
2663 {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2664 R_VCS, D_ALL, 0, 12, NULL},
2665
2666 {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2667 R_VCS, D_ALL, 0, 12, NULL},
2668
2669 {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2670 R_VCS, D_ALL, 0, 12, NULL},
2671
2672 {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2673 R_VCS, D_ALL, 0, 12, NULL},
2674
2675 {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2676 R_VCS, D_ALL, 0, 12, NULL},
2677
2678 {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2679 R_VCS, D_ALL, 0, 12, NULL},
2680
2681 {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2682 R_VCS, D_ALL, 0, 12, NULL},
2683
2684 {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2685 R_VCS, D_ALL, 0, 12, NULL},
2686
2687 {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2688 R_VCS, D_ALL, 0, 12, NULL},
2689
2690 {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2691 0, 16, NULL},
2692
2693 {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2694
2695 {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2696
2697 {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2698 R_VCS, D_ALL, 0, 12, NULL},
2699
2700 {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2701 R_VCS, D_ALL, 0, 12, NULL},
2702
2703 {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2704 R_VCS, D_ALL, 0, 12, NULL},
2705
2706 {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2707
2708 {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2709 0, 12, NULL},
2710
2711 {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2712 0, 12, NULL},
2713};
2714
2715static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2716{
2717 hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2718}
2719
2720/* call the cmd handler, and advance ip */
2721static int cmd_parser_exec(struct parser_exec_state *s)
2722{
2723 struct intel_vgpu *vgpu = s->vgpu;
2724 const struct cmd_info *info;
2725 u32 cmd;
2726 int ret = 0;
2727
2728 cmd = cmd_val(s, 0);
2729
2730 /* fastpath for MI_NOOP */
2731 if (cmd == MI_NOOP)
2732 info = &cmd_info[mi_noop_index];
2733 else
2734 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2735
2736 if (info == NULL) {
2737 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2738 cmd, get_opcode(cmd, s->engine),
2739 repr_addr_type(s->buf_addr_type),
2740 s->engine->name, s->workload);
2741 return -EBADRQC;
2742 }
2743
2744 s->info = info;
2745
2746 trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2747 cmd_length(s), s->buf_type, s->buf_addr_type,
2748 s->workload, info->name);
2749
2750 if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2751 ret = gvt_check_valid_cmd_length(cmd_length(s),
2752 info->valid_len);
2753 if (ret)
2754 return ret;
2755 }
2756
2757 if (info->handler) {
2758 ret = info->handler(s);
2759 if (ret < 0) {
2760 gvt_vgpu_err("%s handler error\n", info->name);
2761 return ret;
2762 }
2763 }
2764
2765 if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2766 ret = cmd_advance_default(s);
2767 if (ret) {
2768 gvt_vgpu_err("%s IP advance error\n", info->name);
2769 return ret;
2770 }
2771 }
2772 return 0;
2773}
2774
2775static inline bool gma_out_of_range(unsigned long gma,
2776 unsigned long gma_head, unsigned int gma_tail)
2777{
2778 if (gma_tail >= gma_head)
2779 return (gma < gma_head) || (gma > gma_tail);
2780 else
2781 return (gma > gma_tail) && (gma < gma_head);
2782}
2783
2784/* Keep the consistent return type, e.g EBADRQC for unknown
2785 * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2786 * works as the input of VM healthy status.
2787 */
2788static int command_scan(struct parser_exec_state *s,
2789 unsigned long rb_head, unsigned long rb_tail,
2790 unsigned long rb_start, unsigned long rb_len)
2791{
2792
2793 unsigned long gma_head, gma_tail, gma_bottom;
2794 int ret = 0;
2795 struct intel_vgpu *vgpu = s->vgpu;
2796
2797 gma_head = rb_start + rb_head;
2798 gma_tail = rb_start + rb_tail;
2799 gma_bottom = rb_start + rb_len;
2800
2801 while (s->ip_gma != gma_tail) {
2802 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2803 s->buf_type == RING_BUFFER_CTX) {
2804 if (!(s->ip_gma >= rb_start) ||
2805 !(s->ip_gma < gma_bottom)) {
2806 gvt_vgpu_err("ip_gma %lx out of ring scope."
2807 "(base:0x%lx, bottom: 0x%lx)\n",
2808 s->ip_gma, rb_start,
2809 gma_bottom);
2810 parser_exec_state_dump(s);
2811 return -EFAULT;
2812 }
2813 if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2814 gvt_vgpu_err("ip_gma %lx out of range."
2815 "base 0x%lx head 0x%lx tail 0x%lx\n",
2816 s->ip_gma, rb_start,
2817 rb_head, rb_tail);
2818 parser_exec_state_dump(s);
2819 break;
2820 }
2821 }
2822 ret = cmd_parser_exec(s);
2823 if (ret) {
2824 gvt_vgpu_err("cmd parser error\n");
2825 parser_exec_state_dump(s);
2826 break;
2827 }
2828 }
2829
2830 return ret;
2831}
2832
2833static int scan_workload(struct intel_vgpu_workload *workload)
2834{
2835 unsigned long gma_head, gma_tail, gma_bottom;
2836 struct parser_exec_state s;
2837 int ret = 0;
2838
2839 /* ring base is page aligned */
2840 if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2841 return -EINVAL;
2842
2843 gma_head = workload->rb_start + workload->rb_head;
2844 gma_tail = workload->rb_start + workload->rb_tail;
2845 gma_bottom = workload->rb_start + _RING_CTL_BUF_SIZE(workload->rb_ctl);
2846
2847 s.buf_type = RING_BUFFER_INSTRUCTION;
2848 s.buf_addr_type = GTT_BUFFER;
2849 s.vgpu = workload->vgpu;
2850 s.engine = workload->engine;
2851 s.ring_start = workload->rb_start;
2852 s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2853 s.ring_head = gma_head;
2854 s.ring_tail = gma_tail;
2855 s.rb_va = workload->shadow_ring_buffer_va;
2856 s.workload = workload;
2857 s.is_ctx_wa = false;
2858
2859 if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2860 return 0;
2861
2862 ret = ip_gma_set(&s, gma_head);
2863 if (ret)
2864 goto out;
2865
2866 ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2867 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2868
2869out:
2870 return ret;
2871}
2872
2873static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2874{
2875
2876 unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2877 struct parser_exec_state s;
2878 int ret = 0;
2879 struct intel_vgpu_workload *workload = container_of(wa_ctx,
2880 struct intel_vgpu_workload,
2881 wa_ctx);
2882
2883 /* ring base is page aligned */
2884 if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2885 I915_GTT_PAGE_SIZE)))
2886 return -EINVAL;
2887
2888 ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2889 ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2890 PAGE_SIZE);
2891 gma_head = wa_ctx->indirect_ctx.guest_gma;
2892 gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2893 gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2894
2895 s.buf_type = RING_BUFFER_INSTRUCTION;
2896 s.buf_addr_type = GTT_BUFFER;
2897 s.vgpu = workload->vgpu;
2898 s.engine = workload->engine;
2899 s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2900 s.ring_size = ring_size;
2901 s.ring_head = gma_head;
2902 s.ring_tail = gma_tail;
2903 s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2904 s.workload = workload;
2905 s.is_ctx_wa = true;
2906
2907 ret = ip_gma_set(&s, gma_head);
2908 if (ret)
2909 goto out;
2910
2911 ret = command_scan(&s, 0, ring_tail,
2912 wa_ctx->indirect_ctx.guest_gma, ring_size);
2913out:
2914 return ret;
2915}
2916
2917static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2918{
2919 struct intel_vgpu *vgpu = workload->vgpu;
2920 struct intel_vgpu_submission *s = &vgpu->submission;
2921 unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2922 void *shadow_ring_buffer_va;
2923 int ret;
2924
2925 guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2926
2927 /* calculate workload ring buffer size */
2928 workload->rb_len = (workload->rb_tail + guest_rb_size -
2929 workload->rb_head) % guest_rb_size;
2930
2931 gma_head = workload->rb_start + workload->rb_head;
2932 gma_tail = workload->rb_start + workload->rb_tail;
2933 gma_top = workload->rb_start + guest_rb_size;
2934
2935 if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2936 void *p;
2937
2938 /* realloc the new ring buffer if needed */
2939 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2940 workload->rb_len, GFP_KERNEL);
2941 if (!p) {
2942 gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2943 return -ENOMEM;
2944 }
2945 s->ring_scan_buffer[workload->engine->id] = p;
2946 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2947 }
2948
2949 shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2950
2951 /* get shadow ring buffer va */
2952 workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2953
2954 /* head > tail --> copy head <-> top */
2955 if (gma_head > gma_tail) {
2956 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2957 gma_head, gma_top, shadow_ring_buffer_va);
2958 if (ret < 0) {
2959 gvt_vgpu_err("fail to copy guest ring buffer\n");
2960 return ret;
2961 }
2962 shadow_ring_buffer_va += ret;
2963 gma_head = workload->rb_start;
2964 }
2965
2966 /* copy head or start <-> tail */
2967 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2968 shadow_ring_buffer_va);
2969 if (ret < 0) {
2970 gvt_vgpu_err("fail to copy guest ring buffer\n");
2971 return ret;
2972 }
2973 return 0;
2974}
2975
2976int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2977{
2978 int ret;
2979 struct intel_vgpu *vgpu = workload->vgpu;
2980
2981 ret = shadow_workload_ring_buffer(workload);
2982 if (ret) {
2983 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2984 return ret;
2985 }
2986
2987 ret = scan_workload(workload);
2988 if (ret) {
2989 gvt_vgpu_err("scan workload error\n");
2990 return ret;
2991 }
2992 return 0;
2993}
2994
2995static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2996{
2997 int ctx_size = wa_ctx->indirect_ctx.size;
2998 unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2999 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3000 struct intel_vgpu_workload,
3001 wa_ctx);
3002 struct intel_vgpu *vgpu = workload->vgpu;
3003 struct drm_i915_gem_object *obj;
3004 int ret = 0;
3005 void *map;
3006
3007 obj = i915_gem_object_create_shmem(workload->engine->i915,
3008 roundup(ctx_size + CACHELINE_BYTES,
3009 PAGE_SIZE));
3010 if (IS_ERR(obj))
3011 return PTR_ERR(obj);
3012
3013 /* get the va of the shadow batch buffer */
3014 map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3015 if (IS_ERR(map)) {
3016 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3017 ret = PTR_ERR(map);
3018 goto put_obj;
3019 }
3020
3021 i915_gem_object_lock(obj, NULL);
3022 ret = i915_gem_object_set_to_cpu_domain(obj, false);
3023 i915_gem_object_unlock(obj);
3024 if (ret) {
3025 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3026 goto unmap_src;
3027 }
3028
3029 ret = copy_gma_to_hva(workload->vgpu,
3030 workload->vgpu->gtt.ggtt_mm,
3031 guest_gma, guest_gma + ctx_size,
3032 map);
3033 if (ret < 0) {
3034 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3035 goto unmap_src;
3036 }
3037
3038 wa_ctx->indirect_ctx.obj = obj;
3039 wa_ctx->indirect_ctx.shadow_va = map;
3040 return 0;
3041
3042unmap_src:
3043 i915_gem_object_unpin_map(obj);
3044put_obj:
3045 i915_gem_object_put(obj);
3046 return ret;
3047}
3048
3049static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3050{
3051 u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3052 unsigned char *bb_start_sva;
3053
3054 if (!wa_ctx->per_ctx.valid)
3055 return 0;
3056
3057 per_ctx_start[0] = 0x18800001;
3058 per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3059
3060 bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3061 wa_ctx->indirect_ctx.size;
3062
3063 memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3064
3065 return 0;
3066}
3067
3068int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3069{
3070 int ret;
3071 struct intel_vgpu_workload *workload = container_of(wa_ctx,
3072 struct intel_vgpu_workload,
3073 wa_ctx);
3074 struct intel_vgpu *vgpu = workload->vgpu;
3075
3076 if (wa_ctx->indirect_ctx.size == 0)
3077 return 0;
3078
3079 ret = shadow_indirect_ctx(wa_ctx);
3080 if (ret) {
3081 gvt_vgpu_err("fail to shadow indirect ctx\n");
3082 return ret;
3083 }
3084
3085 combine_wa_ctx(wa_ctx);
3086
3087 ret = scan_wa_ctx(wa_ctx);
3088 if (ret) {
3089 gvt_vgpu_err("scan wa ctx error\n");
3090 return ret;
3091 }
3092
3093 return 0;
3094}
3095
3096/* generate dummy contexts by sending empty requests to HW, and let
3097 * the HW to fill Engine Contexts. This dummy contexts are used for
3098 * initialization purpose (update reg whitelist), so referred to as
3099 * init context here
3100 */
3101void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3102{
3103 const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3104 struct intel_gvt *gvt = vgpu->gvt;
3105 struct intel_engine_cs *engine;
3106 enum intel_engine_id id;
3107
3108 if (gvt->is_reg_whitelist_updated)
3109 return;
3110
3111 /* scan init ctx to update cmd accessible list */
3112 for_each_engine(engine, gvt->gt, id) {
3113 struct parser_exec_state s;
3114 void *vaddr;
3115 int ret;
3116
3117 if (!engine->default_state)
3118 continue;
3119
3120 vaddr = shmem_pin_map(engine->default_state);
3121 if (!vaddr) {
3122 gvt_err("failed to map %s->default state\n",
3123 engine->name);
3124 return;
3125 }
3126
3127 s.buf_type = RING_BUFFER_CTX;
3128 s.buf_addr_type = GTT_BUFFER;
3129 s.vgpu = vgpu;
3130 s.engine = engine;
3131 s.ring_start = 0;
3132 s.ring_size = engine->context_size - start;
3133 s.ring_head = 0;
3134 s.ring_tail = s.ring_size;
3135 s.rb_va = vaddr + start;
3136 s.workload = NULL;
3137 s.is_ctx_wa = false;
3138 s.is_init_ctx = true;
3139
3140 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3141 ret = ip_gma_set(&s, RING_CTX_SIZE);
3142 if (ret == 0) {
3143 ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3144 if (ret)
3145 gvt_err("Scan init ctx error\n");
3146 }
3147
3148 shmem_unpin_map(engine->default_state, vaddr);
3149 if (ret)
3150 return;
3151 }
3152
3153 gvt->is_reg_whitelist_updated = true;
3154}
3155
3156int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3157{
3158 struct intel_vgpu *vgpu = workload->vgpu;
3159 unsigned long gma_head, gma_tail, gma_start, ctx_size;
3160 struct parser_exec_state s;
3161 int ring_id = workload->engine->id;
3162 struct intel_context *ce = vgpu->submission.shadow[ring_id];
3163 int ret;
3164
3165 GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3166
3167 ctx_size = workload->engine->context_size - PAGE_SIZE;
3168
3169 /* Only ring contxt is loaded to HW for inhibit context, no need to
3170 * scan engine context
3171 */
3172 if (is_inhibit_context(ce))
3173 return 0;
3174
3175 gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3176 gma_head = 0;
3177 gma_tail = ctx_size;
3178
3179 s.buf_type = RING_BUFFER_CTX;
3180 s.buf_addr_type = GTT_BUFFER;
3181 s.vgpu = workload->vgpu;
3182 s.engine = workload->engine;
3183 s.ring_start = gma_start;
3184 s.ring_size = ctx_size;
3185 s.ring_head = gma_start + gma_head;
3186 s.ring_tail = gma_start + gma_tail;
3187 s.rb_va = ce->lrc_reg_state;
3188 s.workload = workload;
3189 s.is_ctx_wa = false;
3190 s.is_init_ctx = false;
3191
3192 /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3193 * context
3194 */
3195 ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3196 if (ret)
3197 goto out;
3198
3199 ret = command_scan(&s, gma_head, gma_tail,
3200 gma_start, ctx_size);
3201out:
3202 if (ret)
3203 gvt_vgpu_err("scan shadow ctx error\n");
3204
3205 return ret;
3206}
3207
3208static int init_cmd_table(struct intel_gvt *gvt)
3209{
3210 unsigned int gen_type = intel_gvt_get_device_type(gvt);
3211 int i;
3212
3213 for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3214 struct cmd_entry *e;
3215
3216 if (!(cmd_info[i].devices & gen_type))
3217 continue;
3218
3219 e = kzalloc(sizeof(*e), GFP_KERNEL);
3220 if (!e)
3221 return -ENOMEM;
3222
3223 e->info = &cmd_info[i];
3224 if (cmd_info[i].opcode == OP_MI_NOOP)
3225 mi_noop_index = i;
3226
3227 INIT_HLIST_NODE(&e->hlist);
3228 add_cmd_entry(gvt, e);
3229 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3230 e->info->name, e->info->opcode, e->info->flag,
3231 e->info->devices, e->info->rings);
3232 }
3233
3234 return 0;
3235}
3236
3237static void clean_cmd_table(struct intel_gvt *gvt)
3238{
3239 struct hlist_node *tmp;
3240 struct cmd_entry *e;
3241 int i;
3242
3243 hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3244 kfree(e);
3245
3246 hash_init(gvt->cmd_table);
3247}
3248
3249void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3250{
3251 clean_cmd_table(gvt);
3252}
3253
3254int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3255{
3256 int ret;
3257
3258 ret = init_cmd_table(gvt);
3259 if (ret) {
3260 intel_gvt_clean_cmd_parser(gvt);
3261 return ret;
3262 }
3263 return 0;
3264}