Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2014-2019 Intel Corporation
  4 */
  5
  6#include "gem/i915_gem_lmem.h"
  7#include "gt/intel_gt.h"
  8#include "gt/intel_gt_irq.h"
  9#include "gt/intel_gt_pm_irq.h"
 10#include "gt/intel_gt_regs.h"
 11#include "intel_guc.h"
 12#include "intel_guc_ads.h"
 13#include "intel_guc_capture.h"
 14#include "intel_guc_slpc.h"
 15#include "intel_guc_submission.h"
 16#include "i915_drv.h"
 17#include "i915_irq.h"
 18
 19/**
 20 * DOC: GuC
 21 *
 22 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
 23 * designed to offload some of the functionality usually performed by the host
 24 * driver; currently the main operations it can take care of are:
 25 *
 26 * - Authentication of the HuC, which is required to fully enable HuC usage.
 27 * - Low latency graphics context scheduling (a.k.a. GuC submission).
 28 * - GT Power management.
 29 *
 30 * The enable_guc module parameter can be used to select which of those
 31 * operations to enable within GuC. Note that not all the operations are
 32 * supported on all gen9+ platforms.
 33 *
 34 * Enabling the GuC is not mandatory and therefore the firmware is only loaded
 35 * if at least one of the operations is selected. However, not loading the GuC
 36 * might result in the loss of some features that do require the GuC (currently
 37 * just the HuC, but more are expected to land in the future).
 38 */
 39
 40void intel_guc_notify(struct intel_guc *guc)
 41{
 42	struct intel_gt *gt = guc_to_gt(guc);
 43
 44	/*
 45	 * On Gen11+, the value written to the register is passes as a payload
 46	 * to the FW. However, the FW currently treats all values the same way
 47	 * (H2G interrupt), so we can just write the value that the HW expects
 48	 * on older gens.
 49	 */
 50	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
 51}
 52
 53static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
 54{
 55	GEM_BUG_ON(!guc->send_regs.base);
 56	GEM_BUG_ON(!guc->send_regs.count);
 57	GEM_BUG_ON(i >= guc->send_regs.count);
 58
 59	return _MMIO(guc->send_regs.base + 4 * i);
 60}
 61
 62void intel_guc_init_send_regs(struct intel_guc *guc)
 63{
 64	struct intel_gt *gt = guc_to_gt(guc);
 65	enum forcewake_domains fw_domains = 0;
 66	unsigned int i;
 67
 68	GEM_BUG_ON(!guc->send_regs.base);
 69	GEM_BUG_ON(!guc->send_regs.count);
 70
 71	for (i = 0; i < guc->send_regs.count; i++) {
 72		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
 73					guc_send_reg(guc, i),
 74					FW_REG_READ | FW_REG_WRITE);
 75	}
 76	guc->send_regs.fw_domains = fw_domains;
 77}
 78
 79static void gen9_reset_guc_interrupts(struct intel_guc *guc)
 80{
 81	struct intel_gt *gt = guc_to_gt(guc);
 82
 83	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 84
 85	spin_lock_irq(gt->irq_lock);
 86	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 87	spin_unlock_irq(gt->irq_lock);
 88}
 89
 90static void gen9_enable_guc_interrupts(struct intel_guc *guc)
 91{
 92	struct intel_gt *gt = guc_to_gt(guc);
 93
 94	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 95
 96	spin_lock_irq(gt->irq_lock);
 97	WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
 98		     gt->pm_guc_events);
 99	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
100	spin_unlock_irq(gt->irq_lock);
101
102	guc->interrupts.enabled = true;
103}
104
105static void gen9_disable_guc_interrupts(struct intel_guc *guc)
106{
107	struct intel_gt *gt = guc_to_gt(guc);
108
109	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
110	guc->interrupts.enabled = false;
111
112	spin_lock_irq(gt->irq_lock);
113
114	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
115
116	spin_unlock_irq(gt->irq_lock);
117	intel_synchronize_irq(gt->i915);
118
119	gen9_reset_guc_interrupts(guc);
120}
121
122static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
123{
124	u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
125
126	lockdep_assert_held(gt->irq_lock);
127	return gen11_gt_reset_one_iir(gt, 0, irq);
128}
129
130static void gen11_reset_guc_interrupts(struct intel_guc *guc)
131{
132	struct intel_gt *gt = guc_to_gt(guc);
133
134	spin_lock_irq(gt->irq_lock);
135	__gen11_reset_guc_interrupts(gt);
136	spin_unlock_irq(gt->irq_lock);
137}
138
139static void gen11_enable_guc_interrupts(struct intel_guc *guc)
140{
141	struct intel_gt *gt = guc_to_gt(guc);
142
143	spin_lock_irq(gt->irq_lock);
144	__gen11_reset_guc_interrupts(gt);
145	spin_unlock_irq(gt->irq_lock);
146
147	guc->interrupts.enabled = true;
148}
149
150static void gen11_disable_guc_interrupts(struct intel_guc *guc)
151{
152	struct intel_gt *gt = guc_to_gt(guc);
153
154	guc->interrupts.enabled = false;
155	intel_synchronize_irq(gt->i915);
156
157	gen11_reset_guc_interrupts(guc);
158}
159
160void intel_guc_init_early(struct intel_guc *guc)
161{
162	struct intel_gt *gt = guc_to_gt(guc);
163	struct drm_i915_private *i915 = gt->i915;
164
165	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
166	intel_guc_ct_init_early(&guc->ct);
167	intel_guc_log_init_early(&guc->log);
168	intel_guc_submission_init_early(guc);
169	intel_guc_slpc_init_early(&guc->slpc);
170	intel_guc_rc_init_early(guc);
171
172	mutex_init(&guc->send_mutex);
173	spin_lock_init(&guc->irq_lock);
174	if (GRAPHICS_VER(i915) >= 11) {
175		guc->interrupts.reset = gen11_reset_guc_interrupts;
176		guc->interrupts.enable = gen11_enable_guc_interrupts;
177		guc->interrupts.disable = gen11_disable_guc_interrupts;
178		if (gt->type == GT_MEDIA) {
179			guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
180			guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
181		} else {
182			guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
183			guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
184		}
185
186		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
187
188	} else {
189		guc->notify_reg = GUC_SEND_INTERRUPT;
190		guc->interrupts.reset = gen9_reset_guc_interrupts;
191		guc->interrupts.enable = gen9_enable_guc_interrupts;
192		guc->interrupts.disable = gen9_disable_guc_interrupts;
193		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
194		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
195		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
196	}
197
198	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
199				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
200}
201
202void intel_guc_init_late(struct intel_guc *guc)
203{
204	intel_guc_ads_init_late(guc);
205}
206
207static u32 guc_ctl_debug_flags(struct intel_guc *guc)
208{
209	u32 level = intel_guc_log_get_level(&guc->log);
210	u32 flags = 0;
211
212	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
213		flags |= GUC_LOG_DISABLED;
214	else
215		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
216			 GUC_LOG_VERBOSITY_SHIFT;
217
218	return flags;
219}
220
221static u32 guc_ctl_feature_flags(struct intel_guc *guc)
222{
223	u32 flags = 0;
224
225	if (!intel_guc_submission_is_used(guc))
226		flags |= GUC_CTL_DISABLE_SCHEDULER;
227
228	if (intel_guc_slpc_is_used(guc))
229		flags |= GUC_CTL_ENABLE_SLPC;
230
231	return flags;
232}
233
234static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
235{
236	struct intel_guc_log *log = &guc->log;
237	u32 offset, flags;
238
239	GEM_BUG_ON(!log->sizes_initialised);
240
241	offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
242
243	flags = GUC_LOG_VALID |
244		GUC_LOG_NOTIFY_ON_HALF_FULL |
245		log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
246		log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
247		(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
248		(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
249		(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
250		(offset << GUC_LOG_BUF_ADDR_SHIFT);
251
252	return flags;
253}
254
255static u32 guc_ctl_ads_flags(struct intel_guc *guc)
256{
257	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
258	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
259
260	return flags;
261}
262
263static u32 guc_ctl_wa_flags(struct intel_guc *guc)
264{
265	struct intel_gt *gt = guc_to_gt(guc);
266	u32 flags = 0;
267
268	/* Wa_22012773006:gen11,gen12 < XeHP */
269	if (GRAPHICS_VER(gt->i915) >= 11 &&
270	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
271		flags |= GUC_WA_POLLCS;
272
273	/* Wa_16011759253:dg2_g10:a0 */
274	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
275		flags |= GUC_WA_GAM_CREDITS;
276
277	/* Wa_14014475959:dg2 */
278	if (IS_DG2(gt->i915))
279		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
280
281	/*
282	 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
283	 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
284	 *
285	 * The same WA bit is used for both and 22011391025 is applicable to
286	 * all DG2.
287	 */
288	if (IS_DG2(gt->i915))
289		flags |= GUC_WA_DUAL_QUEUE;
290
291	/* Wa_22011802037: graphics version 11/12 */
292	if (IS_GRAPHICS_VER(gt->i915, 11, 12))
293		flags |= GUC_WA_PRE_PARSER;
294
295	/* Wa_16011777198:dg2 */
296	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
297	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
298		flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
299
300	/*
301	 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
302	 * Wa_22012727685:dg2_g11[a0..)
303	 */
304	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
305	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
306		flags |= GUC_WA_CONTEXT_ISOLATION;
307
308	/* Wa_16015675438 */
309	if (!RCS_MASK(gt))
310		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
311
312	return flags;
313}
314
315static u32 guc_ctl_devid(struct intel_guc *guc)
316{
317	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
318
319	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
320}
321
322/*
323 * Initialise the GuC parameter block before starting the firmware
324 * transfer. These parameters are read by the firmware on startup
325 * and cannot be changed thereafter.
326 */
327static void guc_init_params(struct intel_guc *guc)
328{
329	u32 *params = guc->params;
330	int i;
331
332	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
333
334	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
335	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
336	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
337	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
338	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
339	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
340
341	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
342		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
343}
344
345/*
346 * Initialise the GuC parameter block before starting the firmware
347 * transfer. These parameters are read by the firmware on startup
348 * and cannot be changed thereafter.
349 */
350void intel_guc_write_params(struct intel_guc *guc)
351{
352	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
353	int i;
354
355	/*
356	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
357	 * they are power context saved so it's ok to release forcewake
358	 * when we are done here and take it again at xfer time.
359	 */
360	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
361
362	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
363
364	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
365		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
366
367	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
368}
369
370void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
371{
372	struct intel_gt *gt = guc_to_gt(guc);
373	intel_wakeref_t wakeref;
374	u32 stamp = 0;
375	u64 ktime;
376
377	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
378		stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
379	ktime = ktime_get_boottime_ns();
380
381	drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
382	drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
383	drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
384		   gt->clock_frequency, gt->clock_period_ns);
385}
386
387int intel_guc_init(struct intel_guc *guc)
388{
389	struct intel_gt *gt = guc_to_gt(guc);
390	int ret;
391
392	ret = intel_uc_fw_init(&guc->fw);
393	if (ret)
394		goto out;
395
396	ret = intel_guc_log_create(&guc->log);
397	if (ret)
398		goto err_fw;
399
400	ret = intel_guc_capture_init(guc);
401	if (ret)
402		goto err_log;
403
404	ret = intel_guc_ads_create(guc);
405	if (ret)
406		goto err_capture;
407
408	GEM_BUG_ON(!guc->ads_vma);
409
410	ret = intel_guc_ct_init(&guc->ct);
411	if (ret)
412		goto err_ads;
413
414	if (intel_guc_submission_is_used(guc)) {
415		/*
416		 * This is stuff we need to have available at fw load time
417		 * if we are planning to enable submission later
418		 */
419		ret = intel_guc_submission_init(guc);
420		if (ret)
421			goto err_ct;
422	}
423
424	if (intel_guc_slpc_is_used(guc)) {
425		ret = intel_guc_slpc_init(&guc->slpc);
426		if (ret)
427			goto err_submission;
428	}
429
430	/* now that everything is perma-pinned, initialize the parameters */
431	guc_init_params(guc);
432
433	/* We need to notify the guc whenever we change the GGTT */
434	i915_ggtt_enable_guc(gt->ggtt);
435
436	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
437
438	return 0;
439
440err_submission:
441	intel_guc_submission_fini(guc);
442err_ct:
443	intel_guc_ct_fini(&guc->ct);
444err_ads:
445	intel_guc_ads_destroy(guc);
446err_capture:
447	intel_guc_capture_destroy(guc);
448err_log:
449	intel_guc_log_destroy(&guc->log);
450err_fw:
451	intel_uc_fw_fini(&guc->fw);
452out:
453	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
454	i915_probe_error(gt->i915, "failed with %d\n", ret);
455	return ret;
456}
457
458void intel_guc_fini(struct intel_guc *guc)
459{
460	struct intel_gt *gt = guc_to_gt(guc);
461
462	if (!intel_uc_fw_is_loadable(&guc->fw))
463		return;
464
465	i915_ggtt_disable_guc(gt->ggtt);
466
467	if (intel_guc_slpc_is_used(guc))
468		intel_guc_slpc_fini(&guc->slpc);
469
470	if (intel_guc_submission_is_used(guc))
471		intel_guc_submission_fini(guc);
472
473	intel_guc_ct_fini(&guc->ct);
474
475	intel_guc_ads_destroy(guc);
476	intel_guc_capture_destroy(guc);
477	intel_guc_log_destroy(&guc->log);
478	intel_uc_fw_fini(&guc->fw);
479}
480
481/*
482 * This function implements the MMIO based host to GuC interface.
483 */
484int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
485			u32 *response_buf, u32 response_buf_size)
486{
487	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
488	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
489	u32 header;
490	int i;
491	int ret;
492
493	GEM_BUG_ON(!len);
494	GEM_BUG_ON(len > guc->send_regs.count);
495
496	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
497	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
498
499	mutex_lock(&guc->send_mutex);
500	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
501
502retry:
503	for (i = 0; i < len; i++)
504		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
505
506	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
507
508	intel_guc_notify(guc);
509
510	/*
511	 * No GuC command should ever take longer than 10ms.
512	 * Fast commands should still complete in 10us.
513	 */
514	ret = __intel_wait_for_register_fw(uncore,
515					   guc_send_reg(guc, 0),
516					   GUC_HXG_MSG_0_ORIGIN,
517					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
518						      GUC_HXG_ORIGIN_GUC),
519					   10, 10, &header);
520	if (unlikely(ret)) {
521timeout:
522		drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
523			request[0], header);
524		goto out;
525	}
526
527	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
528#define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
529		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
530		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
531
532		ret = wait_for(done, 1000);
533		if (unlikely(ret))
534			goto timeout;
535		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
536				       GUC_HXG_ORIGIN_GUC))
537			goto proto;
538#undef done
539	}
540
541	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
542		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
543
544		drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
545			request[0], reason);
546		goto retry;
547	}
548
549	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
550		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
551		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
552
553		drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
554			request[0], error, hint);
555		ret = -ENXIO;
556		goto out;
557	}
558
559	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
560proto:
561		drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
562			request[0], header);
563		ret = -EPROTO;
564		goto out;
565	}
566
567	if (response_buf) {
568		int count = min(response_buf_size, guc->send_regs.count);
569
570		GEM_BUG_ON(!count);
571
572		response_buf[0] = header;
573
574		for (i = 1; i < count; i++)
575			response_buf[i] = intel_uncore_read(uncore,
576							    guc_send_reg(guc, i));
577
578		/* Use number of copied dwords as our return value */
579		ret = count;
580	} else {
581		/* Use data from the GuC response as our return value */
582		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
583	}
584
585out:
586	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
587	mutex_unlock(&guc->send_mutex);
588
589	return ret;
590}
591
592int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
593				       const u32 *payload, u32 len)
594{
595	u32 msg;
596
597	if (unlikely(!len))
598		return -EPROTO;
599
600	/* Make sure to handle only enabled messages */
601	msg = payload[0] & guc->msg_enabled_mask;
602
603	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
604		drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n");
605	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
606		drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n");
607
608	return 0;
609}
610
611/**
612 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
613 * @guc: intel_guc structure
614 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
615 *
616 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
617 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
618 * intel_huc_auth().
619 *
620 * Return:	non-zero code on error
621 */
622int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
623{
624	u32 action[] = {
625		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
626		rsa_offset
627	};
628
629	return intel_guc_send(guc, action, ARRAY_SIZE(action));
630}
631
632/**
633 * intel_guc_suspend() - notify GuC entering suspend state
634 * @guc:	the guc
635 */
636int intel_guc_suspend(struct intel_guc *guc)
637{
638	int ret;
639	u32 action[] = {
640		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
641	};
642
643	if (!intel_guc_is_ready(guc))
644		return 0;
645
646	if (intel_guc_submission_is_used(guc)) {
647		/*
648		 * This H2G MMIO command tears down the GuC in two steps. First it will
649		 * generate a G2H CTB for every active context indicating a reset. In
650		 * practice the i915 shouldn't ever get a G2H as suspend should only be
651		 * called when the GPU is idle. Next, it tears down the CTBs and this
652		 * H2G MMIO command completes.
653		 *
654		 * Don't abort on a failure code from the GuC. Keep going and do the
655		 * clean up in santize() and re-initialisation on resume and hopefully
656		 * the error here won't be problematic.
657		 */
658		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
659		if (ret)
660			DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
661	}
662
663	/* Signal that the GuC isn't running. */
664	intel_guc_sanitize(guc);
665
666	return 0;
667}
668
669/**
670 * intel_guc_resume() - notify GuC resuming from suspend state
671 * @guc:	the guc
672 */
673int intel_guc_resume(struct intel_guc *guc)
674{
675	/*
676	 * NB: This function can still be called even if GuC submission is
677	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
678	 * if any code is later added here, it must be support doing nothing
679	 * if submission is disabled (as per intel_guc_suspend).
680	 */
681	return 0;
682}
683
684/**
685 * DOC: GuC Memory Management
686 *
687 * GuC can't allocate any memory for its own usage, so all the allocations must
688 * be handled by the host driver. GuC accesses the memory via the GGTT, with the
689 * exception of the top and bottom parts of the 4GB address space, which are
690 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
691 * or other parts of the HW. The driver must take care not to place objects that
692 * the GuC is going to access in these reserved ranges. The layout of the GuC
693 * address space is shown below:
694 *
695 * ::
696 *
697 *     +===========> +====================+ <== FFFF_FFFF
698 *     ^             |      Reserved      |
699 *     |             +====================+ <== GUC_GGTT_TOP
700 *     |             |                    |
701 *     |             |        DRAM        |
702 *    GuC            |                    |
703 *  Address    +===> +====================+ <== GuC ggtt_pin_bias
704 *   Space     ^     |                    |
705 *     |       |     |                    |
706 *     |      GuC    |        GuC         |
707 *     |     WOPCM   |       WOPCM        |
708 *     |      Size   |                    |
709 *     |       |     |                    |
710 *     v       v     |                    |
711 *     +=======+===> +====================+ <== 0000_0000
712 *
713 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
714 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
715 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
716 */
717
718/**
719 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
720 * @guc:	the guc
721 * @size:	size of area to allocate (both virtual space and memory)
722 *
723 * This is a wrapper to create an object for use with the GuC. In order to
724 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
725 * both some backing storage and a range inside the Global GTT. We must pin
726 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
727 * range is reserved inside GuC.
728 *
729 * Return:	A i915_vma if successful, otherwise an ERR_PTR.
730 */
731struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
732{
733	struct intel_gt *gt = guc_to_gt(guc);
734	struct drm_i915_gem_object *obj;
735	struct i915_vma *vma;
736	u64 flags;
737	int ret;
738
739	if (HAS_LMEM(gt->i915))
740		obj = i915_gem_object_create_lmem(gt->i915, size,
741						  I915_BO_ALLOC_CPU_CLEAR |
742						  I915_BO_ALLOC_CONTIGUOUS |
743						  I915_BO_ALLOC_PM_EARLY);
744	else
745		obj = i915_gem_object_create_shmem(gt->i915, size);
746
747	if (IS_ERR(obj))
748		return ERR_CAST(obj);
749
750	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
751	if (IS_ERR(vma))
752		goto err;
753
754	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
755	ret = i915_ggtt_pin(vma, NULL, 0, flags);
756	if (ret) {
757		vma = ERR_PTR(ret);
758		goto err;
759	}
760
761	return i915_vma_make_unshrinkable(vma);
762
763err:
764	i915_gem_object_put(obj);
765	return vma;
766}
767
768/**
769 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
770 * @guc:	the guc
771 * @size:	size of area to allocate (both virtual space and memory)
772 * @out_vma:	return variable for the allocated vma pointer
773 * @out_vaddr:	return variable for the obj mapping
774 *
775 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
776 * object with I915_MAP_WB.
777 *
778 * Return:	0 if successful, a negative errno code otherwise.
779 */
780int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
781				   struct i915_vma **out_vma, void **out_vaddr)
782{
783	struct i915_vma *vma;
784	void *vaddr;
785
786	vma = intel_guc_allocate_vma(guc, size);
787	if (IS_ERR(vma))
788		return PTR_ERR(vma);
789
790	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
791						 i915_coherent_map_type(guc_to_gt(guc)->i915,
792									vma->obj, true));
793	if (IS_ERR(vaddr)) {
794		i915_vma_unpin_and_release(&vma, 0);
795		return PTR_ERR(vaddr);
796	}
797
798	*out_vma = vma;
799	*out_vaddr = vaddr;
800
801	return 0;
802}
803
804static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
805{
806	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
807		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
808		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
809		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
810		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
811		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
812		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
813		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
814	};
815	int ret;
816
817	GEM_BUG_ON(len > 2);
818	GEM_BUG_ON(len == 1 && upper_32_bits(value));
819
820	/* Self config must go over MMIO */
821	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
822
823	if (unlikely(ret < 0))
824		return ret;
825	if (unlikely(ret > 1))
826		return -EPROTO;
827	if (unlikely(!ret))
828		return -ENOKEY;
829
830	return 0;
831}
832
833static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
834{
835	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
836	int err = __guc_action_self_cfg(guc, key, len, value);
837
838	if (unlikely(err))
839		i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
840				 ERR_PTR(err), key, value);
841	return err;
842}
843
844int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
845{
846	return __guc_self_cfg(guc, key, 1, value);
847}
848
849int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
850{
851	return __guc_self_cfg(guc, key, 2, value);
852}
853
854/**
855 * intel_guc_load_status - dump information about GuC load status
856 * @guc: the GuC
857 * @p: the &drm_printer
858 *
859 * Pretty printer for GuC load status.
860 */
861void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
862{
863	struct intel_gt *gt = guc_to_gt(guc);
864	struct intel_uncore *uncore = gt->uncore;
865	intel_wakeref_t wakeref;
866
867	if (!intel_guc_is_supported(guc)) {
868		drm_printf(p, "GuC not supported\n");
869		return;
870	}
871
872	if (!intel_guc_is_wanted(guc)) {
873		drm_printf(p, "GuC disabled\n");
874		return;
875	}
876
877	intel_uc_fw_dump(&guc->fw, p);
878
879	with_intel_runtime_pm(uncore->rpm, wakeref) {
880		u32 status = intel_uncore_read(uncore, GUC_STATUS);
881		u32 i;
882
883		drm_printf(p, "GuC status 0x%08x:\n", status);
884		drm_printf(p, "\tBootrom status = 0x%x\n",
885			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
886		drm_printf(p, "\tuKernel status = 0x%x\n",
887			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
888		drm_printf(p, "\tMIA Core status = 0x%x\n",
889			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
890		drm_puts(p, "Scratch registers:\n");
891		for (i = 0; i < 16; i++) {
892			drm_printf(p, "\t%2d: \t0x%x\n",
893				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
894		}
895	}
896}
897
898void intel_guc_write_barrier(struct intel_guc *guc)
899{
900	struct intel_gt *gt = guc_to_gt(guc);
901
902	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
903		/*
904		 * Ensure intel_uncore_write_fw can be used rather than
905		 * intel_uncore_write.
906		 */
907		GEM_BUG_ON(guc->send_regs.fw_domains);
908
909		/*
910		 * This register is used by the i915 and GuC for MMIO based
911		 * communication. Once we are in this code CTBs are the only
912		 * method the i915 uses to communicate with the GuC so it is
913		 * safe to write to this register (a value of 0 is NOP for MMIO
914		 * communication). If we ever start mixing CTBs and MMIOs a new
915		 * register will have to be chosen. This function is also used
916		 * to enforce ordering of a work queue item write and an update
917		 * to the process descriptor. When a work queue is being used,
918		 * CTBs are also the only mechanism of communication.
919		 */
920		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
921	} else {
922		/* wmb() sufficient for a barrier if in smem */
923		wmb();
924	}
925}