Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2022 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7
  8#include "intel_gt_mcr.h"
  9#include "intel_gt_regs.h"
 10
 11/**
 12 * DOC: GT Multicast/Replicated (MCR) Register Support
 13 *
 14 * Some GT registers are designed as "multicast" or "replicated" registers:
 15 * multiple instances of the same register share a single MMIO offset.  MCR
 16 * registers are generally used when the hardware needs to potentially track
 17 * independent values of a register per hardware unit (e.g., per-subslice,
 18 * per-L3bank, etc.).  The specific types of replication that exist vary
 19 * per-platform.
 20 *
 21 * MMIO accesses to MCR registers are controlled according to the settings
 22 * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
 23 * registers can be done in either a (i.e., a single write updates all
 24 * instances of the register to the same value) or unicast (a write updates only
 25 * one specific instance).  Reads of MCR registers always operate in a unicast
 26 * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
 27 * Selection of a specific MCR instance for unicast operations is referred to
 28 * as "steering."
 29 *
 30 * If MCR register operations are steered toward a hardware unit that is
 31 * fused off or currently powered down due to power gating, the MMIO operation
 32 * is "terminated" by the hardware.  Terminated read operations will return a
 33 * value of zero and terminated unicast write operations will be silently
 34 * ignored.
 35 */
 36
 37#define HAS_MSLICE_STEERING(dev_priv)	(INTEL_INFO(dev_priv)->has_mslice_steering)
 38
 39static const char * const intel_steering_types[] = {
 40	"L3BANK",
 41	"MSLICE",
 42	"LNCF",
 43	"GAM",
 44	"DSS",
 45	"OADDRM",
 46	"INSTANCE 0",
 47};
 48
 49static const struct intel_mmio_range icl_l3bank_steering_table[] = {
 50	{ 0x00B100, 0x00B3FF },
 51	{},
 52};
 53
 54/*
 55 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
 56 * are of a "GAM" subclass that has special rules.  Thus we use a separate
 57 * GAM table farther down for those.
 58 */
 59static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
 60	{ 0x00DD00, 0x00DDFF },
 61	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
 62	{},
 63};
 64
 65static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
 66	{ 0x004000, 0x004AFF },
 67	{ 0x00C800, 0x00CFFF },
 68	{},
 69};
 70
 71static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
 72	{ 0x00B000, 0x00B0FF },
 73	{ 0x00D800, 0x00D8FF },
 74	{},
 75};
 76
 77static const struct intel_mmio_range dg2_lncf_steering_table[] = {
 78	{ 0x00B000, 0x00B0FF },
 79	{ 0x00D880, 0x00D8FF },
 80	{},
 81};
 82
 83/*
 84 * We have several types of MCR registers on PVC where steering to (0,0)
 85 * will always provide us with a non-terminated value.  We'll stick them
 86 * all in the same table for simplicity.
 87 */
 88static const struct intel_mmio_range pvc_instance0_steering_table[] = {
 89	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
 90	{ 0x008800, 0x00887F },		/* CC */
 91	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
 92	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
 93	{ 0x00B100, 0x00B3FF },		/* L3BANK */
 94	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
 95	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
 96	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
 97	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
 98	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
 99	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
100	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
101	{},
102};
103
104static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
105	{ 0x000B00, 0x000BFF },         /* SQIDI */
106	{ 0x001000, 0x001FFF },         /* SQIDI */
107	{ 0x004000, 0x0048FF },         /* GAM */
108	{ 0x008700, 0x0087FF },         /* SQIDI */
109	{ 0x00B000, 0x00B0FF },         /* NODE */
110	{ 0x00C800, 0x00CFFF },         /* GAM */
111	{ 0x00D880, 0x00D8FF },         /* NODE */
112	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
113	{},
114};
115
116static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
117	{ 0x00B100, 0x00B3FF },
118	{},
119};
120
121/* DSS steering is used for SLICE ranges as well */
122static const struct intel_mmio_range xelpg_dss_steering_table[] = {
123	{ 0x005200, 0x0052FF },		/* SLICE */
124	{ 0x005500, 0x007FFF },		/* SLICE */
125	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
126	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
127	{ 0x009680, 0x0096FF },		/* DSS */
128	{ 0x00D800, 0x00D87F },		/* SLICE */
129	{ 0x00DC00, 0x00DCFF },		/* SLICE */
130	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
131	{},
132};
133
134static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
135	{ 0x393200, 0x39323F },
136	{ 0x393400, 0x3934FF },
137	{},
138};
139
140void intel_gt_mcr_init(struct intel_gt *gt)
141{
142	struct drm_i915_private *i915 = gt->i915;
143	unsigned long fuse;
144	int i;
145
146	/*
147	 * An mslice is unavailable only if both the meml3 for the slice is
148	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
149	 */
150	if (HAS_MSLICE_STEERING(i915)) {
151		gt->info.mslice_mask =
152			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
153							  GEN_DSS_PER_MSLICE);
154		gt->info.mslice_mask |=
155			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
156			 GEN12_MEML3_EN_MASK);
157
158		if (!gt->info.mslice_mask) /* should be impossible! */
159			drm_warn(&i915->drm, "mslice mask all zero!\n");
160	}
161
162	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
163		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
164	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
165		fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
166				     intel_uncore_read(gt->uncore, XEHP_FUSE4));
167
168		/*
169		 * Despite the register field being named "exclude mask" the
170		 * bits actually represent enabled banks (two banks per bit).
171		 */
172		for_each_set_bit(i, &fuse, 3)
173			gt->info.l3bank_mask |= 0x3 << 2 * i;
174
175		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
176		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
177		gt->steering_table[DSS] = xelpg_dss_steering_table;
178	} else if (IS_PONTEVECCHIO(i915)) {
179		gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
180	} else if (IS_DG2(i915)) {
181		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
182		gt->steering_table[LNCF] = dg2_lncf_steering_table;
183		/*
184		 * No need to hook up the GAM table since it has a dedicated
185		 * steering control register on DG2 and can use implicit
186		 * steering.
187		 */
188	} else if (IS_XEHPSDV(i915)) {
189		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
190		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
191		gt->steering_table[GAM] = xehpsdv_gam_steering_table;
192	} else if (GRAPHICS_VER(i915) >= 11 &&
193		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
194		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
195		gt->info.l3bank_mask =
196			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
197			GEN10_L3BANK_MASK;
198		if (!gt->info.l3bank_mask) /* should be impossible! */
199			drm_warn(&i915->drm, "L3 bank mask is all zero!\n");
200	} else if (GRAPHICS_VER(i915) >= 11) {
201		/*
202		 * We expect all modern platforms to have at least some
203		 * type of steering that needs to be initialized.
204		 */
205		MISSING_CASE(INTEL_INFO(i915)->platform);
206	}
207}
208
209/*
210 * Although the rest of the driver should use MCR-specific functions to
211 * read/write MCR registers, we still use the regular intel_uncore_* functions
212 * internally to implement those, so we need a way for the functions in this
213 * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
214 */
215static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
216{
217	i915_reg_t r = { .reg = mcr.reg };
218
219	return r;
220}
221
222/*
223 * rw_with_mcr_steering_fw - Access a register with specific MCR steering
224 * @uncore: pointer to struct intel_uncore
225 * @reg: register being accessed
226 * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
227 * @group: group number (documented as "sliceid" on older platforms)
228 * @instance: instance number (documented as "subsliceid" on older platforms)
229 * @value: register value to be written (ignored for read)
230 *
231 * Return: 0 for write access. register value for read access.
232 *
233 * Caller needs to make sure the relevant forcewake wells are up.
234 */
235static u32 rw_with_mcr_steering_fw(struct intel_uncore *uncore,
236				   i915_mcr_reg_t reg, u8 rw_flag,
237				   int group, int instance, u32 value)
238{
239	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
240
241	lockdep_assert_held(&uncore->lock);
242
243	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
244		/*
245		 * Always leave the hardware in multicast mode when doing reads
246		 * (see comment about Wa_22013088509 below) and only change it
247		 * to unicast mode when doing writes of a specific instance.
248		 *
249		 * No need to save old steering reg value.
250		 */
251		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
252				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
253				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
254				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
255	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
256		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
257		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
258
259		/*
260		 * Wa_22013088509
261		 *
262		 * The setting of the multicast/unicast bit usually wouldn't
263		 * matter for read operations (which always return the value
264		 * from a single register instance regardless of how that bit
265		 * is set), but some platforms have a workaround requiring us
266		 * to remain in multicast mode for reads.  There's no real
267		 * downside to this, so we'll just go ahead and do so on all
268		 * platforms; we'll only clear the multicast bit from the mask
269		 * when exlicitly doing a write operation.
270		 */
271		if (rw_flag == FW_REG_WRITE)
272			mcr_mask |= GEN11_MCR_MULTICAST;
273
274		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
275		old_mcr = mcr;
276
277		mcr &= ~mcr_mask;
278		mcr |= mcr_ss;
279		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
280	} else {
281		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
282		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
283
284		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
285		old_mcr = mcr;
286
287		mcr &= ~mcr_mask;
288		mcr |= mcr_ss;
289		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
290	}
291
292	if (rw_flag == FW_REG_READ)
293		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
294	else
295		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
296
297	/*
298	 * For pre-MTL platforms, we need to restore the old value of the
299	 * steering control register to ensure that implicit steering continues
300	 * to behave as expected.  For MTL and beyond, we need only reinstate
301	 * the 'multicast' bit (and only if we did a write that cleared it).
302	 */
303	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
304		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
305	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
306		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
307
308	return val;
309}
310
311static u32 rw_with_mcr_steering(struct intel_uncore *uncore,
312				i915_mcr_reg_t reg, u8 rw_flag,
313				int group, int instance,
314				u32 value)
315{
316	enum forcewake_domains fw_domains;
317	u32 val;
318
319	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
320						    rw_flag);
321	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
322						     GEN8_MCR_SELECTOR,
323						     FW_REG_READ | FW_REG_WRITE);
324
325	spin_lock_irq(&uncore->lock);
326	intel_uncore_forcewake_get__locked(uncore, fw_domains);
327
328	val = rw_with_mcr_steering_fw(uncore, reg, rw_flag, group, instance, value);
329
330	intel_uncore_forcewake_put__locked(uncore, fw_domains);
331	spin_unlock_irq(&uncore->lock);
332
333	return val;
334}
335
336/**
337 * intel_gt_mcr_read - read a specific instance of an MCR register
338 * @gt: GT structure
339 * @reg: the MCR register to read
340 * @group: the MCR group
341 * @instance: the MCR instance
342 *
343 * Returns the value read from an MCR register after steering toward a specific
344 * group/instance.
345 */
346u32 intel_gt_mcr_read(struct intel_gt *gt,
347		      i915_mcr_reg_t reg,
348		      int group, int instance)
349{
350	return rw_with_mcr_steering(gt->uncore, reg, FW_REG_READ, group, instance, 0);
351}
352
353/**
354 * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
355 * @gt: GT structure
356 * @reg: the MCR register to write
357 * @value: value to write
358 * @group: the MCR group
359 * @instance: the MCR instance
360 *
361 * Write an MCR register in unicast mode after steering toward a specific
362 * group/instance.
363 */
364void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
365				int group, int instance)
366{
367	rw_with_mcr_steering(gt->uncore, reg, FW_REG_WRITE, group, instance, value);
368}
369
370/**
371 * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
372 * @gt: GT structure
373 * @reg: the MCR register to write
374 * @value: value to write
375 *
376 * Write an MCR register in multicast mode to update all instances.
377 */
378void intel_gt_mcr_multicast_write(struct intel_gt *gt,
379				  i915_mcr_reg_t reg, u32 value)
380{
381	/*
382	 * Ensure we have multicast behavior, just in case some non-i915 agent
383	 * left the hardware in unicast mode.
384	 */
385	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
386		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
387
388	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
389}
390
391/**
392 * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
393 * @gt: GT structure
394 * @reg: the MCR register to write
395 * @value: value to write
396 *
397 * Write an MCR register in multicast mode to update all instances.  This
398 * function assumes the caller is already holding any necessary forcewake
399 * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
400 * be obtained automatically.
401 */
402void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
403{
404	/*
405	 * Ensure we have multicast behavior, just in case some non-i915 agent
406	 * left the hardware in unicast mode.
407	 */
408	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
409		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
410
411	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
412}
413
414/**
415 * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
416 * @gt: GT structure
417 * @reg: the MCR register to read and write
418 * @clear: bits to clear during RMW
419 * @set: bits to set during RMW
420 *
421 * Performs a read-modify-write on an MCR register in a multicast manner.
422 * This operation only makes sense on MCR registers where all instances are
423 * expected to have the same value.  The read will target any non-terminated
424 * instance and the write will be applied to all instances.
425 *
426 * This function assumes the caller is already holding any necessary forcewake
427 * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
428 * be obtained automatically.
429 *
430 * Returns the old (unmodified) value read.
431 */
432u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
433			       u32 clear, u32 set)
434{
435	u32 val = intel_gt_mcr_read_any(gt, reg);
436
437	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
438
439	return val;
440}
441
442/*
443 * reg_needs_read_steering - determine whether a register read requires
444 *     explicit steering
445 * @gt: GT structure
446 * @reg: the register to check steering requirements for
447 * @type: type of multicast steering to check
448 *
449 * Determines whether @reg needs explicit steering of a specific type for
450 * reads.
451 *
452 * Returns false if @reg does not belong to a register range of the given
453 * steering type, or if the default (subslice-based) steering IDs are suitable
454 * for @type steering too.
455 */
456static bool reg_needs_read_steering(struct intel_gt *gt,
457				    i915_mcr_reg_t reg,
458				    enum intel_steering_type type)
459{
460	const u32 offset = i915_mmio_reg_offset(reg);
461	const struct intel_mmio_range *entry;
462
463	if (likely(!gt->steering_table[type]))
464		return false;
465
466	for (entry = gt->steering_table[type]; entry->end; entry++) {
467		if (offset >= entry->start && offset <= entry->end)
468			return true;
469	}
470
471	return false;
472}
473
474/*
475 * get_nonterminated_steering - determines valid IDs for a class of MCR steering
476 * @gt: GT structure
477 * @type: multicast register type
478 * @group: Group ID returned
479 * @instance: Instance ID returned
480 *
481 * Determines group and instance values that will steer reads of the specified
482 * MCR class to a non-terminated instance.
483 */
484static void get_nonterminated_steering(struct intel_gt *gt,
485				       enum intel_steering_type type,
486				       u8 *group, u8 *instance)
487{
488	u32 dss;
489
490	switch (type) {
491	case L3BANK:
492		*group = 0;		/* unused */
493		*instance = __ffs(gt->info.l3bank_mask);
494		break;
495	case MSLICE:
496		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
497		*group = __ffs(gt->info.mslice_mask);
498		*instance = 0;	/* unused */
499		break;
500	case LNCF:
501		/*
502		 * An LNCF is always present if its mslice is present, so we
503		 * can safely just steer to LNCF 0 in all cases.
504		 */
505		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
506		*group = __ffs(gt->info.mslice_mask) << 1;
507		*instance = 0;	/* unused */
508		break;
509	case GAM:
510		*group = IS_DG2(gt->i915) ? 1 : 0;
511		*instance = 0;
512		break;
513	case DSS:
514		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
515		*group = dss / GEN_DSS_PER_GSLICE;
516		*instance = dss % GEN_DSS_PER_GSLICE;
517		break;
518	case INSTANCE0:
519		/*
520		 * There are a lot of MCR types for which instance (0, 0)
521		 * will always provide a non-terminated value.
522		 */
523		*group = 0;
524		*instance = 0;
525		break;
526	case OADDRM:
527		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
528			*group = 0;
529		else
530			*group = 1;
531		*instance = 0;
532		break;
533	default:
534		MISSING_CASE(type);
535		*group = 0;
536		*instance = 0;
537	}
538}
539
540/**
541 * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
542 *    will steer a register to a non-terminated instance
543 * @gt: GT structure
544 * @reg: register for which the steering is required
545 * @group: return variable for group steering
546 * @instance: return variable for instance steering
547 *
548 * This function returns a group/instance pair that is guaranteed to work for
549 * read steering of the given register. Note that a value will be returned even
550 * if the register is not replicated and therefore does not actually require
551 * steering.
552 */
553void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
554					     i915_mcr_reg_t reg,
555					     u8 *group, u8 *instance)
556{
557	int type;
558
559	for (type = 0; type < NUM_STEERING_TYPES; type++) {
560		if (reg_needs_read_steering(gt, reg, type)) {
561			get_nonterminated_steering(gt, type, group, instance);
562			return;
563		}
564	}
565
566	*group = gt->default_steering.groupid;
567	*instance = gt->default_steering.instanceid;
568}
569
570/**
571 * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
572 * @gt: GT structure
573 * @reg: register to read
574 *
575 * Reads a GT MCR register.  The read will be steered to a non-terminated
576 * instance (i.e., one that isn't fused off or powered down by power gating).
577 * This function assumes the caller is already holding any necessary forcewake
578 * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
579 * obtained automatically.
580 *
581 * Returns the value from a non-terminated instance of @reg.
582 */
583u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
584{
585	int type;
586	u8 group, instance;
587
588	for (type = 0; type < NUM_STEERING_TYPES; type++) {
589		if (reg_needs_read_steering(gt, reg, type)) {
590			get_nonterminated_steering(gt, type, &group, &instance);
591			return rw_with_mcr_steering_fw(gt->uncore, reg,
592						       FW_REG_READ,
593						       group, instance, 0);
594		}
595	}
596
597	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
598}
599
600/**
601 * intel_gt_mcr_read_any - reads one instance of an MCR register
602 * @gt: GT structure
603 * @reg: register to read
604 *
605 * Reads a GT MCR register.  The read will be steered to a non-terminated
606 * instance (i.e., one that isn't fused off or powered down by power gating).
607 *
608 * Returns the value from a non-terminated instance of @reg.
609 */
610u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
611{
612	int type;
613	u8 group, instance;
614
615	for (type = 0; type < NUM_STEERING_TYPES; type++) {
616		if (reg_needs_read_steering(gt, reg, type)) {
617			get_nonterminated_steering(gt, type, &group, &instance);
618			return rw_with_mcr_steering(gt->uncore, reg,
619						    FW_REG_READ,
620						    group, instance, 0);
621		}
622	}
623
624	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
625}
626
627static void report_steering_type(struct drm_printer *p,
628				 struct intel_gt *gt,
629				 enum intel_steering_type type,
630				 bool dump_table)
631{
632	const struct intel_mmio_range *entry;
633	u8 group, instance;
634
635	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
636
637	if (!gt->steering_table[type]) {
638		drm_printf(p, "%s steering: uses default steering\n",
639			   intel_steering_types[type]);
640		return;
641	}
642
643	get_nonterminated_steering(gt, type, &group, &instance);
644	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
645		   intel_steering_types[type], group, instance);
646
647	if (!dump_table)
648		return;
649
650	for (entry = gt->steering_table[type]; entry->end; entry++)
651		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
652}
653
654void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
655				  bool dump_table)
656{
657	/*
658	 * Starting with MTL we no longer have default steering;
659	 * all ranges are explicitly steered.
660	 */
661	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
662		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
663			   gt->default_steering.groupid,
664			   gt->default_steering.instanceid);
665
666	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
667		for (int i = 0; i < NUM_STEERING_TYPES; i++)
668			if (gt->steering_table[i])
669				report_steering_type(p, gt, i, dump_table);
670	} else if (IS_PONTEVECCHIO(gt->i915)) {
671		report_steering_type(p, gt, INSTANCE0, dump_table);
672	} else if (HAS_MSLICE_STEERING(gt->i915)) {
673		report_steering_type(p, gt, MSLICE, dump_table);
674		report_steering_type(p, gt, LNCF, dump_table);
675	}
676}
677
678/**
679 * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
680 * @gt: GT structure
681 * @dss: DSS ID to obtain steering for
682 * @group: pointer to storage for steering group ID
683 * @instance: pointer to storage for steering instance ID
684 *
685 * Returns the steering IDs (via the @group and @instance parameters) that
686 * correspond to a specific subslice/DSS ID.
687 */
688void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
689				   unsigned int *group, unsigned int *instance)
690{
691	if (IS_PONTEVECCHIO(gt->i915)) {
692		*group = dss / GEN_DSS_PER_CSLICE;
693		*instance = dss % GEN_DSS_PER_CSLICE;
694	} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
695		*group = dss / GEN_DSS_PER_GSLICE;
696		*instance = dss % GEN_DSS_PER_GSLICE;
697	} else {
698		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
699		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
700		return;
701	}
702}
703
704/**
705 * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
706 * @gt: GT structure
707 * @reg: the register to read
708 * @mask: mask to apply to register value
709 * @value: value to wait for
710 * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
711 * @slow_timeout_ms: slow timeout in millisecond
712 *
713 * This routine waits until the target register @reg contains the expected
714 * @value after applying the @mask, i.e. it waits until ::
715 *
716 *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
717 *
718 * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
719 * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
720 * must be not larger than 20,0000 microseconds.
721 *
722 * This function is basically an MCR-friendly version of
723 * __intel_wait_for_register_fw().  Generally this function will only be used
724 * on GAM registers which are a bit special --- although they're MCR registers,
725 * reads (e.g., waiting for status updates) are always directed to the primary
726 * instance.
727 *
728 * Note that this routine assumes the caller holds forcewake asserted, it is
729 * not suitable for very long waits.
730 *
731 * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
732 */
733int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
734			      i915_mcr_reg_t reg,
735			      u32 mask,
736			      u32 value,
737			      unsigned int fast_timeout_us,
738			      unsigned int slow_timeout_ms)
739{
740	int ret;
741
742	lockdep_assert_not_held(&gt->uncore->lock);
743
744#define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
745
746	/* Catch any overuse of this function */
747	might_sleep_if(slow_timeout_ms);
748	GEM_BUG_ON(fast_timeout_us > 20000);
749	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
750
751	ret = -ETIMEDOUT;
752	if (fast_timeout_us && fast_timeout_us <= 20000)
753		ret = _wait_for_atomic(done, fast_timeout_us, 0);
754	if (ret && slow_timeout_ms)
755		ret = wait_for(done, slow_timeout_ms);
756
757	return ret;
758#undef done
759}