Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
   4 * Author: James.Qian.Wang <james.qian.wang@arm.com>
   5 *
   6 */
   7#include "d71_dev.h"
   8#include "komeda_kms.h"
   9#include "malidp_io.h"
  10#include "komeda_framebuffer.h"
  11#include "komeda_color_mgmt.h"
  12
  13static void get_resources_id(u32 hw_id, u32 *pipe_id, u32 *comp_id)
  14{
  15	u32 id = BLOCK_INFO_BLK_ID(hw_id);
  16	u32 pipe = id;
  17
  18	switch (BLOCK_INFO_BLK_TYPE(hw_id)) {
  19	case D71_BLK_TYPE_LPU_WB_LAYER:
  20		id = KOMEDA_COMPONENT_WB_LAYER;
  21		break;
  22	case D71_BLK_TYPE_CU_SPLITTER:
  23		id = KOMEDA_COMPONENT_SPLITTER;
  24		break;
  25	case D71_BLK_TYPE_CU_SCALER:
  26		pipe = id / D71_PIPELINE_MAX_SCALERS;
  27		id %= D71_PIPELINE_MAX_SCALERS;
  28		id += KOMEDA_COMPONENT_SCALER0;
  29		break;
  30	case D71_BLK_TYPE_CU:
  31		id += KOMEDA_COMPONENT_COMPIZ0;
  32		break;
  33	case D71_BLK_TYPE_LPU_LAYER:
  34		pipe = id / D71_PIPELINE_MAX_LAYERS;
  35		id %= D71_PIPELINE_MAX_LAYERS;
  36		id += KOMEDA_COMPONENT_LAYER0;
  37		break;
  38	case D71_BLK_TYPE_DOU_IPS:
  39		id += KOMEDA_COMPONENT_IPS0;
  40		break;
  41	case D71_BLK_TYPE_CU_MERGER:
  42		id = KOMEDA_COMPONENT_MERGER;
  43		break;
  44	case D71_BLK_TYPE_DOU:
  45		id = KOMEDA_COMPONENT_TIMING_CTRLR;
  46		break;
  47	default:
  48		id = 0xFFFFFFFF;
  49	}
  50
  51	if (comp_id)
  52		*comp_id = id;
  53
  54	if (pipe_id)
  55		*pipe_id = pipe;
  56}
  57
  58static u32 get_valid_inputs(struct block_header *blk)
  59{
  60	u32 valid_inputs = 0, comp_id;
  61	int i;
  62
  63	for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++) {
  64		get_resources_id(blk->input_ids[i], NULL, &comp_id);
  65		if (comp_id == 0xFFFFFFFF)
  66			continue;
  67		valid_inputs |= BIT(comp_id);
  68	}
  69
  70	return valid_inputs;
  71}
  72
  73static void get_values_from_reg(void __iomem *reg, u32 offset,
  74				u32 count, u32 *val)
  75{
  76	u32 i, addr;
  77
  78	for (i = 0; i < count; i++) {
  79		addr = offset + (i << 2);
  80		/* 0xA4 is WO register */
  81		if (addr != 0xA4)
  82			val[i] = malidp_read32(reg, addr);
  83		else
  84			val[i] = 0xDEADDEAD;
  85	}
  86}
  87
  88static void dump_block_header(struct seq_file *sf, void __iomem *reg)
  89{
  90	struct block_header hdr;
  91	u32 i, n_input, n_output;
  92
  93	d71_read_block_header(reg, &hdr);
  94	seq_printf(sf, "BLOCK_INFO:\t\t0x%X\n", hdr.block_info);
  95	seq_printf(sf, "PIPELINE_INFO:\t\t0x%X\n", hdr.pipeline_info);
  96
  97	n_output = PIPELINE_INFO_N_OUTPUTS(hdr.pipeline_info);
  98	n_input  = PIPELINE_INFO_N_VALID_INPUTS(hdr.pipeline_info);
  99
 100	for (i = 0; i < n_input; i++)
 101		seq_printf(sf, "VALID_INPUT_ID%u:\t0x%X\n",
 102			   i, hdr.input_ids[i]);
 103
 104	for (i = 0; i < n_output; i++)
 105		seq_printf(sf, "OUTPUT_ID%u:\t\t0x%X\n",
 106			   i, hdr.output_ids[i]);
 107}
 108
 109/* On D71, we are using the global line size. From D32, every component have
 110 * a line size register to indicate the fifo size.
 111 */
 112static u32 __get_blk_line_size(struct d71_dev *d71, u32 __iomem *reg,
 113			       u32 max_default)
 114{
 115	if (!d71->periph_addr)
 116		max_default = malidp_read32(reg, BLK_MAX_LINE_SIZE);
 117
 118	return max_default;
 119}
 120
 121static u32 get_blk_line_size(struct d71_dev *d71, u32 __iomem *reg)
 122{
 123	return __get_blk_line_size(d71, reg, d71->max_line_size);
 124}
 125
 126static u32 to_rot_ctrl(u32 rot)
 127{
 128	u32 lr_ctrl = 0;
 129
 130	switch (rot & DRM_MODE_ROTATE_MASK) {
 131	case DRM_MODE_ROTATE_0:
 132		lr_ctrl |= L_ROT(L_ROT_R0);
 133		break;
 134	case DRM_MODE_ROTATE_90:
 135		lr_ctrl |= L_ROT(L_ROT_R90);
 136		break;
 137	case DRM_MODE_ROTATE_180:
 138		lr_ctrl |= L_ROT(L_ROT_R180);
 139		break;
 140	case DRM_MODE_ROTATE_270:
 141		lr_ctrl |= L_ROT(L_ROT_R270);
 142		break;
 143	}
 144
 145	if (rot & DRM_MODE_REFLECT_X)
 146		lr_ctrl |= L_HFLIP;
 147	if (rot & DRM_MODE_REFLECT_Y)
 148		lr_ctrl |= L_VFLIP;
 149
 150	return lr_ctrl;
 151}
 152
 153static u32 to_ad_ctrl(u64 modifier)
 154{
 155	u32 afbc_ctrl = AD_AEN;
 156
 157	if (!modifier)
 158		return 0;
 159
 160	if ((modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
 161	    AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
 162		afbc_ctrl |= AD_WB;
 163
 164	if (modifier & AFBC_FORMAT_MOD_YTR)
 165		afbc_ctrl |= AD_YT;
 166	if (modifier & AFBC_FORMAT_MOD_SPLIT)
 167		afbc_ctrl |= AD_BS;
 168	if (modifier & AFBC_FORMAT_MOD_TILED)
 169		afbc_ctrl |= AD_TH;
 170
 171	return afbc_ctrl;
 172}
 173
 174static inline u32 to_d71_input_id(struct komeda_component_state *st, int idx)
 175{
 176	struct komeda_component_output *input = &st->inputs[idx];
 177
 178	/* if input is not active, set hw input_id(0) to disable it */
 179	if (has_bit(idx, st->active_inputs))
 180		return input->component->hw_id + input->output_port;
 181	else
 182		return 0;
 183}
 184
 185static void d71_layer_update_fb(struct komeda_component *c,
 186				struct komeda_fb *kfb,
 187				dma_addr_t *addr)
 188{
 189	struct drm_framebuffer *fb = &kfb->base;
 190	const struct drm_format_info *info = fb->format;
 191	u32 __iomem *reg = c->reg;
 192	int block_h;
 193
 194	if (info->num_planes > 2)
 195		malidp_write64(reg, BLK_P2_PTR_LOW, addr[2]);
 196
 197	if (info->num_planes > 1) {
 198		block_h = drm_format_info_block_height(info, 1);
 199		malidp_write32(reg, BLK_P1_STRIDE, fb->pitches[1] * block_h);
 200		malidp_write64(reg, BLK_P1_PTR_LOW, addr[1]);
 201	}
 202
 203	block_h = drm_format_info_block_height(info, 0);
 204	malidp_write32(reg, BLK_P0_STRIDE, fb->pitches[0] * block_h);
 205	malidp_write64(reg, BLK_P0_PTR_LOW, addr[0]);
 206	malidp_write32(reg, LAYER_FMT, kfb->format_caps->hw_id);
 207}
 208
 209static void d71_layer_disable(struct komeda_component *c)
 210{
 211	malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
 212}
 213
 214static void d71_layer_update(struct komeda_component *c,
 215			     struct komeda_component_state *state)
 216{
 217	struct komeda_layer_state *st = to_layer_st(state);
 218	struct drm_plane_state *plane_st = state->plane->state;
 219	struct drm_framebuffer *fb = plane_st->fb;
 220	struct komeda_fb *kfb = to_kfb(fb);
 221	u32 __iomem *reg = c->reg;
 222	u32 ctrl_mask = L_EN | L_ROT(L_ROT_R270) | L_HFLIP | L_VFLIP | L_TBU_EN;
 223	u32 ctrl = L_EN | to_rot_ctrl(st->rot);
 224
 225	d71_layer_update_fb(c, kfb, st->addr);
 226
 227	malidp_write32(reg, AD_CONTROL, to_ad_ctrl(fb->modifier));
 228	if (fb->modifier) {
 229		u64 addr;
 230
 231		malidp_write32(reg, LAYER_AD_H_CROP, HV_CROP(st->afbc_crop_l,
 232							     st->afbc_crop_r));
 233		malidp_write32(reg, LAYER_AD_V_CROP, HV_CROP(st->afbc_crop_t,
 234							     st->afbc_crop_b));
 235		/* afbc 1.2 wants payload, afbc 1.0/1.1 wants end_addr */
 236		if (fb->modifier & AFBC_FORMAT_MOD_TILED)
 237			addr = st->addr[0] + kfb->offset_payload;
 238		else
 239			addr = st->addr[0] + kfb->afbc_size - 1;
 240
 241		malidp_write32(reg, BLK_P1_PTR_LOW, lower_32_bits(addr));
 242		malidp_write32(reg, BLK_P1_PTR_HIGH, upper_32_bits(addr));
 243	}
 244
 245	if (fb->format->is_yuv) {
 246		u32 upsampling = 0;
 247
 248		switch (kfb->format_caps->fourcc) {
 249		case DRM_FORMAT_YUYV:
 250			upsampling = fb->modifier ? LR_CHI422_BILINEAR :
 251				     LR_CHI422_REPLICATION;
 252			break;
 253		case DRM_FORMAT_UYVY:
 254			upsampling = LR_CHI422_REPLICATION;
 255			break;
 256		case DRM_FORMAT_NV12:
 257		case DRM_FORMAT_YUV420_8BIT:
 258		case DRM_FORMAT_YUV420_10BIT:
 259		case DRM_FORMAT_YUV420:
 260		case DRM_FORMAT_P010:
 261		/* these fmt support MPGE/JPEG both, here perfer JPEG*/
 262			upsampling = LR_CHI420_JPEG;
 263			break;
 264		case DRM_FORMAT_X0L2:
 265			upsampling = LR_CHI420_JPEG;
 266			break;
 267		default:
 268			break;
 269		}
 270
 271		malidp_write32(reg, LAYER_R_CONTROL, upsampling);
 272		malidp_write_group(reg, LAYER_YUV_RGB_COEFF0,
 273				   KOMEDA_N_YUV2RGB_COEFFS,
 274				   komeda_select_yuv2rgb_coeffs(
 275					plane_st->color_encoding,
 276					plane_st->color_range));
 277	}
 278
 279	malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
 280
 281	if (kfb->is_va)
 282		ctrl |= L_TBU_EN;
 283	malidp_write32_mask(reg, BLK_CONTROL, ctrl_mask, ctrl);
 284}
 285
 286static void d71_layer_dump(struct komeda_component *c, struct seq_file *sf)
 287{
 288	u32 v[15], i;
 289	bool rich, rgb2rgb;
 290	char *prefix;
 291
 292	get_values_from_reg(c->reg, LAYER_INFO, 1, &v[14]);
 293	if (v[14] & 0x1) {
 294		rich = true;
 295		prefix = "LR_";
 296	} else {
 297		rich = false;
 298		prefix = "LS_";
 299	}
 300
 301	rgb2rgb = !!(v[14] & L_INFO_CM);
 302
 303	dump_block_header(sf, c->reg);
 304
 305	seq_printf(sf, "%sLAYER_INFO:\t\t0x%X\n", prefix, v[14]);
 306
 307	get_values_from_reg(c->reg, 0xD0, 1, v);
 308	seq_printf(sf, "%sCONTROL:\t\t0x%X\n", prefix, v[0]);
 309	if (rich) {
 310		get_values_from_reg(c->reg, 0xD4, 1, v);
 311		seq_printf(sf, "LR_RICH_CONTROL:\t0x%X\n", v[0]);
 312	}
 313	get_values_from_reg(c->reg, 0xD8, 4, v);
 314	seq_printf(sf, "%sFORMAT:\t\t0x%X\n", prefix, v[0]);
 315	seq_printf(sf, "%sIT_COEFFTAB:\t\t0x%X\n", prefix, v[1]);
 316	seq_printf(sf, "%sIN_SIZE:\t\t0x%X\n", prefix, v[2]);
 317	seq_printf(sf, "%sPALPHA:\t\t0x%X\n", prefix, v[3]);
 318
 319	get_values_from_reg(c->reg, 0x100, 3, v);
 320	seq_printf(sf, "%sP0_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
 321	seq_printf(sf, "%sP0_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
 322	seq_printf(sf, "%sP0_STRIDE:\t\t0x%X\n", prefix, v[2]);
 323
 324	get_values_from_reg(c->reg, 0x110, 2, v);
 325	seq_printf(sf, "%sP1_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
 326	seq_printf(sf, "%sP1_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
 327	if (rich) {
 328		get_values_from_reg(c->reg, 0x118, 1, v);
 329		seq_printf(sf, "LR_P1_STRIDE:\t\t0x%X\n", v[0]);
 330
 331		get_values_from_reg(c->reg, 0x120, 2, v);
 332		seq_printf(sf, "LR_P2_PTR_LOW:\t\t0x%X\n", v[0]);
 333		seq_printf(sf, "LR_P2_PTR_HIGH:\t\t0x%X\n", v[1]);
 334
 335		get_values_from_reg(c->reg, 0x130, 12, v);
 336		for (i = 0; i < 12; i++)
 337			seq_printf(sf, "LR_YUV_RGB_COEFF%u:\t0x%X\n", i, v[i]);
 338	}
 339
 340	if (rgb2rgb) {
 341		get_values_from_reg(c->reg, LAYER_RGB_RGB_COEFF0, 12, v);
 342		for (i = 0; i < 12; i++)
 343			seq_printf(sf, "LS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
 344	}
 345
 346	get_values_from_reg(c->reg, 0x160, 3, v);
 347	seq_printf(sf, "%sAD_CONTROL:\t\t0x%X\n", prefix, v[0]);
 348	seq_printf(sf, "%sAD_H_CROP:\t\t0x%X\n", prefix, v[1]);
 349	seq_printf(sf, "%sAD_V_CROP:\t\t0x%X\n", prefix, v[2]);
 350}
 351
 352static int d71_layer_validate(struct komeda_component *c,
 353			      struct komeda_component_state *state)
 354{
 355	struct komeda_layer_state *st = to_layer_st(state);
 356	struct komeda_layer *layer = to_layer(c);
 357	struct drm_plane_state *plane_st;
 358	struct drm_framebuffer *fb;
 359	u32 fourcc, line_sz, max_line_sz;
 360
 361	plane_st = drm_atomic_get_new_plane_state(state->obj.state,
 362						  state->plane);
 363	fb = plane_st->fb;
 364	fourcc = fb->format->format;
 365
 366	if (drm_rotation_90_or_270(st->rot))
 367		line_sz = st->vsize - st->afbc_crop_t - st->afbc_crop_b;
 368	else
 369		line_sz = st->hsize - st->afbc_crop_l - st->afbc_crop_r;
 370
 371	if (fb->modifier) {
 372		if ((fb->modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
 373			AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
 374			max_line_sz = layer->line_sz;
 375		else
 376			max_line_sz = layer->line_sz / 2;
 377
 378		if (line_sz > max_line_sz) {
 379			DRM_DEBUG_ATOMIC("afbc request line_sz: %d exceed the max afbc line_sz: %d.\n",
 380					 line_sz, max_line_sz);
 381			return -EINVAL;
 382		}
 383	}
 384
 385	if (fourcc == DRM_FORMAT_YUV420_10BIT && line_sz > 2046 && (st->afbc_crop_l % 4)) {
 386		DRM_DEBUG_ATOMIC("YUV420_10BIT input_hsize: %d exceed the max size 2046.\n",
 387				 line_sz);
 388		return -EINVAL;
 389	}
 390
 391	if (fourcc == DRM_FORMAT_X0L2 && line_sz > 2046 && (st->addr[0] % 16)) {
 392		DRM_DEBUG_ATOMIC("X0L2 input_hsize: %d exceed the max size 2046.\n",
 393				 line_sz);
 394		return -EINVAL;
 395	}
 396
 397	return 0;
 398}
 399
 400static const struct komeda_component_funcs d71_layer_funcs = {
 401	.validate	= d71_layer_validate,
 402	.update		= d71_layer_update,
 403	.disable	= d71_layer_disable,
 404	.dump_register	= d71_layer_dump,
 405};
 406
 407static int d71_layer_init(struct d71_dev *d71,
 408			  struct block_header *blk, u32 __iomem *reg)
 409{
 410	struct komeda_component *c;
 411	struct komeda_layer *layer;
 412	u32 pipe_id, layer_id, layer_info;
 413
 414	get_resources_id(blk->block_info, &pipe_id, &layer_id);
 415	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*layer),
 416				 layer_id,
 417				 BLOCK_INFO_INPUT_ID(blk->block_info),
 418				 &d71_layer_funcs, 0,
 419				 get_valid_inputs(blk),
 420				 1, reg, "LPU%d_LAYER%d", pipe_id, layer_id);
 421	if (IS_ERR(c)) {
 422		DRM_ERROR("Failed to add layer component\n");
 423		return PTR_ERR(c);
 424	}
 425
 426	layer = to_layer(c);
 427	layer_info = malidp_read32(reg, LAYER_INFO);
 428
 429	if (layer_info & L_INFO_RF)
 430		layer->layer_type = KOMEDA_FMT_RICH_LAYER;
 431	else
 432		layer->layer_type = KOMEDA_FMT_SIMPLE_LAYER;
 433
 434	if (!d71->periph_addr) {
 435		/* D32 or newer product */
 436		layer->line_sz = malidp_read32(reg, BLK_MAX_LINE_SIZE);
 437		layer->yuv_line_sz = L_INFO_YUV_MAX_LINESZ(layer_info);
 438	} else if (d71->max_line_size > 2048) {
 439		/* D71 4K */
 440		layer->line_sz = d71->max_line_size;
 441		layer->yuv_line_sz = layer->line_sz / 2;
 442	} else	{
 443		/* D71 2K */
 444		if (layer->layer_type == KOMEDA_FMT_RICH_LAYER) {
 445			/* rich layer is 4K configuration */
 446			layer->line_sz = d71->max_line_size * 2;
 447			layer->yuv_line_sz = layer->line_sz / 2;
 448		} else {
 449			layer->line_sz = d71->max_line_size;
 450			layer->yuv_line_sz = 0;
 451		}
 452	}
 453
 454	set_range(&layer->hsize_in, 4, layer->line_sz);
 455
 456	set_range(&layer->vsize_in, 4, d71->max_vsize);
 457
 458	malidp_write32(reg, LAYER_PALPHA, D71_PALPHA_DEF_MAP);
 459
 460	layer->supported_rots = DRM_MODE_ROTATE_MASK | DRM_MODE_REFLECT_MASK;
 461
 462	return 0;
 463}
 464
 465static void d71_wb_layer_update(struct komeda_component *c,
 466				struct komeda_component_state *state)
 467{
 468	struct komeda_layer_state *st = to_layer_st(state);
 469	struct drm_connector_state *conn_st = state->wb_conn->state;
 470	struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
 471	u32 ctrl = L_EN | LW_OFM, mask = L_EN | LW_OFM | LW_TBU_EN;
 472	u32 __iomem *reg = c->reg;
 473
 474	d71_layer_update_fb(c, kfb, st->addr);
 475
 476	if (kfb->is_va)
 477		ctrl |= LW_TBU_EN;
 478
 479	malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
 480	malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
 481	malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
 482}
 483
 484static void d71_wb_layer_dump(struct komeda_component *c, struct seq_file *sf)
 485{
 486	u32 v[12], i;
 487
 488	dump_block_header(sf, c->reg);
 489
 490	get_values_from_reg(c->reg, 0x80, 1, v);
 491	seq_printf(sf, "LW_INPUT_ID0:\t\t0x%X\n", v[0]);
 492
 493	get_values_from_reg(c->reg, 0xD0, 3, v);
 494	seq_printf(sf, "LW_CONTROL:\t\t0x%X\n", v[0]);
 495	seq_printf(sf, "LW_PROG_LINE:\t\t0x%X\n", v[1]);
 496	seq_printf(sf, "LW_FORMAT:\t\t0x%X\n", v[2]);
 497
 498	get_values_from_reg(c->reg, 0xE0, 1, v);
 499	seq_printf(sf, "LW_IN_SIZE:\t\t0x%X\n", v[0]);
 500
 501	for (i = 0; i < 2; i++) {
 502		get_values_from_reg(c->reg, 0x100 + i * 0x10, 3, v);
 503		seq_printf(sf, "LW_P%u_PTR_LOW:\t\t0x%X\n", i, v[0]);
 504		seq_printf(sf, "LW_P%u_PTR_HIGH:\t\t0x%X\n", i, v[1]);
 505		seq_printf(sf, "LW_P%u_STRIDE:\t\t0x%X\n", i, v[2]);
 506	}
 507
 508	get_values_from_reg(c->reg, 0x130, 12, v);
 509	for (i = 0; i < 12; i++)
 510		seq_printf(sf, "LW_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
 511}
 512
 513static void d71_wb_layer_disable(struct komeda_component *c)
 514{
 515	malidp_write32(c->reg, BLK_INPUT_ID0, 0);
 516	malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
 517}
 518
 519static const struct komeda_component_funcs d71_wb_layer_funcs = {
 520	.update		= d71_wb_layer_update,
 521	.disable	= d71_wb_layer_disable,
 522	.dump_register	= d71_wb_layer_dump,
 523};
 524
 525static int d71_wb_layer_init(struct d71_dev *d71,
 526			     struct block_header *blk, u32 __iomem *reg)
 527{
 528	struct komeda_component *c;
 529	struct komeda_layer *wb_layer;
 530	u32 pipe_id, layer_id;
 531
 532	get_resources_id(blk->block_info, &pipe_id, &layer_id);
 533
 534	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*wb_layer),
 535				 layer_id, BLOCK_INFO_INPUT_ID(blk->block_info),
 536				 &d71_wb_layer_funcs,
 537				 1, get_valid_inputs(blk), 0, reg,
 538				 "LPU%d_LAYER_WR", pipe_id);
 539	if (IS_ERR(c)) {
 540		DRM_ERROR("Failed to add wb_layer component\n");
 541		return PTR_ERR(c);
 542	}
 543
 544	wb_layer = to_layer(c);
 545	wb_layer->layer_type = KOMEDA_FMT_WB_LAYER;
 546	wb_layer->line_sz = get_blk_line_size(d71, reg);
 547	wb_layer->yuv_line_sz = wb_layer->line_sz;
 548
 549	set_range(&wb_layer->hsize_in, 64, wb_layer->line_sz);
 550	set_range(&wb_layer->vsize_in, 64, d71->max_vsize);
 551
 552	return 0;
 553}
 554
 555static void d71_component_disable(struct komeda_component *c)
 556{
 557	u32 __iomem *reg = c->reg;
 558	u32 i;
 559
 560	malidp_write32(reg, BLK_CONTROL, 0);
 561
 562	for (i = 0; i < c->max_active_inputs; i++) {
 563		malidp_write32(reg, BLK_INPUT_ID0 + (i << 2), 0);
 564
 565		/* Besides clearing the input ID to zero, D71 compiz also has
 566		 * input enable bit in CU_INPUTx_CONTROL which need to be
 567		 * cleared.
 568		 */
 569		if (has_bit(c->id, KOMEDA_PIPELINE_COMPIZS))
 570			malidp_write32(reg, CU_INPUT0_CONTROL +
 571				       i * CU_PER_INPUT_REGS * 4,
 572				       CU_INPUT_CTRL_ALPHA(0xFF));
 573	}
 574}
 575
 576static void compiz_enable_input(u32 __iomem *id_reg,
 577				u32 __iomem *cfg_reg,
 578				u32 input_hw_id,
 579				struct komeda_compiz_input_cfg *cin)
 580{
 581	u32 ctrl = CU_INPUT_CTRL_EN;
 582	u8 blend = cin->pixel_blend_mode;
 583
 584	if (blend == DRM_MODE_BLEND_PIXEL_NONE)
 585		ctrl |= CU_INPUT_CTRL_PAD;
 586	else if (blend == DRM_MODE_BLEND_PREMULTI)
 587		ctrl |= CU_INPUT_CTRL_PMUL;
 588
 589	ctrl |= CU_INPUT_CTRL_ALPHA(cin->layer_alpha);
 590
 591	malidp_write32(id_reg, BLK_INPUT_ID0, input_hw_id);
 592
 593	malidp_write32(cfg_reg, CU_INPUT0_SIZE,
 594		       HV_SIZE(cin->hsize, cin->vsize));
 595	malidp_write32(cfg_reg, CU_INPUT0_OFFSET,
 596		       HV_OFFSET(cin->hoffset, cin->voffset));
 597	malidp_write32(cfg_reg, CU_INPUT0_CONTROL, ctrl);
 598}
 599
 600static void d71_compiz_update(struct komeda_component *c,
 601			      struct komeda_component_state *state)
 602{
 603	struct komeda_compiz_state *st = to_compiz_st(state);
 604	u32 __iomem *reg = c->reg;
 605	u32 __iomem *id_reg, *cfg_reg;
 606	u32 index;
 607
 608	for_each_changed_input(state, index) {
 609		id_reg = reg + index;
 610		cfg_reg = reg + index * CU_PER_INPUT_REGS;
 611		if (state->active_inputs & BIT(index)) {
 612			compiz_enable_input(id_reg, cfg_reg,
 613					    to_d71_input_id(state, index),
 614					    &st->cins[index]);
 615		} else {
 616			malidp_write32(id_reg, BLK_INPUT_ID0, 0);
 617			malidp_write32(cfg_reg, CU_INPUT0_CONTROL, 0);
 618		}
 619	}
 620
 621	malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
 622}
 623
 624static void d71_compiz_dump(struct komeda_component *c, struct seq_file *sf)
 625{
 626	u32 v[8], i;
 627
 628	dump_block_header(sf, c->reg);
 629
 630	get_values_from_reg(c->reg, 0x80, 5, v);
 631	for (i = 0; i < 5; i++)
 632		seq_printf(sf, "CU_INPUT_ID%u:\t\t0x%X\n", i, v[i]);
 633
 634	get_values_from_reg(c->reg, 0xA0, 5, v);
 635	seq_printf(sf, "CU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
 636	seq_printf(sf, "CU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
 637	seq_printf(sf, "CU_IRQ_MASK:\t\t0x%X\n", v[2]);
 638	seq_printf(sf, "CU_IRQ_STATUS:\t\t0x%X\n", v[3]);
 639	seq_printf(sf, "CU_STATUS:\t\t0x%X\n", v[4]);
 640
 641	get_values_from_reg(c->reg, 0xD0, 2, v);
 642	seq_printf(sf, "CU_CONTROL:\t\t0x%X\n", v[0]);
 643	seq_printf(sf, "CU_SIZE:\t\t0x%X\n", v[1]);
 644
 645	get_values_from_reg(c->reg, 0xDC, 1, v);
 646	seq_printf(sf, "CU_BG_COLOR:\t\t0x%X\n", v[0]);
 647
 648	for (i = 0, v[4] = 0xE0; i < 5; i++, v[4] += 0x10) {
 649		get_values_from_reg(c->reg, v[4], 3, v);
 650		seq_printf(sf, "CU_INPUT%u_SIZE:\t\t0x%X\n", i, v[0]);
 651		seq_printf(sf, "CU_INPUT%u_OFFSET:\t0x%X\n", i, v[1]);
 652		seq_printf(sf, "CU_INPUT%u_CONTROL:\t0x%X\n", i, v[2]);
 653	}
 654
 655	get_values_from_reg(c->reg, 0x130, 2, v);
 656	seq_printf(sf, "CU_USER_LOW:\t\t0x%X\n", v[0]);
 657	seq_printf(sf, "CU_USER_HIGH:\t\t0x%X\n", v[1]);
 658}
 659
 660static const struct komeda_component_funcs d71_compiz_funcs = {
 661	.update		= d71_compiz_update,
 662	.disable	= d71_component_disable,
 663	.dump_register	= d71_compiz_dump,
 664};
 665
 666static int d71_compiz_init(struct d71_dev *d71,
 667			   struct block_header *blk, u32 __iomem *reg)
 668{
 669	struct komeda_component *c;
 670	struct komeda_compiz *compiz;
 671	u32 pipe_id, comp_id;
 672
 673	get_resources_id(blk->block_info, &pipe_id, &comp_id);
 674
 675	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*compiz),
 676				 comp_id,
 677				 BLOCK_INFO_INPUT_ID(blk->block_info),
 678				 &d71_compiz_funcs,
 679				 CU_NUM_INPUT_IDS, get_valid_inputs(blk),
 680				 CU_NUM_OUTPUT_IDS, reg,
 681				 "CU%d", pipe_id);
 682	if (IS_ERR(c))
 683		return PTR_ERR(c);
 684
 685	compiz = to_compiz(c);
 686
 687	set_range(&compiz->hsize, 64, get_blk_line_size(d71, reg));
 688	set_range(&compiz->vsize, 64, d71->max_vsize);
 689
 690	return 0;
 691}
 692
 693static void d71_scaler_update_filter_lut(u32 __iomem *reg, u32 hsize_in,
 694					 u32 vsize_in, u32 hsize_out,
 695					 u32 vsize_out)
 696{
 697	u32 val = 0;
 698
 699	if (hsize_in <= hsize_out)
 700		val  |= 0x62;
 701	else if (hsize_in <= (hsize_out + hsize_out / 2))
 702		val |= 0x63;
 703	else if (hsize_in <= hsize_out * 2)
 704		val |= 0x64;
 705	else if (hsize_in <= hsize_out * 2 + (hsize_out * 3) / 4)
 706		val |= 0x65;
 707	else
 708		val |= 0x66;
 709
 710	if (vsize_in <= vsize_out)
 711		val  |= SC_VTSEL(0x6A);
 712	else if (vsize_in <= (vsize_out + vsize_out / 2))
 713		val |= SC_VTSEL(0x6B);
 714	else if (vsize_in <= vsize_out * 2)
 715		val |= SC_VTSEL(0x6C);
 716	else if (vsize_in <= vsize_out * 2 + vsize_out * 3 / 4)
 717		val |= SC_VTSEL(0x6D);
 718	else
 719		val |= SC_VTSEL(0x6E);
 720
 721	malidp_write32(reg, SC_COEFFTAB, val);
 722}
 723
 724static void d71_scaler_update(struct komeda_component *c,
 725			      struct komeda_component_state *state)
 726{
 727	struct komeda_scaler_state *st = to_scaler_st(state);
 728	u32 __iomem *reg = c->reg;
 729	u32 init_ph, delta_ph, ctrl;
 730
 731	d71_scaler_update_filter_lut(reg, st->hsize_in, st->vsize_in,
 732				     st->hsize_out, st->vsize_out);
 733
 734	malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize_in, st->vsize_in));
 735	malidp_write32(reg, SC_OUT_SIZE, HV_SIZE(st->hsize_out, st->vsize_out));
 736	malidp_write32(reg, SC_H_CROP, HV_CROP(st->left_crop, st->right_crop));
 737
 738	/* for right part, HW only sample the valid pixel which means the pixels
 739	 * in left_crop will be jumpped, and the first sample pixel is:
 740	 *
 741	 * dst_a = st->total_hsize_out - st->hsize_out + st->left_crop + 0.5;
 742	 *
 743	 * Then the corresponding texel in src is:
 744	 *
 745	 * h_delta_phase = st->total_hsize_in / st->total_hsize_out;
 746	 * src_a = dst_A * h_delta_phase;
 747	 *
 748	 * and h_init_phase is src_a deduct the real source start src_S;
 749	 *
 750	 * src_S = st->total_hsize_in - st->hsize_in;
 751	 * h_init_phase = src_a - src_S;
 752	 *
 753	 * And HW precision for the initial/delta_phase is 16:16 fixed point,
 754	 * the following is the simplified formula
 755	 */
 756	if (st->right_part) {
 757		u32 dst_a = st->total_hsize_out - st->hsize_out + st->left_crop;
 758
 759		if (st->en_img_enhancement)
 760			dst_a -= 1;
 761
 762		init_ph = ((st->total_hsize_in * (2 * dst_a + 1) -
 763			    2 * st->total_hsize_out * (st->total_hsize_in -
 764			    st->hsize_in)) << 15) / st->total_hsize_out;
 765	} else {
 766		init_ph = (st->total_hsize_in << 15) / st->total_hsize_out;
 767	}
 768
 769	malidp_write32(reg, SC_H_INIT_PH, init_ph);
 770
 771	delta_ph = (st->total_hsize_in << 16) / st->total_hsize_out;
 772	malidp_write32(reg, SC_H_DELTA_PH, delta_ph);
 773
 774	init_ph = (st->total_vsize_in << 15) / st->vsize_out;
 775	malidp_write32(reg, SC_V_INIT_PH, init_ph);
 776
 777	delta_ph = (st->total_vsize_in << 16) / st->vsize_out;
 778	malidp_write32(reg, SC_V_DELTA_PH, delta_ph);
 779
 780	ctrl = 0;
 781	ctrl |= st->en_scaling ? SC_CTRL_SCL : 0;
 782	ctrl |= st->en_alpha ? SC_CTRL_AP : 0;
 783	ctrl |= st->en_img_enhancement ? SC_CTRL_IENH : 0;
 784	/* If we use the hardware splitter we shouldn't set SC_CTRL_LS */
 785	if (st->en_split &&
 786	    state->inputs[0].component->id != KOMEDA_COMPONENT_SPLITTER)
 787		ctrl |= SC_CTRL_LS;
 788
 789	malidp_write32(reg, BLK_CONTROL, ctrl);
 790	malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
 791}
 792
 793static void d71_scaler_dump(struct komeda_component *c, struct seq_file *sf)
 794{
 795	u32 v[10];
 796
 797	dump_block_header(sf, c->reg);
 798
 799	get_values_from_reg(c->reg, 0x80, 1, v);
 800	seq_printf(sf, "SC_INPUT_ID0:\t\t0x%X\n", v[0]);
 801
 802	get_values_from_reg(c->reg, 0xD0, 1, v);
 803	seq_printf(sf, "SC_CONTROL:\t\t0x%X\n", v[0]);
 804
 805	get_values_from_reg(c->reg, 0xDC, 9, v);
 806	seq_printf(sf, "SC_COEFFTAB:\t\t0x%X\n", v[0]);
 807	seq_printf(sf, "SC_IN_SIZE:\t\t0x%X\n", v[1]);
 808	seq_printf(sf, "SC_OUT_SIZE:\t\t0x%X\n", v[2]);
 809	seq_printf(sf, "SC_H_CROP:\t\t0x%X\n", v[3]);
 810	seq_printf(sf, "SC_V_CROP:\t\t0x%X\n", v[4]);
 811	seq_printf(sf, "SC_H_INIT_PH:\t\t0x%X\n", v[5]);
 812	seq_printf(sf, "SC_H_DELTA_PH:\t\t0x%X\n", v[6]);
 813	seq_printf(sf, "SC_V_INIT_PH:\t\t0x%X\n", v[7]);
 814	seq_printf(sf, "SC_V_DELTA_PH:\t\t0x%X\n", v[8]);
 815
 816	get_values_from_reg(c->reg, 0x130, 10, v);
 817	seq_printf(sf, "SC_ENH_LIMITS:\t\t0x%X\n", v[0]);
 818	seq_printf(sf, "SC_ENH_COEFF0:\t\t0x%X\n", v[1]);
 819	seq_printf(sf, "SC_ENH_COEFF1:\t\t0x%X\n", v[2]);
 820	seq_printf(sf, "SC_ENH_COEFF2:\t\t0x%X\n", v[3]);
 821	seq_printf(sf, "SC_ENH_COEFF3:\t\t0x%X\n", v[4]);
 822	seq_printf(sf, "SC_ENH_COEFF4:\t\t0x%X\n", v[5]);
 823	seq_printf(sf, "SC_ENH_COEFF5:\t\t0x%X\n", v[6]);
 824	seq_printf(sf, "SC_ENH_COEFF6:\t\t0x%X\n", v[7]);
 825	seq_printf(sf, "SC_ENH_COEFF7:\t\t0x%X\n", v[8]);
 826	seq_printf(sf, "SC_ENH_COEFF8:\t\t0x%X\n", v[9]);
 827}
 828
 829static const struct komeda_component_funcs d71_scaler_funcs = {
 830	.update		= d71_scaler_update,
 831	.disable	= d71_component_disable,
 832	.dump_register	= d71_scaler_dump,
 833};
 834
 835static int d71_scaler_init(struct d71_dev *d71,
 836			   struct block_header *blk, u32 __iomem *reg)
 837{
 838	struct komeda_component *c;
 839	struct komeda_scaler *scaler;
 840	u32 pipe_id, comp_id;
 841
 842	get_resources_id(blk->block_info, &pipe_id, &comp_id);
 843
 844	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*scaler),
 845				 comp_id, BLOCK_INFO_INPUT_ID(blk->block_info),
 846				 &d71_scaler_funcs,
 847				 1, get_valid_inputs(blk), 1, reg,
 848				 "CU%d_SCALER%d",
 849				 pipe_id, BLOCK_INFO_BLK_ID(blk->block_info));
 850
 851	if (IS_ERR(c)) {
 852		DRM_ERROR("Failed to initialize scaler");
 853		return PTR_ERR(c);
 854	}
 855
 856	scaler = to_scaler(c);
 857	set_range(&scaler->hsize, 4, __get_blk_line_size(d71, reg, 2048));
 858	set_range(&scaler->vsize, 4, 4096);
 859	scaler->max_downscaling = 6;
 860	scaler->max_upscaling = 64;
 861	scaler->scaling_split_overlap = 8;
 862	scaler->enh_split_overlap = 1;
 863
 864	malidp_write32(c->reg, BLK_CONTROL, 0);
 865
 866	return 0;
 867}
 868
 869static int d71_downscaling_clk_check(struct komeda_pipeline *pipe,
 870				     struct drm_display_mode *mode,
 871				     unsigned long aclk_rate,
 872				     struct komeda_data_flow_cfg *dflow)
 873{
 874	u32 h_in = dflow->in_w;
 875	u32 v_in = dflow->in_h;
 876	u32 v_out = dflow->out_h;
 877	u64 fraction, denominator;
 878
 879	/* D71 downscaling must satisfy the following equation
 880	 *
 881	 *   ACLK                   h_in * v_in
 882	 * ------- >= ---------------------------------------------
 883	 *  PXLCLK     (h_total - (1 + 2 * v_in / v_out)) * v_out
 884	 *
 885	 * In only horizontal downscaling situation, the right side should be
 886	 * multiplied by (h_total - 3) / (h_active - 3), then equation becomes
 887	 *
 888	 *   ACLK          h_in
 889	 * ------- >= ----------------
 890	 *  PXLCLK     (h_active - 3)
 891	 *
 892	 * To avoid precision lost the equation 1 will be convert to:
 893	 *
 894	 *   ACLK             h_in * v_in
 895	 * ------- >= -----------------------------------
 896	 *  PXLCLK     (h_total -1 ) * v_out -  2 * v_in
 897	 */
 898	if (v_in == v_out) {
 899		fraction = h_in;
 900		denominator = mode->hdisplay - 3;
 901	} else {
 902		fraction = h_in * v_in;
 903		denominator = (mode->htotal - 1) * v_out -  2 * v_in;
 904	}
 905
 906	return aclk_rate * denominator >= mode->crtc_clock * 1000 * fraction ?
 907	       0 : -EINVAL;
 908}
 909
 910static void d71_splitter_update(struct komeda_component *c,
 911				struct komeda_component_state *state)
 912{
 913	struct komeda_splitter_state *st = to_splitter_st(state);
 914	u32 __iomem *reg = c->reg;
 915
 916	malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
 917	malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
 918	malidp_write32(reg, SP_OVERLAP_SIZE, st->overlap & 0x1FFF);
 919	malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
 920}
 921
 922static void d71_splitter_dump(struct komeda_component *c, struct seq_file *sf)
 923{
 924	u32 v[3];
 925
 926	dump_block_header(sf, c->reg);
 927
 928	get_values_from_reg(c->reg, BLK_INPUT_ID0, 1, v);
 929	seq_printf(sf, "SP_INPUT_ID0:\t\t0x%X\n", v[0]);
 930
 931	get_values_from_reg(c->reg, BLK_CONTROL, 3, v);
 932	seq_printf(sf, "SP_CONTROL:\t\t0x%X\n", v[0]);
 933	seq_printf(sf, "SP_SIZE:\t\t0x%X\n", v[1]);
 934	seq_printf(sf, "SP_OVERLAP_SIZE:\t0x%X\n", v[2]);
 935}
 936
 937static const struct komeda_component_funcs d71_splitter_funcs = {
 938	.update		= d71_splitter_update,
 939	.disable	= d71_component_disable,
 940	.dump_register	= d71_splitter_dump,
 941};
 942
 943static int d71_splitter_init(struct d71_dev *d71,
 944			     struct block_header *blk, u32 __iomem *reg)
 945{
 946	struct komeda_component *c;
 947	struct komeda_splitter *splitter;
 948	u32 pipe_id, comp_id;
 949
 950	get_resources_id(blk->block_info, &pipe_id, &comp_id);
 951
 952	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*splitter),
 953				 comp_id,
 954				 BLOCK_INFO_INPUT_ID(blk->block_info),
 955				 &d71_splitter_funcs,
 956				 1, get_valid_inputs(blk), 2, reg,
 957				 "CU%d_SPLITTER", pipe_id);
 958
 959	if (IS_ERR(c)) {
 960		DRM_ERROR("Failed to initialize splitter");
 961		return -1;
 962	}
 963
 964	splitter = to_splitter(c);
 965
 966	set_range(&splitter->hsize, 4, get_blk_line_size(d71, reg));
 967	set_range(&splitter->vsize, 4, d71->max_vsize);
 968
 969	return 0;
 970}
 971
 972static void d71_merger_update(struct komeda_component *c,
 973			      struct komeda_component_state *state)
 974{
 975	struct komeda_merger_state *st = to_merger_st(state);
 976	u32 __iomem *reg = c->reg;
 977	u32 index;
 978
 979	for_each_changed_input(state, index)
 980		malidp_write32(reg, MG_INPUT_ID0 + index * 4,
 981			       to_d71_input_id(state, index));
 982
 983	malidp_write32(reg, MG_SIZE, HV_SIZE(st->hsize_merged,
 984					     st->vsize_merged));
 985	malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
 986}
 987
 988static void d71_merger_dump(struct komeda_component *c, struct seq_file *sf)
 989{
 990	u32 v;
 991
 992	dump_block_header(sf, c->reg);
 993
 994	get_values_from_reg(c->reg, MG_INPUT_ID0, 1, &v);
 995	seq_printf(sf, "MG_INPUT_ID0:\t\t0x%X\n", v);
 996
 997	get_values_from_reg(c->reg, MG_INPUT_ID1, 1, &v);
 998	seq_printf(sf, "MG_INPUT_ID1:\t\t0x%X\n", v);
 999
1000	get_values_from_reg(c->reg, BLK_CONTROL, 1, &v);
1001	seq_printf(sf, "MG_CONTROL:\t\t0x%X\n", v);
1002
1003	get_values_from_reg(c->reg, MG_SIZE, 1, &v);
1004	seq_printf(sf, "MG_SIZE:\t\t0x%X\n", v);
1005}
1006
1007static const struct komeda_component_funcs d71_merger_funcs = {
1008	.update		= d71_merger_update,
1009	.disable	= d71_component_disable,
1010	.dump_register	= d71_merger_dump,
1011};
1012
1013static int d71_merger_init(struct d71_dev *d71,
1014			   struct block_header *blk, u32 __iomem *reg)
1015{
1016	struct komeda_component *c;
1017	struct komeda_merger *merger;
1018	u32 pipe_id, comp_id;
1019
1020	get_resources_id(blk->block_info, &pipe_id, &comp_id);
1021
1022	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*merger),
1023				 comp_id,
1024				 BLOCK_INFO_INPUT_ID(blk->block_info),
1025				 &d71_merger_funcs,
1026				 MG_NUM_INPUTS_IDS, get_valid_inputs(blk),
1027				 MG_NUM_OUTPUTS_IDS, reg,
1028				 "CU%d_MERGER", pipe_id);
1029
1030	if (IS_ERR(c)) {
1031		DRM_ERROR("Failed to initialize merger.\n");
1032		return PTR_ERR(c);
1033	}
1034
1035	merger = to_merger(c);
1036
1037	set_range(&merger->hsize_merged, 4,
1038		  __get_blk_line_size(d71, reg, 4032));
1039	set_range(&merger->vsize_merged, 4, 4096);
1040
1041	return 0;
1042}
1043
1044static void d71_improc_update(struct komeda_component *c,
1045			      struct komeda_component_state *state)
1046{
1047	struct drm_crtc_state *crtc_st = state->crtc->state;
1048	struct komeda_improc_state *st = to_improc_st(state);
1049	struct d71_pipeline *pipe = to_d71_pipeline(c->pipeline);
1050	u32 __iomem *reg = c->reg;
1051	u32 index, mask = 0, ctrl = 0;
1052
1053	for_each_changed_input(state, index)
1054		malidp_write32(reg, BLK_INPUT_ID0 + index * 4,
1055			       to_d71_input_id(state, index));
1056
1057	malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
1058	malidp_write32(reg, IPS_DEPTH, st->color_depth);
1059
1060	if (crtc_st->color_mgmt_changed) {
1061		mask |= IPS_CTRL_FT | IPS_CTRL_RGB;
1062
1063		if (crtc_st->gamma_lut) {
1064			malidp_write_group(pipe->dou_ft_coeff_addr, FT_COEFF0,
1065					   KOMEDA_N_GAMMA_COEFFS,
1066					   st->fgamma_coeffs);
1067			ctrl |= IPS_CTRL_FT; /* enable gamma */
1068		}
1069
1070		if (crtc_st->ctm) {
1071			malidp_write_group(reg, IPS_RGB_RGB_COEFF0,
1072					   KOMEDA_N_CTM_COEFFS,
1073					   st->ctm_coeffs);
1074			ctrl |= IPS_CTRL_RGB; /* enable gamut */
1075		}
1076	}
1077
1078	mask |= IPS_CTRL_YUV | IPS_CTRL_CHD422 | IPS_CTRL_CHD420;
1079
1080	/* config color format */
1081	if (st->color_format == DRM_COLOR_FORMAT_YCBCR420)
1082		ctrl |= IPS_CTRL_YUV | IPS_CTRL_CHD422 | IPS_CTRL_CHD420;
1083	else if (st->color_format == DRM_COLOR_FORMAT_YCBCR422)
1084		ctrl |= IPS_CTRL_YUV | IPS_CTRL_CHD422;
1085	else if (st->color_format == DRM_COLOR_FORMAT_YCBCR444)
1086		ctrl |= IPS_CTRL_YUV;
1087
1088	malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
1089}
1090
1091static void d71_improc_dump(struct komeda_component *c, struct seq_file *sf)
1092{
1093	u32 v[12], i;
1094
1095	dump_block_header(sf, c->reg);
1096
1097	get_values_from_reg(c->reg, 0x80, 2, v);
1098	seq_printf(sf, "IPS_INPUT_ID0:\t\t0x%X\n", v[0]);
1099	seq_printf(sf, "IPS_INPUT_ID1:\t\t0x%X\n", v[1]);
1100
1101	get_values_from_reg(c->reg, 0xC0, 1, v);
1102	seq_printf(sf, "IPS_INFO:\t\t0x%X\n", v[0]);
1103
1104	get_values_from_reg(c->reg, 0xD0, 3, v);
1105	seq_printf(sf, "IPS_CONTROL:\t\t0x%X\n", v[0]);
1106	seq_printf(sf, "IPS_SIZE:\t\t0x%X\n", v[1]);
1107	seq_printf(sf, "IPS_DEPTH:\t\t0x%X\n", v[2]);
1108
1109	get_values_from_reg(c->reg, 0x130, 12, v);
1110	for (i = 0; i < 12; i++)
1111		seq_printf(sf, "IPS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
1112
1113	get_values_from_reg(c->reg, 0x170, 12, v);
1114	for (i = 0; i < 12; i++)
1115		seq_printf(sf, "IPS_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
1116}
1117
1118static const struct komeda_component_funcs d71_improc_funcs = {
1119	.update		= d71_improc_update,
1120	.disable	= d71_component_disable,
1121	.dump_register	= d71_improc_dump,
1122};
1123
1124static int d71_improc_init(struct d71_dev *d71,
1125			   struct block_header *blk, u32 __iomem *reg)
1126{
1127	struct komeda_component *c;
1128	struct komeda_improc *improc;
1129	u32 pipe_id, comp_id, value;
1130
1131	get_resources_id(blk->block_info, &pipe_id, &comp_id);
1132
1133	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*improc),
1134				 comp_id,
1135				 BLOCK_INFO_INPUT_ID(blk->block_info),
1136				 &d71_improc_funcs, IPS_NUM_INPUT_IDS,
1137				 get_valid_inputs(blk),
1138				 IPS_NUM_OUTPUT_IDS, reg, "DOU%d_IPS", pipe_id);
1139	if (IS_ERR(c)) {
1140		DRM_ERROR("Failed to add improc component\n");
1141		return PTR_ERR(c);
1142	}
1143
1144	improc = to_improc(c);
1145	improc->supported_color_depths = BIT(8) | BIT(10);
1146	improc->supported_color_formats = DRM_COLOR_FORMAT_RGB444 |
1147					  DRM_COLOR_FORMAT_YCBCR444 |
1148					  DRM_COLOR_FORMAT_YCBCR422;
1149	value = malidp_read32(reg, BLK_INFO);
1150	if (value & IPS_INFO_CHD420)
1151		improc->supported_color_formats |= DRM_COLOR_FORMAT_YCBCR420;
1152
1153	improc->supports_csc = true;
1154	improc->supports_gamma = true;
1155
1156	return 0;
1157}
1158
1159static void d71_timing_ctrlr_disable(struct komeda_component *c)
1160{
1161	malidp_write32_mask(c->reg, BLK_CONTROL, BS_CTRL_EN, 0);
1162}
1163
1164static void d71_timing_ctrlr_update(struct komeda_component *c,
1165				    struct komeda_component_state *state)
1166{
1167	struct drm_crtc_state *crtc_st = state->crtc->state;
1168	struct drm_display_mode *mode = &crtc_st->adjusted_mode;
1169	u32 __iomem *reg = c->reg;
1170	u32 hactive, hfront_porch, hback_porch, hsync_len;
1171	u32 vactive, vfront_porch, vback_porch, vsync_len;
1172	u32 value;
1173
1174	hactive = mode->crtc_hdisplay;
1175	hfront_porch = mode->crtc_hsync_start - mode->crtc_hdisplay;
1176	hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
1177	hback_porch = mode->crtc_htotal - mode->crtc_hsync_end;
1178
1179	vactive = mode->crtc_vdisplay;
1180	vfront_porch = mode->crtc_vsync_start - mode->crtc_vdisplay;
1181	vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
1182	vback_porch = mode->crtc_vtotal - mode->crtc_vsync_end;
1183
1184	malidp_write32(reg, BS_ACTIVESIZE, HV_SIZE(hactive, vactive));
1185	malidp_write32(reg, BS_HINTERVALS, BS_H_INTVALS(hfront_porch,
1186							hback_porch));
1187	malidp_write32(reg, BS_VINTERVALS, BS_V_INTVALS(vfront_porch,
1188							vback_porch));
1189
1190	value = BS_SYNC_VSW(vsync_len) | BS_SYNC_HSW(hsync_len);
1191	value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? BS_SYNC_VSP : 0;
1192	value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? BS_SYNC_HSP : 0;
1193	malidp_write32(reg, BS_SYNC, value);
1194
1195	malidp_write32(reg, BS_PROG_LINE, D71_DEFAULT_PREPRETCH_LINE - 1);
1196	malidp_write32(reg, BS_PREFETCH_LINE, D71_DEFAULT_PREPRETCH_LINE);
1197
1198	/* configure bs control register */
1199	value = BS_CTRL_EN | BS_CTRL_VM;
1200	if (c->pipeline->dual_link) {
1201		malidp_write32(reg, BS_DRIFT_TO, hfront_porch + 16);
1202		value |= BS_CTRL_DL;
1203	}
1204
1205	malidp_write32(reg, BLK_CONTROL, value);
1206}
1207
1208static void d71_timing_ctrlr_dump(struct komeda_component *c,
1209				  struct seq_file *sf)
1210{
1211	u32 v[8], i;
1212
1213	dump_block_header(sf, c->reg);
1214
1215	get_values_from_reg(c->reg, 0xC0, 1, v);
1216	seq_printf(sf, "BS_INFO:\t\t0x%X\n", v[0]);
1217
1218	get_values_from_reg(c->reg, 0xD0, 8, v);
1219	seq_printf(sf, "BS_CONTROL:\t\t0x%X\n", v[0]);
1220	seq_printf(sf, "BS_PROG_LINE:\t\t0x%X\n", v[1]);
1221	seq_printf(sf, "BS_PREFETCH_LINE:\t0x%X\n", v[2]);
1222	seq_printf(sf, "BS_BG_COLOR:\t\t0x%X\n", v[3]);
1223	seq_printf(sf, "BS_ACTIVESIZE:\t\t0x%X\n", v[4]);
1224	seq_printf(sf, "BS_HINTERVALS:\t\t0x%X\n", v[5]);
1225	seq_printf(sf, "BS_VINTERVALS:\t\t0x%X\n", v[6]);
1226	seq_printf(sf, "BS_SYNC:\t\t0x%X\n", v[7]);
1227
1228	get_values_from_reg(c->reg, 0x100, 3, v);
1229	seq_printf(sf, "BS_DRIFT_TO:\t\t0x%X\n", v[0]);
1230	seq_printf(sf, "BS_FRAME_TO:\t\t0x%X\n", v[1]);
1231	seq_printf(sf, "BS_TE_TO:\t\t0x%X\n", v[2]);
1232
1233	get_values_from_reg(c->reg, 0x110, 3, v);
1234	for (i = 0; i < 3; i++)
1235		seq_printf(sf, "BS_T%u_INTERVAL:\t\t0x%X\n", i, v[i]);
1236
1237	get_values_from_reg(c->reg, 0x120, 5, v);
1238	for (i = 0; i < 2; i++) {
1239		seq_printf(sf, "BS_CRC%u_LOW:\t\t0x%X\n", i, v[i << 1]);
1240		seq_printf(sf, "BS_CRC%u_HIGH:\t\t0x%X\n", i, v[(i << 1) + 1]);
1241	}
1242	seq_printf(sf, "BS_USER:\t\t0x%X\n", v[4]);
1243}
1244
1245static const struct komeda_component_funcs d71_timing_ctrlr_funcs = {
1246	.update		= d71_timing_ctrlr_update,
1247	.disable	= d71_timing_ctrlr_disable,
1248	.dump_register	= d71_timing_ctrlr_dump,
1249};
1250
1251static int d71_timing_ctrlr_init(struct d71_dev *d71,
1252				 struct block_header *blk, u32 __iomem *reg)
1253{
1254	struct komeda_component *c;
1255	struct komeda_timing_ctrlr *ctrlr;
1256	u32 pipe_id, comp_id;
1257
1258	get_resources_id(blk->block_info, &pipe_id, &comp_id);
1259
1260	c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*ctrlr),
1261				 KOMEDA_COMPONENT_TIMING_CTRLR,
1262				 BLOCK_INFO_INPUT_ID(blk->block_info),
1263				 &d71_timing_ctrlr_funcs,
1264				 1, BIT(KOMEDA_COMPONENT_IPS0 + pipe_id),
1265				 BS_NUM_OUTPUT_IDS, reg, "DOU%d_BS", pipe_id);
1266	if (IS_ERR(c)) {
1267		DRM_ERROR("Failed to add display_ctrl component\n");
1268		return PTR_ERR(c);
1269	}
1270
1271	ctrlr = to_ctrlr(c);
1272
1273	ctrlr->supports_dual_link = d71->supports_dual_link;
1274
1275	return 0;
1276}
1277
1278int d71_probe_block(struct d71_dev *d71,
1279		    struct block_header *blk, u32 __iomem *reg)
1280{
1281	struct d71_pipeline *pipe;
1282	int blk_id = BLOCK_INFO_BLK_ID(blk->block_info);
1283
1284	int err = 0;
1285
1286	switch (BLOCK_INFO_BLK_TYPE(blk->block_info)) {
1287	case D71_BLK_TYPE_GCU:
1288		break;
1289
1290	case D71_BLK_TYPE_LPU:
1291		pipe = d71->pipes[blk_id];
1292		pipe->lpu_addr = reg;
1293		break;
1294
1295	case D71_BLK_TYPE_LPU_LAYER:
1296		err = d71_layer_init(d71, blk, reg);
1297		break;
1298
1299	case D71_BLK_TYPE_LPU_WB_LAYER:
1300		err = d71_wb_layer_init(d71, blk, reg);
1301		break;
1302
1303	case D71_BLK_TYPE_CU:
1304		pipe = d71->pipes[blk_id];
1305		pipe->cu_addr = reg;
1306		err = d71_compiz_init(d71, blk, reg);
1307		break;
1308
1309	case D71_BLK_TYPE_CU_SCALER:
1310		err = d71_scaler_init(d71, blk, reg);
1311		break;
1312
1313	case D71_BLK_TYPE_CU_SPLITTER:
1314		err = d71_splitter_init(d71, blk, reg);
1315		break;
1316
1317	case D71_BLK_TYPE_CU_MERGER:
1318		err = d71_merger_init(d71, blk, reg);
1319		break;
1320
1321	case D71_BLK_TYPE_DOU:
1322		pipe = d71->pipes[blk_id];
1323		pipe->dou_addr = reg;
1324		break;
1325
1326	case D71_BLK_TYPE_DOU_IPS:
1327		err = d71_improc_init(d71, blk, reg);
1328		break;
1329
1330	case D71_BLK_TYPE_DOU_FT_COEFF:
1331		pipe = d71->pipes[blk_id];
1332		pipe->dou_ft_coeff_addr = reg;
1333		break;
1334
1335	case D71_BLK_TYPE_DOU_BS:
1336		err = d71_timing_ctrlr_init(d71, blk, reg);
1337		break;
1338
1339	case D71_BLK_TYPE_GLB_LT_COEFF:
1340		break;
1341
1342	case D71_BLK_TYPE_GLB_SCL_COEFF:
1343		d71->glb_scl_coeff_addr[blk_id] = reg;
1344		break;
1345
1346	default:
1347		DRM_ERROR("Unknown block (block_info: 0x%x) is found\n",
1348			  blk->block_info);
1349		err = -EINVAL;
1350		break;
1351	}
1352
1353	return err;
1354}
1355
1356static void d71_gcu_dump(struct d71_dev *d71, struct seq_file *sf)
1357{
1358	u32 v[5];
1359
1360	seq_puts(sf, "\n------ GCU ------\n");
1361
1362	get_values_from_reg(d71->gcu_addr, 0, 3, v);
1363	seq_printf(sf, "GLB_ARCH_ID:\t\t0x%X\n", v[0]);
1364	seq_printf(sf, "GLB_CORE_ID:\t\t0x%X\n", v[1]);
1365	seq_printf(sf, "GLB_CORE_INFO:\t\t0x%X\n", v[2]);
1366
1367	get_values_from_reg(d71->gcu_addr, 0x10, 1, v);
1368	seq_printf(sf, "GLB_IRQ_STATUS:\t\t0x%X\n", v[0]);
1369
1370	get_values_from_reg(d71->gcu_addr, 0xA0, 5, v);
1371	seq_printf(sf, "GCU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
1372	seq_printf(sf, "GCU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
1373	seq_printf(sf, "GCU_IRQ_MASK:\t\t0x%X\n", v[2]);
1374	seq_printf(sf, "GCU_IRQ_STATUS:\t\t0x%X\n", v[3]);
1375	seq_printf(sf, "GCU_STATUS:\t\t0x%X\n", v[4]);
1376
1377	get_values_from_reg(d71->gcu_addr, 0xD0, 3, v);
1378	seq_printf(sf, "GCU_CONTROL:\t\t0x%X\n", v[0]);
1379	seq_printf(sf, "GCU_CONFIG_VALID0:\t0x%X\n", v[1]);
1380	seq_printf(sf, "GCU_CONFIG_VALID1:\t0x%X\n", v[2]);
1381}
1382
1383static void d71_lpu_dump(struct d71_pipeline *pipe, struct seq_file *sf)
1384{
1385	u32 v[6];
1386
1387	seq_printf(sf, "\n------ LPU%d ------\n", pipe->base.id);
1388
1389	dump_block_header(sf, pipe->lpu_addr);
1390
1391	get_values_from_reg(pipe->lpu_addr, 0xA0, 6, v);
1392	seq_printf(sf, "LPU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
1393	seq_printf(sf, "LPU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
1394	seq_printf(sf, "LPU_IRQ_MASK:\t\t0x%X\n", v[2]);
1395	seq_printf(sf, "LPU_IRQ_STATUS:\t\t0x%X\n", v[3]);
1396	seq_printf(sf, "LPU_STATUS:\t\t0x%X\n", v[4]);
1397	seq_printf(sf, "LPU_TBU_STATUS:\t\t0x%X\n", v[5]);
1398
1399	get_values_from_reg(pipe->lpu_addr, 0xC0, 1, v);
1400	seq_printf(sf, "LPU_INFO:\t\t0x%X\n", v[0]);
1401
1402	get_values_from_reg(pipe->lpu_addr, 0xD0, 3, v);
1403	seq_printf(sf, "LPU_RAXI_CONTROL:\t0x%X\n", v[0]);
1404	seq_printf(sf, "LPU_WAXI_CONTROL:\t0x%X\n", v[1]);
1405	seq_printf(sf, "LPU_TBU_CONTROL:\t0x%X\n", v[2]);
1406}
1407
1408static void d71_dou_dump(struct d71_pipeline *pipe, struct seq_file *sf)
1409{
1410	u32 v[5];
1411
1412	seq_printf(sf, "\n------ DOU%d ------\n", pipe->base.id);
1413
1414	dump_block_header(sf, pipe->dou_addr);
1415
1416	get_values_from_reg(pipe->dou_addr, 0xA0, 5, v);
1417	seq_printf(sf, "DOU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
1418	seq_printf(sf, "DOU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
1419	seq_printf(sf, "DOU_IRQ_MASK:\t\t0x%X\n", v[2]);
1420	seq_printf(sf, "DOU_IRQ_STATUS:\t\t0x%X\n", v[3]);
1421	seq_printf(sf, "DOU_STATUS:\t\t0x%X\n", v[4]);
1422}
1423
1424static void d71_pipeline_dump(struct komeda_pipeline *pipe, struct seq_file *sf)
1425{
1426	struct d71_pipeline *d71_pipe = to_d71_pipeline(pipe);
1427
1428	d71_lpu_dump(d71_pipe, sf);
1429	d71_dou_dump(d71_pipe, sf);
1430}
1431
1432const struct komeda_pipeline_funcs d71_pipeline_funcs = {
1433	.downscaling_clk_check	= d71_downscaling_clk_check,
1434	.dump_register		= d71_pipeline_dump,
1435};
1436
1437void d71_dump(struct komeda_dev *mdev, struct seq_file *sf)
1438{
1439	struct d71_dev *d71 = mdev->chip_data;
1440
1441	d71_gcu_dump(d71, sf);
1442}