Loading...
1/*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17#include <dt-bindings/dma/at91.h>
18#include <linux/clk.h>
19#include <linux/dmaengine.h>
20#include <linux/dma-mapping.h>
21#include <linux/dmapool.h>
22#include <linux/interrupt.h>
23#include <linux/module.h>
24#include <linux/platform_device.h>
25#include <linux/slab.h>
26#include <linux/of.h>
27#include <linux/of_device.h>
28#include <linux/of_dma.h>
29
30#include "at_hdmac_regs.h"
31#include "dmaengine.h"
32
33/*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42#define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43#define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45#define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51#define ATC_MAX_DSCR_TRIALS 10
52
53/*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57static unsigned int init_nr_desc_per_channel = 64;
58module_param(init_nr_desc_per_channel, uint, 0644);
59MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63/* prototypes */
64static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65static void atc_issue_pending(struct dma_chan *chan);
66
67
68/*----------------------------------------------------------------------*/
69
70static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72{
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83}
84
85static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86{
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89}
90
91static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92{
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95}
96
97/**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109{
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 memset(desc, 0, sizeof(struct at_desc));
117 INIT_LIST_HEAD(&desc->tx_list);
118 dma_async_tx_descriptor_init(&desc->txd, chan);
119 /* txd.flags will be overwritten in prep functions */
120 desc->txd.flags = DMA_CTRL_ACK;
121 desc->txd.tx_submit = atc_tx_submit;
122 desc->txd.phys = phys;
123 }
124
125 return desc;
126}
127
128/**
129 * atc_desc_get - get an unused descriptor from free_list
130 * @atchan: channel we want a new descriptor for
131 */
132static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133{
134 struct at_desc *desc, *_desc;
135 struct at_desc *ret = NULL;
136 unsigned long flags;
137 unsigned int i = 0;
138 LIST_HEAD(tmp_list);
139
140 spin_lock_irqsave(&atchan->lock, flags);
141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 i++;
143 if (async_tx_test_ack(&desc->txd)) {
144 list_del(&desc->desc_node);
145 ret = desc;
146 break;
147 }
148 dev_dbg(chan2dev(&atchan->chan_common),
149 "desc %p not ACKed\n", desc);
150 }
151 spin_unlock_irqrestore(&atchan->lock, flags);
152 dev_vdbg(chan2dev(&atchan->chan_common),
153 "scanned %u descriptors on freelist\n", i);
154
155 /* no more descriptor available in initial pool: create one more */
156 if (!ret) {
157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 if (ret) {
159 spin_lock_irqsave(&atchan->lock, flags);
160 atchan->descs_allocated++;
161 spin_unlock_irqrestore(&atchan->lock, flags);
162 } else {
163 dev_err(chan2dev(&atchan->chan_common),
164 "not enough descriptors available\n");
165 }
166 }
167
168 return ret;
169}
170
171/**
172 * atc_desc_put - move a descriptor, including any children, to the free list
173 * @atchan: channel we work on
174 * @desc: descriptor, at the head of a chain, to move to free list
175 */
176static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177{
178 if (desc) {
179 struct at_desc *child;
180 unsigned long flags;
181
182 spin_lock_irqsave(&atchan->lock, flags);
183 list_for_each_entry(child, &desc->tx_list, desc_node)
184 dev_vdbg(chan2dev(&atchan->chan_common),
185 "moving child desc %p to freelist\n",
186 child);
187 list_splice_init(&desc->tx_list, &atchan->free_list);
188 dev_vdbg(chan2dev(&atchan->chan_common),
189 "moving desc %p to freelist\n", desc);
190 list_add(&desc->desc_node, &atchan->free_list);
191 spin_unlock_irqrestore(&atchan->lock, flags);
192 }
193}
194
195/**
196 * atc_desc_chain - build chain adding a descriptor
197 * @first: address of first descriptor of the chain
198 * @prev: address of previous descriptor of the chain
199 * @desc: descriptor to queue
200 *
201 * Called from prep_* functions
202 */
203static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 struct at_desc *desc)
205{
206 if (!(*first)) {
207 *first = desc;
208 } else {
209 /* inform the HW lli about chaining */
210 (*prev)->lli.dscr = desc->txd.phys;
211 /* insert the link descriptor to the LD ring */
212 list_add_tail(&desc->desc_node,
213 &(*first)->tx_list);
214 }
215 *prev = desc;
216}
217
218/**
219 * atc_dostart - starts the DMA engine for real
220 * @atchan: the channel we want to start
221 * @first: first descriptor in the list we want to begin with
222 *
223 * Called with atchan->lock held and bh disabled
224 */
225static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226{
227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
228
229 /* ASSERT: channel is idle */
230 if (atc_chan_is_enabled(atchan)) {
231 dev_err(chan2dev(&atchan->chan_common),
232 "BUG: Attempted to start non-idle channel\n");
233 dev_err(chan2dev(&atchan->chan_common),
234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 channel_readl(atchan, SADDR),
236 channel_readl(atchan, DADDR),
237 channel_readl(atchan, CTRLA),
238 channel_readl(atchan, CTRLB),
239 channel_readl(atchan, DSCR));
240
241 /* The tasklet will hopefully advance the queue... */
242 return;
243 }
244
245 vdbg_dump_regs(atchan);
246
247 channel_writel(atchan, SADDR, 0);
248 channel_writel(atchan, DADDR, 0);
249 channel_writel(atchan, CTRLA, 0);
250 channel_writel(atchan, CTRLB, 0);
251 channel_writel(atchan, DSCR, first->txd.phys);
252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 ATC_SPIP_BOUNDARY(first->boundary));
254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 ATC_DPIP_BOUNDARY(first->boundary));
256 dma_writel(atdma, CHER, atchan->mask);
257
258 vdbg_dump_regs(atchan);
259}
260
261/*
262 * atc_get_desc_by_cookie - get the descriptor of a cookie
263 * @atchan: the DMA channel
264 * @cookie: the cookie to get the descriptor for
265 */
266static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 dma_cookie_t cookie)
268{
269 struct at_desc *desc, *_desc;
270
271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 if (desc->txd.cookie == cookie)
273 return desc;
274 }
275
276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 if (desc->txd.cookie == cookie)
278 return desc;
279 }
280
281 return NULL;
282}
283
284/**
285 * atc_calc_bytes_left - calculates the number of bytes left according to the
286 * value read from CTRLA.
287 *
288 * @current_len: the number of bytes left before reading CTRLA
289 * @ctrla: the value of CTRLA
290 */
291static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292{
293 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295
296 /*
297 * According to the datasheet, when reading the Control A Register
298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 * number of transfers completed on the Source Interface.
300 * So btsize is always a number of source width transfers.
301 */
302 return current_len - (btsize << src_width);
303}
304
305/**
306 * atc_get_bytes_left - get the number of bytes residue for a cookie
307 * @chan: DMA channel
308 * @cookie: transaction identifier to check status of
309 */
310static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311{
312 struct at_dma_chan *atchan = to_at_dma_chan(chan);
313 struct at_desc *desc_first = atc_first_active(atchan);
314 struct at_desc *desc;
315 int ret;
316 u32 ctrla, dscr, trials;
317
318 /*
319 * If the cookie doesn't match to the currently running transfer then
320 * we can return the total length of the associated DMA transfer,
321 * because it is still queued.
322 */
323 desc = atc_get_desc_by_cookie(atchan, cookie);
324 if (desc == NULL)
325 return -EINVAL;
326 else if (desc != desc_first)
327 return desc->total_len;
328
329 /* cookie matches to the currently running transfer */
330 ret = desc_first->total_len;
331
332 if (desc_first->lli.dscr) {
333 /* hardware linked list transfer */
334
335 /*
336 * Calculate the residue by removing the length of the child
337 * descriptors already transferred from the total length.
338 * To get the current child descriptor we can use the value of
339 * the channel's DSCR register and compare it against the value
340 * of the hardware linked list structure of each child
341 * descriptor.
342 *
343 * The CTRLA register provides us with the amount of data
344 * already read from the source for the current child
345 * descriptor. So we can compute a more accurate residue by also
346 * removing the number of bytes corresponding to this amount of
347 * data.
348 *
349 * However, the DSCR and CTRLA registers cannot be read both
350 * atomically. Hence a race condition may occur: the first read
351 * register may refer to one child descriptor whereas the second
352 * read may refer to a later child descriptor in the list
353 * because of the DMA transfer progression inbetween the two
354 * reads.
355 *
356 * One solution could have been to pause the DMA transfer, read
357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 * this approach presents some drawbacks:
359 * - If the DMA transfer is paused, RX overruns or TX underruns
360 * are more likey to occur depending on the system latency.
361 * Taking the USART driver as an example, it uses a cyclic DMA
362 * transfer to read data from the Receive Holding Register
363 * (RHR) to avoid RX overruns since the RHR is not protected
364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 * to compute the residue would break the USART driver design.
366 * - The atc_pause() function masks interrupts but we'd rather
367 * avoid to do so for system latency purpose.
368 *
369 * Then we'd rather use another solution: the DSCR is read a
370 * first time, the CTRLA is read in turn, next the DSCR is read
371 * a second time. If the two consecutive read values of the DSCR
372 * are the same then we assume both refers to the very same
373 * child descriptor as well as the CTRLA value read inbetween
374 * does. For cyclic tranfers, the assumption is that a full loop
375 * is "not so fast".
376 * If the two DSCR values are different, we read again the CTRLA
377 * then the DSCR till two consecutive read values from DSCR are
378 * equal or till the maxium trials is reach.
379 * This algorithm is very unlikely not to find a stable value for
380 * DSCR.
381 */
382
383 dscr = channel_readl(atchan, DSCR);
384 rmb(); /* ensure DSCR is read before CTRLA */
385 ctrla = channel_readl(atchan, CTRLA);
386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 u32 new_dscr;
388
389 rmb(); /* ensure DSCR is read after CTRLA */
390 new_dscr = channel_readl(atchan, DSCR);
391
392 /*
393 * If the DSCR register value has not changed inside the
394 * DMA controller since the previous read, we assume
395 * that both the dscr and ctrla values refers to the
396 * very same descriptor.
397 */
398 if (likely(new_dscr == dscr))
399 break;
400
401 /*
402 * DSCR has changed inside the DMA controller, so the
403 * previouly read value of CTRLA may refer to an already
404 * processed descriptor hence could be outdated.
405 * We need to update ctrla to match the current
406 * descriptor.
407 */
408 dscr = new_dscr;
409 rmb(); /* ensure DSCR is read before CTRLA */
410 ctrla = channel_readl(atchan, CTRLA);
411 }
412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 return -ETIMEDOUT;
414
415 /* for the first descriptor we can be more accurate */
416 if (desc_first->lli.dscr == dscr)
417 return atc_calc_bytes_left(ret, ctrla);
418
419 ret -= desc_first->len;
420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 if (desc->lli.dscr == dscr)
422 break;
423
424 ret -= desc->len;
425 }
426
427 /*
428 * For the current descriptor in the chain we can calculate
429 * the remaining bytes using the channel's register.
430 */
431 ret = atc_calc_bytes_left(ret, ctrla);
432 } else {
433 /* single transfer */
434 ctrla = channel_readl(atchan, CTRLA);
435 ret = atc_calc_bytes_left(ret, ctrla);
436 }
437
438 return ret;
439}
440
441/**
442 * atc_chain_complete - finish work for one transaction chain
443 * @atchan: channel we work on
444 * @desc: descriptor at the head of the chain we want do complete
445 *
446 * Called with atchan->lock held and bh disabled */
447static void
448atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449{
450 struct dma_async_tx_descriptor *txd = &desc->txd;
451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
452
453 dev_vdbg(chan2dev(&atchan->chan_common),
454 "descriptor %u complete\n", txd->cookie);
455
456 /* mark the descriptor as complete for non cyclic cases only */
457 if (!atc_chan_is_cyclic(atchan))
458 dma_cookie_complete(txd);
459
460 /* If the transfer was a memset, free our temporary buffer */
461 if (desc->memset_buffer) {
462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 desc->memset_paddr);
464 desc->memset_buffer = false;
465 }
466
467 /* move children to free_list */
468 list_splice_init(&desc->tx_list, &atchan->free_list);
469 /* move myself to free_list */
470 list_move(&desc->desc_node, &atchan->free_list);
471
472 dma_descriptor_unmap(txd);
473 /* for cyclic transfers,
474 * no need to replay callback function while stopping */
475 if (!atc_chan_is_cyclic(atchan)) {
476 dma_async_tx_callback callback = txd->callback;
477 void *param = txd->callback_param;
478
479 /*
480 * The API requires that no submissions are done from a
481 * callback, so we don't need to drop the lock here
482 */
483 if (callback)
484 callback(param);
485 }
486
487 dma_run_dependencies(txd);
488}
489
490/**
491 * atc_complete_all - finish work for all transactions
492 * @atchan: channel to complete transactions for
493 *
494 * Eventually submit queued descriptors if any
495 *
496 * Assume channel is idle while calling this function
497 * Called with atchan->lock held and bh disabled
498 */
499static void atc_complete_all(struct at_dma_chan *atchan)
500{
501 struct at_desc *desc, *_desc;
502 LIST_HEAD(list);
503
504 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505
506 /*
507 * Submit queued descriptors ASAP, i.e. before we go through
508 * the completed ones.
509 */
510 if (!list_empty(&atchan->queue))
511 atc_dostart(atchan, atc_first_queued(atchan));
512 /* empty active_list now it is completed */
513 list_splice_init(&atchan->active_list, &list);
514 /* empty queue list by moving descriptors (if any) to active_list */
515 list_splice_init(&atchan->queue, &atchan->active_list);
516
517 list_for_each_entry_safe(desc, _desc, &list, desc_node)
518 atc_chain_complete(atchan, desc);
519}
520
521/**
522 * atc_advance_work - at the end of a transaction, move forward
523 * @atchan: channel where the transaction ended
524 *
525 * Called with atchan->lock held and bh disabled
526 */
527static void atc_advance_work(struct at_dma_chan *atchan)
528{
529 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530
531 if (atc_chan_is_enabled(atchan))
532 return;
533
534 if (list_empty(&atchan->active_list) ||
535 list_is_singular(&atchan->active_list)) {
536 atc_complete_all(atchan);
537 } else {
538 atc_chain_complete(atchan, atc_first_active(atchan));
539 /* advance work */
540 atc_dostart(atchan, atc_first_active(atchan));
541 }
542}
543
544
545/**
546 * atc_handle_error - handle errors reported by DMA controller
547 * @atchan: channel where error occurs
548 *
549 * Called with atchan->lock held and bh disabled
550 */
551static void atc_handle_error(struct at_dma_chan *atchan)
552{
553 struct at_desc *bad_desc;
554 struct at_desc *child;
555
556 /*
557 * The descriptor currently at the head of the active list is
558 * broked. Since we don't have any way to report errors, we'll
559 * just have to scream loudly and try to carry on.
560 */
561 bad_desc = atc_first_active(atchan);
562 list_del_init(&bad_desc->desc_node);
563
564 /* As we are stopped, take advantage to push queued descriptors
565 * in active_list */
566 list_splice_init(&atchan->queue, atchan->active_list.prev);
567
568 /* Try to restart the controller */
569 if (!list_empty(&atchan->active_list))
570 atc_dostart(atchan, atc_first_active(atchan));
571
572 /*
573 * KERN_CRITICAL may seem harsh, but since this only happens
574 * when someone submits a bad physical address in a
575 * descriptor, we should consider ourselves lucky that the
576 * controller flagged an error instead of scribbling over
577 * random memory locations.
578 */
579 dev_crit(chan2dev(&atchan->chan_common),
580 "Bad descriptor submitted for DMA!\n");
581 dev_crit(chan2dev(&atchan->chan_common),
582 " cookie: %d\n", bad_desc->txd.cookie);
583 atc_dump_lli(atchan, &bad_desc->lli);
584 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585 atc_dump_lli(atchan, &child->lli);
586
587 /* Pretend the descriptor completed successfully */
588 atc_chain_complete(atchan, bad_desc);
589}
590
591/**
592 * atc_handle_cyclic - at the end of a period, run callback function
593 * @atchan: channel used for cyclic operations
594 *
595 * Called with atchan->lock held and bh disabled
596 */
597static void atc_handle_cyclic(struct at_dma_chan *atchan)
598{
599 struct at_desc *first = atc_first_active(atchan);
600 struct dma_async_tx_descriptor *txd = &first->txd;
601 dma_async_tx_callback callback = txd->callback;
602 void *param = txd->callback_param;
603
604 dev_vdbg(chan2dev(&atchan->chan_common),
605 "new cyclic period llp 0x%08x\n",
606 channel_readl(atchan, DSCR));
607
608 if (callback)
609 callback(param);
610}
611
612/*-- IRQ & Tasklet ---------------------------------------------------*/
613
614static void atc_tasklet(unsigned long data)
615{
616 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617 unsigned long flags;
618
619 spin_lock_irqsave(&atchan->lock, flags);
620 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621 atc_handle_error(atchan);
622 else if (atc_chan_is_cyclic(atchan))
623 atc_handle_cyclic(atchan);
624 else
625 atc_advance_work(atchan);
626
627 spin_unlock_irqrestore(&atchan->lock, flags);
628}
629
630static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631{
632 struct at_dma *atdma = (struct at_dma *)dev_id;
633 struct at_dma_chan *atchan;
634 int i;
635 u32 status, pending, imr;
636 int ret = IRQ_NONE;
637
638 do {
639 imr = dma_readl(atdma, EBCIMR);
640 status = dma_readl(atdma, EBCISR);
641 pending = status & imr;
642
643 if (!pending)
644 break;
645
646 dev_vdbg(atdma->dma_common.dev,
647 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648 status, imr, pending);
649
650 for (i = 0; i < atdma->dma_common.chancnt; i++) {
651 atchan = &atdma->chan[i];
652 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653 if (pending & AT_DMA_ERR(i)) {
654 /* Disable channel on AHB error */
655 dma_writel(atdma, CHDR,
656 AT_DMA_RES(i) | atchan->mask);
657 /* Give information to tasklet */
658 set_bit(ATC_IS_ERROR, &atchan->status);
659 }
660 tasklet_schedule(&atchan->tasklet);
661 ret = IRQ_HANDLED;
662 }
663 }
664
665 } while (pending);
666
667 return ret;
668}
669
670
671/*-- DMA Engine API --------------------------------------------------*/
672
673/**
674 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675 * @desc: descriptor at the head of the transaction chain
676 *
677 * Queue chain if DMA engine is working already
678 *
679 * Cookie increment and adding to active_list or queue must be atomic
680 */
681static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682{
683 struct at_desc *desc = txd_to_at_desc(tx);
684 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
685 dma_cookie_t cookie;
686 unsigned long flags;
687
688 spin_lock_irqsave(&atchan->lock, flags);
689 cookie = dma_cookie_assign(tx);
690
691 if (list_empty(&atchan->active_list)) {
692 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693 desc->txd.cookie);
694 atc_dostart(atchan, desc);
695 list_add_tail(&desc->desc_node, &atchan->active_list);
696 } else {
697 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698 desc->txd.cookie);
699 list_add_tail(&desc->desc_node, &atchan->queue);
700 }
701
702 spin_unlock_irqrestore(&atchan->lock, flags);
703
704 return cookie;
705}
706
707/**
708 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709 * @chan: the channel to prepare operation on
710 * @xt: Interleaved transfer template
711 * @flags: tx descriptor status flags
712 */
713static struct dma_async_tx_descriptor *
714atc_prep_dma_interleaved(struct dma_chan *chan,
715 struct dma_interleaved_template *xt,
716 unsigned long flags)
717{
718 struct at_dma_chan *atchan = to_at_dma_chan(chan);
719 struct data_chunk *first = xt->sgl;
720 struct at_desc *desc = NULL;
721 size_t xfer_count;
722 unsigned int dwidth;
723 u32 ctrla;
724 u32 ctrlb;
725 size_t len = 0;
726 int i;
727
728 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729 return NULL;
730
731 dev_info(chan2dev(chan),
732 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
733 __func__, &xt->src_start, &xt->dst_start, xt->numf,
734 xt->frame_size, flags);
735
736 /*
737 * The controller can only "skip" X bytes every Y bytes, so we
738 * need to make sure we are given a template that fit that
739 * description, ie a template with chunks that always have the
740 * same size, with the same ICGs.
741 */
742 for (i = 0; i < xt->frame_size; i++) {
743 struct data_chunk *chunk = xt->sgl + i;
744
745 if ((chunk->size != xt->sgl->size) ||
746 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
747 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
748 dev_err(chan2dev(chan),
749 "%s: the controller can transfer only identical chunks\n",
750 __func__);
751 return NULL;
752 }
753
754 len += chunk->size;
755 }
756
757 dwidth = atc_get_xfer_width(xt->src_start,
758 xt->dst_start, len);
759
760 xfer_count = len >> dwidth;
761 if (xfer_count > ATC_BTSIZE_MAX) {
762 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
763 return NULL;
764 }
765
766 ctrla = ATC_SRC_WIDTH(dwidth) |
767 ATC_DST_WIDTH(dwidth);
768
769 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
770 | ATC_SRC_ADDR_MODE_INCR
771 | ATC_DST_ADDR_MODE_INCR
772 | ATC_SRC_PIP
773 | ATC_DST_PIP
774 | ATC_FC_MEM2MEM;
775
776 /* create the transfer */
777 desc = atc_desc_get(atchan);
778 if (!desc) {
779 dev_err(chan2dev(chan),
780 "%s: couldn't allocate our descriptor\n", __func__);
781 return NULL;
782 }
783
784 desc->lli.saddr = xt->src_start;
785 desc->lli.daddr = xt->dst_start;
786 desc->lli.ctrla = ctrla | xfer_count;
787 desc->lli.ctrlb = ctrlb;
788
789 desc->boundary = first->size >> dwidth;
790 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
791 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
792
793 desc->txd.cookie = -EBUSY;
794 desc->total_len = desc->len = len;
795
796 /* set end-of-link to the last link descriptor of list*/
797 set_desc_eol(desc);
798
799 desc->txd.flags = flags; /* client is in control of this ack */
800
801 return &desc->txd;
802}
803
804/**
805 * atc_prep_dma_memcpy - prepare a memcpy operation
806 * @chan: the channel to prepare operation on
807 * @dest: operation virtual destination address
808 * @src: operation virtual source address
809 * @len: operation length
810 * @flags: tx descriptor status flags
811 */
812static struct dma_async_tx_descriptor *
813atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
814 size_t len, unsigned long flags)
815{
816 struct at_dma_chan *atchan = to_at_dma_chan(chan);
817 struct at_desc *desc = NULL;
818 struct at_desc *first = NULL;
819 struct at_desc *prev = NULL;
820 size_t xfer_count;
821 size_t offset;
822 unsigned int src_width;
823 unsigned int dst_width;
824 u32 ctrla;
825 u32 ctrlb;
826
827 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
828 &dest, &src, len, flags);
829
830 if (unlikely(!len)) {
831 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
832 return NULL;
833 }
834
835 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
836 | ATC_SRC_ADDR_MODE_INCR
837 | ATC_DST_ADDR_MODE_INCR
838 | ATC_FC_MEM2MEM;
839
840 /*
841 * We can be a lot more clever here, but this should take care
842 * of the most common optimization.
843 */
844 src_width = dst_width = atc_get_xfer_width(src, dest, len);
845
846 ctrla = ATC_SRC_WIDTH(src_width) |
847 ATC_DST_WIDTH(dst_width);
848
849 for (offset = 0; offset < len; offset += xfer_count << src_width) {
850 xfer_count = min_t(size_t, (len - offset) >> src_width,
851 ATC_BTSIZE_MAX);
852
853 desc = atc_desc_get(atchan);
854 if (!desc)
855 goto err_desc_get;
856
857 desc->lli.saddr = src + offset;
858 desc->lli.daddr = dest + offset;
859 desc->lli.ctrla = ctrla | xfer_count;
860 desc->lli.ctrlb = ctrlb;
861
862 desc->txd.cookie = 0;
863 desc->len = xfer_count << src_width;
864
865 atc_desc_chain(&first, &prev, desc);
866 }
867
868 /* First descriptor of the chain embedds additional information */
869 first->txd.cookie = -EBUSY;
870 first->total_len = len;
871
872 /* set end-of-link to the last link descriptor of list*/
873 set_desc_eol(desc);
874
875 first->txd.flags = flags; /* client is in control of this ack */
876
877 return &first->txd;
878
879err_desc_get:
880 atc_desc_put(atchan, first);
881 return NULL;
882}
883
884static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
885 dma_addr_t psrc,
886 dma_addr_t pdst,
887 size_t len)
888{
889 struct at_dma_chan *atchan = to_at_dma_chan(chan);
890 struct at_desc *desc;
891 size_t xfer_count;
892
893 u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
894 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
895 ATC_SRC_ADDR_MODE_FIXED |
896 ATC_DST_ADDR_MODE_INCR |
897 ATC_FC_MEM2MEM;
898
899 xfer_count = len >> 2;
900 if (xfer_count > ATC_BTSIZE_MAX) {
901 dev_err(chan2dev(chan), "%s: buffer is too big\n",
902 __func__);
903 return NULL;
904 }
905
906 desc = atc_desc_get(atchan);
907 if (!desc) {
908 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
909 __func__);
910 return NULL;
911 }
912
913 desc->lli.saddr = psrc;
914 desc->lli.daddr = pdst;
915 desc->lli.ctrla = ctrla | xfer_count;
916 desc->lli.ctrlb = ctrlb;
917
918 desc->txd.cookie = 0;
919 desc->len = len;
920
921 return desc;
922}
923
924/**
925 * atc_prep_dma_memset - prepare a memcpy operation
926 * @chan: the channel to prepare operation on
927 * @dest: operation virtual destination address
928 * @value: value to set memory buffer to
929 * @len: operation length
930 * @flags: tx descriptor status flags
931 */
932static struct dma_async_tx_descriptor *
933atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
934 size_t len, unsigned long flags)
935{
936 struct at_dma *atdma = to_at_dma(chan->device);
937 struct at_desc *desc;
938 void __iomem *vaddr;
939 dma_addr_t paddr;
940
941 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
942 &dest, value, len, flags);
943
944 if (unlikely(!len)) {
945 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
946 return NULL;
947 }
948
949 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
950 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
951 __func__);
952 return NULL;
953 }
954
955 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
956 if (!vaddr) {
957 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
958 __func__);
959 return NULL;
960 }
961 *(u32*)vaddr = value;
962
963 desc = atc_create_memset_desc(chan, paddr, dest, len);
964 if (!desc) {
965 dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
966 __func__);
967 goto err_free_buffer;
968 }
969
970 desc->memset_paddr = paddr;
971 desc->memset_vaddr = vaddr;
972 desc->memset_buffer = true;
973
974 desc->txd.cookie = -EBUSY;
975 desc->total_len = len;
976
977 /* set end-of-link on the descriptor */
978 set_desc_eol(desc);
979
980 desc->txd.flags = flags;
981
982 return &desc->txd;
983
984err_free_buffer:
985 dma_pool_free(atdma->memset_pool, vaddr, paddr);
986 return NULL;
987}
988
989static struct dma_async_tx_descriptor *
990atc_prep_dma_memset_sg(struct dma_chan *chan,
991 struct scatterlist *sgl,
992 unsigned int sg_len, int value,
993 unsigned long flags)
994{
995 struct at_dma_chan *atchan = to_at_dma_chan(chan);
996 struct at_dma *atdma = to_at_dma(chan->device);
997 struct at_desc *desc = NULL, *first = NULL, *prev = NULL;
998 struct scatterlist *sg;
999 void __iomem *vaddr;
1000 dma_addr_t paddr;
1001 size_t total_len = 0;
1002 int i;
1003
1004 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1005 value, sg_len, flags);
1006
1007 if (unlikely(!sgl || !sg_len)) {
1008 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1009 __func__);
1010 return NULL;
1011 }
1012
1013 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC, &paddr);
1014 if (!vaddr) {
1015 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1016 __func__);
1017 return NULL;
1018 }
1019 *(u32*)vaddr = value;
1020
1021 for_each_sg(sgl, sg, sg_len, i) {
1022 dma_addr_t dest = sg_dma_address(sg);
1023 size_t len = sg_dma_len(sg);
1024
1025 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1026 __func__, &dest, len);
1027
1028 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1029 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1030 __func__);
1031 goto err_put_desc;
1032 }
1033
1034 desc = atc_create_memset_desc(chan, paddr, dest, len);
1035 if (!desc)
1036 goto err_put_desc;
1037
1038 atc_desc_chain(&first, &prev, desc);
1039
1040 total_len += len;
1041 }
1042
1043 /*
1044 * Only set the buffer pointers on the last descriptor to
1045 * avoid free'ing while we have our transfer still going
1046 */
1047 desc->memset_paddr = paddr;
1048 desc->memset_vaddr = vaddr;
1049 desc->memset_buffer = true;
1050
1051 first->txd.cookie = -EBUSY;
1052 first->total_len = total_len;
1053
1054 /* set end-of-link on the descriptor */
1055 set_desc_eol(desc);
1056
1057 first->txd.flags = flags;
1058
1059 return &first->txd;
1060
1061err_put_desc:
1062 atc_desc_put(atchan, first);
1063 return NULL;
1064}
1065
1066/**
1067 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1068 * @chan: DMA channel
1069 * @sgl: scatterlist to transfer to/from
1070 * @sg_len: number of entries in @scatterlist
1071 * @direction: DMA direction
1072 * @flags: tx descriptor status flags
1073 * @context: transaction context (ignored)
1074 */
1075static struct dma_async_tx_descriptor *
1076atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1077 unsigned int sg_len, enum dma_transfer_direction direction,
1078 unsigned long flags, void *context)
1079{
1080 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1081 struct at_dma_slave *atslave = chan->private;
1082 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1083 struct at_desc *first = NULL;
1084 struct at_desc *prev = NULL;
1085 u32 ctrla;
1086 u32 ctrlb;
1087 dma_addr_t reg;
1088 unsigned int reg_width;
1089 unsigned int mem_width;
1090 unsigned int i;
1091 struct scatterlist *sg;
1092 size_t total_len = 0;
1093
1094 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1095 sg_len,
1096 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1097 flags);
1098
1099 if (unlikely(!atslave || !sg_len)) {
1100 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1101 return NULL;
1102 }
1103
1104 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1105 | ATC_DCSIZE(sconfig->dst_maxburst);
1106 ctrlb = ATC_IEN;
1107
1108 switch (direction) {
1109 case DMA_MEM_TO_DEV:
1110 reg_width = convert_buswidth(sconfig->dst_addr_width);
1111 ctrla |= ATC_DST_WIDTH(reg_width);
1112 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1113 | ATC_SRC_ADDR_MODE_INCR
1114 | ATC_FC_MEM2PER
1115 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1116 reg = sconfig->dst_addr;
1117 for_each_sg(sgl, sg, sg_len, i) {
1118 struct at_desc *desc;
1119 u32 len;
1120 u32 mem;
1121
1122 desc = atc_desc_get(atchan);
1123 if (!desc)
1124 goto err_desc_get;
1125
1126 mem = sg_dma_address(sg);
1127 len = sg_dma_len(sg);
1128 if (unlikely(!len)) {
1129 dev_dbg(chan2dev(chan),
1130 "prep_slave_sg: sg(%d) data length is zero\n", i);
1131 goto err;
1132 }
1133 mem_width = 2;
1134 if (unlikely(mem & 3 || len & 3))
1135 mem_width = 0;
1136
1137 desc->lli.saddr = mem;
1138 desc->lli.daddr = reg;
1139 desc->lli.ctrla = ctrla
1140 | ATC_SRC_WIDTH(mem_width)
1141 | len >> mem_width;
1142 desc->lli.ctrlb = ctrlb;
1143 desc->len = len;
1144
1145 atc_desc_chain(&first, &prev, desc);
1146 total_len += len;
1147 }
1148 break;
1149 case DMA_DEV_TO_MEM:
1150 reg_width = convert_buswidth(sconfig->src_addr_width);
1151 ctrla |= ATC_SRC_WIDTH(reg_width);
1152 ctrlb |= ATC_DST_ADDR_MODE_INCR
1153 | ATC_SRC_ADDR_MODE_FIXED
1154 | ATC_FC_PER2MEM
1155 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1156
1157 reg = sconfig->src_addr;
1158 for_each_sg(sgl, sg, sg_len, i) {
1159 struct at_desc *desc;
1160 u32 len;
1161 u32 mem;
1162
1163 desc = atc_desc_get(atchan);
1164 if (!desc)
1165 goto err_desc_get;
1166
1167 mem = sg_dma_address(sg);
1168 len = sg_dma_len(sg);
1169 if (unlikely(!len)) {
1170 dev_dbg(chan2dev(chan),
1171 "prep_slave_sg: sg(%d) data length is zero\n", i);
1172 goto err;
1173 }
1174 mem_width = 2;
1175 if (unlikely(mem & 3 || len & 3))
1176 mem_width = 0;
1177
1178 desc->lli.saddr = reg;
1179 desc->lli.daddr = mem;
1180 desc->lli.ctrla = ctrla
1181 | ATC_DST_WIDTH(mem_width)
1182 | len >> reg_width;
1183 desc->lli.ctrlb = ctrlb;
1184 desc->len = len;
1185
1186 atc_desc_chain(&first, &prev, desc);
1187 total_len += len;
1188 }
1189 break;
1190 default:
1191 return NULL;
1192 }
1193
1194 /* set end-of-link to the last link descriptor of list*/
1195 set_desc_eol(prev);
1196
1197 /* First descriptor of the chain embedds additional information */
1198 first->txd.cookie = -EBUSY;
1199 first->total_len = total_len;
1200
1201 /* first link descriptor of list is responsible of flags */
1202 first->txd.flags = flags; /* client is in control of this ack */
1203
1204 return &first->txd;
1205
1206err_desc_get:
1207 dev_err(chan2dev(chan), "not enough descriptors available\n");
1208err:
1209 atc_desc_put(atchan, first);
1210 return NULL;
1211}
1212
1213/**
1214 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1215 * @chan: the channel to prepare operation on
1216 * @dst_sg: destination scatterlist
1217 * @dst_nents: number of destination scatterlist entries
1218 * @src_sg: source scatterlist
1219 * @src_nents: number of source scatterlist entries
1220 * @flags: tx descriptor status flags
1221 */
1222static struct dma_async_tx_descriptor *
1223atc_prep_dma_sg(struct dma_chan *chan,
1224 struct scatterlist *dst_sg, unsigned int dst_nents,
1225 struct scatterlist *src_sg, unsigned int src_nents,
1226 unsigned long flags)
1227{
1228 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1229 struct at_desc *desc = NULL;
1230 struct at_desc *first = NULL;
1231 struct at_desc *prev = NULL;
1232 unsigned int src_width;
1233 unsigned int dst_width;
1234 size_t xfer_count;
1235 u32 ctrla;
1236 u32 ctrlb;
1237 size_t dst_len = 0, src_len = 0;
1238 dma_addr_t dst = 0, src = 0;
1239 size_t len = 0, total_len = 0;
1240
1241 if (unlikely(dst_nents == 0 || src_nents == 0))
1242 return NULL;
1243
1244 if (unlikely(dst_sg == NULL || src_sg == NULL))
1245 return NULL;
1246
1247 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1248 | ATC_SRC_ADDR_MODE_INCR
1249 | ATC_DST_ADDR_MODE_INCR
1250 | ATC_FC_MEM2MEM;
1251
1252 /*
1253 * loop until there is either no more source or no more destination
1254 * scatterlist entry
1255 */
1256 while (true) {
1257
1258 /* prepare the next transfer */
1259 if (dst_len == 0) {
1260
1261 /* no more destination scatterlist entries */
1262 if (!dst_sg || !dst_nents)
1263 break;
1264
1265 dst = sg_dma_address(dst_sg);
1266 dst_len = sg_dma_len(dst_sg);
1267
1268 dst_sg = sg_next(dst_sg);
1269 dst_nents--;
1270 }
1271
1272 if (src_len == 0) {
1273
1274 /* no more source scatterlist entries */
1275 if (!src_sg || !src_nents)
1276 break;
1277
1278 src = sg_dma_address(src_sg);
1279 src_len = sg_dma_len(src_sg);
1280
1281 src_sg = sg_next(src_sg);
1282 src_nents--;
1283 }
1284
1285 len = min_t(size_t, src_len, dst_len);
1286 if (len == 0)
1287 continue;
1288
1289 /* take care for the alignment */
1290 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1291
1292 ctrla = ATC_SRC_WIDTH(src_width) |
1293 ATC_DST_WIDTH(dst_width);
1294
1295 /*
1296 * The number of transfers to set up refer to the source width
1297 * that depends on the alignment.
1298 */
1299 xfer_count = len >> src_width;
1300 if (xfer_count > ATC_BTSIZE_MAX) {
1301 xfer_count = ATC_BTSIZE_MAX;
1302 len = ATC_BTSIZE_MAX << src_width;
1303 }
1304
1305 /* create the transfer */
1306 desc = atc_desc_get(atchan);
1307 if (!desc)
1308 goto err_desc_get;
1309
1310 desc->lli.saddr = src;
1311 desc->lli.daddr = dst;
1312 desc->lli.ctrla = ctrla | xfer_count;
1313 desc->lli.ctrlb = ctrlb;
1314
1315 desc->txd.cookie = 0;
1316 desc->len = len;
1317
1318 atc_desc_chain(&first, &prev, desc);
1319
1320 /* update the lengths and addresses for the next loop cycle */
1321 dst_len -= len;
1322 src_len -= len;
1323 dst += len;
1324 src += len;
1325
1326 total_len += len;
1327 }
1328
1329 /* First descriptor of the chain embedds additional information */
1330 first->txd.cookie = -EBUSY;
1331 first->total_len = total_len;
1332
1333 /* set end-of-link to the last link descriptor of list*/
1334 set_desc_eol(desc);
1335
1336 first->txd.flags = flags; /* client is in control of this ack */
1337
1338 return &first->txd;
1339
1340err_desc_get:
1341 atc_desc_put(atchan, first);
1342 return NULL;
1343}
1344
1345/**
1346 * atc_dma_cyclic_check_values
1347 * Check for too big/unaligned periods and unaligned DMA buffer
1348 */
1349static int
1350atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1351 size_t period_len)
1352{
1353 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1354 goto err_out;
1355 if (unlikely(period_len & ((1 << reg_width) - 1)))
1356 goto err_out;
1357 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1358 goto err_out;
1359
1360 return 0;
1361
1362err_out:
1363 return -EINVAL;
1364}
1365
1366/**
1367 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1368 */
1369static int
1370atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1371 unsigned int period_index, dma_addr_t buf_addr,
1372 unsigned int reg_width, size_t period_len,
1373 enum dma_transfer_direction direction)
1374{
1375 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1376 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1377 u32 ctrla;
1378
1379 /* prepare common CRTLA value */
1380 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1381 | ATC_DCSIZE(sconfig->dst_maxburst)
1382 | ATC_DST_WIDTH(reg_width)
1383 | ATC_SRC_WIDTH(reg_width)
1384 | period_len >> reg_width;
1385
1386 switch (direction) {
1387 case DMA_MEM_TO_DEV:
1388 desc->lli.saddr = buf_addr + (period_len * period_index);
1389 desc->lli.daddr = sconfig->dst_addr;
1390 desc->lli.ctrla = ctrla;
1391 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1392 | ATC_SRC_ADDR_MODE_INCR
1393 | ATC_FC_MEM2PER
1394 | ATC_SIF(atchan->mem_if)
1395 | ATC_DIF(atchan->per_if);
1396 desc->len = period_len;
1397 break;
1398
1399 case DMA_DEV_TO_MEM:
1400 desc->lli.saddr = sconfig->src_addr;
1401 desc->lli.daddr = buf_addr + (period_len * period_index);
1402 desc->lli.ctrla = ctrla;
1403 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1404 | ATC_SRC_ADDR_MODE_FIXED
1405 | ATC_FC_PER2MEM
1406 | ATC_SIF(atchan->per_if)
1407 | ATC_DIF(atchan->mem_if);
1408 desc->len = period_len;
1409 break;
1410
1411 default:
1412 return -EINVAL;
1413 }
1414
1415 return 0;
1416}
1417
1418/**
1419 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1420 * @chan: the DMA channel to prepare
1421 * @buf_addr: physical DMA address where the buffer starts
1422 * @buf_len: total number of bytes for the entire buffer
1423 * @period_len: number of bytes for each period
1424 * @direction: transfer direction, to or from device
1425 * @flags: tx descriptor status flags
1426 */
1427static struct dma_async_tx_descriptor *
1428atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1429 size_t period_len, enum dma_transfer_direction direction,
1430 unsigned long flags)
1431{
1432 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1433 struct at_dma_slave *atslave = chan->private;
1434 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1435 struct at_desc *first = NULL;
1436 struct at_desc *prev = NULL;
1437 unsigned long was_cyclic;
1438 unsigned int reg_width;
1439 unsigned int periods = buf_len / period_len;
1440 unsigned int i;
1441
1442 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1443 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1444 &buf_addr,
1445 periods, buf_len, period_len);
1446
1447 if (unlikely(!atslave || !buf_len || !period_len)) {
1448 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1449 return NULL;
1450 }
1451
1452 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1453 if (was_cyclic) {
1454 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1455 return NULL;
1456 }
1457
1458 if (unlikely(!is_slave_direction(direction)))
1459 goto err_out;
1460
1461 if (sconfig->direction == DMA_MEM_TO_DEV)
1462 reg_width = convert_buswidth(sconfig->dst_addr_width);
1463 else
1464 reg_width = convert_buswidth(sconfig->src_addr_width);
1465
1466 /* Check for too big/unaligned periods and unaligned DMA buffer */
1467 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1468 goto err_out;
1469
1470 /* build cyclic linked list */
1471 for (i = 0; i < periods; i++) {
1472 struct at_desc *desc;
1473
1474 desc = atc_desc_get(atchan);
1475 if (!desc)
1476 goto err_desc_get;
1477
1478 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1479 reg_width, period_len, direction))
1480 goto err_desc_get;
1481
1482 atc_desc_chain(&first, &prev, desc);
1483 }
1484
1485 /* lets make a cyclic list */
1486 prev->lli.dscr = first->txd.phys;
1487
1488 /* First descriptor of the chain embedds additional information */
1489 first->txd.cookie = -EBUSY;
1490 first->total_len = buf_len;
1491
1492 return &first->txd;
1493
1494err_desc_get:
1495 dev_err(chan2dev(chan), "not enough descriptors available\n");
1496 atc_desc_put(atchan, first);
1497err_out:
1498 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1499 return NULL;
1500}
1501
1502static int atc_config(struct dma_chan *chan,
1503 struct dma_slave_config *sconfig)
1504{
1505 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1506
1507 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1508
1509 /* Check if it is chan is configured for slave transfers */
1510 if (!chan->private)
1511 return -EINVAL;
1512
1513 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1514
1515 convert_burst(&atchan->dma_sconfig.src_maxburst);
1516 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1517
1518 return 0;
1519}
1520
1521static int atc_pause(struct dma_chan *chan)
1522{
1523 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1524 struct at_dma *atdma = to_at_dma(chan->device);
1525 int chan_id = atchan->chan_common.chan_id;
1526 unsigned long flags;
1527
1528 LIST_HEAD(list);
1529
1530 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1531
1532 spin_lock_irqsave(&atchan->lock, flags);
1533
1534 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1535 set_bit(ATC_IS_PAUSED, &atchan->status);
1536
1537 spin_unlock_irqrestore(&atchan->lock, flags);
1538
1539 return 0;
1540}
1541
1542static int atc_resume(struct dma_chan *chan)
1543{
1544 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1545 struct at_dma *atdma = to_at_dma(chan->device);
1546 int chan_id = atchan->chan_common.chan_id;
1547 unsigned long flags;
1548
1549 LIST_HEAD(list);
1550
1551 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552
1553 if (!atc_chan_is_paused(atchan))
1554 return 0;
1555
1556 spin_lock_irqsave(&atchan->lock, flags);
1557
1558 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1559 clear_bit(ATC_IS_PAUSED, &atchan->status);
1560
1561 spin_unlock_irqrestore(&atchan->lock, flags);
1562
1563 return 0;
1564}
1565
1566static int atc_terminate_all(struct dma_chan *chan)
1567{
1568 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1569 struct at_dma *atdma = to_at_dma(chan->device);
1570 int chan_id = atchan->chan_common.chan_id;
1571 struct at_desc *desc, *_desc;
1572 unsigned long flags;
1573
1574 LIST_HEAD(list);
1575
1576 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1577
1578 /*
1579 * This is only called when something went wrong elsewhere, so
1580 * we don't really care about the data. Just disable the
1581 * channel. We still have to poll the channel enable bit due
1582 * to AHB/HSB limitations.
1583 */
1584 spin_lock_irqsave(&atchan->lock, flags);
1585
1586 /* disabling channel: must also remove suspend state */
1587 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1588
1589 /* confirm that this channel is disabled */
1590 while (dma_readl(atdma, CHSR) & atchan->mask)
1591 cpu_relax();
1592
1593 /* active_list entries will end up before queued entries */
1594 list_splice_init(&atchan->queue, &list);
1595 list_splice_init(&atchan->active_list, &list);
1596
1597 /* Flush all pending and queued descriptors */
1598 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1599 atc_chain_complete(atchan, desc);
1600
1601 clear_bit(ATC_IS_PAUSED, &atchan->status);
1602 /* if channel dedicated to cyclic operations, free it */
1603 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1604
1605 spin_unlock_irqrestore(&atchan->lock, flags);
1606
1607 return 0;
1608}
1609
1610/**
1611 * atc_tx_status - poll for transaction completion
1612 * @chan: DMA channel
1613 * @cookie: transaction identifier to check status of
1614 * @txstate: if not %NULL updated with transaction state
1615 *
1616 * If @txstate is passed in, upon return it reflect the driver
1617 * internal state and can be used with dma_async_is_complete() to check
1618 * the status of multiple cookies without re-checking hardware state.
1619 */
1620static enum dma_status
1621atc_tx_status(struct dma_chan *chan,
1622 dma_cookie_t cookie,
1623 struct dma_tx_state *txstate)
1624{
1625 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1626 unsigned long flags;
1627 enum dma_status ret;
1628 int bytes = 0;
1629
1630 ret = dma_cookie_status(chan, cookie, txstate);
1631 if (ret == DMA_COMPLETE)
1632 return ret;
1633 /*
1634 * There's no point calculating the residue if there's
1635 * no txstate to store the value.
1636 */
1637 if (!txstate)
1638 return DMA_ERROR;
1639
1640 spin_lock_irqsave(&atchan->lock, flags);
1641
1642 /* Get number of bytes left in the active transactions */
1643 bytes = atc_get_bytes_left(chan, cookie);
1644
1645 spin_unlock_irqrestore(&atchan->lock, flags);
1646
1647 if (unlikely(bytes < 0)) {
1648 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1649 return DMA_ERROR;
1650 } else {
1651 dma_set_residue(txstate, bytes);
1652 }
1653
1654 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1655 ret, cookie, bytes);
1656
1657 return ret;
1658}
1659
1660/**
1661 * atc_issue_pending - try to finish work
1662 * @chan: target DMA channel
1663 */
1664static void atc_issue_pending(struct dma_chan *chan)
1665{
1666 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1667 unsigned long flags;
1668
1669 dev_vdbg(chan2dev(chan), "issue_pending\n");
1670
1671 /* Not needed for cyclic transfers */
1672 if (atc_chan_is_cyclic(atchan))
1673 return;
1674
1675 spin_lock_irqsave(&atchan->lock, flags);
1676 atc_advance_work(atchan);
1677 spin_unlock_irqrestore(&atchan->lock, flags);
1678}
1679
1680/**
1681 * atc_alloc_chan_resources - allocate resources for DMA channel
1682 * @chan: allocate descriptor resources for this channel
1683 * @client: current client requesting the channel be ready for requests
1684 *
1685 * return - the number of allocated descriptors
1686 */
1687static int atc_alloc_chan_resources(struct dma_chan *chan)
1688{
1689 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1690 struct at_dma *atdma = to_at_dma(chan->device);
1691 struct at_desc *desc;
1692 struct at_dma_slave *atslave;
1693 unsigned long flags;
1694 int i;
1695 u32 cfg;
1696 LIST_HEAD(tmp_list);
1697
1698 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1699
1700 /* ASSERT: channel is idle */
1701 if (atc_chan_is_enabled(atchan)) {
1702 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1703 return -EIO;
1704 }
1705
1706 cfg = ATC_DEFAULT_CFG;
1707
1708 atslave = chan->private;
1709 if (atslave) {
1710 /*
1711 * We need controller-specific data to set up slave
1712 * transfers.
1713 */
1714 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1715
1716 /* if cfg configuration specified take it instead of default */
1717 if (atslave->cfg)
1718 cfg = atslave->cfg;
1719 }
1720
1721 /* have we already been set up?
1722 * reconfigure channel but no need to reallocate descriptors */
1723 if (!list_empty(&atchan->free_list))
1724 return atchan->descs_allocated;
1725
1726 /* Allocate initial pool of descriptors */
1727 for (i = 0; i < init_nr_desc_per_channel; i++) {
1728 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1729 if (!desc) {
1730 dev_err(atdma->dma_common.dev,
1731 "Only %d initial descriptors\n", i);
1732 break;
1733 }
1734 list_add_tail(&desc->desc_node, &tmp_list);
1735 }
1736
1737 spin_lock_irqsave(&atchan->lock, flags);
1738 atchan->descs_allocated = i;
1739 list_splice(&tmp_list, &atchan->free_list);
1740 dma_cookie_init(chan);
1741 spin_unlock_irqrestore(&atchan->lock, flags);
1742
1743 /* channel parameters */
1744 channel_writel(atchan, CFG, cfg);
1745
1746 dev_dbg(chan2dev(chan),
1747 "alloc_chan_resources: allocated %d descriptors\n",
1748 atchan->descs_allocated);
1749
1750 return atchan->descs_allocated;
1751}
1752
1753/**
1754 * atc_free_chan_resources - free all channel resources
1755 * @chan: DMA channel
1756 */
1757static void atc_free_chan_resources(struct dma_chan *chan)
1758{
1759 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1760 struct at_dma *atdma = to_at_dma(chan->device);
1761 struct at_desc *desc, *_desc;
1762 LIST_HEAD(list);
1763
1764 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1765 atchan->descs_allocated);
1766
1767 /* ASSERT: channel is idle */
1768 BUG_ON(!list_empty(&atchan->active_list));
1769 BUG_ON(!list_empty(&atchan->queue));
1770 BUG_ON(atc_chan_is_enabled(atchan));
1771
1772 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1773 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1774 list_del(&desc->desc_node);
1775 /* free link descriptor */
1776 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1777 }
1778 list_splice_init(&atchan->free_list, &list);
1779 atchan->descs_allocated = 0;
1780 atchan->status = 0;
1781
1782 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1783}
1784
1785#ifdef CONFIG_OF
1786static bool at_dma_filter(struct dma_chan *chan, void *slave)
1787{
1788 struct at_dma_slave *atslave = slave;
1789
1790 if (atslave->dma_dev == chan->device->dev) {
1791 chan->private = atslave;
1792 return true;
1793 } else {
1794 return false;
1795 }
1796}
1797
1798static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1799 struct of_dma *of_dma)
1800{
1801 struct dma_chan *chan;
1802 struct at_dma_chan *atchan;
1803 struct at_dma_slave *atslave;
1804 dma_cap_mask_t mask;
1805 unsigned int per_id;
1806 struct platform_device *dmac_pdev;
1807
1808 if (dma_spec->args_count != 2)
1809 return NULL;
1810
1811 dmac_pdev = of_find_device_by_node(dma_spec->np);
1812
1813 dma_cap_zero(mask);
1814 dma_cap_set(DMA_SLAVE, mask);
1815
1816 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1817 if (!atslave)
1818 return NULL;
1819
1820 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1821 /*
1822 * We can fill both SRC_PER and DST_PER, one of these fields will be
1823 * ignored depending on DMA transfer direction.
1824 */
1825 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1826 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1827 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1828 /*
1829 * We have to translate the value we get from the device tree since
1830 * the half FIFO configuration value had to be 0 to keep backward
1831 * compatibility.
1832 */
1833 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1834 case AT91_DMA_CFG_FIFOCFG_ALAP:
1835 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1836 break;
1837 case AT91_DMA_CFG_FIFOCFG_ASAP:
1838 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1839 break;
1840 case AT91_DMA_CFG_FIFOCFG_HALF:
1841 default:
1842 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1843 }
1844 atslave->dma_dev = &dmac_pdev->dev;
1845
1846 chan = dma_request_channel(mask, at_dma_filter, atslave);
1847 if (!chan)
1848 return NULL;
1849
1850 atchan = to_at_dma_chan(chan);
1851 atchan->per_if = dma_spec->args[0] & 0xff;
1852 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1853
1854 return chan;
1855}
1856#else
1857static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1858 struct of_dma *of_dma)
1859{
1860 return NULL;
1861}
1862#endif
1863
1864/*-- Module Management -----------------------------------------------*/
1865
1866/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1867static struct at_dma_platform_data at91sam9rl_config = {
1868 .nr_channels = 2,
1869};
1870static struct at_dma_platform_data at91sam9g45_config = {
1871 .nr_channels = 8,
1872};
1873
1874#if defined(CONFIG_OF)
1875static const struct of_device_id atmel_dma_dt_ids[] = {
1876 {
1877 .compatible = "atmel,at91sam9rl-dma",
1878 .data = &at91sam9rl_config,
1879 }, {
1880 .compatible = "atmel,at91sam9g45-dma",
1881 .data = &at91sam9g45_config,
1882 }, {
1883 /* sentinel */
1884 }
1885};
1886
1887MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1888#endif
1889
1890static const struct platform_device_id atdma_devtypes[] = {
1891 {
1892 .name = "at91sam9rl_dma",
1893 .driver_data = (unsigned long) &at91sam9rl_config,
1894 }, {
1895 .name = "at91sam9g45_dma",
1896 .driver_data = (unsigned long) &at91sam9g45_config,
1897 }, {
1898 /* sentinel */
1899 }
1900};
1901
1902static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1903 struct platform_device *pdev)
1904{
1905 if (pdev->dev.of_node) {
1906 const struct of_device_id *match;
1907 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1908 if (match == NULL)
1909 return NULL;
1910 return match->data;
1911 }
1912 return (struct at_dma_platform_data *)
1913 platform_get_device_id(pdev)->driver_data;
1914}
1915
1916/**
1917 * at_dma_off - disable DMA controller
1918 * @atdma: the Atmel HDAMC device
1919 */
1920static void at_dma_off(struct at_dma *atdma)
1921{
1922 dma_writel(atdma, EN, 0);
1923
1924 /* disable all interrupts */
1925 dma_writel(atdma, EBCIDR, -1L);
1926
1927 /* confirm that all channels are disabled */
1928 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1929 cpu_relax();
1930}
1931
1932static int __init at_dma_probe(struct platform_device *pdev)
1933{
1934 struct resource *io;
1935 struct at_dma *atdma;
1936 size_t size;
1937 int irq;
1938 int err;
1939 int i;
1940 const struct at_dma_platform_data *plat_dat;
1941
1942 /* setup platform data for each SoC */
1943 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1944 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1945 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1946 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1947 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1948 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1949 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1950 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1951 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1952
1953 /* get DMA parameters from controller type */
1954 plat_dat = at_dma_get_driver_data(pdev);
1955 if (!plat_dat)
1956 return -ENODEV;
1957
1958 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1959 if (!io)
1960 return -EINVAL;
1961
1962 irq = platform_get_irq(pdev, 0);
1963 if (irq < 0)
1964 return irq;
1965
1966 size = sizeof(struct at_dma);
1967 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1968 atdma = kzalloc(size, GFP_KERNEL);
1969 if (!atdma)
1970 return -ENOMEM;
1971
1972 /* discover transaction capabilities */
1973 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1974 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1975
1976 size = resource_size(io);
1977 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1978 err = -EBUSY;
1979 goto err_kfree;
1980 }
1981
1982 atdma->regs = ioremap(io->start, size);
1983 if (!atdma->regs) {
1984 err = -ENOMEM;
1985 goto err_release_r;
1986 }
1987
1988 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1989 if (IS_ERR(atdma->clk)) {
1990 err = PTR_ERR(atdma->clk);
1991 goto err_clk;
1992 }
1993 err = clk_prepare_enable(atdma->clk);
1994 if (err)
1995 goto err_clk_prepare;
1996
1997 /* force dma off, just in case */
1998 at_dma_off(atdma);
1999
2000 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
2001 if (err)
2002 goto err_irq;
2003
2004 platform_set_drvdata(pdev, atdma);
2005
2006 /* create a pool of consistent memory blocks for hardware descriptors */
2007 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
2008 &pdev->dev, sizeof(struct at_desc),
2009 4 /* word alignment */, 0);
2010 if (!atdma->dma_desc_pool) {
2011 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
2012 err = -ENOMEM;
2013 goto err_desc_pool_create;
2014 }
2015
2016 /* create a pool of consistent memory blocks for memset blocks */
2017 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
2018 &pdev->dev, sizeof(int), 4, 0);
2019 if (!atdma->memset_pool) {
2020 dev_err(&pdev->dev, "No memory for memset dma pool\n");
2021 err = -ENOMEM;
2022 goto err_memset_pool_create;
2023 }
2024
2025 /* clear any pending interrupt */
2026 while (dma_readl(atdma, EBCISR))
2027 cpu_relax();
2028
2029 /* initialize channels related values */
2030 INIT_LIST_HEAD(&atdma->dma_common.channels);
2031 for (i = 0; i < plat_dat->nr_channels; i++) {
2032 struct at_dma_chan *atchan = &atdma->chan[i];
2033
2034 atchan->mem_if = AT_DMA_MEM_IF;
2035 atchan->per_if = AT_DMA_PER_IF;
2036 atchan->chan_common.device = &atdma->dma_common;
2037 dma_cookie_init(&atchan->chan_common);
2038 list_add_tail(&atchan->chan_common.device_node,
2039 &atdma->dma_common.channels);
2040
2041 atchan->ch_regs = atdma->regs + ch_regs(i);
2042 spin_lock_init(&atchan->lock);
2043 atchan->mask = 1 << i;
2044
2045 INIT_LIST_HEAD(&atchan->active_list);
2046 INIT_LIST_HEAD(&atchan->queue);
2047 INIT_LIST_HEAD(&atchan->free_list);
2048
2049 tasklet_init(&atchan->tasklet, atc_tasklet,
2050 (unsigned long)atchan);
2051 atc_enable_chan_irq(atdma, i);
2052 }
2053
2054 /* set base routines */
2055 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
2056 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
2057 atdma->dma_common.device_tx_status = atc_tx_status;
2058 atdma->dma_common.device_issue_pending = atc_issue_pending;
2059 atdma->dma_common.dev = &pdev->dev;
2060
2061 /* set prep routines based on capability */
2062 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
2063 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2064
2065 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
2066 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2067
2068 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
2069 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
2070 atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2071 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
2072 }
2073
2074 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
2075 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
2076 /* controller can do slave DMA: can trigger cyclic transfers */
2077 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
2078 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2079 atdma->dma_common.device_config = atc_config;
2080 atdma->dma_common.device_pause = atc_pause;
2081 atdma->dma_common.device_resume = atc_resume;
2082 atdma->dma_common.device_terminate_all = atc_terminate_all;
2083 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
2084 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2085 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2086 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2087 }
2088
2089 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
2090 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
2091
2092 dma_writel(atdma, EN, AT_DMA_ENABLE);
2093
2094 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
2095 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2096 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2097 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
2098 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
2099 plat_dat->nr_channels);
2100
2101 dma_async_device_register(&atdma->dma_common);
2102
2103 /*
2104 * Do not return an error if the dmac node is not present in order to
2105 * not break the existing way of requesting channel with
2106 * dma_request_channel().
2107 */
2108 if (pdev->dev.of_node) {
2109 err = of_dma_controller_register(pdev->dev.of_node,
2110 at_dma_xlate, atdma);
2111 if (err) {
2112 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2113 goto err_of_dma_controller_register;
2114 }
2115 }
2116
2117 return 0;
2118
2119err_of_dma_controller_register:
2120 dma_async_device_unregister(&atdma->dma_common);
2121 dma_pool_destroy(atdma->memset_pool);
2122err_memset_pool_create:
2123 dma_pool_destroy(atdma->dma_desc_pool);
2124err_desc_pool_create:
2125 free_irq(platform_get_irq(pdev, 0), atdma);
2126err_irq:
2127 clk_disable_unprepare(atdma->clk);
2128err_clk_prepare:
2129 clk_put(atdma->clk);
2130err_clk:
2131 iounmap(atdma->regs);
2132 atdma->regs = NULL;
2133err_release_r:
2134 release_mem_region(io->start, size);
2135err_kfree:
2136 kfree(atdma);
2137 return err;
2138}
2139
2140static int at_dma_remove(struct platform_device *pdev)
2141{
2142 struct at_dma *atdma = platform_get_drvdata(pdev);
2143 struct dma_chan *chan, *_chan;
2144 struct resource *io;
2145
2146 at_dma_off(atdma);
2147 dma_async_device_unregister(&atdma->dma_common);
2148
2149 dma_pool_destroy(atdma->memset_pool);
2150 dma_pool_destroy(atdma->dma_desc_pool);
2151 free_irq(platform_get_irq(pdev, 0), atdma);
2152
2153 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2154 device_node) {
2155 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2156
2157 /* Disable interrupts */
2158 atc_disable_chan_irq(atdma, chan->chan_id);
2159
2160 tasklet_kill(&atchan->tasklet);
2161 list_del(&chan->device_node);
2162 }
2163
2164 clk_disable_unprepare(atdma->clk);
2165 clk_put(atdma->clk);
2166
2167 iounmap(atdma->regs);
2168 atdma->regs = NULL;
2169
2170 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2171 release_mem_region(io->start, resource_size(io));
2172
2173 kfree(atdma);
2174
2175 return 0;
2176}
2177
2178static void at_dma_shutdown(struct platform_device *pdev)
2179{
2180 struct at_dma *atdma = platform_get_drvdata(pdev);
2181
2182 at_dma_off(platform_get_drvdata(pdev));
2183 clk_disable_unprepare(atdma->clk);
2184}
2185
2186static int at_dma_prepare(struct device *dev)
2187{
2188 struct platform_device *pdev = to_platform_device(dev);
2189 struct at_dma *atdma = platform_get_drvdata(pdev);
2190 struct dma_chan *chan, *_chan;
2191
2192 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2193 device_node) {
2194 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2195 /* wait for transaction completion (except in cyclic case) */
2196 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2197 return -EAGAIN;
2198 }
2199 return 0;
2200}
2201
2202static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2203{
2204 struct dma_chan *chan = &atchan->chan_common;
2205
2206 /* Channel should be paused by user
2207 * do it anyway even if it is not done already */
2208 if (!atc_chan_is_paused(atchan)) {
2209 dev_warn(chan2dev(chan),
2210 "cyclic channel not paused, should be done by channel user\n");
2211 atc_pause(chan);
2212 }
2213
2214 /* now preserve additional data for cyclic operations */
2215 /* next descriptor address in the cyclic list */
2216 atchan->save_dscr = channel_readl(atchan, DSCR);
2217
2218 vdbg_dump_regs(atchan);
2219}
2220
2221static int at_dma_suspend_noirq(struct device *dev)
2222{
2223 struct platform_device *pdev = to_platform_device(dev);
2224 struct at_dma *atdma = platform_get_drvdata(pdev);
2225 struct dma_chan *chan, *_chan;
2226
2227 /* preserve data */
2228 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2229 device_node) {
2230 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2231
2232 if (atc_chan_is_cyclic(atchan))
2233 atc_suspend_cyclic(atchan);
2234 atchan->save_cfg = channel_readl(atchan, CFG);
2235 }
2236 atdma->save_imr = dma_readl(atdma, EBCIMR);
2237
2238 /* disable DMA controller */
2239 at_dma_off(atdma);
2240 clk_disable_unprepare(atdma->clk);
2241 return 0;
2242}
2243
2244static void atc_resume_cyclic(struct at_dma_chan *atchan)
2245{
2246 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2247
2248 /* restore channel status for cyclic descriptors list:
2249 * next descriptor in the cyclic list at the time of suspend */
2250 channel_writel(atchan, SADDR, 0);
2251 channel_writel(atchan, DADDR, 0);
2252 channel_writel(atchan, CTRLA, 0);
2253 channel_writel(atchan, CTRLB, 0);
2254 channel_writel(atchan, DSCR, atchan->save_dscr);
2255 dma_writel(atdma, CHER, atchan->mask);
2256
2257 /* channel pause status should be removed by channel user
2258 * We cannot take the initiative to do it here */
2259
2260 vdbg_dump_regs(atchan);
2261}
2262
2263static int at_dma_resume_noirq(struct device *dev)
2264{
2265 struct platform_device *pdev = to_platform_device(dev);
2266 struct at_dma *atdma = platform_get_drvdata(pdev);
2267 struct dma_chan *chan, *_chan;
2268
2269 /* bring back DMA controller */
2270 clk_prepare_enable(atdma->clk);
2271 dma_writel(atdma, EN, AT_DMA_ENABLE);
2272
2273 /* clear any pending interrupt */
2274 while (dma_readl(atdma, EBCISR))
2275 cpu_relax();
2276
2277 /* restore saved data */
2278 dma_writel(atdma, EBCIER, atdma->save_imr);
2279 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2280 device_node) {
2281 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2282
2283 channel_writel(atchan, CFG, atchan->save_cfg);
2284 if (atc_chan_is_cyclic(atchan))
2285 atc_resume_cyclic(atchan);
2286 }
2287 return 0;
2288}
2289
2290static const struct dev_pm_ops at_dma_dev_pm_ops = {
2291 .prepare = at_dma_prepare,
2292 .suspend_noirq = at_dma_suspend_noirq,
2293 .resume_noirq = at_dma_resume_noirq,
2294};
2295
2296static struct platform_driver at_dma_driver = {
2297 .remove = at_dma_remove,
2298 .shutdown = at_dma_shutdown,
2299 .id_table = atdma_devtypes,
2300 .driver = {
2301 .name = "at_hdmac",
2302 .pm = &at_dma_dev_pm_ops,
2303 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2304 },
2305};
2306
2307static int __init at_dma_init(void)
2308{
2309 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2310}
2311subsys_initcall(at_dma_init);
2312
2313static void __exit at_dma_exit(void)
2314{
2315 platform_driver_unregister(&at_dma_driver);
2316}
2317module_exit(at_dma_exit);
2318
2319MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2320MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2321MODULE_LICENSE("GPL");
2322MODULE_ALIAS("platform:at_hdmac");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
4 *
5 * Copyright (C) 2008 Atmel Corporation
6 * Copyright (C) 2022 Microchip Technology, Inc. and its subsidiaries
7 *
8 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
9 * The only Atmel DMA Controller that is not covered by this driver is the one
10 * found on AT91SAM9263.
11 */
12
13#include <dt-bindings/dma/at91.h>
14#include <linux/bitfield.h>
15#include <linux/clk.h>
16#include <linux/dmaengine.h>
17#include <linux/dmapool.h>
18#include <linux/dma-mapping.h>
19#include <linux/interrupt.h>
20#include <linux/module.h>
21#include <linux/of.h>
22#include <linux/overflow.h>
23#include <linux/of_device.h>
24#include <linux/of_dma.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#include "dmaengine.h"
29#include "virt-dma.h"
30
31/*
32 * Glossary
33 * --------
34 *
35 * at_hdmac : Name of the ATmel AHB DMA Controller
36 * at_dma_ / atdma : ATmel DMA controller entity related
37 * atc_ / atchan : ATmel DMA Channel entity related
38 */
39
40#define AT_DMA_MAX_NR_CHANNELS 8
41
42/* Global Configuration Register */
43#define AT_DMA_GCFG 0x00
44#define AT_DMA_IF_BIGEND(i) BIT((i)) /* AHB-Lite Interface i in Big-endian mode */
45#define AT_DMA_ARB_CFG BIT(4) /* Arbiter mode. */
46
47/* Controller Enable Register */
48#define AT_DMA_EN 0x04
49#define AT_DMA_ENABLE BIT(0)
50
51/* Software Single Request Register */
52#define AT_DMA_SREQ 0x08
53#define AT_DMA_SSREQ(x) BIT((x) << 1) /* Request a source single transfer on channel x */
54#define AT_DMA_DSREQ(x) BIT(1 + ((x) << 1)) /* Request a destination single transfer on channel x */
55
56/* Software Chunk Transfer Request Register */
57#define AT_DMA_CREQ 0x0c
58#define AT_DMA_SCREQ(x) BIT((x) << 1) /* Request a source chunk transfer on channel x */
59#define AT_DMA_DCREQ(x) BIT(1 + ((x) << 1)) /* Request a destination chunk transfer on channel x */
60
61/* Software Last Transfer Flag Register */
62#define AT_DMA_LAST 0x10
63#define AT_DMA_SLAST(x) BIT((x) << 1) /* This src rq is last tx of buffer on channel x */
64#define AT_DMA_DLAST(x) BIT(1 + ((x) << 1)) /* This dst rq is last tx of buffer on channel x */
65
66/* Request Synchronization Register */
67#define AT_DMA_SYNC 0x14
68#define AT_DMA_SYR(h) BIT((h)) /* Synchronize handshake line h */
69
70/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
71#define AT_DMA_EBCIER 0x18 /* Enable register */
72#define AT_DMA_EBCIDR 0x1c /* Disable register */
73#define AT_DMA_EBCIMR 0x20 /* Mask Register */
74#define AT_DMA_EBCISR 0x24 /* Status Register */
75#define AT_DMA_CBTC_OFFSET 8
76#define AT_DMA_ERR_OFFSET 16
77#define AT_DMA_BTC(x) BIT((x))
78#define AT_DMA_CBTC(x) BIT(AT_DMA_CBTC_OFFSET + (x))
79#define AT_DMA_ERR(x) BIT(AT_DMA_ERR_OFFSET + (x))
80
81/* Channel Handler Enable Register */
82#define AT_DMA_CHER 0x28
83#define AT_DMA_ENA(x) BIT((x))
84#define AT_DMA_SUSP(x) BIT(8 + (x))
85#define AT_DMA_KEEP(x) BIT(24 + (x))
86
87/* Channel Handler Disable Register */
88#define AT_DMA_CHDR 0x2c
89#define AT_DMA_DIS(x) BIT(x)
90#define AT_DMA_RES(x) BIT(8 + (x))
91
92/* Channel Handler Status Register */
93#define AT_DMA_CHSR 0x30
94#define AT_DMA_EMPT(x) BIT(16 + (x))
95#define AT_DMA_STAL(x) BIT(24 + (x))
96
97/* Channel registers base address */
98#define AT_DMA_CH_REGS_BASE 0x3c
99#define ch_regs(x) (AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
100
101/* Hardware register offset for each channel */
102#define ATC_SADDR_OFFSET 0x00 /* Source Address Register */
103#define ATC_DADDR_OFFSET 0x04 /* Destination Address Register */
104#define ATC_DSCR_OFFSET 0x08 /* Descriptor Address Register */
105#define ATC_CTRLA_OFFSET 0x0c /* Control A Register */
106#define ATC_CTRLB_OFFSET 0x10 /* Control B Register */
107#define ATC_CFG_OFFSET 0x14 /* Configuration Register */
108#define ATC_SPIP_OFFSET 0x18 /* Src PIP Configuration Register */
109#define ATC_DPIP_OFFSET 0x1c /* Dst PIP Configuration Register */
110
111
112/* Bitfield definitions */
113
114/* Bitfields in DSCR */
115#define ATC_DSCR_IF GENMASK(1, 0) /* Dsc feched via AHB-Lite Interface */
116
117/* Bitfields in CTRLA */
118#define ATC_BTSIZE_MAX GENMASK(15, 0) /* Maximum Buffer Transfer Size */
119#define ATC_BTSIZE GENMASK(15, 0) /* Buffer Transfer Size */
120#define ATC_SCSIZE GENMASK(18, 16) /* Source Chunk Transfer Size */
121#define ATC_DCSIZE GENMASK(22, 20) /* Destination Chunk Transfer Size */
122#define ATC_SRC_WIDTH GENMASK(25, 24) /* Source Single Transfer Size */
123#define ATC_DST_WIDTH GENMASK(29, 28) /* Destination Single Transfer Size */
124#define ATC_DONE BIT(31) /* Tx Done (only written back in descriptor) */
125
126/* Bitfields in CTRLB */
127#define ATC_SIF GENMASK(1, 0) /* Src tx done via AHB-Lite Interface i */
128#define ATC_DIF GENMASK(5, 4) /* Dst tx done via AHB-Lite Interface i */
129#define AT_DMA_MEM_IF 0x0 /* interface 0 as memory interface */
130#define AT_DMA_PER_IF 0x1 /* interface 1 as peripheral interface */
131#define ATC_SRC_PIP BIT(8) /* Source Picture-in-Picture enabled */
132#define ATC_DST_PIP BIT(12) /* Destination Picture-in-Picture enabled */
133#define ATC_SRC_DSCR_DIS BIT(16) /* Src Descriptor fetch disable */
134#define ATC_DST_DSCR_DIS BIT(20) /* Dst Descriptor fetch disable */
135#define ATC_FC GENMASK(22, 21) /* Choose Flow Controller */
136#define ATC_FC_MEM2MEM 0x0 /* Mem-to-Mem (DMA) */
137#define ATC_FC_MEM2PER 0x1 /* Mem-to-Periph (DMA) */
138#define ATC_FC_PER2MEM 0x2 /* Periph-to-Mem (DMA) */
139#define ATC_FC_PER2PER 0x3 /* Periph-to-Periph (DMA) */
140#define ATC_FC_PER2MEM_PER 0x4 /* Periph-to-Mem (Peripheral) */
141#define ATC_FC_MEM2PER_PER 0x5 /* Mem-to-Periph (Peripheral) */
142#define ATC_FC_PER2PER_SRCPER 0x6 /* Periph-to-Periph (Src Peripheral) */
143#define ATC_FC_PER2PER_DSTPER 0x7 /* Periph-to-Periph (Dst Peripheral) */
144#define ATC_SRC_ADDR_MODE GENMASK(25, 24)
145#define ATC_SRC_ADDR_MODE_INCR 0x0 /* Incrementing Mode */
146#define ATC_SRC_ADDR_MODE_DECR 0x1 /* Decrementing Mode */
147#define ATC_SRC_ADDR_MODE_FIXED 0x2 /* Fixed Mode */
148#define ATC_DST_ADDR_MODE GENMASK(29, 28)
149#define ATC_DST_ADDR_MODE_INCR 0x0 /* Incrementing Mode */
150#define ATC_DST_ADDR_MODE_DECR 0x1 /* Decrementing Mode */
151#define ATC_DST_ADDR_MODE_FIXED 0x2 /* Fixed Mode */
152#define ATC_IEN BIT(30) /* BTC interrupt enable (active low) */
153#define ATC_AUTO BIT(31) /* Auto multiple buffer tx enable */
154
155/* Bitfields in CFG */
156#define ATC_PER_MSB(h) ((0x30U & (h)) >> 4) /* Extract most significant bits of a handshaking identifier */
157
158#define ATC_SRC_PER GENMASK(3, 0) /* Channel src rq associated with periph handshaking ifc h */
159#define ATC_DST_PER GENMASK(7, 4) /* Channel dst rq associated with periph handshaking ifc h */
160#define ATC_SRC_REP BIT(8) /* Source Replay Mod */
161#define ATC_SRC_H2SEL BIT(9) /* Source Handshaking Mod */
162#define ATC_SRC_PER_MSB GENMASK(11, 10) /* Channel src rq (most significant bits) */
163#define ATC_DST_REP BIT(12) /* Destination Replay Mod */
164#define ATC_DST_H2SEL BIT(13) /* Destination Handshaking Mod */
165#define ATC_DST_PER_MSB GENMASK(15, 14) /* Channel dst rq (most significant bits) */
166#define ATC_SOD BIT(16) /* Stop On Done */
167#define ATC_LOCK_IF BIT(20) /* Interface Lock */
168#define ATC_LOCK_B BIT(21) /* AHB Bus Lock */
169#define ATC_LOCK_IF_L BIT(22) /* Master Interface Arbiter Lock */
170#define ATC_AHB_PROT GENMASK(26, 24) /* AHB Protection */
171#define ATC_FIFOCFG GENMASK(29, 28) /* FIFO Request Configuration */
172#define ATC_FIFOCFG_LARGESTBURST 0x0
173#define ATC_FIFOCFG_HALFFIFO 0x1
174#define ATC_FIFOCFG_ENOUGHSPACE 0x2
175
176/* Bitfields in SPIP */
177#define ATC_SPIP_HOLE GENMASK(15, 0)
178#define ATC_SPIP_BOUNDARY GENMASK(25, 16)
179
180/* Bitfields in DPIP */
181#define ATC_DPIP_HOLE GENMASK(15, 0)
182#define ATC_DPIP_BOUNDARY GENMASK(25, 16)
183
184#define ATC_SRC_PER_ID(id) (FIELD_PREP(ATC_SRC_PER_MSB, (id)) | \
185 FIELD_PREP(ATC_SRC_PER, (id)))
186#define ATC_DST_PER_ID(id) (FIELD_PREP(ATC_DST_PER_MSB, (id)) | \
187 FIELD_PREP(ATC_DST_PER, (id)))
188
189
190
191/*-- descriptors -----------------------------------------------------*/
192
193/* LLI == Linked List Item; aka DMA buffer descriptor */
194struct at_lli {
195 /* values that are not changed by hardware */
196 u32 saddr;
197 u32 daddr;
198 /* value that may get written back: */
199 u32 ctrla;
200 /* more values that are not changed by hardware */
201 u32 ctrlb;
202 u32 dscr; /* chain to next lli */
203};
204
205/**
206 * struct atdma_sg - atdma scatter gather entry
207 * @len: length of the current Linked List Item.
208 * @lli: linked list item that is passed to the DMA controller
209 * @lli_phys: physical address of the LLI.
210 */
211struct atdma_sg {
212 unsigned int len;
213 struct at_lli *lli;
214 dma_addr_t lli_phys;
215};
216
217/**
218 * struct at_desc - software descriptor
219 * @vd: pointer to the virtual dma descriptor.
220 * @atchan: pointer to the atmel dma channel.
221 * @total_len: total transaction byte count
222 * @sg_len: number of sg entries.
223 * @sg: array of sgs.
224 */
225struct at_desc {
226 struct virt_dma_desc vd;
227 struct at_dma_chan *atchan;
228 size_t total_len;
229 unsigned int sglen;
230 /* Interleaved data */
231 size_t boundary;
232 size_t dst_hole;
233 size_t src_hole;
234
235 /* Memset temporary buffer */
236 bool memset_buffer;
237 dma_addr_t memset_paddr;
238 int *memset_vaddr;
239 struct atdma_sg sg[];
240};
241
242/*-- Channels --------------------------------------------------------*/
243
244/**
245 * atc_status - information bits stored in channel status flag
246 *
247 * Manipulated with atomic operations.
248 */
249enum atc_status {
250 ATC_IS_PAUSED = 1,
251 ATC_IS_CYCLIC = 24,
252};
253
254/**
255 * struct at_dma_chan - internal representation of an Atmel HDMAC channel
256 * @vc: virtual dma channel entry.
257 * @atdma: pointer to the driver data.
258 * @ch_regs: memory mapped register base
259 * @mask: channel index in a mask
260 * @per_if: peripheral interface
261 * @mem_if: memory interface
262 * @status: transmit status information from irq/prep* functions
263 * to tasklet (use atomic operations)
264 * @save_cfg: configuration register that is saved on suspend/resume cycle
265 * @save_dscr: for cyclic operations, preserve next descriptor address in
266 * the cyclic list on suspend/resume cycle
267 * @dma_sconfig: configuration for slave transfers, passed via
268 * .device_config
269 * @desc: pointer to the atmel dma descriptor.
270 */
271struct at_dma_chan {
272 struct virt_dma_chan vc;
273 struct at_dma *atdma;
274 void __iomem *ch_regs;
275 u8 mask;
276 u8 per_if;
277 u8 mem_if;
278 unsigned long status;
279 u32 save_cfg;
280 u32 save_dscr;
281 struct dma_slave_config dma_sconfig;
282 bool cyclic;
283 struct at_desc *desc;
284};
285
286#define channel_readl(atchan, name) \
287 __raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
288
289#define channel_writel(atchan, name, val) \
290 __raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
291
292/*
293 * Fix sconfig's burst size according to at_hdmac. We need to convert them as:
294 * 1 -> 0, 4 -> 1, 8 -> 2, 16 -> 3, 32 -> 4, 64 -> 5, 128 -> 6, 256 -> 7.
295 *
296 * This can be done by finding most significant bit set.
297 */
298static inline void convert_burst(u32 *maxburst)
299{
300 if (*maxburst > 1)
301 *maxburst = fls(*maxburst) - 2;
302 else
303 *maxburst = 0;
304}
305
306/*
307 * Fix sconfig's bus width according to at_hdmac.
308 * 1 byte -> 0, 2 bytes -> 1, 4 bytes -> 2.
309 */
310static inline u8 convert_buswidth(enum dma_slave_buswidth addr_width)
311{
312 switch (addr_width) {
313 case DMA_SLAVE_BUSWIDTH_2_BYTES:
314 return 1;
315 case DMA_SLAVE_BUSWIDTH_4_BYTES:
316 return 2;
317 default:
318 /* For 1 byte width or fallback */
319 return 0;
320 }
321}
322
323/*-- Controller ------------------------------------------------------*/
324
325/**
326 * struct at_dma - internal representation of an Atmel HDMA Controller
327 * @dma_device: dmaengine dma_device object members
328 * @atdma_devtype: identifier of DMA controller compatibility
329 * @ch_regs: memory mapped register base
330 * @clk: dma controller clock
331 * @save_imr: interrupt mask register that is saved on suspend/resume cycle
332 * @all_chan_mask: all channels availlable in a mask
333 * @lli_pool: hw lli table
334 * @chan: channels table to store at_dma_chan structures
335 */
336struct at_dma {
337 struct dma_device dma_device;
338 void __iomem *regs;
339 struct clk *clk;
340 u32 save_imr;
341
342 u8 all_chan_mask;
343
344 struct dma_pool *lli_pool;
345 struct dma_pool *memset_pool;
346 /* AT THE END channels table */
347 struct at_dma_chan chan[];
348};
349
350#define dma_readl(atdma, name) \
351 __raw_readl((atdma)->regs + AT_DMA_##name)
352#define dma_writel(atdma, name, val) \
353 __raw_writel((val), (atdma)->regs + AT_DMA_##name)
354
355static inline struct at_desc *to_atdma_desc(struct dma_async_tx_descriptor *t)
356{
357 return container_of(t, struct at_desc, vd.tx);
358}
359
360static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *chan)
361{
362 return container_of(chan, struct at_dma_chan, vc.chan);
363}
364
365static inline struct at_dma *to_at_dma(struct dma_device *ddev)
366{
367 return container_of(ddev, struct at_dma, dma_device);
368}
369
370
371/*-- Helper functions ------------------------------------------------*/
372
373static struct device *chan2dev(struct dma_chan *chan)
374{
375 return &chan->dev->device;
376}
377
378#if defined(VERBOSE_DEBUG)
379static void vdbg_dump_regs(struct at_dma_chan *atchan)
380{
381 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
382
383 dev_err(chan2dev(&atchan->vc.chan),
384 " channel %d : imr = 0x%x, chsr = 0x%x\n",
385 atchan->vc.chan.chan_id,
386 dma_readl(atdma, EBCIMR),
387 dma_readl(atdma, CHSR));
388
389 dev_err(chan2dev(&atchan->vc.chan),
390 " channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
391 channel_readl(atchan, SADDR),
392 channel_readl(atchan, DADDR),
393 channel_readl(atchan, CTRLA),
394 channel_readl(atchan, CTRLB),
395 channel_readl(atchan, CFG),
396 channel_readl(atchan, DSCR));
397}
398#else
399static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
400#endif
401
402static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
403{
404 dev_crit(chan2dev(&atchan->vc.chan),
405 "desc: s%pad d%pad ctrl0x%x:0x%x l%pad\n",
406 &lli->saddr, &lli->daddr,
407 lli->ctrla, lli->ctrlb, &lli->dscr);
408}
409
410
411static void atc_setup_irq(struct at_dma *atdma, int chan_id, int on)
412{
413 u32 ebci;
414
415 /* enable interrupts on buffer transfer completion & error */
416 ebci = AT_DMA_BTC(chan_id)
417 | AT_DMA_ERR(chan_id);
418 if (on)
419 dma_writel(atdma, EBCIER, ebci);
420 else
421 dma_writel(atdma, EBCIDR, ebci);
422}
423
424static void atc_enable_chan_irq(struct at_dma *atdma, int chan_id)
425{
426 atc_setup_irq(atdma, chan_id, 1);
427}
428
429static void atc_disable_chan_irq(struct at_dma *atdma, int chan_id)
430{
431 atc_setup_irq(atdma, chan_id, 0);
432}
433
434
435/**
436 * atc_chan_is_enabled - test if given channel is enabled
437 * @atchan: channel we want to test status
438 */
439static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
440{
441 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
442
443 return !!(dma_readl(atdma, CHSR) & atchan->mask);
444}
445
446/**
447 * atc_chan_is_paused - test channel pause/resume status
448 * @atchan: channel we want to test status
449 */
450static inline int atc_chan_is_paused(struct at_dma_chan *atchan)
451{
452 return test_bit(ATC_IS_PAUSED, &atchan->status);
453}
454
455/**
456 * atc_chan_is_cyclic - test if given channel has cyclic property set
457 * @atchan: channel we want to test status
458 */
459static inline int atc_chan_is_cyclic(struct at_dma_chan *atchan)
460{
461 return test_bit(ATC_IS_CYCLIC, &atchan->status);
462}
463
464/**
465 * set_lli_eol - set end-of-link to descriptor so it will end transfer
466 * @desc: descriptor, signle or at the end of a chain, to end chain on
467 * @i: index of the atmel scatter gather entry that is at the end of the chain.
468 */
469static void set_lli_eol(struct at_desc *desc, unsigned int i)
470{
471 u32 ctrlb = desc->sg[i].lli->ctrlb;
472
473 ctrlb &= ~ATC_IEN;
474 ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
475
476 desc->sg[i].lli->ctrlb = ctrlb;
477 desc->sg[i].lli->dscr = 0;
478}
479
480#define ATC_DEFAULT_CFG FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO)
481#define ATC_DEFAULT_CTRLB (FIELD_PREP(ATC_SIF, AT_DMA_MEM_IF) | \
482 FIELD_PREP(ATC_DIF, AT_DMA_MEM_IF))
483#define ATC_DMA_BUSWIDTHS\
484 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
485 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
486 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
487 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
488
489#define ATC_MAX_DSCR_TRIALS 10
490
491/*
492 * Initial number of descriptors to allocate for each channel. This could
493 * be increased during dma usage.
494 */
495static unsigned int init_nr_desc_per_channel = 64;
496module_param(init_nr_desc_per_channel, uint, 0644);
497MODULE_PARM_DESC(init_nr_desc_per_channel,
498 "initial descriptors per channel (default: 64)");
499
500/**
501 * struct at_dma_platform_data - Controller configuration parameters
502 * @nr_channels: Number of channels supported by hardware (max 8)
503 * @cap_mask: dma_capability flags supported by the platform
504 */
505struct at_dma_platform_data {
506 unsigned int nr_channels;
507 dma_cap_mask_t cap_mask;
508};
509
510/**
511 * struct at_dma_slave - Controller-specific information about a slave
512 * @dma_dev: required DMA master device
513 * @cfg: Platform-specific initializer for the CFG register
514 */
515struct at_dma_slave {
516 struct device *dma_dev;
517 u32 cfg;
518};
519
520static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
521 size_t len)
522{
523 unsigned int width;
524
525 if (!((src | dst | len) & 3))
526 width = 2;
527 else if (!((src | dst | len) & 1))
528 width = 1;
529 else
530 width = 0;
531
532 return width;
533}
534
535static void atdma_lli_chain(struct at_desc *desc, unsigned int i)
536{
537 struct atdma_sg *atdma_sg = &desc->sg[i];
538
539 if (i)
540 desc->sg[i - 1].lli->dscr = atdma_sg->lli_phys;
541}
542
543/**
544 * atc_dostart - starts the DMA engine for real
545 * @atchan: the channel we want to start
546 */
547static void atc_dostart(struct at_dma_chan *atchan)
548{
549 struct virt_dma_desc *vd = vchan_next_desc(&atchan->vc);
550 struct at_desc *desc;
551
552 if (!vd) {
553 atchan->desc = NULL;
554 return;
555 }
556
557 vdbg_dump_regs(atchan);
558
559 list_del(&vd->node);
560 atchan->desc = desc = to_atdma_desc(&vd->tx);
561
562 channel_writel(atchan, SADDR, 0);
563 channel_writel(atchan, DADDR, 0);
564 channel_writel(atchan, CTRLA, 0);
565 channel_writel(atchan, CTRLB, 0);
566 channel_writel(atchan, DSCR, desc->sg[0].lli_phys);
567 channel_writel(atchan, SPIP,
568 FIELD_PREP(ATC_SPIP_HOLE, desc->src_hole) |
569 FIELD_PREP(ATC_SPIP_BOUNDARY, desc->boundary));
570 channel_writel(atchan, DPIP,
571 FIELD_PREP(ATC_DPIP_HOLE, desc->dst_hole) |
572 FIELD_PREP(ATC_DPIP_BOUNDARY, desc->boundary));
573
574 /* Don't allow CPU to reorder channel enable. */
575 wmb();
576 dma_writel(atchan->atdma, CHER, atchan->mask);
577
578 vdbg_dump_regs(atchan);
579}
580
581static void atdma_desc_free(struct virt_dma_desc *vd)
582{
583 struct at_dma *atdma = to_at_dma(vd->tx.chan->device);
584 struct at_desc *desc = to_atdma_desc(&vd->tx);
585 unsigned int i;
586
587 for (i = 0; i < desc->sglen; i++) {
588 if (desc->sg[i].lli)
589 dma_pool_free(atdma->lli_pool, desc->sg[i].lli,
590 desc->sg[i].lli_phys);
591 }
592
593 /* If the transfer was a memset, free our temporary buffer */
594 if (desc->memset_buffer) {
595 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
596 desc->memset_paddr);
597 desc->memset_buffer = false;
598 }
599
600 kfree(desc);
601}
602
603/**
604 * atc_calc_bytes_left - calculates the number of bytes left according to the
605 * value read from CTRLA.
606 *
607 * @current_len: the number of bytes left before reading CTRLA
608 * @ctrla: the value of CTRLA
609 */
610static inline u32 atc_calc_bytes_left(u32 current_len, u32 ctrla)
611{
612 u32 btsize = FIELD_GET(ATC_BTSIZE, ctrla);
613 u32 src_width = FIELD_GET(ATC_SRC_WIDTH, ctrla);
614
615 /*
616 * According to the datasheet, when reading the Control A Register
617 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
618 * number of transfers completed on the Source Interface.
619 * So btsize is always a number of source width transfers.
620 */
621 return current_len - (btsize << src_width);
622}
623
624/**
625 * atc_get_llis_residue - Get residue for a hardware linked list transfer
626 *
627 * Calculate the residue by removing the length of the Linked List Item (LLI)
628 * already transferred from the total length. To get the current LLI we can use
629 * the value of the channel's DSCR register and compare it against the DSCR
630 * value of each LLI.
631 *
632 * The CTRLA register provides us with the amount of data already read from the
633 * source for the LLI. So we can compute a more accurate residue by also
634 * removing the number of bytes corresponding to this amount of data.
635 *
636 * However, the DSCR and CTRLA registers cannot be read both atomically. Hence a
637 * race condition may occur: the first read register may refer to one LLI
638 * whereas the second read may refer to a later LLI in the list because of the
639 * DMA transfer progression inbetween the two reads.
640 *
641 * One solution could have been to pause the DMA transfer, read the DSCR and
642 * CTRLA then resume the DMA transfer. Nonetheless, this approach presents some
643 * drawbacks:
644 * - If the DMA transfer is paused, RX overruns or TX underruns are more likey
645 * to occur depending on the system latency. Taking the USART driver as an
646 * example, it uses a cyclic DMA transfer to read data from the Receive
647 * Holding Register (RHR) to avoid RX overruns since the RHR is not protected
648 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer to compute the
649 * residue would break the USART driver design.
650 * - The atc_pause() function masks interrupts but we'd rather avoid to do so
651 * for system latency purpose.
652 *
653 * Then we'd rather use another solution: the DSCR is read a first time, the
654 * CTRLA is read in turn, next the DSCR is read a second time. If the two
655 * consecutive read values of the DSCR are the same then we assume both refers
656 * to the very same LLI as well as the CTRLA value read inbetween does. For
657 * cyclic tranfers, the assumption is that a full loop is "not so fast". If the
658 * two DSCR values are different, we read again the CTRLA then the DSCR till two
659 * consecutive read values from DSCR are equal or till the maximum trials is
660 * reach. This algorithm is very unlikely not to find a stable value for DSCR.
661 * @atchan: pointer to an atmel hdmac channel.
662 * @desc: pointer to the descriptor for which the residue is calculated.
663 * @residue: residue to be set to dma_tx_state.
664 * Returns 0 on success, -errno otherwise.
665 */
666static int atc_get_llis_residue(struct at_dma_chan *atchan,
667 struct at_desc *desc, u32 *residue)
668{
669 u32 len, ctrla, dscr;
670 unsigned int i;
671
672 len = desc->total_len;
673 dscr = channel_readl(atchan, DSCR);
674 rmb(); /* ensure DSCR is read before CTRLA */
675 ctrla = channel_readl(atchan, CTRLA);
676 for (i = 0; i < ATC_MAX_DSCR_TRIALS; ++i) {
677 u32 new_dscr;
678
679 rmb(); /* ensure DSCR is read after CTRLA */
680 new_dscr = channel_readl(atchan, DSCR);
681
682 /*
683 * If the DSCR register value has not changed inside the DMA
684 * controller since the previous read, we assume that both the
685 * dscr and ctrla values refers to the very same descriptor.
686 */
687 if (likely(new_dscr == dscr))
688 break;
689
690 /*
691 * DSCR has changed inside the DMA controller, so the previouly
692 * read value of CTRLA may refer to an already processed
693 * descriptor hence could be outdated. We need to update ctrla
694 * to match the current descriptor.
695 */
696 dscr = new_dscr;
697 rmb(); /* ensure DSCR is read before CTRLA */
698 ctrla = channel_readl(atchan, CTRLA);
699 }
700 if (unlikely(i == ATC_MAX_DSCR_TRIALS))
701 return -ETIMEDOUT;
702
703 /* For the first descriptor we can be more accurate. */
704 if (desc->sg[0].lli->dscr == dscr) {
705 *residue = atc_calc_bytes_left(len, ctrla);
706 return 0;
707 }
708 len -= desc->sg[0].len;
709
710 for (i = 1; i < desc->sglen; i++) {
711 if (desc->sg[i].lli && desc->sg[i].lli->dscr == dscr)
712 break;
713 len -= desc->sg[i].len;
714 }
715
716 /*
717 * For the current LLI in the chain we can calculate the remaining bytes
718 * using the channel's CTRLA register.
719 */
720 *residue = atc_calc_bytes_left(len, ctrla);
721 return 0;
722
723}
724
725/**
726 * atc_get_residue - get the number of bytes residue for a cookie.
727 * The residue is passed by address and updated on success.
728 * @chan: DMA channel
729 * @cookie: transaction identifier to check status of
730 * @residue: residue to be updated.
731 * Return 0 on success, -errono otherwise.
732 */
733static int atc_get_residue(struct dma_chan *chan, dma_cookie_t cookie,
734 u32 *residue)
735{
736 struct at_dma_chan *atchan = to_at_dma_chan(chan);
737 struct virt_dma_desc *vd;
738 struct at_desc *desc = NULL;
739 u32 len, ctrla;
740
741 vd = vchan_find_desc(&atchan->vc, cookie);
742 if (vd)
743 desc = to_atdma_desc(&vd->tx);
744 else if (atchan->desc && atchan->desc->vd.tx.cookie == cookie)
745 desc = atchan->desc;
746
747 if (!desc)
748 return -EINVAL;
749
750 if (desc->sg[0].lli->dscr)
751 /* hardware linked list transfer */
752 return atc_get_llis_residue(atchan, desc, residue);
753
754 /* single transfer */
755 len = desc->total_len;
756 ctrla = channel_readl(atchan, CTRLA);
757 *residue = atc_calc_bytes_left(len, ctrla);
758 return 0;
759}
760
761/**
762 * atc_handle_error - handle errors reported by DMA controller
763 * @atchan: channel where error occurs.
764 * @i: channel index
765 */
766static void atc_handle_error(struct at_dma_chan *atchan, unsigned int i)
767{
768 struct at_desc *desc = atchan->desc;
769
770 /* Disable channel on AHB error */
771 dma_writel(atchan->atdma, CHDR, AT_DMA_RES(i) | atchan->mask);
772
773 /*
774 * KERN_CRITICAL may seem harsh, but since this only happens
775 * when someone submits a bad physical address in a
776 * descriptor, we should consider ourselves lucky that the
777 * controller flagged an error instead of scribbling over
778 * random memory locations.
779 */
780 dev_crit(chan2dev(&atchan->vc.chan), "Bad descriptor submitted for DMA!\n");
781 dev_crit(chan2dev(&atchan->vc.chan), "cookie: %d\n",
782 desc->vd.tx.cookie);
783 for (i = 0; i < desc->sglen; i++)
784 atc_dump_lli(atchan, desc->sg[i].lli);
785}
786
787static void atdma_handle_chan_done(struct at_dma_chan *atchan, u32 pending,
788 unsigned int i)
789{
790 struct at_desc *desc;
791
792 spin_lock(&atchan->vc.lock);
793 desc = atchan->desc;
794
795 if (desc) {
796 if (pending & AT_DMA_ERR(i)) {
797 atc_handle_error(atchan, i);
798 /* Pretend the descriptor completed successfully */
799 }
800
801 if (atc_chan_is_cyclic(atchan)) {
802 vchan_cyclic_callback(&desc->vd);
803 } else {
804 vchan_cookie_complete(&desc->vd);
805 atchan->desc = NULL;
806 if (!(atc_chan_is_enabled(atchan)))
807 atc_dostart(atchan);
808 }
809 }
810 spin_unlock(&atchan->vc.lock);
811}
812
813static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
814{
815 struct at_dma *atdma = dev_id;
816 struct at_dma_chan *atchan;
817 int i;
818 u32 status, pending, imr;
819 int ret = IRQ_NONE;
820
821 do {
822 imr = dma_readl(atdma, EBCIMR);
823 status = dma_readl(atdma, EBCISR);
824 pending = status & imr;
825
826 if (!pending)
827 break;
828
829 dev_vdbg(atdma->dma_device.dev,
830 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
831 status, imr, pending);
832
833 for (i = 0; i < atdma->dma_device.chancnt; i++) {
834 atchan = &atdma->chan[i];
835 if (!(pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))))
836 continue;
837 atdma_handle_chan_done(atchan, pending, i);
838 ret = IRQ_HANDLED;
839 }
840
841 } while (pending);
842
843 return ret;
844}
845
846/*-- DMA Engine API --------------------------------------------------*/
847/**
848 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
849 * @chan: the channel to prepare operation on
850 * @xt: Interleaved transfer template
851 * @flags: tx descriptor status flags
852 */
853static struct dma_async_tx_descriptor *
854atc_prep_dma_interleaved(struct dma_chan *chan,
855 struct dma_interleaved_template *xt,
856 unsigned long flags)
857{
858 struct at_dma *atdma = to_at_dma(chan->device);
859 struct at_dma_chan *atchan = to_at_dma_chan(chan);
860 struct data_chunk *first;
861 struct atdma_sg *atdma_sg;
862 struct at_desc *desc;
863 struct at_lli *lli;
864 size_t xfer_count;
865 unsigned int dwidth;
866 u32 ctrla;
867 u32 ctrlb;
868 size_t len = 0;
869 int i;
870
871 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
872 return NULL;
873
874 first = xt->sgl;
875
876 dev_info(chan2dev(chan),
877 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
878 __func__, &xt->src_start, &xt->dst_start, xt->numf,
879 xt->frame_size, flags);
880
881 /*
882 * The controller can only "skip" X bytes every Y bytes, so we
883 * need to make sure we are given a template that fit that
884 * description, ie a template with chunks that always have the
885 * same size, with the same ICGs.
886 */
887 for (i = 0; i < xt->frame_size; i++) {
888 struct data_chunk *chunk = xt->sgl + i;
889
890 if ((chunk->size != xt->sgl->size) ||
891 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
892 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
893 dev_err(chan2dev(chan),
894 "%s: the controller can transfer only identical chunks\n",
895 __func__);
896 return NULL;
897 }
898
899 len += chunk->size;
900 }
901
902 dwidth = atc_get_xfer_width(xt->src_start, xt->dst_start, len);
903
904 xfer_count = len >> dwidth;
905 if (xfer_count > ATC_BTSIZE_MAX) {
906 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
907 return NULL;
908 }
909
910 ctrla = FIELD_PREP(ATC_SRC_WIDTH, dwidth) |
911 FIELD_PREP(ATC_DST_WIDTH, dwidth);
912
913 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
914 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
915 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
916 ATC_SRC_PIP | ATC_DST_PIP |
917 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
918
919 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
920 if (!desc)
921 return NULL;
922 desc->sglen = 1;
923
924 atdma_sg = desc->sg;
925 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
926 &atdma_sg->lli_phys);
927 if (!atdma_sg->lli) {
928 kfree(desc);
929 return NULL;
930 }
931 lli = atdma_sg->lli;
932
933 lli->saddr = xt->src_start;
934 lli->daddr = xt->dst_start;
935 lli->ctrla = ctrla | xfer_count;
936 lli->ctrlb = ctrlb;
937
938 desc->boundary = first->size >> dwidth;
939 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
940 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
941
942 atdma_sg->len = len;
943 desc->total_len = len;
944
945 set_lli_eol(desc, 0);
946 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
947}
948
949/**
950 * atc_prep_dma_memcpy - prepare a memcpy operation
951 * @chan: the channel to prepare operation on
952 * @dest: operation virtual destination address
953 * @src: operation virtual source address
954 * @len: operation length
955 * @flags: tx descriptor status flags
956 */
957static struct dma_async_tx_descriptor *
958atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
959 size_t len, unsigned long flags)
960{
961 struct at_dma *atdma = to_at_dma(chan->device);
962 struct at_dma_chan *atchan = to_at_dma_chan(chan);
963 struct at_desc *desc = NULL;
964 size_t xfer_count;
965 size_t offset;
966 size_t sg_len;
967 unsigned int src_width;
968 unsigned int dst_width;
969 unsigned int i;
970 u32 ctrla;
971 u32 ctrlb;
972
973 dev_dbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
974 &dest, &src, len, flags);
975
976 if (unlikely(!len)) {
977 dev_err(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
978 return NULL;
979 }
980
981 sg_len = DIV_ROUND_UP(len, ATC_BTSIZE_MAX);
982 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
983 if (!desc)
984 return NULL;
985 desc->sglen = sg_len;
986
987 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
988 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
989 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
990 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
991
992 /*
993 * We can be a lot more clever here, but this should take care
994 * of the most common optimization.
995 */
996 src_width = dst_width = atc_get_xfer_width(src, dest, len);
997
998 ctrla = FIELD_PREP(ATC_SRC_WIDTH, src_width) |
999 FIELD_PREP(ATC_DST_WIDTH, dst_width);
1000
1001 for (offset = 0, i = 0; offset < len;
1002 offset += xfer_count << src_width, i++) {
1003 struct atdma_sg *atdma_sg = &desc->sg[i];
1004 struct at_lli *lli;
1005
1006 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1007 &atdma_sg->lli_phys);
1008 if (!atdma_sg->lli)
1009 goto err_desc_get;
1010 lli = atdma_sg->lli;
1011
1012 xfer_count = min_t(size_t, (len - offset) >> src_width,
1013 ATC_BTSIZE_MAX);
1014
1015 lli->saddr = src + offset;
1016 lli->daddr = dest + offset;
1017 lli->ctrla = ctrla | xfer_count;
1018 lli->ctrlb = ctrlb;
1019
1020 desc->sg[i].len = xfer_count << src_width;
1021
1022 atdma_lli_chain(desc, i);
1023 }
1024
1025 desc->total_len = len;
1026
1027 /* set end-of-link to the last link descriptor of list*/
1028 set_lli_eol(desc, i - 1);
1029
1030 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1031
1032err_desc_get:
1033 atdma_desc_free(&desc->vd);
1034 return NULL;
1035}
1036
1037static int atdma_create_memset_lli(struct dma_chan *chan,
1038 struct atdma_sg *atdma_sg,
1039 dma_addr_t psrc, dma_addr_t pdst, size_t len)
1040{
1041 struct at_dma *atdma = to_at_dma(chan->device);
1042 struct at_lli *lli;
1043 size_t xfer_count;
1044 u32 ctrla = FIELD_PREP(ATC_SRC_WIDTH, 2) | FIELD_PREP(ATC_DST_WIDTH, 2);
1045 u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
1046 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_FIXED) |
1047 FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1048 FIELD_PREP(ATC_FC, ATC_FC_MEM2MEM);
1049
1050 xfer_count = len >> 2;
1051 if (xfer_count > ATC_BTSIZE_MAX) {
1052 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
1053 return -EINVAL;
1054 }
1055
1056 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_NOWAIT,
1057 &atdma_sg->lli_phys);
1058 if (!atdma_sg->lli)
1059 return -ENOMEM;
1060 lli = atdma_sg->lli;
1061
1062 lli->saddr = psrc;
1063 lli->daddr = pdst;
1064 lli->ctrla = ctrla | xfer_count;
1065 lli->ctrlb = ctrlb;
1066
1067 atdma_sg->len = len;
1068
1069 return 0;
1070}
1071
1072/**
1073 * atc_prep_dma_memset - prepare a memcpy operation
1074 * @chan: the channel to prepare operation on
1075 * @dest: operation virtual destination address
1076 * @value: value to set memory buffer to
1077 * @len: operation length
1078 * @flags: tx descriptor status flags
1079 */
1080static struct dma_async_tx_descriptor *
1081atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1082 size_t len, unsigned long flags)
1083{
1084 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1085 struct at_dma *atdma = to_at_dma(chan->device);
1086 struct at_desc *desc;
1087 void __iomem *vaddr;
1088 dma_addr_t paddr;
1089 char fill_pattern;
1090 int ret;
1091
1092 dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
1093 &dest, value, len, flags);
1094
1095 if (unlikely(!len)) {
1096 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
1097 return NULL;
1098 }
1099
1100 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1101 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
1102 __func__);
1103 return NULL;
1104 }
1105
1106 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1107 if (!vaddr) {
1108 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1109 __func__);
1110 return NULL;
1111 }
1112
1113 /* Only the first byte of value is to be used according to dmaengine */
1114 fill_pattern = (char)value;
1115
1116 *(u32*)vaddr = (fill_pattern << 24) |
1117 (fill_pattern << 16) |
1118 (fill_pattern << 8) |
1119 fill_pattern;
1120
1121 desc = kzalloc(struct_size(desc, sg, 1), GFP_ATOMIC);
1122 if (!desc)
1123 goto err_free_buffer;
1124 desc->sglen = 1;
1125
1126 ret = atdma_create_memset_lli(chan, desc->sg, paddr, dest, len);
1127 if (ret)
1128 goto err_free_desc;
1129
1130 desc->memset_paddr = paddr;
1131 desc->memset_vaddr = vaddr;
1132 desc->memset_buffer = true;
1133
1134 desc->total_len = len;
1135
1136 /* set end-of-link on the descriptor */
1137 set_lli_eol(desc, 0);
1138
1139 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1140
1141err_free_desc:
1142 kfree(desc);
1143err_free_buffer:
1144 dma_pool_free(atdma->memset_pool, vaddr, paddr);
1145 return NULL;
1146}
1147
1148static struct dma_async_tx_descriptor *
1149atc_prep_dma_memset_sg(struct dma_chan *chan,
1150 struct scatterlist *sgl,
1151 unsigned int sg_len, int value,
1152 unsigned long flags)
1153{
1154 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1155 struct at_dma *atdma = to_at_dma(chan->device);
1156 struct at_desc *desc;
1157 struct scatterlist *sg;
1158 void __iomem *vaddr;
1159 dma_addr_t paddr;
1160 size_t total_len = 0;
1161 int i;
1162 int ret;
1163
1164 dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
1165 value, sg_len, flags);
1166
1167 if (unlikely(!sgl || !sg_len)) {
1168 dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
1169 __func__);
1170 return NULL;
1171 }
1172
1173 vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1174 if (!vaddr) {
1175 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1176 __func__);
1177 return NULL;
1178 }
1179 *(u32*)vaddr = value;
1180
1181 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1182 if (!desc)
1183 goto err_free_dma_buf;
1184 desc->sglen = sg_len;
1185
1186 for_each_sg(sgl, sg, sg_len, i) {
1187 dma_addr_t dest = sg_dma_address(sg);
1188 size_t len = sg_dma_len(sg);
1189
1190 dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1191 __func__, &dest, len);
1192
1193 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1194 dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1195 __func__);
1196 goto err_free_desc;
1197 }
1198
1199 ret = atdma_create_memset_lli(chan, &desc->sg[i], paddr, dest,
1200 len);
1201 if (ret)
1202 goto err_free_desc;
1203
1204 atdma_lli_chain(desc, i);
1205 total_len += len;
1206 }
1207
1208 desc->memset_paddr = paddr;
1209 desc->memset_vaddr = vaddr;
1210 desc->memset_buffer = true;
1211
1212 desc->total_len = total_len;
1213
1214 /* set end-of-link on the descriptor */
1215 set_lli_eol(desc, i - 1);
1216
1217 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1218
1219err_free_desc:
1220 atdma_desc_free(&desc->vd);
1221err_free_dma_buf:
1222 dma_pool_free(atdma->memset_pool, vaddr, paddr);
1223 return NULL;
1224}
1225
1226/**
1227 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1228 * @chan: DMA channel
1229 * @sgl: scatterlist to transfer to/from
1230 * @sg_len: number of entries in @scatterlist
1231 * @direction: DMA direction
1232 * @flags: tx descriptor status flags
1233 * @context: transaction context (ignored)
1234 */
1235static struct dma_async_tx_descriptor *
1236atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1237 unsigned int sg_len, enum dma_transfer_direction direction,
1238 unsigned long flags, void *context)
1239{
1240 struct at_dma *atdma = to_at_dma(chan->device);
1241 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1242 struct at_dma_slave *atslave = chan->private;
1243 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1244 struct at_desc *desc;
1245 u32 ctrla;
1246 u32 ctrlb;
1247 dma_addr_t reg;
1248 unsigned int reg_width;
1249 unsigned int mem_width;
1250 unsigned int i;
1251 struct scatterlist *sg;
1252 size_t total_len = 0;
1253
1254 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1255 sg_len,
1256 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1257 flags);
1258
1259 if (unlikely(!atslave || !sg_len)) {
1260 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1261 return NULL;
1262 }
1263
1264 desc = kzalloc(struct_size(desc, sg, sg_len), GFP_ATOMIC);
1265 if (!desc)
1266 return NULL;
1267 desc->sglen = sg_len;
1268
1269 ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1270 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst);
1271 ctrlb = ATC_IEN;
1272
1273 switch (direction) {
1274 case DMA_MEM_TO_DEV:
1275 reg_width = convert_buswidth(sconfig->dst_addr_width);
1276 ctrla |= FIELD_PREP(ATC_DST_WIDTH, reg_width);
1277 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE,
1278 ATC_DST_ADDR_MODE_FIXED) |
1279 FIELD_PREP(ATC_SRC_ADDR_MODE, ATC_SRC_ADDR_MODE_INCR) |
1280 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1281 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1282 FIELD_PREP(ATC_DIF, atchan->per_if);
1283 reg = sconfig->dst_addr;
1284 for_each_sg(sgl, sg, sg_len, i) {
1285 struct atdma_sg *atdma_sg = &desc->sg[i];
1286 struct at_lli *lli;
1287 u32 len;
1288 u32 mem;
1289
1290 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1291 GFP_NOWAIT,
1292 &atdma_sg->lli_phys);
1293 if (!atdma_sg->lli)
1294 goto err_desc_get;
1295 lli = atdma_sg->lli;
1296
1297 mem = sg_dma_address(sg);
1298 len = sg_dma_len(sg);
1299 if (unlikely(!len)) {
1300 dev_dbg(chan2dev(chan),
1301 "prep_slave_sg: sg(%d) data length is zero\n", i);
1302 goto err;
1303 }
1304 mem_width = 2;
1305 if (unlikely(mem & 3 || len & 3))
1306 mem_width = 0;
1307
1308 lli->saddr = mem;
1309 lli->daddr = reg;
1310 lli->ctrla = ctrla |
1311 FIELD_PREP(ATC_SRC_WIDTH, mem_width) |
1312 len >> mem_width;
1313 lli->ctrlb = ctrlb;
1314
1315 atdma_sg->len = len;
1316 total_len += len;
1317
1318 desc->sg[i].len = len;
1319 atdma_lli_chain(desc, i);
1320 }
1321 break;
1322 case DMA_DEV_TO_MEM:
1323 reg_width = convert_buswidth(sconfig->src_addr_width);
1324 ctrla |= FIELD_PREP(ATC_SRC_WIDTH, reg_width);
1325 ctrlb |= FIELD_PREP(ATC_DST_ADDR_MODE, ATC_DST_ADDR_MODE_INCR) |
1326 FIELD_PREP(ATC_SRC_ADDR_MODE,
1327 ATC_SRC_ADDR_MODE_FIXED) |
1328 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1329 FIELD_PREP(ATC_SIF, atchan->per_if) |
1330 FIELD_PREP(ATC_DIF, atchan->mem_if);
1331
1332 reg = sconfig->src_addr;
1333 for_each_sg(sgl, sg, sg_len, i) {
1334 struct atdma_sg *atdma_sg = &desc->sg[i];
1335 struct at_lli *lli;
1336 u32 len;
1337 u32 mem;
1338
1339 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool,
1340 GFP_NOWAIT,
1341 &atdma_sg->lli_phys);
1342 if (!atdma_sg->lli)
1343 goto err_desc_get;
1344 lli = atdma_sg->lli;
1345
1346 mem = sg_dma_address(sg);
1347 len = sg_dma_len(sg);
1348 if (unlikely(!len)) {
1349 dev_dbg(chan2dev(chan),
1350 "prep_slave_sg: sg(%d) data length is zero\n", i);
1351 goto err;
1352 }
1353 mem_width = 2;
1354 if (unlikely(mem & 3 || len & 3))
1355 mem_width = 0;
1356
1357 lli->saddr = reg;
1358 lli->daddr = mem;
1359 lli->ctrla = ctrla |
1360 FIELD_PREP(ATC_DST_WIDTH, mem_width) |
1361 len >> reg_width;
1362 lli->ctrlb = ctrlb;
1363
1364 desc->sg[i].len = len;
1365 total_len += len;
1366
1367 atdma_lli_chain(desc, i);
1368 }
1369 break;
1370 default:
1371 return NULL;
1372 }
1373
1374 /* set end-of-link to the last link descriptor of list*/
1375 set_lli_eol(desc, i - 1);
1376
1377 desc->total_len = total_len;
1378
1379 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1380
1381err_desc_get:
1382 dev_err(chan2dev(chan), "not enough descriptors available\n");
1383err:
1384 atdma_desc_free(&desc->vd);
1385 return NULL;
1386}
1387
1388/*
1389 * atc_dma_cyclic_check_values
1390 * Check for too big/unaligned periods and unaligned DMA buffer
1391 */
1392static int
1393atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1394 size_t period_len)
1395{
1396 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1397 goto err_out;
1398 if (unlikely(period_len & ((1 << reg_width) - 1)))
1399 goto err_out;
1400 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1401 goto err_out;
1402
1403 return 0;
1404
1405err_out:
1406 return -EINVAL;
1407}
1408
1409/*
1410 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1411 */
1412static int
1413atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1414 unsigned int i, dma_addr_t buf_addr,
1415 unsigned int reg_width, size_t period_len,
1416 enum dma_transfer_direction direction)
1417{
1418 struct at_dma *atdma = to_at_dma(chan->device);
1419 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1420 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1421 struct atdma_sg *atdma_sg = &desc->sg[i];
1422 struct at_lli *lli;
1423
1424 atdma_sg->lli = dma_pool_alloc(atdma->lli_pool, GFP_ATOMIC,
1425 &atdma_sg->lli_phys);
1426 if (!atdma_sg->lli)
1427 return -ENOMEM;
1428 lli = atdma_sg->lli;
1429
1430 switch (direction) {
1431 case DMA_MEM_TO_DEV:
1432 lli->saddr = buf_addr + (period_len * i);
1433 lli->daddr = sconfig->dst_addr;
1434 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1435 ATC_DST_ADDR_MODE_FIXED) |
1436 FIELD_PREP(ATC_SRC_ADDR_MODE,
1437 ATC_SRC_ADDR_MODE_INCR) |
1438 FIELD_PREP(ATC_FC, ATC_FC_MEM2PER) |
1439 FIELD_PREP(ATC_SIF, atchan->mem_if) |
1440 FIELD_PREP(ATC_DIF, atchan->per_if);
1441
1442 break;
1443
1444 case DMA_DEV_TO_MEM:
1445 lli->saddr = sconfig->src_addr;
1446 lli->daddr = buf_addr + (period_len * i);
1447 lli->ctrlb = FIELD_PREP(ATC_DST_ADDR_MODE,
1448 ATC_DST_ADDR_MODE_INCR) |
1449 FIELD_PREP(ATC_SRC_ADDR_MODE,
1450 ATC_SRC_ADDR_MODE_FIXED) |
1451 FIELD_PREP(ATC_FC, ATC_FC_PER2MEM) |
1452 FIELD_PREP(ATC_SIF, atchan->per_if) |
1453 FIELD_PREP(ATC_DIF, atchan->mem_if);
1454 break;
1455
1456 default:
1457 return -EINVAL;
1458 }
1459
1460 lli->ctrla = FIELD_PREP(ATC_SCSIZE, sconfig->src_maxburst) |
1461 FIELD_PREP(ATC_DCSIZE, sconfig->dst_maxburst) |
1462 FIELD_PREP(ATC_DST_WIDTH, reg_width) |
1463 FIELD_PREP(ATC_SRC_WIDTH, reg_width) |
1464 period_len >> reg_width;
1465 desc->sg[i].len = period_len;
1466
1467 return 0;
1468}
1469
1470/**
1471 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1472 * @chan: the DMA channel to prepare
1473 * @buf_addr: physical DMA address where the buffer starts
1474 * @buf_len: total number of bytes for the entire buffer
1475 * @period_len: number of bytes for each period
1476 * @direction: transfer direction, to or from device
1477 * @flags: tx descriptor status flags
1478 */
1479static struct dma_async_tx_descriptor *
1480atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1481 size_t period_len, enum dma_transfer_direction direction,
1482 unsigned long flags)
1483{
1484 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1485 struct at_dma_slave *atslave = chan->private;
1486 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1487 struct at_desc *desc;
1488 unsigned long was_cyclic;
1489 unsigned int reg_width;
1490 unsigned int periods = buf_len / period_len;
1491 unsigned int i;
1492
1493 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1494 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1495 &buf_addr,
1496 periods, buf_len, period_len);
1497
1498 if (unlikely(!atslave || !buf_len || !period_len)) {
1499 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1500 return NULL;
1501 }
1502
1503 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1504 if (was_cyclic) {
1505 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1506 return NULL;
1507 }
1508
1509 if (unlikely(!is_slave_direction(direction)))
1510 goto err_out;
1511
1512 if (direction == DMA_MEM_TO_DEV)
1513 reg_width = convert_buswidth(sconfig->dst_addr_width);
1514 else
1515 reg_width = convert_buswidth(sconfig->src_addr_width);
1516
1517 /* Check for too big/unaligned periods and unaligned DMA buffer */
1518 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1519 goto err_out;
1520
1521 desc = kzalloc(struct_size(desc, sg, periods), GFP_ATOMIC);
1522 if (!desc)
1523 goto err_out;
1524 desc->sglen = periods;
1525
1526 /* build cyclic linked list */
1527 for (i = 0; i < periods; i++) {
1528 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1529 reg_width, period_len, direction))
1530 goto err_fill_desc;
1531 atdma_lli_chain(desc, i);
1532 }
1533 desc->total_len = buf_len;
1534 /* lets make a cyclic list */
1535 desc->sg[i - 1].lli->dscr = desc->sg[0].lli_phys;
1536
1537 return vchan_tx_prep(&atchan->vc, &desc->vd, flags);
1538
1539err_fill_desc:
1540 atdma_desc_free(&desc->vd);
1541err_out:
1542 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1543 return NULL;
1544}
1545
1546static int atc_config(struct dma_chan *chan,
1547 struct dma_slave_config *sconfig)
1548{
1549 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1550
1551 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1552
1553 /* Check if it is chan is configured for slave transfers */
1554 if (!chan->private)
1555 return -EINVAL;
1556
1557 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1558
1559 convert_burst(&atchan->dma_sconfig.src_maxburst);
1560 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1561
1562 return 0;
1563}
1564
1565static int atc_pause(struct dma_chan *chan)
1566{
1567 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1568 struct at_dma *atdma = to_at_dma(chan->device);
1569 int chan_id = atchan->vc.chan.chan_id;
1570 unsigned long flags;
1571
1572 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1573
1574 spin_lock_irqsave(&atchan->vc.lock, flags);
1575
1576 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1577 set_bit(ATC_IS_PAUSED, &atchan->status);
1578
1579 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1580
1581 return 0;
1582}
1583
1584static int atc_resume(struct dma_chan *chan)
1585{
1586 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1587 struct at_dma *atdma = to_at_dma(chan->device);
1588 int chan_id = atchan->vc.chan.chan_id;
1589 unsigned long flags;
1590
1591 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1592
1593 if (!atc_chan_is_paused(atchan))
1594 return 0;
1595
1596 spin_lock_irqsave(&atchan->vc.lock, flags);
1597
1598 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1599 clear_bit(ATC_IS_PAUSED, &atchan->status);
1600
1601 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1602
1603 return 0;
1604}
1605
1606static int atc_terminate_all(struct dma_chan *chan)
1607{
1608 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1609 struct at_dma *atdma = to_at_dma(chan->device);
1610 int chan_id = atchan->vc.chan.chan_id;
1611 unsigned long flags;
1612
1613 LIST_HEAD(list);
1614
1615 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1616
1617 /*
1618 * This is only called when something went wrong elsewhere, so
1619 * we don't really care about the data. Just disable the
1620 * channel. We still have to poll the channel enable bit due
1621 * to AHB/HSB limitations.
1622 */
1623 spin_lock_irqsave(&atchan->vc.lock, flags);
1624
1625 /* disabling channel: must also remove suspend state */
1626 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1627
1628 /* confirm that this channel is disabled */
1629 while (dma_readl(atdma, CHSR) & atchan->mask)
1630 cpu_relax();
1631
1632 if (atchan->desc) {
1633 vchan_terminate_vdesc(&atchan->desc->vd);
1634 atchan->desc = NULL;
1635 }
1636
1637 vchan_get_all_descriptors(&atchan->vc, &list);
1638
1639 clear_bit(ATC_IS_PAUSED, &atchan->status);
1640 /* if channel dedicated to cyclic operations, free it */
1641 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1642
1643 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1644
1645 vchan_dma_desc_free_list(&atchan->vc, &list);
1646
1647 return 0;
1648}
1649
1650/**
1651 * atc_tx_status - poll for transaction completion
1652 * @chan: DMA channel
1653 * @cookie: transaction identifier to check status of
1654 * @txstate: if not %NULL updated with transaction state
1655 *
1656 * If @txstate is passed in, upon return it reflect the driver
1657 * internal state and can be used with dma_async_is_complete() to check
1658 * the status of multiple cookies without re-checking hardware state.
1659 */
1660static enum dma_status
1661atc_tx_status(struct dma_chan *chan,
1662 dma_cookie_t cookie,
1663 struct dma_tx_state *txstate)
1664{
1665 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1666 unsigned long flags;
1667 enum dma_status dma_status;
1668 u32 residue;
1669 int ret;
1670
1671 dma_status = dma_cookie_status(chan, cookie, txstate);
1672 if (dma_status == DMA_COMPLETE || !txstate)
1673 return dma_status;
1674
1675 spin_lock_irqsave(&atchan->vc.lock, flags);
1676 /* Get number of bytes left in the active transactions */
1677 ret = atc_get_residue(chan, cookie, &residue);
1678 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1679
1680 if (unlikely(ret < 0)) {
1681 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1682 return DMA_ERROR;
1683 } else {
1684 dma_set_residue(txstate, residue);
1685 }
1686
1687 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %u\n",
1688 dma_status, cookie, residue);
1689
1690 return dma_status;
1691}
1692
1693static void atc_issue_pending(struct dma_chan *chan)
1694{
1695 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1696 unsigned long flags;
1697
1698 spin_lock_irqsave(&atchan->vc.lock, flags);
1699 if (vchan_issue_pending(&atchan->vc) && !atchan->desc) {
1700 if (!(atc_chan_is_enabled(atchan)))
1701 atc_dostart(atchan);
1702 }
1703 spin_unlock_irqrestore(&atchan->vc.lock, flags);
1704}
1705
1706/**
1707 * atc_alloc_chan_resources - allocate resources for DMA channel
1708 * @chan: allocate descriptor resources for this channel
1709 *
1710 * return - the number of allocated descriptors
1711 */
1712static int atc_alloc_chan_resources(struct dma_chan *chan)
1713{
1714 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1715 struct at_dma *atdma = to_at_dma(chan->device);
1716 struct at_dma_slave *atslave;
1717 u32 cfg;
1718
1719 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1720
1721 /* ASSERT: channel is idle */
1722 if (atc_chan_is_enabled(atchan)) {
1723 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1724 return -EIO;
1725 }
1726
1727 cfg = ATC_DEFAULT_CFG;
1728
1729 atslave = chan->private;
1730 if (atslave) {
1731 /*
1732 * We need controller-specific data to set up slave
1733 * transfers.
1734 */
1735 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_device.dev);
1736
1737 /* if cfg configuration specified take it instead of default */
1738 if (atslave->cfg)
1739 cfg = atslave->cfg;
1740 }
1741
1742 /* channel parameters */
1743 channel_writel(atchan, CFG, cfg);
1744
1745 return 0;
1746}
1747
1748/**
1749 * atc_free_chan_resources - free all channel resources
1750 * @chan: DMA channel
1751 */
1752static void atc_free_chan_resources(struct dma_chan *chan)
1753{
1754 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1755
1756 BUG_ON(atc_chan_is_enabled(atchan));
1757
1758 vchan_free_chan_resources(to_virt_chan(chan));
1759 atchan->status = 0;
1760
1761 /*
1762 * Free atslave allocated in at_dma_xlate()
1763 */
1764 kfree(chan->private);
1765 chan->private = NULL;
1766
1767 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1768}
1769
1770#ifdef CONFIG_OF
1771static bool at_dma_filter(struct dma_chan *chan, void *slave)
1772{
1773 struct at_dma_slave *atslave = slave;
1774
1775 if (atslave->dma_dev == chan->device->dev) {
1776 chan->private = atslave;
1777 return true;
1778 } else {
1779 return false;
1780 }
1781}
1782
1783static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1784 struct of_dma *of_dma)
1785{
1786 struct dma_chan *chan;
1787 struct at_dma_chan *atchan;
1788 struct at_dma_slave *atslave;
1789 dma_cap_mask_t mask;
1790 unsigned int per_id;
1791 struct platform_device *dmac_pdev;
1792
1793 if (dma_spec->args_count != 2)
1794 return NULL;
1795
1796 dmac_pdev = of_find_device_by_node(dma_spec->np);
1797 if (!dmac_pdev)
1798 return NULL;
1799
1800 dma_cap_zero(mask);
1801 dma_cap_set(DMA_SLAVE, mask);
1802
1803 atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1804 if (!atslave) {
1805 put_device(&dmac_pdev->dev);
1806 return NULL;
1807 }
1808
1809 atslave->cfg = ATC_DST_H2SEL | ATC_SRC_H2SEL;
1810 /*
1811 * We can fill both SRC_PER and DST_PER, one of these fields will be
1812 * ignored depending on DMA transfer direction.
1813 */
1814 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1815 atslave->cfg |= ATC_DST_PER_ID(per_id) | ATC_SRC_PER_ID(per_id);
1816 /*
1817 * We have to translate the value we get from the device tree since
1818 * the half FIFO configuration value had to be 0 to keep backward
1819 * compatibility.
1820 */
1821 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1822 case AT91_DMA_CFG_FIFOCFG_ALAP:
1823 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1824 ATC_FIFOCFG_LARGESTBURST);
1825 break;
1826 case AT91_DMA_CFG_FIFOCFG_ASAP:
1827 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG,
1828 ATC_FIFOCFG_ENOUGHSPACE);
1829 break;
1830 case AT91_DMA_CFG_FIFOCFG_HALF:
1831 default:
1832 atslave->cfg |= FIELD_PREP(ATC_FIFOCFG, ATC_FIFOCFG_HALFFIFO);
1833 }
1834 atslave->dma_dev = &dmac_pdev->dev;
1835
1836 chan = dma_request_channel(mask, at_dma_filter, atslave);
1837 if (!chan) {
1838 put_device(&dmac_pdev->dev);
1839 kfree(atslave);
1840 return NULL;
1841 }
1842
1843 atchan = to_at_dma_chan(chan);
1844 atchan->per_if = dma_spec->args[0] & 0xff;
1845 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1846
1847 return chan;
1848}
1849#else
1850static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1851 struct of_dma *of_dma)
1852{
1853 return NULL;
1854}
1855#endif
1856
1857/*-- Module Management -----------------------------------------------*/
1858
1859/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1860static struct at_dma_platform_data at91sam9rl_config = {
1861 .nr_channels = 2,
1862};
1863static struct at_dma_platform_data at91sam9g45_config = {
1864 .nr_channels = 8,
1865};
1866
1867#if defined(CONFIG_OF)
1868static const struct of_device_id atmel_dma_dt_ids[] = {
1869 {
1870 .compatible = "atmel,at91sam9rl-dma",
1871 .data = &at91sam9rl_config,
1872 }, {
1873 .compatible = "atmel,at91sam9g45-dma",
1874 .data = &at91sam9g45_config,
1875 }, {
1876 /* sentinel */
1877 }
1878};
1879
1880MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1881#endif
1882
1883static const struct platform_device_id atdma_devtypes[] = {
1884 {
1885 .name = "at91sam9rl_dma",
1886 .driver_data = (unsigned long) &at91sam9rl_config,
1887 }, {
1888 .name = "at91sam9g45_dma",
1889 .driver_data = (unsigned long) &at91sam9g45_config,
1890 }, {
1891 /* sentinel */
1892 }
1893};
1894
1895static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1896 struct platform_device *pdev)
1897{
1898 if (pdev->dev.of_node) {
1899 const struct of_device_id *match;
1900 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1901 if (match == NULL)
1902 return NULL;
1903 return match->data;
1904 }
1905 return (struct at_dma_platform_data *)
1906 platform_get_device_id(pdev)->driver_data;
1907}
1908
1909/**
1910 * at_dma_off - disable DMA controller
1911 * @atdma: the Atmel HDAMC device
1912 */
1913static void at_dma_off(struct at_dma *atdma)
1914{
1915 dma_writel(atdma, EN, 0);
1916
1917 /* disable all interrupts */
1918 dma_writel(atdma, EBCIDR, -1L);
1919
1920 /* confirm that all channels are disabled */
1921 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1922 cpu_relax();
1923}
1924
1925static int __init at_dma_probe(struct platform_device *pdev)
1926{
1927 struct at_dma *atdma;
1928 int irq;
1929 int err;
1930 int i;
1931 const struct at_dma_platform_data *plat_dat;
1932
1933 /* setup platform data for each SoC */
1934 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1935 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1936 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1937 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1938 dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1939 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1940 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1941
1942 /* get DMA parameters from controller type */
1943 plat_dat = at_dma_get_driver_data(pdev);
1944 if (!plat_dat)
1945 return -ENODEV;
1946
1947 atdma = devm_kzalloc(&pdev->dev,
1948 struct_size(atdma, chan, plat_dat->nr_channels),
1949 GFP_KERNEL);
1950 if (!atdma)
1951 return -ENOMEM;
1952
1953 atdma->regs = devm_platform_ioremap_resource(pdev, 0);
1954 if (IS_ERR(atdma->regs))
1955 return PTR_ERR(atdma->regs);
1956
1957 irq = platform_get_irq(pdev, 0);
1958 if (irq < 0)
1959 return irq;
1960
1961 /* discover transaction capabilities */
1962 atdma->dma_device.cap_mask = plat_dat->cap_mask;
1963 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1964
1965 atdma->clk = devm_clk_get(&pdev->dev, "dma_clk");
1966 if (IS_ERR(atdma->clk))
1967 return PTR_ERR(atdma->clk);
1968
1969 err = clk_prepare_enable(atdma->clk);
1970 if (err)
1971 return err;
1972
1973 /* force dma off, just in case */
1974 at_dma_off(atdma);
1975
1976 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1977 if (err)
1978 goto err_irq;
1979
1980 platform_set_drvdata(pdev, atdma);
1981
1982 /* create a pool of consistent memory blocks for hardware descriptors */
1983 atdma->lli_pool = dma_pool_create("at_hdmac_lli_pool",
1984 &pdev->dev, sizeof(struct at_lli),
1985 4 /* word alignment */, 0);
1986 if (!atdma->lli_pool) {
1987 dev_err(&pdev->dev, "Unable to allocate DMA LLI descriptor pool\n");
1988 err = -ENOMEM;
1989 goto err_desc_pool_create;
1990 }
1991
1992 /* create a pool of consistent memory blocks for memset blocks */
1993 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1994 &pdev->dev, sizeof(int), 4, 0);
1995 if (!atdma->memset_pool) {
1996 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1997 err = -ENOMEM;
1998 goto err_memset_pool_create;
1999 }
2000
2001 /* clear any pending interrupt */
2002 while (dma_readl(atdma, EBCISR))
2003 cpu_relax();
2004
2005 /* initialize channels related values */
2006 INIT_LIST_HEAD(&atdma->dma_device.channels);
2007 for (i = 0; i < plat_dat->nr_channels; i++) {
2008 struct at_dma_chan *atchan = &atdma->chan[i];
2009
2010 atchan->mem_if = AT_DMA_MEM_IF;
2011 atchan->per_if = AT_DMA_PER_IF;
2012
2013 atchan->ch_regs = atdma->regs + ch_regs(i);
2014 atchan->mask = 1 << i;
2015
2016 atchan->atdma = atdma;
2017 atchan->vc.desc_free = atdma_desc_free;
2018 vchan_init(&atchan->vc, &atdma->dma_device);
2019 atc_enable_chan_irq(atdma, i);
2020 }
2021
2022 /* set base routines */
2023 atdma->dma_device.device_alloc_chan_resources = atc_alloc_chan_resources;
2024 atdma->dma_device.device_free_chan_resources = atc_free_chan_resources;
2025 atdma->dma_device.device_tx_status = atc_tx_status;
2026 atdma->dma_device.device_issue_pending = atc_issue_pending;
2027 atdma->dma_device.dev = &pdev->dev;
2028
2029 /* set prep routines based on capability */
2030 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_device.cap_mask))
2031 atdma->dma_device.device_prep_interleaved_dma = atc_prep_dma_interleaved;
2032
2033 if (dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask))
2034 atdma->dma_device.device_prep_dma_memcpy = atc_prep_dma_memcpy;
2035
2036 if (dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask)) {
2037 atdma->dma_device.device_prep_dma_memset = atc_prep_dma_memset;
2038 atdma->dma_device.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
2039 atdma->dma_device.fill_align = DMAENGINE_ALIGN_4_BYTES;
2040 }
2041
2042 if (dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask)) {
2043 atdma->dma_device.device_prep_slave_sg = atc_prep_slave_sg;
2044 /* controller can do slave DMA: can trigger cyclic transfers */
2045 dma_cap_set(DMA_CYCLIC, atdma->dma_device.cap_mask);
2046 atdma->dma_device.device_prep_dma_cyclic = atc_prep_dma_cyclic;
2047 atdma->dma_device.device_config = atc_config;
2048 atdma->dma_device.device_pause = atc_pause;
2049 atdma->dma_device.device_resume = atc_resume;
2050 atdma->dma_device.device_terminate_all = atc_terminate_all;
2051 atdma->dma_device.src_addr_widths = ATC_DMA_BUSWIDTHS;
2052 atdma->dma_device.dst_addr_widths = ATC_DMA_BUSWIDTHS;
2053 atdma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2054 atdma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
2055 }
2056
2057 dma_writel(atdma, EN, AT_DMA_ENABLE);
2058
2059 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
2060 dma_has_cap(DMA_MEMCPY, atdma->dma_device.cap_mask) ? "cpy " : "",
2061 dma_has_cap(DMA_MEMSET, atdma->dma_device.cap_mask) ? "set " : "",
2062 dma_has_cap(DMA_SLAVE, atdma->dma_device.cap_mask) ? "slave " : "",
2063 plat_dat->nr_channels);
2064
2065 err = dma_async_device_register(&atdma->dma_device);
2066 if (err) {
2067 dev_err(&pdev->dev, "Unable to register: %d.\n", err);
2068 goto err_dma_async_device_register;
2069 }
2070
2071 /*
2072 * Do not return an error if the dmac node is not present in order to
2073 * not break the existing way of requesting channel with
2074 * dma_request_channel().
2075 */
2076 if (pdev->dev.of_node) {
2077 err = of_dma_controller_register(pdev->dev.of_node,
2078 at_dma_xlate, atdma);
2079 if (err) {
2080 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2081 goto err_of_dma_controller_register;
2082 }
2083 }
2084
2085 return 0;
2086
2087err_of_dma_controller_register:
2088 dma_async_device_unregister(&atdma->dma_device);
2089err_dma_async_device_register:
2090 dma_pool_destroy(atdma->memset_pool);
2091err_memset_pool_create:
2092 dma_pool_destroy(atdma->lli_pool);
2093err_desc_pool_create:
2094 free_irq(platform_get_irq(pdev, 0), atdma);
2095err_irq:
2096 clk_disable_unprepare(atdma->clk);
2097 return err;
2098}
2099
2100static int at_dma_remove(struct platform_device *pdev)
2101{
2102 struct at_dma *atdma = platform_get_drvdata(pdev);
2103 struct dma_chan *chan, *_chan;
2104
2105 at_dma_off(atdma);
2106 if (pdev->dev.of_node)
2107 of_dma_controller_free(pdev->dev.of_node);
2108 dma_async_device_unregister(&atdma->dma_device);
2109
2110 dma_pool_destroy(atdma->memset_pool);
2111 dma_pool_destroy(atdma->lli_pool);
2112 free_irq(platform_get_irq(pdev, 0), atdma);
2113
2114 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2115 device_node) {
2116 /* Disable interrupts */
2117 atc_disable_chan_irq(atdma, chan->chan_id);
2118 list_del(&chan->device_node);
2119 }
2120
2121 clk_disable_unprepare(atdma->clk);
2122
2123 return 0;
2124}
2125
2126static void at_dma_shutdown(struct platform_device *pdev)
2127{
2128 struct at_dma *atdma = platform_get_drvdata(pdev);
2129
2130 at_dma_off(platform_get_drvdata(pdev));
2131 clk_disable_unprepare(atdma->clk);
2132}
2133
2134static int at_dma_prepare(struct device *dev)
2135{
2136 struct at_dma *atdma = dev_get_drvdata(dev);
2137 struct dma_chan *chan, *_chan;
2138
2139 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2140 device_node) {
2141 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2142 /* wait for transaction completion (except in cyclic case) */
2143 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2144 return -EAGAIN;
2145 }
2146 return 0;
2147}
2148
2149static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2150{
2151 struct dma_chan *chan = &atchan->vc.chan;
2152
2153 /* Channel should be paused by user
2154 * do it anyway even if it is not done already */
2155 if (!atc_chan_is_paused(atchan)) {
2156 dev_warn(chan2dev(chan),
2157 "cyclic channel not paused, should be done by channel user\n");
2158 atc_pause(chan);
2159 }
2160
2161 /* now preserve additional data for cyclic operations */
2162 /* next descriptor address in the cyclic list */
2163 atchan->save_dscr = channel_readl(atchan, DSCR);
2164
2165 vdbg_dump_regs(atchan);
2166}
2167
2168static int at_dma_suspend_noirq(struct device *dev)
2169{
2170 struct at_dma *atdma = dev_get_drvdata(dev);
2171 struct dma_chan *chan, *_chan;
2172
2173 /* preserve data */
2174 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2175 device_node) {
2176 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2177
2178 if (atc_chan_is_cyclic(atchan))
2179 atc_suspend_cyclic(atchan);
2180 atchan->save_cfg = channel_readl(atchan, CFG);
2181 }
2182 atdma->save_imr = dma_readl(atdma, EBCIMR);
2183
2184 /* disable DMA controller */
2185 at_dma_off(atdma);
2186 clk_disable_unprepare(atdma->clk);
2187 return 0;
2188}
2189
2190static void atc_resume_cyclic(struct at_dma_chan *atchan)
2191{
2192 struct at_dma *atdma = to_at_dma(atchan->vc.chan.device);
2193
2194 /* restore channel status for cyclic descriptors list:
2195 * next descriptor in the cyclic list at the time of suspend */
2196 channel_writel(atchan, SADDR, 0);
2197 channel_writel(atchan, DADDR, 0);
2198 channel_writel(atchan, CTRLA, 0);
2199 channel_writel(atchan, CTRLB, 0);
2200 channel_writel(atchan, DSCR, atchan->save_dscr);
2201 dma_writel(atdma, CHER, atchan->mask);
2202
2203 /* channel pause status should be removed by channel user
2204 * We cannot take the initiative to do it here */
2205
2206 vdbg_dump_regs(atchan);
2207}
2208
2209static int at_dma_resume_noirq(struct device *dev)
2210{
2211 struct at_dma *atdma = dev_get_drvdata(dev);
2212 struct dma_chan *chan, *_chan;
2213
2214 /* bring back DMA controller */
2215 clk_prepare_enable(atdma->clk);
2216 dma_writel(atdma, EN, AT_DMA_ENABLE);
2217
2218 /* clear any pending interrupt */
2219 while (dma_readl(atdma, EBCISR))
2220 cpu_relax();
2221
2222 /* restore saved data */
2223 dma_writel(atdma, EBCIER, atdma->save_imr);
2224 list_for_each_entry_safe(chan, _chan, &atdma->dma_device.channels,
2225 device_node) {
2226 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2227
2228 channel_writel(atchan, CFG, atchan->save_cfg);
2229 if (atc_chan_is_cyclic(atchan))
2230 atc_resume_cyclic(atchan);
2231 }
2232 return 0;
2233}
2234
2235static const struct dev_pm_ops __maybe_unused at_dma_dev_pm_ops = {
2236 .prepare = at_dma_prepare,
2237 .suspend_noirq = at_dma_suspend_noirq,
2238 .resume_noirq = at_dma_resume_noirq,
2239};
2240
2241static struct platform_driver at_dma_driver = {
2242 .remove = at_dma_remove,
2243 .shutdown = at_dma_shutdown,
2244 .id_table = atdma_devtypes,
2245 .driver = {
2246 .name = "at_hdmac",
2247 .pm = pm_ptr(&at_dma_dev_pm_ops),
2248 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2249 },
2250};
2251
2252static int __init at_dma_init(void)
2253{
2254 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2255}
2256subsys_initcall(at_dma_init);
2257
2258static void __exit at_dma_exit(void)
2259{
2260 platform_driver_unregister(&at_dma_driver);
2261}
2262module_exit(at_dma_exit);
2263
2264MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2265MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2266MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
2267MODULE_LICENSE("GPL");
2268MODULE_ALIAS("platform:at_hdmac");