Loading...
1/*
2 * arch/parisc/kernel/firmware.c - safe PDC access routines
3 *
4 * PDC == Processor Dependent Code
5 *
6 * See http://www.parisc-linux.org/documentation/index.html
7 * for documentation describing the entry points and calling
8 * conventions defined below.
9 *
10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 */
22
23/* I think it would be in everyone's best interest to follow this
24 * guidelines when writing PDC wrappers:
25 *
26 * - the name of the pdc wrapper should match one of the macros
27 * used for the first two arguments
28 * - don't use caps for random parts of the name
29 * - use the static PDC result buffers and "copyout" to structs
30 * supplied by the caller to encapsulate alignment restrictions
31 * - hold pdc_lock while in PDC or using static result buffers
32 * - use __pa() to convert virtual (kernel) pointers to physical
33 * ones.
34 * - the name of the struct used for pdc return values should equal
35 * one of the macros used for the first two arguments to the
36 * corresponding PDC call
37 * - keep the order of arguments
38 * - don't be smart (setting trailing NUL bytes for strings, return
39 * something useful even if the call failed) unless you are sure
40 * it's not going to affect functionality or performance
41 *
42 * Example:
43 * int pdc_cache_info(struct pdc_cache_info *cache_info )
44 * {
45 * int retval;
46 *
47 * spin_lock_irq(&pdc_lock);
48 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
49 * convert_to_wide(pdc_result);
50 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
51 * spin_unlock_irq(&pdc_lock);
52 *
53 * return retval;
54 * }
55 * prumpf 991016
56 */
57
58#include <stdarg.h>
59
60#include <linux/delay.h>
61#include <linux/init.h>
62#include <linux/kernel.h>
63#include <linux/module.h>
64#include <linux/string.h>
65#include <linux/spinlock.h>
66
67#include <asm/page.h>
68#include <asm/pdc.h>
69#include <asm/pdcpat.h>
70#include <asm/processor.h> /* for boot_cpu_data */
71
72static DEFINE_SPINLOCK(pdc_lock);
73extern unsigned long pdc_result[NUM_PDC_RESULT];
74extern unsigned long pdc_result2[NUM_PDC_RESULT];
75
76#ifdef CONFIG_64BIT
77#define WIDE_FIRMWARE 0x1
78#define NARROW_FIRMWARE 0x2
79
80/* Firmware needs to be initially set to narrow to determine the
81 * actual firmware width. */
82int parisc_narrow_firmware __read_mostly = 1;
83#endif
84
85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
86 * and MEM_PDC calls are always the same width as the OS.
87 * Some PAT boxes may have 64-bit IODC I/O.
88 *
89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
91 * This allowed wide kernels to run on Cxxx boxes.
92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
94 */
95
96#ifdef CONFIG_64BIT
97long real64_call(unsigned long function, ...);
98#endif
99long real32_call(unsigned long function, ...);
100
101#ifdef CONFIG_64BIT
102# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
103# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
104#else
105# define MEM_PDC (unsigned long)PAGE0->mem_pdc
106# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
107#endif
108
109
110/**
111 * f_extend - Convert PDC addresses to kernel addresses.
112 * @address: Address returned from PDC.
113 *
114 * This function is used to convert PDC addresses into kernel addresses
115 * when the PDC address size and kernel address size are different.
116 */
117static unsigned long f_extend(unsigned long address)
118{
119#ifdef CONFIG_64BIT
120 if(unlikely(parisc_narrow_firmware)) {
121 if((address & 0xff000000) == 0xf0000000)
122 return 0xf0f0f0f000000000UL | (u32)address;
123
124 if((address & 0xf0000000) == 0xf0000000)
125 return 0xffffffff00000000UL | (u32)address;
126 }
127#endif
128 return address;
129}
130
131/**
132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
133 * @address: The return buffer from PDC.
134 *
135 * This function is used to convert the return buffer addresses retrieved from PDC
136 * into kernel addresses when the PDC address size and kernel address size are
137 * different.
138 */
139static void convert_to_wide(unsigned long *addr)
140{
141#ifdef CONFIG_64BIT
142 int i;
143 unsigned int *p = (unsigned int *)addr;
144
145 if(unlikely(parisc_narrow_firmware)) {
146 for(i = 31; i >= 0; --i)
147 addr[i] = p[i];
148 }
149#endif
150}
151
152#ifdef CONFIG_64BIT
153void set_firmware_width_unlocked(void)
154{
155 int ret;
156
157 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
158 __pa(pdc_result), 0);
159 convert_to_wide(pdc_result);
160 if (pdc_result[0] != NARROW_FIRMWARE)
161 parisc_narrow_firmware = 0;
162}
163
164/**
165 * set_firmware_width - Determine if the firmware is wide or narrow.
166 *
167 * This function must be called before any pdc_* function that uses the
168 * convert_to_wide function.
169 */
170void set_firmware_width(void)
171{
172 unsigned long flags;
173 spin_lock_irqsave(&pdc_lock, flags);
174 set_firmware_width_unlocked();
175 spin_unlock_irqrestore(&pdc_lock, flags);
176}
177#else
178void set_firmware_width_unlocked(void)
179{
180 return;
181}
182
183void set_firmware_width(void)
184{
185 return;
186}
187#endif /*CONFIG_64BIT*/
188
189/**
190 * pdc_emergency_unlock - Unlock the linux pdc lock
191 *
192 * This call unlocks the linux pdc lock in case we need some PDC functions
193 * (like pdc_add_valid) during kernel stack dump.
194 */
195void pdc_emergency_unlock(void)
196{
197 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
198 if (spin_is_locked(&pdc_lock))
199 spin_unlock(&pdc_lock);
200}
201
202
203/**
204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
205 * @address: Address to be verified.
206 *
207 * This PDC call attempts to read from the specified address and verifies
208 * if the address is valid.
209 *
210 * The return value is PDC_OK (0) in case accessing this address is valid.
211 */
212int pdc_add_valid(unsigned long address)
213{
214 int retval;
215 unsigned long flags;
216
217 spin_lock_irqsave(&pdc_lock, flags);
218 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
219 spin_unlock_irqrestore(&pdc_lock, flags);
220
221 return retval;
222}
223EXPORT_SYMBOL(pdc_add_valid);
224
225/**
226 * pdc_chassis_info - Return chassis information.
227 * @result: The return buffer.
228 * @chassis_info: The memory buffer address.
229 * @len: The size of the memory buffer address.
230 *
231 * An HVERSION dependent call for returning the chassis information.
232 */
233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
234{
235 int retval;
236 unsigned long flags;
237
238 spin_lock_irqsave(&pdc_lock, flags);
239 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
240 memcpy(&pdc_result2, led_info, len);
241 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
242 __pa(pdc_result), __pa(pdc_result2), len);
243 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
244 memcpy(led_info, pdc_result2, len);
245 spin_unlock_irqrestore(&pdc_lock, flags);
246
247 return retval;
248}
249
250/**
251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
252 * @retval: -1 on error, 0 on success. Other value are PDC errors
253 *
254 * Must be correctly formatted or expect system crash
255 */
256#ifdef CONFIG_64BIT
257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
258{
259 int retval = 0;
260 unsigned long flags;
261
262 if (!is_pdc_pat())
263 return -1;
264
265 spin_lock_irqsave(&pdc_lock, flags);
266 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
267 spin_unlock_irqrestore(&pdc_lock, flags);
268
269 return retval;
270}
271#endif
272
273/**
274 * pdc_chassis_disp - Updates chassis code
275 * @retval: -1 on error, 0 on success
276 */
277int pdc_chassis_disp(unsigned long disp)
278{
279 int retval = 0;
280 unsigned long flags;
281
282 spin_lock_irqsave(&pdc_lock, flags);
283 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
284 spin_unlock_irqrestore(&pdc_lock, flags);
285
286 return retval;
287}
288
289/**
290 * pdc_chassis_warn - Fetches chassis warnings
291 * @retval: -1 on error, 0 on success
292 */
293int pdc_chassis_warn(unsigned long *warn)
294{
295 int retval = 0;
296 unsigned long flags;
297
298 spin_lock_irqsave(&pdc_lock, flags);
299 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
300 *warn = pdc_result[0];
301 spin_unlock_irqrestore(&pdc_lock, flags);
302
303 return retval;
304}
305
306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
307{
308 int ret;
309
310 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
311 convert_to_wide(pdc_result);
312 pdc_coproc_info->ccr_functional = pdc_result[0];
313 pdc_coproc_info->ccr_present = pdc_result[1];
314 pdc_coproc_info->revision = pdc_result[17];
315 pdc_coproc_info->model = pdc_result[18];
316
317 return ret;
318}
319
320/**
321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
322 * @pdc_coproc_info: Return buffer address.
323 *
324 * This PDC call returns the presence and status of all the coprocessors
325 * attached to the processor.
326 */
327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
328{
329 int ret;
330 unsigned long flags;
331
332 spin_lock_irqsave(&pdc_lock, flags);
333 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
334 spin_unlock_irqrestore(&pdc_lock, flags);
335
336 return ret;
337}
338
339/**
340 * pdc_iodc_read - Read data from the modules IODC.
341 * @actcnt: The actual number of bytes.
342 * @hpa: The HPA of the module for the iodc read.
343 * @index: The iodc entry point.
344 * @iodc_data: A buffer memory for the iodc options.
345 * @iodc_data_size: Size of the memory buffer.
346 *
347 * This PDC call reads from the IODC of the module specified by the hpa
348 * argument.
349 */
350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
351 void *iodc_data, unsigned int iodc_data_size)
352{
353 int retval;
354 unsigned long flags;
355
356 spin_lock_irqsave(&pdc_lock, flags);
357 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
358 index, __pa(pdc_result2), iodc_data_size);
359 convert_to_wide(pdc_result);
360 *actcnt = pdc_result[0];
361 memcpy(iodc_data, pdc_result2, iodc_data_size);
362 spin_unlock_irqrestore(&pdc_lock, flags);
363
364 return retval;
365}
366EXPORT_SYMBOL(pdc_iodc_read);
367
368/**
369 * pdc_system_map_find_mods - Locate unarchitected modules.
370 * @pdc_mod_info: Return buffer address.
371 * @mod_path: pointer to dev path structure.
372 * @mod_index: fixed address module index.
373 *
374 * To locate and identify modules which reside at fixed I/O addresses, which
375 * do not self-identify via architected bus walks.
376 */
377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
378 struct pdc_module_path *mod_path, long mod_index)
379{
380 int retval;
381 unsigned long flags;
382
383 spin_lock_irqsave(&pdc_lock, flags);
384 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
385 __pa(pdc_result2), mod_index);
386 convert_to_wide(pdc_result);
387 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
388 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
389 spin_unlock_irqrestore(&pdc_lock, flags);
390
391 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
392 return retval;
393}
394
395/**
396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
397 * @pdc_addr_info: Return buffer address.
398 * @mod_index: Fixed address module index.
399 * @addr_index: Address range index.
400 *
401 * Retrieve additional information about subsequent address ranges for modules
402 * with multiple address ranges.
403 */
404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
405 long mod_index, long addr_index)
406{
407 int retval;
408 unsigned long flags;
409
410 spin_lock_irqsave(&pdc_lock, flags);
411 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
412 mod_index, addr_index);
413 convert_to_wide(pdc_result);
414 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
415 spin_unlock_irqrestore(&pdc_lock, flags);
416
417 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
418 return retval;
419}
420
421/**
422 * pdc_model_info - Return model information about the processor.
423 * @model: The return buffer.
424 *
425 * Returns the version numbers, identifiers, and capabilities from the processor module.
426 */
427int pdc_model_info(struct pdc_model *model)
428{
429 int retval;
430 unsigned long flags;
431
432 spin_lock_irqsave(&pdc_lock, flags);
433 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
434 convert_to_wide(pdc_result);
435 memcpy(model, pdc_result, sizeof(*model));
436 spin_unlock_irqrestore(&pdc_lock, flags);
437
438 return retval;
439}
440
441/**
442 * pdc_model_sysmodel - Get the system model name.
443 * @name: A char array of at least 81 characters.
444 *
445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
447 * on HP/UX.
448 */
449int pdc_model_sysmodel(char *name)
450{
451 int retval;
452 unsigned long flags;
453
454 spin_lock_irqsave(&pdc_lock, flags);
455 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
456 OS_ID_HPUX, __pa(name));
457 convert_to_wide(pdc_result);
458
459 if (retval == PDC_OK) {
460 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
461 } else {
462 name[0] = 0;
463 }
464 spin_unlock_irqrestore(&pdc_lock, flags);
465
466 return retval;
467}
468
469/**
470 * pdc_model_versions - Identify the version number of each processor.
471 * @cpu_id: The return buffer.
472 * @id: The id of the processor to check.
473 *
474 * Returns the version number for each processor component.
475 *
476 * This comment was here before, but I do not know what it means :( -RB
477 * id: 0 = cpu revision, 1 = boot-rom-version
478 */
479int pdc_model_versions(unsigned long *versions, int id)
480{
481 int retval;
482 unsigned long flags;
483
484 spin_lock_irqsave(&pdc_lock, flags);
485 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
486 convert_to_wide(pdc_result);
487 *versions = pdc_result[0];
488 spin_unlock_irqrestore(&pdc_lock, flags);
489
490 return retval;
491}
492
493/**
494 * pdc_model_cpuid - Returns the CPU_ID.
495 * @cpu_id: The return buffer.
496 *
497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
498 * the processor module.
499 */
500int pdc_model_cpuid(unsigned long *cpu_id)
501{
502 int retval;
503 unsigned long flags;
504
505 spin_lock_irqsave(&pdc_lock, flags);
506 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
507 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
508 convert_to_wide(pdc_result);
509 *cpu_id = pdc_result[0];
510 spin_unlock_irqrestore(&pdc_lock, flags);
511
512 return retval;
513}
514
515/**
516 * pdc_model_capabilities - Returns the platform capabilities.
517 * @capabilities: The return buffer.
518 *
519 * Returns information about platform support for 32- and/or 64-bit
520 * OSes, IO-PDIR coherency, and virtual aliasing.
521 */
522int pdc_model_capabilities(unsigned long *capabilities)
523{
524 int retval;
525 unsigned long flags;
526
527 spin_lock_irqsave(&pdc_lock, flags);
528 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
529 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
530 convert_to_wide(pdc_result);
531 if (retval == PDC_OK) {
532 *capabilities = pdc_result[0];
533 } else {
534 *capabilities = PDC_MODEL_OS32;
535 }
536 spin_unlock_irqrestore(&pdc_lock, flags);
537
538 return retval;
539}
540
541/**
542 * pdc_cache_info - Return cache and TLB information.
543 * @cache_info: The return buffer.
544 *
545 * Returns information about the processor's cache and TLB.
546 */
547int pdc_cache_info(struct pdc_cache_info *cache_info)
548{
549 int retval;
550 unsigned long flags;
551
552 spin_lock_irqsave(&pdc_lock, flags);
553 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
554 convert_to_wide(pdc_result);
555 memcpy(cache_info, pdc_result, sizeof(*cache_info));
556 spin_unlock_irqrestore(&pdc_lock, flags);
557
558 return retval;
559}
560
561/**
562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
563 * @space_bits: Should be 0, if not, bad mojo!
564 *
565 * Returns information about Space ID hashing.
566 */
567int pdc_spaceid_bits(unsigned long *space_bits)
568{
569 int retval;
570 unsigned long flags;
571
572 spin_lock_irqsave(&pdc_lock, flags);
573 pdc_result[0] = 0;
574 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
575 convert_to_wide(pdc_result);
576 *space_bits = pdc_result[0];
577 spin_unlock_irqrestore(&pdc_lock, flags);
578
579 return retval;
580}
581
582#ifndef CONFIG_PA20
583/**
584 * pdc_btlb_info - Return block TLB information.
585 * @btlb: The return buffer.
586 *
587 * Returns information about the hardware Block TLB.
588 */
589int pdc_btlb_info(struct pdc_btlb_info *btlb)
590{
591 int retval;
592 unsigned long flags;
593
594 spin_lock_irqsave(&pdc_lock, flags);
595 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
596 memcpy(btlb, pdc_result, sizeof(*btlb));
597 spin_unlock_irqrestore(&pdc_lock, flags);
598
599 if(retval < 0) {
600 btlb->max_size = 0;
601 }
602 return retval;
603}
604
605/**
606 * pdc_mem_map_hpa - Find fixed module information.
607 * @address: The return buffer
608 * @mod_path: pointer to dev path structure.
609 *
610 * This call was developed for S700 workstations to allow the kernel to find
611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
613 * call.
614 *
615 * This call is supported by all existing S700 workstations (up to Gecko).
616 */
617int pdc_mem_map_hpa(struct pdc_memory_map *address,
618 struct pdc_module_path *mod_path)
619{
620 int retval;
621 unsigned long flags;
622
623 spin_lock_irqsave(&pdc_lock, flags);
624 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
625 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
626 __pa(pdc_result2));
627 memcpy(address, pdc_result, sizeof(*address));
628 spin_unlock_irqrestore(&pdc_lock, flags);
629
630 return retval;
631}
632#endif /* !CONFIG_PA20 */
633
634/**
635 * pdc_lan_station_id - Get the LAN address.
636 * @lan_addr: The return buffer.
637 * @hpa: The network device HPA.
638 *
639 * Get the LAN station address when it is not directly available from the LAN hardware.
640 */
641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
642{
643 int retval;
644 unsigned long flags;
645
646 spin_lock_irqsave(&pdc_lock, flags);
647 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
648 __pa(pdc_result), hpa);
649 if (retval < 0) {
650 /* FIXME: else read MAC from NVRAM */
651 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
652 } else {
653 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
654 }
655 spin_unlock_irqrestore(&pdc_lock, flags);
656
657 return retval;
658}
659EXPORT_SYMBOL(pdc_lan_station_id);
660
661/**
662 * pdc_stable_read - Read data from Stable Storage.
663 * @staddr: Stable Storage address to access.
664 * @memaddr: The memory address where Stable Storage data shall be copied.
665 * @count: number of bytes to transfer. count is multiple of 4.
666 *
667 * This PDC call reads from the Stable Storage address supplied in staddr
668 * and copies count bytes to the memory address memaddr.
669 * The call will fail if staddr+count > PDC_STABLE size.
670 */
671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
672{
673 int retval;
674 unsigned long flags;
675
676 spin_lock_irqsave(&pdc_lock, flags);
677 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
678 __pa(pdc_result), count);
679 convert_to_wide(pdc_result);
680 memcpy(memaddr, pdc_result, count);
681 spin_unlock_irqrestore(&pdc_lock, flags);
682
683 return retval;
684}
685EXPORT_SYMBOL(pdc_stable_read);
686
687/**
688 * pdc_stable_write - Write data to Stable Storage.
689 * @staddr: Stable Storage address to access.
690 * @memaddr: The memory address where Stable Storage data shall be read from.
691 * @count: number of bytes to transfer. count is multiple of 4.
692 *
693 * This PDC call reads count bytes from the supplied memaddr address,
694 * and copies count bytes to the Stable Storage address staddr.
695 * The call will fail if staddr+count > PDC_STABLE size.
696 */
697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
698{
699 int retval;
700 unsigned long flags;
701
702 spin_lock_irqsave(&pdc_lock, flags);
703 memcpy(pdc_result, memaddr, count);
704 convert_to_wide(pdc_result);
705 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
706 __pa(pdc_result), count);
707 spin_unlock_irqrestore(&pdc_lock, flags);
708
709 return retval;
710}
711EXPORT_SYMBOL(pdc_stable_write);
712
713/**
714 * pdc_stable_get_size - Get Stable Storage size in bytes.
715 * @size: pointer where the size will be stored.
716 *
717 * This PDC call returns the number of bytes in the processor's Stable
718 * Storage, which is the number of contiguous bytes implemented in Stable
719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
720 * which is a multiple of four.
721 */
722int pdc_stable_get_size(unsigned long *size)
723{
724 int retval;
725 unsigned long flags;
726
727 spin_lock_irqsave(&pdc_lock, flags);
728 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
729 *size = pdc_result[0];
730 spin_unlock_irqrestore(&pdc_lock, flags);
731
732 return retval;
733}
734EXPORT_SYMBOL(pdc_stable_get_size);
735
736/**
737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
738 *
739 * This PDC call is meant to be used to check the integrity of the current
740 * contents of Stable Storage.
741 */
742int pdc_stable_verify_contents(void)
743{
744 int retval;
745 unsigned long flags;
746
747 spin_lock_irqsave(&pdc_lock, flags);
748 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
749 spin_unlock_irqrestore(&pdc_lock, flags);
750
751 return retval;
752}
753EXPORT_SYMBOL(pdc_stable_verify_contents);
754
755/**
756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
757 * the validity indicator.
758 *
759 * This PDC call will erase all contents of Stable Storage. Use with care!
760 */
761int pdc_stable_initialize(void)
762{
763 int retval;
764 unsigned long flags;
765
766 spin_lock_irqsave(&pdc_lock, flags);
767 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
768 spin_unlock_irqrestore(&pdc_lock, flags);
769
770 return retval;
771}
772EXPORT_SYMBOL(pdc_stable_initialize);
773
774/**
775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
776 * @hwpath: fully bc.mod style path to the device.
777 * @initiator: the array to return the result into
778 *
779 * Get the SCSI operational parameters from PDC.
780 * Needed since HPUX never used BIOS or symbios card NVRAM.
781 * Most ncr/sym cards won't have an entry and just use whatever
782 * capabilities of the card are (eg Ultra, LVD). But there are
783 * several cases where it's useful:
784 * o set SCSI id for Multi-initiator clusters,
785 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
786 * o bus width exported is less than what the interface chip supports.
787 */
788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
789{
790 int retval;
791 unsigned long flags;
792
793 spin_lock_irqsave(&pdc_lock, flags);
794
795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
797 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
798
799 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
800 __pa(pdc_result), __pa(hwpath));
801 if (retval < PDC_OK)
802 goto out;
803
804 if (pdc_result[0] < 16) {
805 initiator->host_id = pdc_result[0];
806 } else {
807 initiator->host_id = -1;
808 }
809
810 /*
811 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
812 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
813 */
814 switch (pdc_result[1]) {
815 case 1: initiator->factor = 50; break;
816 case 2: initiator->factor = 25; break;
817 case 5: initiator->factor = 12; break;
818 case 25: initiator->factor = 10; break;
819 case 20: initiator->factor = 12; break;
820 case 40: initiator->factor = 10; break;
821 default: initiator->factor = -1; break;
822 }
823
824 if (IS_SPROCKETS()) {
825 initiator->width = pdc_result[4];
826 initiator->mode = pdc_result[5];
827 } else {
828 initiator->width = -1;
829 initiator->mode = -1;
830 }
831
832 out:
833 spin_unlock_irqrestore(&pdc_lock, flags);
834
835 return (retval >= PDC_OK);
836}
837EXPORT_SYMBOL(pdc_get_initiator);
838
839
840/**
841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
842 * @num_entries: The return value.
843 * @hpa: The HPA for the device.
844 *
845 * This PDC function returns the number of entries in the specified cell's
846 * interrupt table.
847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
848 */
849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
850{
851 int retval;
852 unsigned long flags;
853
854 spin_lock_irqsave(&pdc_lock, flags);
855 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
856 __pa(pdc_result), hpa);
857 convert_to_wide(pdc_result);
858 *num_entries = pdc_result[0];
859 spin_unlock_irqrestore(&pdc_lock, flags);
860
861 return retval;
862}
863
864/**
865 * pdc_pci_irt - Get the PCI interrupt routing table.
866 * @num_entries: The number of entries in the table.
867 * @hpa: The Hard Physical Address of the device.
868 * @tbl:
869 *
870 * Get the PCI interrupt routing table for the device at the given HPA.
871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
872 */
873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
874{
875 int retval;
876 unsigned long flags;
877
878 BUG_ON((unsigned long)tbl & 0x7);
879
880 spin_lock_irqsave(&pdc_lock, flags);
881 pdc_result[0] = num_entries;
882 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
883 __pa(pdc_result), hpa, __pa(tbl));
884 spin_unlock_irqrestore(&pdc_lock, flags);
885
886 return retval;
887}
888
889
890#if 0 /* UNTEST CODE - left here in case someone needs it */
891
892/**
893 * pdc_pci_config_read - read PCI config space.
894 * @hpa token from PDC to indicate which PCI device
895 * @pci_addr configuration space address to read from
896 *
897 * Read PCI Configuration space *before* linux PCI subsystem is running.
898 */
899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
900{
901 int retval;
902 unsigned long flags;
903
904 spin_lock_irqsave(&pdc_lock, flags);
905 pdc_result[0] = 0;
906 pdc_result[1] = 0;
907 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
908 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
909 spin_unlock_irqrestore(&pdc_lock, flags);
910
911 return retval ? ~0 : (unsigned int) pdc_result[0];
912}
913
914
915/**
916 * pdc_pci_config_write - read PCI config space.
917 * @hpa token from PDC to indicate which PCI device
918 * @pci_addr configuration space address to write
919 * @val value we want in the 32-bit register
920 *
921 * Write PCI Configuration space *before* linux PCI subsystem is running.
922 */
923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
924{
925 int retval;
926 unsigned long flags;
927
928 spin_lock_irqsave(&pdc_lock, flags);
929 pdc_result[0] = 0;
930 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
931 __pa(pdc_result), hpa,
932 cfg_addr&~3UL, 4UL, (unsigned long) val);
933 spin_unlock_irqrestore(&pdc_lock, flags);
934
935 return retval;
936}
937#endif /* UNTESTED CODE */
938
939/**
940 * pdc_tod_read - Read the Time-Of-Day clock.
941 * @tod: The return buffer:
942 *
943 * Read the Time-Of-Day clock
944 */
945int pdc_tod_read(struct pdc_tod *tod)
946{
947 int retval;
948 unsigned long flags;
949
950 spin_lock_irqsave(&pdc_lock, flags);
951 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
952 convert_to_wide(pdc_result);
953 memcpy(tod, pdc_result, sizeof(*tod));
954 spin_unlock_irqrestore(&pdc_lock, flags);
955
956 return retval;
957}
958EXPORT_SYMBOL(pdc_tod_read);
959
960/**
961 * pdc_tod_set - Set the Time-Of-Day clock.
962 * @sec: The number of seconds since epoch.
963 * @usec: The number of micro seconds.
964 *
965 * Set the Time-Of-Day clock.
966 */
967int pdc_tod_set(unsigned long sec, unsigned long usec)
968{
969 int retval;
970 unsigned long flags;
971
972 spin_lock_irqsave(&pdc_lock, flags);
973 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
974 spin_unlock_irqrestore(&pdc_lock, flags);
975
976 return retval;
977}
978EXPORT_SYMBOL(pdc_tod_set);
979
980#ifdef CONFIG_64BIT
981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
982 struct pdc_memory_table *tbl, unsigned long entries)
983{
984 int retval;
985 unsigned long flags;
986
987 spin_lock_irqsave(&pdc_lock, flags);
988 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
989 convert_to_wide(pdc_result);
990 memcpy(r_addr, pdc_result, sizeof(*r_addr));
991 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
992 spin_unlock_irqrestore(&pdc_lock, flags);
993
994 return retval;
995}
996#endif /* CONFIG_64BIT */
997
998/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
999 * so I guessed at unsigned long. Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004 int retval;
1005 unsigned long flags;
1006
1007 spin_lock_irqsave(&pdc_lock, flags);
1008 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010 spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012 return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022 int retval;
1023 unsigned long flags;
1024
1025 spin_lock_irqsave(&pdc_lock, flags);
1026 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027 spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029 return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040 int retval;
1041 unsigned long flags;
1042
1043 *power_reg = (unsigned long) (-1);
1044
1045 spin_lock_irqsave(&pdc_lock, flags);
1046 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047 if (retval == PDC_OK) {
1048 convert_to_wide(pdc_result);
1049 *power_reg = f_extend(pdc_result[0]);
1050 }
1051 spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053 return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut
1064 * down the system. Under hardware control pressing the power button
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069 int retval;
1070 unsigned long flags;
1071
1072 spin_lock_irqsave(&pdc_lock, flags);
1073 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074 spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076 return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086 unsigned long flags;
1087
1088 spin_lock_irqsave(&pdc_lock, flags);
1089 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090 spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104 unsigned long flags;
1105
1106 spin_lock_irqsave(&pdc_lock, flags);
1107 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108 spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8))) iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127 unsigned int i;
1128 unsigned long flags;
1129
1130 for (i = 0; i < count;) {
1131 switch(str[i]) {
1132 case '\n':
1133 iodc_dbuf[i+0] = '\r';
1134 iodc_dbuf[i+1] = '\n';
1135 i += 2;
1136 goto print;
1137 default:
1138 iodc_dbuf[i] = str[i];
1139 i++;
1140 break;
1141 }
1142 }
1143
1144print:
1145 spin_lock_irqsave(&pdc_lock, flags);
1146 real32_call(PAGE0->mem_cons.iodc_io,
1147 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150 spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152 return i;
1153}
1154
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163 int ch;
1164 int status;
1165 unsigned long flags;
1166
1167 /* Bail if no console input device. */
1168 if (!PAGE0->mem_kbd.iodc_io)
1169 return 0;
1170
1171 /* wait for a keyboard (rs232)-input */
1172 spin_lock_irqsave(&pdc_lock, flags);
1173 real32_call(PAGE0->mem_kbd.iodc_io,
1174 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1176 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178 ch = *iodc_dbuf;
1179 status = *iodc_retbuf;
1180 spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182 if (status == 0)
1183 return -1;
1184
1185 return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189 unsigned long inptr, unsigned long outputr,
1190 unsigned long glob_cfg)
1191{
1192 int retval;
1193 unsigned long irqflags;
1194
1195 spin_lock_irqsave(&pdc_lock, irqflags);
1196 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197 spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199 return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213 int retval;
1214 unsigned long flags;
1215
1216 spin_lock_irqsave(&pdc_lock, flags);
1217 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219 spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221 return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236 unsigned long view_type, void *mem_addr)
1237{
1238 int retval;
1239 unsigned long flags;
1240 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242 spin_lock_irqsave(&pdc_lock, flags);
1243 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1244 ploc, mod, view_type, __pa(&result));
1245 if(!retval) {
1246 *actcnt = pdc_result[0];
1247 memcpy(mem_addr, &result, *actcnt);
1248 }
1249 spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251 return retval;
1252}
1253
1254/**
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263 int retval;
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pdc_lock, flags);
1267 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268 __pa(&pdc_result), hpa);
1269 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270 spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272 return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285 int retval;
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&pdc_lock, flags);
1289 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290 __pa(pdc_result), cell_num);
1291 *num_entries = pdc_result[0];
1292 spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294 return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306 int retval;
1307 unsigned long flags;
1308
1309 spin_lock_irqsave(&pdc_lock, flags);
1310 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311 __pa(r_addr), cell_num);
1312 spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314 return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1326 unsigned long count, unsigned long offset)
1327{
1328 int retval;
1329 unsigned long flags;
1330
1331 spin_lock_irqsave(&pdc_lock, flags);
1332 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1333 __pa(pdc_result2), count, offset);
1334 *actual_len = pdc_result[0];
1335 memcpy(mem_addr, pdc_result2, *actual_len);
1336 spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338 return retval;
1339}
1340
1341/**
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350 int retval;
1351 unsigned long flags;
1352
1353 spin_lock_irqsave(&pdc_lock, flags);
1354 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355 __pa(pdc_result), pci_addr, pci_size);
1356 switch(pci_size) {
1357 case 1: *(u8 *) mem_addr = (u8) pdc_result[0];
1358 case 2: *(u16 *)mem_addr = (u16) pdc_result[0];
1359 case 4: *(u32 *)mem_addr = (u32) pdc_result[0];
1360 }
1361 spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363 return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1371 * written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376 int retval;
1377 unsigned long flags;
1378
1379 spin_lock_irqsave(&pdc_lock, flags);
1380 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381 pci_addr, pci_size, val);
1382 spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384 return retval;
1385}
1386#endif /* CONFIG_64BIT */
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396 /* use int, not long which is 64 bits */
1397 unsigned int arg13;
1398 unsigned int arg12;
1399 unsigned int arg11;
1400 unsigned int arg10;
1401 unsigned int arg9;
1402 unsigned int arg8;
1403 unsigned int arg7;
1404 unsigned int arg6;
1405 unsigned int arg5;
1406 unsigned int arg4;
1407 unsigned int arg3;
1408 unsigned int arg2;
1409 unsigned int arg1;
1410 unsigned int arg0;
1411 unsigned int frame_marker[8];
1412 unsigned int sp;
1413 /* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418 va_list args;
1419 extern struct narrow_stack real_stack;
1420 extern unsigned long real32_call_asm(unsigned int *,
1421 unsigned int *,
1422 unsigned int);
1423
1424 va_start(args, fn);
1425 real_stack.arg0 = va_arg(args, unsigned int);
1426 real_stack.arg1 = va_arg(args, unsigned int);
1427 real_stack.arg2 = va_arg(args, unsigned int);
1428 real_stack.arg3 = va_arg(args, unsigned int);
1429 real_stack.arg4 = va_arg(args, unsigned int);
1430 real_stack.arg5 = va_arg(args, unsigned int);
1431 real_stack.arg6 = va_arg(args, unsigned int);
1432 real_stack.arg7 = va_arg(args, unsigned int);
1433 real_stack.arg8 = va_arg(args, unsigned int);
1434 real_stack.arg9 = va_arg(args, unsigned int);
1435 real_stack.arg10 = va_arg(args, unsigned int);
1436 real_stack.arg11 = va_arg(args, unsigned int);
1437 real_stack.arg12 = va_arg(args, unsigned int);
1438 real_stack.arg13 = va_arg(args, unsigned int);
1439 va_end(args);
1440
1441 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448 unsigned long arg0;
1449 unsigned long arg1;
1450 unsigned long arg2;
1451 unsigned long arg3;
1452 unsigned long arg4;
1453 unsigned long arg5;
1454 unsigned long arg6;
1455 unsigned long arg7;
1456 unsigned long arg8;
1457 unsigned long arg9;
1458 unsigned long arg10;
1459 unsigned long arg11;
1460 unsigned long arg12;
1461 unsigned long arg13;
1462 unsigned long frame_marker[2]; /* rp, previous sp */
1463 unsigned long sp;
1464 /* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469 va_list args;
1470 extern struct wide_stack real64_stack;
1471 extern unsigned long real64_call_asm(unsigned long *,
1472 unsigned long *,
1473 unsigned long);
1474
1475 va_start(args, fn);
1476 real64_stack.arg0 = va_arg(args, unsigned long);
1477 real64_stack.arg1 = va_arg(args, unsigned long);
1478 real64_stack.arg2 = va_arg(args, unsigned long);
1479 real64_stack.arg3 = va_arg(args, unsigned long);
1480 real64_stack.arg4 = va_arg(args, unsigned long);
1481 real64_stack.arg5 = va_arg(args, unsigned long);
1482 real64_stack.arg6 = va_arg(args, unsigned long);
1483 real64_stack.arg7 = va_arg(args, unsigned long);
1484 real64_stack.arg8 = va_arg(args, unsigned long);
1485 real64_stack.arg9 = va_arg(args, unsigned long);
1486 real64_stack.arg10 = va_arg(args, unsigned long);
1487 real64_stack.arg11 = va_arg(args, unsigned long);
1488 real64_stack.arg12 = va_arg(args, unsigned long);
1489 real64_stack.arg13 = va_arg(args, unsigned long);
1490 va_end(args);
1491
1492 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19/* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54#include <linux/stdarg.h>
55
56#include <linux/delay.h>
57#include <linux/init.h>
58#include <linux/kernel.h>
59#include <linux/module.h>
60#include <linux/string.h>
61#include <linux/spinlock.h>
62
63#include <asm/page.h>
64#include <asm/pdc.h>
65#include <asm/pdcpat.h>
66#include <asm/processor.h> /* for boot_cpu_data */
67
68#if defined(BOOTLOADER)
69# undef spin_lock_irqsave
70# define spin_lock_irqsave(a, b) { b = 1; }
71# undef spin_unlock_irqrestore
72# define spin_unlock_irqrestore(a, b)
73#else
74static DEFINE_SPINLOCK(pdc_lock);
75#endif
76
77unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8);
78unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79
80#ifdef CONFIG_64BIT
81#define WIDE_FIRMWARE 0x1
82#define NARROW_FIRMWARE 0x2
83
84/* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86int parisc_narrow_firmware __ro_after_init = 2;
87#endif
88
89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100#ifdef CONFIG_64BIT
101long real64_call(unsigned long function, ...);
102#endif
103long real32_call(unsigned long function, ...);
104
105#ifdef CONFIG_64BIT
106# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108#else
109# define MEM_PDC (unsigned long)PAGE0->mem_pdc
110# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111#endif
112
113
114/**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
121static unsigned long f_extend(unsigned long address)
122{
123#ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return 0xf0f0f0f000000000UL | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return 0xffffffff00000000UL | (u32)address;
130 }
131#endif
132 return address;
133}
134
135/**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @address: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
143static void convert_to_wide(unsigned long *addr)
144{
145#ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153#endif
154}
155
156#ifdef CONFIG_64BIT
157void set_firmware_width_unlocked(void)
158{
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 convert_to_wide(pdc_result);
164 if (pdc_result[0] != NARROW_FIRMWARE)
165 parisc_narrow_firmware = 0;
166}
167
168/**
169 * set_firmware_width - Determine if the firmware is wide or narrow.
170 *
171 * This function must be called before any pdc_* function that uses the
172 * convert_to_wide function.
173 */
174void set_firmware_width(void)
175{
176 unsigned long flags;
177
178 /* already initialized? */
179 if (parisc_narrow_firmware != 2)
180 return;
181
182 spin_lock_irqsave(&pdc_lock, flags);
183 set_firmware_width_unlocked();
184 spin_unlock_irqrestore(&pdc_lock, flags);
185}
186#else
187void set_firmware_width_unlocked(void)
188{
189 return;
190}
191
192void set_firmware_width(void)
193{
194 return;
195}
196#endif /*CONFIG_64BIT*/
197
198
199#if !defined(BOOTLOADER)
200/**
201 * pdc_emergency_unlock - Unlock the linux pdc lock
202 *
203 * This call unlocks the linux pdc lock in case we need some PDC functions
204 * (like pdc_add_valid) during kernel stack dump.
205 */
206void pdc_emergency_unlock(void)
207{
208 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
209 if (spin_is_locked(&pdc_lock))
210 spin_unlock(&pdc_lock);
211}
212
213
214/**
215 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
216 * @address: Address to be verified.
217 *
218 * This PDC call attempts to read from the specified address and verifies
219 * if the address is valid.
220 *
221 * The return value is PDC_OK (0) in case accessing this address is valid.
222 */
223int pdc_add_valid(unsigned long address)
224{
225 int retval;
226 unsigned long flags;
227
228 spin_lock_irqsave(&pdc_lock, flags);
229 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
230 spin_unlock_irqrestore(&pdc_lock, flags);
231
232 return retval;
233}
234EXPORT_SYMBOL(pdc_add_valid);
235
236/**
237 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
238 * @instr: Pointer to variable which will get instruction opcode.
239 *
240 * The return value is PDC_OK (0) in case call succeeded.
241 */
242int __init pdc_instr(unsigned int *instr)
243{
244 int retval;
245 unsigned long flags;
246
247 spin_lock_irqsave(&pdc_lock, flags);
248 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
249 convert_to_wide(pdc_result);
250 *instr = pdc_result[0];
251 spin_unlock_irqrestore(&pdc_lock, flags);
252
253 return retval;
254}
255
256/**
257 * pdc_chassis_info - Return chassis information.
258 * @result: The return buffer.
259 * @chassis_info: The memory buffer address.
260 * @len: The size of the memory buffer address.
261 *
262 * An HVERSION dependent call for returning the chassis information.
263 */
264int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
265{
266 int retval;
267 unsigned long flags;
268
269 spin_lock_irqsave(&pdc_lock, flags);
270 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
271 memcpy(&pdc_result2, led_info, len);
272 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
273 __pa(pdc_result), __pa(pdc_result2), len);
274 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
275 memcpy(led_info, pdc_result2, len);
276 spin_unlock_irqrestore(&pdc_lock, flags);
277
278 return retval;
279}
280
281/**
282 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
283 * @retval: -1 on error, 0 on success. Other value are PDC errors
284 *
285 * Must be correctly formatted or expect system crash
286 */
287#ifdef CONFIG_64BIT
288int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
289{
290 int retval = 0;
291 unsigned long flags;
292
293 if (!is_pdc_pat())
294 return -1;
295
296 spin_lock_irqsave(&pdc_lock, flags);
297 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
298 spin_unlock_irqrestore(&pdc_lock, flags);
299
300 return retval;
301}
302#endif
303
304/**
305 * pdc_chassis_disp - Updates chassis code
306 * @retval: -1 on error, 0 on success
307 */
308int pdc_chassis_disp(unsigned long disp)
309{
310 int retval = 0;
311 unsigned long flags;
312
313 spin_lock_irqsave(&pdc_lock, flags);
314 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
315 spin_unlock_irqrestore(&pdc_lock, flags);
316
317 return retval;
318}
319
320/**
321 * pdc_cpu_rendenzvous - Stop currently executing CPU
322 * @retval: -1 on error, 0 on success
323 */
324int __pdc_cpu_rendezvous(void)
325{
326 if (is_pdc_pat())
327 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
328 else
329 return mem_pdc_call(PDC_PROC, 1, 0);
330}
331
332/**
333 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
334 */
335void pdc_cpu_rendezvous_lock(void)
336{
337 spin_lock(&pdc_lock);
338}
339
340/**
341 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
342 */
343void pdc_cpu_rendezvous_unlock(void)
344{
345 spin_unlock(&pdc_lock);
346}
347
348/**
349 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
350 * @retval: -1 on error, 0 on success
351 */
352int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
353{
354 int retval = 0;
355 unsigned long flags;
356
357 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
358 *pdc_entry = MEM_PDC;
359 return 0;
360 }
361
362 spin_lock_irqsave(&pdc_lock, flags);
363 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
364 __pa(pdc_result));
365 *pdc_entry = pdc_result[0];
366 spin_unlock_irqrestore(&pdc_lock, flags);
367
368 return retval;
369}
370/**
371 * pdc_chassis_warn - Fetches chassis warnings
372 * @retval: -1 on error, 0 on success
373 */
374int pdc_chassis_warn(unsigned long *warn)
375{
376 int retval = 0;
377 unsigned long flags;
378
379 spin_lock_irqsave(&pdc_lock, flags);
380 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
381 *warn = pdc_result[0];
382 spin_unlock_irqrestore(&pdc_lock, flags);
383
384 return retval;
385}
386
387int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
388{
389 int ret;
390
391 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
392 convert_to_wide(pdc_result);
393 pdc_coproc_info->ccr_functional = pdc_result[0];
394 pdc_coproc_info->ccr_present = pdc_result[1];
395 pdc_coproc_info->revision = pdc_result[17];
396 pdc_coproc_info->model = pdc_result[18];
397
398 return ret;
399}
400
401/**
402 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
403 * @pdc_coproc_info: Return buffer address.
404 *
405 * This PDC call returns the presence and status of all the coprocessors
406 * attached to the processor.
407 */
408int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
409{
410 int ret;
411 unsigned long flags;
412
413 spin_lock_irqsave(&pdc_lock, flags);
414 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
415 spin_unlock_irqrestore(&pdc_lock, flags);
416
417 return ret;
418}
419
420/**
421 * pdc_iodc_read - Read data from the modules IODC.
422 * @actcnt: The actual number of bytes.
423 * @hpa: The HPA of the module for the iodc read.
424 * @index: The iodc entry point.
425 * @iodc_data: A buffer memory for the iodc options.
426 * @iodc_data_size: Size of the memory buffer.
427 *
428 * This PDC call reads from the IODC of the module specified by the hpa
429 * argument.
430 */
431int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
432 void *iodc_data, unsigned int iodc_data_size)
433{
434 int retval;
435 unsigned long flags;
436
437 spin_lock_irqsave(&pdc_lock, flags);
438 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
439 index, __pa(pdc_result2), iodc_data_size);
440 convert_to_wide(pdc_result);
441 *actcnt = pdc_result[0];
442 memcpy(iodc_data, pdc_result2, iodc_data_size);
443 spin_unlock_irqrestore(&pdc_lock, flags);
444
445 return retval;
446}
447EXPORT_SYMBOL(pdc_iodc_read);
448
449/**
450 * pdc_system_map_find_mods - Locate unarchitected modules.
451 * @pdc_mod_info: Return buffer address.
452 * @mod_path: pointer to dev path structure.
453 * @mod_index: fixed address module index.
454 *
455 * To locate and identify modules which reside at fixed I/O addresses, which
456 * do not self-identify via architected bus walks.
457 */
458int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
459 struct pdc_module_path *mod_path, long mod_index)
460{
461 int retval;
462 unsigned long flags;
463
464 spin_lock_irqsave(&pdc_lock, flags);
465 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
466 __pa(pdc_result2), mod_index);
467 convert_to_wide(pdc_result);
468 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
469 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
470 spin_unlock_irqrestore(&pdc_lock, flags);
471
472 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
473 return retval;
474}
475
476/**
477 * pdc_system_map_find_addrs - Retrieve additional address ranges.
478 * @pdc_addr_info: Return buffer address.
479 * @mod_index: Fixed address module index.
480 * @addr_index: Address range index.
481 *
482 * Retrieve additional information about subsequent address ranges for modules
483 * with multiple address ranges.
484 */
485int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
486 long mod_index, long addr_index)
487{
488 int retval;
489 unsigned long flags;
490
491 spin_lock_irqsave(&pdc_lock, flags);
492 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
493 mod_index, addr_index);
494 convert_to_wide(pdc_result);
495 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
496 spin_unlock_irqrestore(&pdc_lock, flags);
497
498 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
499 return retval;
500}
501
502/**
503 * pdc_model_info - Return model information about the processor.
504 * @model: The return buffer.
505 *
506 * Returns the version numbers, identifiers, and capabilities from the processor module.
507 */
508int pdc_model_info(struct pdc_model *model)
509{
510 int retval;
511 unsigned long flags;
512
513 spin_lock_irqsave(&pdc_lock, flags);
514 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
515 convert_to_wide(pdc_result);
516 memcpy(model, pdc_result, sizeof(*model));
517 spin_unlock_irqrestore(&pdc_lock, flags);
518
519 return retval;
520}
521
522/**
523 * pdc_model_sysmodel - Get the system model name.
524 * @name: A char array of at least 81 characters.
525 *
526 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
527 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
528 * on HP/UX.
529 */
530int pdc_model_sysmodel(unsigned int os_id, char *name)
531{
532 int retval;
533 unsigned long flags;
534
535 spin_lock_irqsave(&pdc_lock, flags);
536 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
537 os_id, __pa(name));
538 convert_to_wide(pdc_result);
539
540 if (retval == PDC_OK) {
541 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
542 } else {
543 name[0] = 0;
544 }
545 spin_unlock_irqrestore(&pdc_lock, flags);
546
547 return retval;
548}
549
550/**
551 * pdc_model_versions - Identify the version number of each processor.
552 * @cpu_id: The return buffer.
553 * @id: The id of the processor to check.
554 *
555 * Returns the version number for each processor component.
556 *
557 * This comment was here before, but I do not know what it means :( -RB
558 * id: 0 = cpu revision, 1 = boot-rom-version
559 */
560int pdc_model_versions(unsigned long *versions, int id)
561{
562 int retval;
563 unsigned long flags;
564
565 spin_lock_irqsave(&pdc_lock, flags);
566 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
567 convert_to_wide(pdc_result);
568 *versions = pdc_result[0];
569 spin_unlock_irqrestore(&pdc_lock, flags);
570
571 return retval;
572}
573
574/**
575 * pdc_model_cpuid - Returns the CPU_ID.
576 * @cpu_id: The return buffer.
577 *
578 * Returns the CPU_ID value which uniquely identifies the cpu portion of
579 * the processor module.
580 */
581int pdc_model_cpuid(unsigned long *cpu_id)
582{
583 int retval;
584 unsigned long flags;
585
586 spin_lock_irqsave(&pdc_lock, flags);
587 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
588 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
589 convert_to_wide(pdc_result);
590 *cpu_id = pdc_result[0];
591 spin_unlock_irqrestore(&pdc_lock, flags);
592
593 return retval;
594}
595
596/**
597 * pdc_model_capabilities - Returns the platform capabilities.
598 * @capabilities: The return buffer.
599 *
600 * Returns information about platform support for 32- and/or 64-bit
601 * OSes, IO-PDIR coherency, and virtual aliasing.
602 */
603int pdc_model_capabilities(unsigned long *capabilities)
604{
605 int retval;
606 unsigned long flags;
607
608 spin_lock_irqsave(&pdc_lock, flags);
609 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
610 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
611 convert_to_wide(pdc_result);
612 if (retval == PDC_OK) {
613 *capabilities = pdc_result[0];
614 } else {
615 *capabilities = PDC_MODEL_OS32;
616 }
617 spin_unlock_irqrestore(&pdc_lock, flags);
618
619 return retval;
620}
621
622/**
623 * pdc_model_platform_info - Returns machine product and serial number.
624 * @orig_prod_num: Return buffer for original product number.
625 * @current_prod_num: Return buffer for current product number.
626 * @serial_no: Return buffer for serial number.
627 *
628 * Returns strings containing the original and current product numbers and the
629 * serial number of the system.
630 */
631int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
632 char *serial_no)
633{
634 int retval;
635 unsigned long flags;
636
637 spin_lock_irqsave(&pdc_lock, flags);
638 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
639 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
640 convert_to_wide(pdc_result);
641 spin_unlock_irqrestore(&pdc_lock, flags);
642
643 return retval;
644}
645
646/**
647 * pdc_cache_info - Return cache and TLB information.
648 * @cache_info: The return buffer.
649 *
650 * Returns information about the processor's cache and TLB.
651 */
652int pdc_cache_info(struct pdc_cache_info *cache_info)
653{
654 int retval;
655 unsigned long flags;
656
657 spin_lock_irqsave(&pdc_lock, flags);
658 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
659 convert_to_wide(pdc_result);
660 memcpy(cache_info, pdc_result, sizeof(*cache_info));
661 spin_unlock_irqrestore(&pdc_lock, flags);
662
663 return retval;
664}
665
666/**
667 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
668 * @space_bits: Should be 0, if not, bad mojo!
669 *
670 * Returns information about Space ID hashing.
671 */
672int pdc_spaceid_bits(unsigned long *space_bits)
673{
674 int retval;
675 unsigned long flags;
676
677 spin_lock_irqsave(&pdc_lock, flags);
678 pdc_result[0] = 0;
679 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
680 convert_to_wide(pdc_result);
681 *space_bits = pdc_result[0];
682 spin_unlock_irqrestore(&pdc_lock, flags);
683
684 return retval;
685}
686
687#ifndef CONFIG_PA20
688/**
689 * pdc_btlb_info - Return block TLB information.
690 * @btlb: The return buffer.
691 *
692 * Returns information about the hardware Block TLB.
693 */
694int pdc_btlb_info(struct pdc_btlb_info *btlb)
695{
696 int retval;
697 unsigned long flags;
698
699 spin_lock_irqsave(&pdc_lock, flags);
700 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
701 memcpy(btlb, pdc_result, sizeof(*btlb));
702 spin_unlock_irqrestore(&pdc_lock, flags);
703
704 if(retval < 0) {
705 btlb->max_size = 0;
706 }
707 return retval;
708}
709
710/**
711 * pdc_mem_map_hpa - Find fixed module information.
712 * @address: The return buffer
713 * @mod_path: pointer to dev path structure.
714 *
715 * This call was developed for S700 workstations to allow the kernel to find
716 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
717 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
718 * call.
719 *
720 * This call is supported by all existing S700 workstations (up to Gecko).
721 */
722int pdc_mem_map_hpa(struct pdc_memory_map *address,
723 struct pdc_module_path *mod_path)
724{
725 int retval;
726 unsigned long flags;
727
728 spin_lock_irqsave(&pdc_lock, flags);
729 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
730 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
731 __pa(pdc_result2));
732 memcpy(address, pdc_result, sizeof(*address));
733 spin_unlock_irqrestore(&pdc_lock, flags);
734
735 return retval;
736}
737#endif /* !CONFIG_PA20 */
738
739/**
740 * pdc_lan_station_id - Get the LAN address.
741 * @lan_addr: The return buffer.
742 * @hpa: The network device HPA.
743 *
744 * Get the LAN station address when it is not directly available from the LAN hardware.
745 */
746int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
747{
748 int retval;
749 unsigned long flags;
750
751 spin_lock_irqsave(&pdc_lock, flags);
752 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
753 __pa(pdc_result), hpa);
754 if (retval < 0) {
755 /* FIXME: else read MAC from NVRAM */
756 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
757 } else {
758 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
759 }
760 spin_unlock_irqrestore(&pdc_lock, flags);
761
762 return retval;
763}
764EXPORT_SYMBOL(pdc_lan_station_id);
765
766/**
767 * pdc_stable_read - Read data from Stable Storage.
768 * @staddr: Stable Storage address to access.
769 * @memaddr: The memory address where Stable Storage data shall be copied.
770 * @count: number of bytes to transfer. count is multiple of 4.
771 *
772 * This PDC call reads from the Stable Storage address supplied in staddr
773 * and copies count bytes to the memory address memaddr.
774 * The call will fail if staddr+count > PDC_STABLE size.
775 */
776int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
777{
778 int retval;
779 unsigned long flags;
780
781 spin_lock_irqsave(&pdc_lock, flags);
782 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
783 __pa(pdc_result), count);
784 convert_to_wide(pdc_result);
785 memcpy(memaddr, pdc_result, count);
786 spin_unlock_irqrestore(&pdc_lock, flags);
787
788 return retval;
789}
790EXPORT_SYMBOL(pdc_stable_read);
791
792/**
793 * pdc_stable_write - Write data to Stable Storage.
794 * @staddr: Stable Storage address to access.
795 * @memaddr: The memory address where Stable Storage data shall be read from.
796 * @count: number of bytes to transfer. count is multiple of 4.
797 *
798 * This PDC call reads count bytes from the supplied memaddr address,
799 * and copies count bytes to the Stable Storage address staddr.
800 * The call will fail if staddr+count > PDC_STABLE size.
801 */
802int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
803{
804 int retval;
805 unsigned long flags;
806
807 spin_lock_irqsave(&pdc_lock, flags);
808 memcpy(pdc_result, memaddr, count);
809 convert_to_wide(pdc_result);
810 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
811 __pa(pdc_result), count);
812 spin_unlock_irqrestore(&pdc_lock, flags);
813
814 return retval;
815}
816EXPORT_SYMBOL(pdc_stable_write);
817
818/**
819 * pdc_stable_get_size - Get Stable Storage size in bytes.
820 * @size: pointer where the size will be stored.
821 *
822 * This PDC call returns the number of bytes in the processor's Stable
823 * Storage, which is the number of contiguous bytes implemented in Stable
824 * Storage starting from staddr=0. size in an unsigned 64-bit integer
825 * which is a multiple of four.
826 */
827int pdc_stable_get_size(unsigned long *size)
828{
829 int retval;
830 unsigned long flags;
831
832 spin_lock_irqsave(&pdc_lock, flags);
833 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
834 *size = pdc_result[0];
835 spin_unlock_irqrestore(&pdc_lock, flags);
836
837 return retval;
838}
839EXPORT_SYMBOL(pdc_stable_get_size);
840
841/**
842 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
843 *
844 * This PDC call is meant to be used to check the integrity of the current
845 * contents of Stable Storage.
846 */
847int pdc_stable_verify_contents(void)
848{
849 int retval;
850 unsigned long flags;
851
852 spin_lock_irqsave(&pdc_lock, flags);
853 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
854 spin_unlock_irqrestore(&pdc_lock, flags);
855
856 return retval;
857}
858EXPORT_SYMBOL(pdc_stable_verify_contents);
859
860/**
861 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
862 * the validity indicator.
863 *
864 * This PDC call will erase all contents of Stable Storage. Use with care!
865 */
866int pdc_stable_initialize(void)
867{
868 int retval;
869 unsigned long flags;
870
871 spin_lock_irqsave(&pdc_lock, flags);
872 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
873 spin_unlock_irqrestore(&pdc_lock, flags);
874
875 return retval;
876}
877EXPORT_SYMBOL(pdc_stable_initialize);
878
879/**
880 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
881 * @hwpath: fully bc.mod style path to the device.
882 * @initiator: the array to return the result into
883 *
884 * Get the SCSI operational parameters from PDC.
885 * Needed since HPUX never used BIOS or symbios card NVRAM.
886 * Most ncr/sym cards won't have an entry and just use whatever
887 * capabilities of the card are (eg Ultra, LVD). But there are
888 * several cases where it's useful:
889 * o set SCSI id for Multi-initiator clusters,
890 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
891 * o bus width exported is less than what the interface chip supports.
892 */
893int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
894{
895 int retval;
896 unsigned long flags;
897
898 spin_lock_irqsave(&pdc_lock, flags);
899
900/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
901#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
902 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
903
904 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
905 __pa(pdc_result), __pa(hwpath));
906 if (retval < PDC_OK)
907 goto out;
908
909 if (pdc_result[0] < 16) {
910 initiator->host_id = pdc_result[0];
911 } else {
912 initiator->host_id = -1;
913 }
914
915 /*
916 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
917 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
918 */
919 switch (pdc_result[1]) {
920 case 1: initiator->factor = 50; break;
921 case 2: initiator->factor = 25; break;
922 case 5: initiator->factor = 12; break;
923 case 25: initiator->factor = 10; break;
924 case 20: initiator->factor = 12; break;
925 case 40: initiator->factor = 10; break;
926 default: initiator->factor = -1; break;
927 }
928
929 if (IS_SPROCKETS()) {
930 initiator->width = pdc_result[4];
931 initiator->mode = pdc_result[5];
932 } else {
933 initiator->width = -1;
934 initiator->mode = -1;
935 }
936
937 out:
938 spin_unlock_irqrestore(&pdc_lock, flags);
939
940 return (retval >= PDC_OK);
941}
942EXPORT_SYMBOL(pdc_get_initiator);
943
944
945/**
946 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
947 * @num_entries: The return value.
948 * @hpa: The HPA for the device.
949 *
950 * This PDC function returns the number of entries in the specified cell's
951 * interrupt table.
952 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
953 */
954int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
955{
956 int retval;
957 unsigned long flags;
958
959 spin_lock_irqsave(&pdc_lock, flags);
960 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
961 __pa(pdc_result), hpa);
962 convert_to_wide(pdc_result);
963 *num_entries = pdc_result[0];
964 spin_unlock_irqrestore(&pdc_lock, flags);
965
966 return retval;
967}
968
969/**
970 * pdc_pci_irt - Get the PCI interrupt routing table.
971 * @num_entries: The number of entries in the table.
972 * @hpa: The Hard Physical Address of the device.
973 * @tbl:
974 *
975 * Get the PCI interrupt routing table for the device at the given HPA.
976 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
977 */
978int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
979{
980 int retval;
981 unsigned long flags;
982
983 BUG_ON((unsigned long)tbl & 0x7);
984
985 spin_lock_irqsave(&pdc_lock, flags);
986 pdc_result[0] = num_entries;
987 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
988 __pa(pdc_result), hpa, __pa(tbl));
989 spin_unlock_irqrestore(&pdc_lock, flags);
990
991 return retval;
992}
993
994
995#if 0 /* UNTEST CODE - left here in case someone needs it */
996
997/**
998 * pdc_pci_config_read - read PCI config space.
999 * @hpa token from PDC to indicate which PCI device
1000 * @pci_addr configuration space address to read from
1001 *
1002 * Read PCI Configuration space *before* linux PCI subsystem is running.
1003 */
1004unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1005{
1006 int retval;
1007 unsigned long flags;
1008
1009 spin_lock_irqsave(&pdc_lock, flags);
1010 pdc_result[0] = 0;
1011 pdc_result[1] = 0;
1012 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1013 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1014 spin_unlock_irqrestore(&pdc_lock, flags);
1015
1016 return retval ? ~0 : (unsigned int) pdc_result[0];
1017}
1018
1019
1020/**
1021 * pdc_pci_config_write - read PCI config space.
1022 * @hpa token from PDC to indicate which PCI device
1023 * @pci_addr configuration space address to write
1024 * @val value we want in the 32-bit register
1025 *
1026 * Write PCI Configuration space *before* linux PCI subsystem is running.
1027 */
1028void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1029{
1030 int retval;
1031 unsigned long flags;
1032
1033 spin_lock_irqsave(&pdc_lock, flags);
1034 pdc_result[0] = 0;
1035 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1036 __pa(pdc_result), hpa,
1037 cfg_addr&~3UL, 4UL, (unsigned long) val);
1038 spin_unlock_irqrestore(&pdc_lock, flags);
1039
1040 return retval;
1041}
1042#endif /* UNTESTED CODE */
1043
1044/**
1045 * pdc_tod_read - Read the Time-Of-Day clock.
1046 * @tod: The return buffer:
1047 *
1048 * Read the Time-Of-Day clock
1049 */
1050int pdc_tod_read(struct pdc_tod *tod)
1051{
1052 int retval;
1053 unsigned long flags;
1054
1055 spin_lock_irqsave(&pdc_lock, flags);
1056 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1057 convert_to_wide(pdc_result);
1058 memcpy(tod, pdc_result, sizeof(*tod));
1059 spin_unlock_irqrestore(&pdc_lock, flags);
1060
1061 return retval;
1062}
1063EXPORT_SYMBOL(pdc_tod_read);
1064
1065int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1066{
1067 int retval;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&pdc_lock, flags);
1071 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1072 convert_to_wide(pdc_result);
1073 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1074 spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076 return retval;
1077}
1078
1079int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1080 unsigned long *pdt_entries_ptr)
1081{
1082 int retval;
1083 unsigned long flags;
1084
1085 spin_lock_irqsave(&pdc_lock, flags);
1086 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1087 __pa(pdt_entries_ptr));
1088 if (retval == PDC_OK) {
1089 convert_to_wide(pdc_result);
1090 memcpy(pret, pdc_result, sizeof(*pret));
1091 }
1092 spin_unlock_irqrestore(&pdc_lock, flags);
1093
1094#ifdef CONFIG_64BIT
1095 /*
1096 * 64-bit kernels should not call this PDT function in narrow mode.
1097 * The pdt_entries_ptr array above will now contain 32-bit values
1098 */
1099 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1100 return PDC_ERROR;
1101#endif
1102
1103 return retval;
1104}
1105
1106/**
1107 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1108 * @ret: pointer to return buffer
1109 */
1110int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1111{
1112 int retval;
1113 unsigned long flags;
1114
1115 spin_lock_irqsave(&pdc_lock, flags);
1116 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1117 __pa(ret), sizeof(*ret));
1118 spin_unlock_irqrestore(&pdc_lock, flags);
1119 return retval;
1120}
1121
1122/**
1123 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1124 * @ret: pointer to return buffer
1125 */
1126int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1127{
1128 int retval;
1129 unsigned long flags;
1130
1131 spin_lock_irqsave(&pdc_lock, flags);
1132 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1133 __pa(ret), sizeof(*ret));
1134 spin_unlock_irqrestore(&pdc_lock, flags);
1135 return retval;
1136}
1137
1138/**
1139 * pdc_tod_set - Set the Time-Of-Day clock.
1140 * @sec: The number of seconds since epoch.
1141 * @usec: The number of micro seconds.
1142 *
1143 * Set the Time-Of-Day clock.
1144 */
1145int pdc_tod_set(unsigned long sec, unsigned long usec)
1146{
1147 int retval;
1148 unsigned long flags;
1149
1150 spin_lock_irqsave(&pdc_lock, flags);
1151 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1152 spin_unlock_irqrestore(&pdc_lock, flags);
1153
1154 return retval;
1155}
1156EXPORT_SYMBOL(pdc_tod_set);
1157
1158#ifdef CONFIG_64BIT
1159int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1160 struct pdc_memory_table *tbl, unsigned long entries)
1161{
1162 int retval;
1163 unsigned long flags;
1164
1165 spin_lock_irqsave(&pdc_lock, flags);
1166 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1167 convert_to_wide(pdc_result);
1168 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1169 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1170 spin_unlock_irqrestore(&pdc_lock, flags);
1171
1172 return retval;
1173}
1174#endif /* CONFIG_64BIT */
1175
1176/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1177 * so I guessed at unsigned long. Someone who knows what this does, can fix
1178 * it later. :)
1179 */
1180int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1181{
1182 int retval;
1183 unsigned long flags;
1184
1185 spin_lock_irqsave(&pdc_lock, flags);
1186 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1187 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1188 spin_unlock_irqrestore(&pdc_lock, flags);
1189
1190 return retval;
1191}
1192
1193/*
1194 * pdc_do_reset - Reset the system.
1195 *
1196 * Reset the system.
1197 */
1198int pdc_do_reset(void)
1199{
1200 int retval;
1201 unsigned long flags;
1202
1203 spin_lock_irqsave(&pdc_lock, flags);
1204 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1205 spin_unlock_irqrestore(&pdc_lock, flags);
1206
1207 return retval;
1208}
1209
1210/*
1211 * pdc_soft_power_info - Enable soft power switch.
1212 * @power_reg: address of soft power register
1213 *
1214 * Return the absolute address of the soft power switch register
1215 */
1216int __init pdc_soft_power_info(unsigned long *power_reg)
1217{
1218 int retval;
1219 unsigned long flags;
1220
1221 *power_reg = (unsigned long) (-1);
1222
1223 spin_lock_irqsave(&pdc_lock, flags);
1224 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1225 if (retval == PDC_OK) {
1226 convert_to_wide(pdc_result);
1227 *power_reg = f_extend(pdc_result[0]);
1228 }
1229 spin_unlock_irqrestore(&pdc_lock, flags);
1230
1231 return retval;
1232}
1233
1234/*
1235 * pdc_soft_power_button - Control the soft power button behaviour
1236 * @sw_control: 0 for hardware control, 1 for software control
1237 *
1238 *
1239 * This PDC function places the soft power button under software or
1240 * hardware control.
1241 * Under software control the OS may control to when to allow to shut
1242 * down the system. Under hardware control pressing the power button
1243 * powers off the system immediately.
1244 */
1245int pdc_soft_power_button(int sw_control)
1246{
1247 int retval;
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&pdc_lock, flags);
1251 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1252 spin_unlock_irqrestore(&pdc_lock, flags);
1253
1254 return retval;
1255}
1256
1257/*
1258 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1259 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1260 * who knows what other platform firmware might do with this OS "hook".
1261 */
1262void pdc_io_reset(void)
1263{
1264 unsigned long flags;
1265
1266 spin_lock_irqsave(&pdc_lock, flags);
1267 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1268 spin_unlock_irqrestore(&pdc_lock, flags);
1269}
1270
1271/*
1272 * pdc_io_reset_devices - Hack to Stop USB controller
1273 *
1274 * If PDC used the usb controller, the usb controller
1275 * is still running and will crash the machines during iommu
1276 * setup, because of still running DMA. This PDC call
1277 * stops the USB controller.
1278 * Normally called after calling pdc_io_reset().
1279 */
1280void pdc_io_reset_devices(void)
1281{
1282 unsigned long flags;
1283
1284 spin_lock_irqsave(&pdc_lock, flags);
1285 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1286 spin_unlock_irqrestore(&pdc_lock, flags);
1287}
1288
1289#endif /* defined(BOOTLOADER) */
1290
1291/* locked by pdc_lock */
1292static char iodc_dbuf[4096] __page_aligned_bss;
1293
1294/**
1295 * pdc_iodc_print - Console print using IODC.
1296 * @str: the string to output.
1297 * @count: length of str
1298 *
1299 * Note that only these special chars are architected for console IODC io:
1300 * BEL, BS, CR, and LF. Others are passed through.
1301 * Since the HP console requires CR+LF to perform a 'newline', we translate
1302 * "\n" to "\r\n".
1303 */
1304int pdc_iodc_print(const unsigned char *str, unsigned count)
1305{
1306 unsigned int i, found = 0;
1307 unsigned long flags;
1308
1309 count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1310
1311 spin_lock_irqsave(&pdc_lock, flags);
1312 for (i = 0; i < count;) {
1313 switch(str[i]) {
1314 case '\n':
1315 iodc_dbuf[i+0] = '\r';
1316 iodc_dbuf[i+1] = '\n';
1317 i += 2;
1318 found = 1;
1319 goto print;
1320 default:
1321 iodc_dbuf[i] = str[i];
1322 i++;
1323 break;
1324 }
1325 }
1326
1327print:
1328 real32_call(PAGE0->mem_cons.iodc_io,
1329 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1330 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1331 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1332 spin_unlock_irqrestore(&pdc_lock, flags);
1333
1334 return i - found;
1335}
1336
1337#if !defined(BOOTLOADER)
1338/**
1339 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1340 *
1341 * Read a character (non-blocking) from the PDC console, returns -1 if
1342 * key is not present.
1343 */
1344int pdc_iodc_getc(void)
1345{
1346 int ch;
1347 int status;
1348 unsigned long flags;
1349
1350 /* Bail if no console input device. */
1351 if (!PAGE0->mem_kbd.iodc_io)
1352 return 0;
1353
1354 /* wait for a keyboard (rs232)-input */
1355 spin_lock_irqsave(&pdc_lock, flags);
1356 real32_call(PAGE0->mem_kbd.iodc_io,
1357 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1358 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1359 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1360
1361 ch = *iodc_dbuf;
1362 /* like convert_to_wide() but for first return value only: */
1363 status = *(int *)&pdc_result;
1364 spin_unlock_irqrestore(&pdc_lock, flags);
1365
1366 if (status == 0)
1367 return -1;
1368
1369 return ch;
1370}
1371
1372int pdc_sti_call(unsigned long func, unsigned long flags,
1373 unsigned long inptr, unsigned long outputr,
1374 unsigned long glob_cfg)
1375{
1376 int retval;
1377 unsigned long irqflags;
1378
1379 spin_lock_irqsave(&pdc_lock, irqflags);
1380 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1381 spin_unlock_irqrestore(&pdc_lock, irqflags);
1382
1383 return retval;
1384}
1385EXPORT_SYMBOL(pdc_sti_call);
1386
1387#ifdef CONFIG_64BIT
1388/**
1389 * pdc_pat_cell_get_number - Returns the cell number.
1390 * @cell_info: The return buffer.
1391 *
1392 * This PDC call returns the cell number of the cell from which the call
1393 * is made.
1394 */
1395int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1396{
1397 int retval;
1398 unsigned long flags;
1399
1400 spin_lock_irqsave(&pdc_lock, flags);
1401 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1402 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1403 spin_unlock_irqrestore(&pdc_lock, flags);
1404
1405 return retval;
1406}
1407
1408/**
1409 * pdc_pat_cell_module - Retrieve the cell's module information.
1410 * @actcnt: The number of bytes written to mem_addr.
1411 * @ploc: The physical location.
1412 * @mod: The module index.
1413 * @view_type: The view of the address type.
1414 * @mem_addr: The return buffer.
1415 *
1416 * This PDC call returns information about each module attached to the cell
1417 * at the specified location.
1418 */
1419int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1420 unsigned long view_type, void *mem_addr)
1421{
1422 int retval;
1423 unsigned long flags;
1424 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1425
1426 spin_lock_irqsave(&pdc_lock, flags);
1427 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1428 ploc, mod, view_type, __pa(&result));
1429 if(!retval) {
1430 *actcnt = pdc_result[0];
1431 memcpy(mem_addr, &result, *actcnt);
1432 }
1433 spin_unlock_irqrestore(&pdc_lock, flags);
1434
1435 return retval;
1436}
1437
1438/**
1439 * pdc_pat_cell_info - Retrieve the cell's information.
1440 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1441 * @actcnt: The number of bytes which should be written to info.
1442 * @offset: offset of the structure.
1443 * @cell_number: The cell number which should be asked, or -1 for current cell.
1444 *
1445 * This PDC call returns information about the given cell (or all cells).
1446 */
1447int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1448 unsigned long *actcnt, unsigned long offset,
1449 unsigned long cell_number)
1450{
1451 int retval;
1452 unsigned long flags;
1453 struct pdc_pat_cell_info_rtn_block result;
1454
1455 spin_lock_irqsave(&pdc_lock, flags);
1456 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1457 __pa(pdc_result), __pa(&result), *actcnt,
1458 offset, cell_number);
1459 if (!retval) {
1460 *actcnt = pdc_result[0];
1461 memcpy(info, &result, *actcnt);
1462 }
1463 spin_unlock_irqrestore(&pdc_lock, flags);
1464
1465 return retval;
1466}
1467
1468/**
1469 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1470 * @cpu_info: The return buffer.
1471 * @hpa: The Hard Physical Address of the CPU.
1472 *
1473 * Retrieve the cpu number for the cpu at the specified HPA.
1474 */
1475int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1476{
1477 int retval;
1478 unsigned long flags;
1479
1480 spin_lock_irqsave(&pdc_lock, flags);
1481 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1482 __pa(&pdc_result), hpa);
1483 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1484 spin_unlock_irqrestore(&pdc_lock, flags);
1485
1486 return retval;
1487}
1488
1489/**
1490 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1491 * @num_entries: The return value.
1492 * @cell_num: The target cell.
1493 *
1494 * This PDC function returns the number of entries in the specified cell's
1495 * interrupt table.
1496 */
1497int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1498{
1499 int retval;
1500 unsigned long flags;
1501
1502 spin_lock_irqsave(&pdc_lock, flags);
1503 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1504 __pa(pdc_result), cell_num);
1505 *num_entries = pdc_result[0];
1506 spin_unlock_irqrestore(&pdc_lock, flags);
1507
1508 return retval;
1509}
1510
1511/**
1512 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1513 * @r_addr: The return buffer.
1514 * @cell_num: The target cell.
1515 *
1516 * This PDC function returns the actual interrupt table for the specified cell.
1517 */
1518int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1519{
1520 int retval;
1521 unsigned long flags;
1522
1523 spin_lock_irqsave(&pdc_lock, flags);
1524 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1525 __pa(r_addr), cell_num);
1526 spin_unlock_irqrestore(&pdc_lock, flags);
1527
1528 return retval;
1529}
1530
1531/**
1532 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1533 * @actlen: The return buffer.
1534 * @mem_addr: Pointer to the memory buffer.
1535 * @count: The number of bytes to read from the buffer.
1536 * @offset: The offset with respect to the beginning of the buffer.
1537 *
1538 */
1539int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1540 unsigned long count, unsigned long offset)
1541{
1542 int retval;
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&pdc_lock, flags);
1546 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1547 __pa(pdc_result2), count, offset);
1548 *actual_len = pdc_result[0];
1549 memcpy(mem_addr, pdc_result2, *actual_len);
1550 spin_unlock_irqrestore(&pdc_lock, flags);
1551
1552 return retval;
1553}
1554
1555/**
1556 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1557 * @legacy_rev: The legacy revision.
1558 * @pat_rev: The PAT revision.
1559 * @pdc_cap: The PDC capabilities.
1560 *
1561 */
1562int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1563 unsigned long *pat_rev, unsigned long *pdc_cap)
1564{
1565 int retval;
1566 unsigned long flags;
1567
1568 spin_lock_irqsave(&pdc_lock, flags);
1569 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1570 __pa(pdc_result));
1571 if (retval == PDC_OK) {
1572 *legacy_rev = pdc_result[0];
1573 *pat_rev = pdc_result[1];
1574 *pdc_cap = pdc_result[2];
1575 }
1576 spin_unlock_irqrestore(&pdc_lock, flags);
1577
1578 return retval;
1579}
1580
1581
1582/**
1583 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1584 * @pci_addr: PCI configuration space address for which the read request is being made.
1585 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1586 * @mem_addr: Pointer to return memory buffer.
1587 *
1588 */
1589int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1590{
1591 int retval;
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&pdc_lock, flags);
1595 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1596 __pa(pdc_result), pci_addr, pci_size);
1597 switch(pci_size) {
1598 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1599 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1600 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1601 }
1602 spin_unlock_irqrestore(&pdc_lock, flags);
1603
1604 return retval;
1605}
1606
1607/**
1608 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1609 * @pci_addr: PCI configuration space address for which the write request is being made.
1610 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1611 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1612 * written to PCI Config space.
1613 *
1614 */
1615int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1616{
1617 int retval;
1618 unsigned long flags;
1619
1620 spin_lock_irqsave(&pdc_lock, flags);
1621 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1622 pci_addr, pci_size, val);
1623 spin_unlock_irqrestore(&pdc_lock, flags);
1624
1625 return retval;
1626}
1627
1628/**
1629 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1630 * @rinfo: memory pdt information
1631 *
1632 */
1633int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1634{
1635 int retval;
1636 unsigned long flags;
1637
1638 spin_lock_irqsave(&pdc_lock, flags);
1639 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1640 __pa(&pdc_result));
1641 if (retval == PDC_OK)
1642 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1643 spin_unlock_irqrestore(&pdc_lock, flags);
1644
1645 return retval;
1646}
1647
1648/**
1649 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1650 * table of a cell
1651 * @rinfo: memory pdt information
1652 * @cell: cell number
1653 *
1654 */
1655int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1656 unsigned long cell)
1657{
1658 int retval;
1659 unsigned long flags;
1660
1661 spin_lock_irqsave(&pdc_lock, flags);
1662 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1663 __pa(&pdc_result), cell);
1664 if (retval == PDC_OK)
1665 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1666 spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668 return retval;
1669}
1670
1671/**
1672 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1673 * @pret: array of PDT entries
1674 * @pdt_entries_ptr: ptr to hold number of PDT entries
1675 * @max_entries: maximum number of entries to be read
1676 *
1677 */
1678int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1679 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1680{
1681 int retval;
1682 unsigned long flags, entries;
1683
1684 spin_lock_irqsave(&pdc_lock, flags);
1685 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1686 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1687 __pa(&pdc_result), parisc_cell_num,
1688 __pa(pdt_entries_ptr));
1689
1690 if (retval == PDC_OK) {
1691 /* build up return value as for PDC_PAT_MEM_PD_READ */
1692 entries = min(pdc_result[0], max_entries);
1693 pret->pdt_entries = entries;
1694 pret->actual_count_bytes = entries * sizeof(unsigned long);
1695 }
1696
1697 spin_unlock_irqrestore(&pdc_lock, flags);
1698 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1699
1700 return retval;
1701}
1702/**
1703 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1704 * @pret: array of PDT entries
1705 * @pdt_entries_ptr: ptr to hold number of PDT entries
1706 * @count: number of bytes to read
1707 * @offset: offset to start (in bytes)
1708 *
1709 */
1710int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1711 unsigned long *pdt_entries_ptr, unsigned long count,
1712 unsigned long offset)
1713{
1714 int retval;
1715 unsigned long flags, entries;
1716
1717 spin_lock_irqsave(&pdc_lock, flags);
1718 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1719 __pa(&pdc_result), __pa(pdt_entries_ptr),
1720 count, offset);
1721
1722 if (retval == PDC_OK) {
1723 entries = min(pdc_result[0], count);
1724 pret->actual_count_bytes = entries;
1725 pret->pdt_entries = entries / sizeof(unsigned long);
1726 }
1727
1728 spin_unlock_irqrestore(&pdc_lock, flags);
1729
1730 return retval;
1731}
1732
1733/**
1734 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1735 * @pret: ptr to hold returned information
1736 * @phys_addr: physical address to examine
1737 *
1738 */
1739int pdc_pat_mem_get_dimm_phys_location(
1740 struct pdc_pat_mem_phys_mem_location *pret,
1741 unsigned long phys_addr)
1742{
1743 int retval;
1744 unsigned long flags;
1745
1746 spin_lock_irqsave(&pdc_lock, flags);
1747 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1748 __pa(&pdc_result), phys_addr);
1749
1750 if (retval == PDC_OK)
1751 memcpy(pret, &pdc_result, sizeof(*pret));
1752
1753 spin_unlock_irqrestore(&pdc_lock, flags);
1754
1755 return retval;
1756}
1757#endif /* CONFIG_64BIT */
1758#endif /* defined(BOOTLOADER) */
1759
1760
1761/***************** 32-bit real-mode calls ***********/
1762/* The struct below is used
1763 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1764 * real32_call_asm() then uses this stack in narrow real mode
1765 */
1766
1767struct narrow_stack {
1768 /* use int, not long which is 64 bits */
1769 unsigned int arg13;
1770 unsigned int arg12;
1771 unsigned int arg11;
1772 unsigned int arg10;
1773 unsigned int arg9;
1774 unsigned int arg8;
1775 unsigned int arg7;
1776 unsigned int arg6;
1777 unsigned int arg5;
1778 unsigned int arg4;
1779 unsigned int arg3;
1780 unsigned int arg2;
1781 unsigned int arg1;
1782 unsigned int arg0;
1783 unsigned int frame_marker[8];
1784 unsigned int sp;
1785 /* in reality, there's nearly 8k of stack after this */
1786};
1787
1788long real32_call(unsigned long fn, ...)
1789{
1790 va_list args;
1791 extern struct narrow_stack real_stack;
1792 extern unsigned long real32_call_asm(unsigned int *,
1793 unsigned int *,
1794 unsigned int);
1795
1796 va_start(args, fn);
1797 real_stack.arg0 = va_arg(args, unsigned int);
1798 real_stack.arg1 = va_arg(args, unsigned int);
1799 real_stack.arg2 = va_arg(args, unsigned int);
1800 real_stack.arg3 = va_arg(args, unsigned int);
1801 real_stack.arg4 = va_arg(args, unsigned int);
1802 real_stack.arg5 = va_arg(args, unsigned int);
1803 real_stack.arg6 = va_arg(args, unsigned int);
1804 real_stack.arg7 = va_arg(args, unsigned int);
1805 real_stack.arg8 = va_arg(args, unsigned int);
1806 real_stack.arg9 = va_arg(args, unsigned int);
1807 real_stack.arg10 = va_arg(args, unsigned int);
1808 real_stack.arg11 = va_arg(args, unsigned int);
1809 real_stack.arg12 = va_arg(args, unsigned int);
1810 real_stack.arg13 = va_arg(args, unsigned int);
1811 va_end(args);
1812
1813 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1814}
1815
1816#ifdef CONFIG_64BIT
1817/***************** 64-bit real-mode calls ***********/
1818
1819struct wide_stack {
1820 unsigned long arg0;
1821 unsigned long arg1;
1822 unsigned long arg2;
1823 unsigned long arg3;
1824 unsigned long arg4;
1825 unsigned long arg5;
1826 unsigned long arg6;
1827 unsigned long arg7;
1828 unsigned long arg8;
1829 unsigned long arg9;
1830 unsigned long arg10;
1831 unsigned long arg11;
1832 unsigned long arg12;
1833 unsigned long arg13;
1834 unsigned long frame_marker[2]; /* rp, previous sp */
1835 unsigned long sp;
1836 /* in reality, there's nearly 8k of stack after this */
1837};
1838
1839long real64_call(unsigned long fn, ...)
1840{
1841 va_list args;
1842 extern struct wide_stack real64_stack;
1843 extern unsigned long real64_call_asm(unsigned long *,
1844 unsigned long *,
1845 unsigned long);
1846
1847 va_start(args, fn);
1848 real64_stack.arg0 = va_arg(args, unsigned long);
1849 real64_stack.arg1 = va_arg(args, unsigned long);
1850 real64_stack.arg2 = va_arg(args, unsigned long);
1851 real64_stack.arg3 = va_arg(args, unsigned long);
1852 real64_stack.arg4 = va_arg(args, unsigned long);
1853 real64_stack.arg5 = va_arg(args, unsigned long);
1854 real64_stack.arg6 = va_arg(args, unsigned long);
1855 real64_stack.arg7 = va_arg(args, unsigned long);
1856 real64_stack.arg8 = va_arg(args, unsigned long);
1857 real64_stack.arg9 = va_arg(args, unsigned long);
1858 real64_stack.arg10 = va_arg(args, unsigned long);
1859 real64_stack.arg11 = va_arg(args, unsigned long);
1860 real64_stack.arg12 = va_arg(args, unsigned long);
1861 real64_stack.arg13 = va_arg(args, unsigned long);
1862 va_end(args);
1863
1864 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1865}
1866
1867#endif /* CONFIG_64BIT */