Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
 
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
 
 
 
 
 
 
  72static DEFINE_SPINLOCK(pdc_lock);
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
 
 
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120	if(unlikely(parisc_narrow_firmware)) {
 121		if((address & 0xff000000) == 0xf0000000)
 122			return 0xf0f0f0f000000000UL | (u32)address;
 123
 124		if((address & 0xf0000000) == 0xf0000000)
 125			return 0xffffffff00000000UL | (u32)address;
 126	}
 127#endif
 128	return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142	int i;
 143	unsigned int *p = (unsigned int *)addr;
 144
 145	if(unlikely(parisc_narrow_firmware)) {
 146		for(i = 31; i >= 0; --i)
 147			addr[i] = p[i];
 148	}
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void set_firmware_width_unlocked(void)
 154{
 155	int ret;
 156
 157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158		__pa(pdc_result), 0);
 159	convert_to_wide(pdc_result);
 160	if (pdc_result[0] != NARROW_FIRMWARE)
 161		parisc_narrow_firmware = 0;
 162}
 163	
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void set_firmware_width(void)
 171{
 172	unsigned long flags;
 
 
 
 
 
 173	spin_lock_irqsave(&pdc_lock, flags);
 174	set_firmware_width_unlocked();
 175	spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void set_firmware_width_unlocked(void)
 179{
 180	return;
 181}
 182
 183void set_firmware_width(void)
 184{
 185	return;
 186}
 187#endif /*CONFIG_64BIT*/
 188
 
 
 189/**
 190 * pdc_emergency_unlock - Unlock the linux pdc lock
 191 *
 192 * This call unlocks the linux pdc lock in case we need some PDC functions
 193 * (like pdc_add_valid) during kernel stack dump.
 194 */
 195void pdc_emergency_unlock(void)
 196{
 197 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 198        if (spin_is_locked(&pdc_lock))
 199		spin_unlock(&pdc_lock);
 200}
 201
 202
 203/**
 204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 205 * @address: Address to be verified.
 206 *
 207 * This PDC call attempts to read from the specified address and verifies
 208 * if the address is valid.
 209 * 
 210 * The return value is PDC_OK (0) in case accessing this address is valid.
 211 */
 212int pdc_add_valid(unsigned long address)
 213{
 214        int retval;
 215	unsigned long flags;
 216
 217        spin_lock_irqsave(&pdc_lock, flags);
 218        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 219        spin_unlock_irqrestore(&pdc_lock, flags);
 220
 221        return retval;
 222}
 223EXPORT_SYMBOL(pdc_add_valid);
 224
 225/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226 * pdc_chassis_info - Return chassis information.
 227 * @result: The return buffer.
 228 * @chassis_info: The memory buffer address.
 229 * @len: The size of the memory buffer address.
 230 *
 231 * An HVERSION dependent call for returning the chassis information.
 232 */
 233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 234{
 235        int retval;
 236	unsigned long flags;
 237
 238        spin_lock_irqsave(&pdc_lock, flags);
 239        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 240        memcpy(&pdc_result2, led_info, len);
 241        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 242                              __pa(pdc_result), __pa(pdc_result2), len);
 243        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 244        memcpy(led_info, pdc_result2, len);
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 252 * @retval: -1 on error, 0 on success. Other value are PDC errors
 253 * 
 254 * Must be correctly formatted or expect system crash
 255 */
 256#ifdef CONFIG_64BIT
 257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 258{
 259	int retval = 0;
 260	unsigned long flags;
 261        
 262	if (!is_pdc_pat())
 263		return -1;
 264
 265	spin_lock_irqsave(&pdc_lock, flags);
 266	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 267	spin_unlock_irqrestore(&pdc_lock, flags);
 268
 269	return retval;
 270}
 271#endif
 272
 273/**
 274 * pdc_chassis_disp - Updates chassis code
 275 * @retval: -1 on error, 0 on success
 276 */
 277int pdc_chassis_disp(unsigned long disp)
 278{
 279	int retval = 0;
 280	unsigned long flags;
 281
 282	spin_lock_irqsave(&pdc_lock, flags);
 283	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 284	spin_unlock_irqrestore(&pdc_lock, flags);
 285
 286	return retval;
 287}
 288
 289/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290 * pdc_chassis_warn - Fetches chassis warnings
 291 * @retval: -1 on error, 0 on success
 292 */
 293int pdc_chassis_warn(unsigned long *warn)
 294{
 295	int retval = 0;
 296	unsigned long flags;
 297
 298	spin_lock_irqsave(&pdc_lock, flags);
 299	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 300	*warn = pdc_result[0];
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305
 306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 307{
 308	int ret;
 309
 310	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 311	convert_to_wide(pdc_result);
 312	pdc_coproc_info->ccr_functional = pdc_result[0];
 313	pdc_coproc_info->ccr_present = pdc_result[1];
 314	pdc_coproc_info->revision = pdc_result[17];
 315	pdc_coproc_info->model = pdc_result[18];
 316
 317	return ret;
 318}
 319
 320/**
 321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 322 * @pdc_coproc_info: Return buffer address.
 323 *
 324 * This PDC call returns the presence and status of all the coprocessors
 325 * attached to the processor.
 326 */
 327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 328{
 329	int ret;
 330	unsigned long flags;
 331
 332	spin_lock_irqsave(&pdc_lock, flags);
 333	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 334	spin_unlock_irqrestore(&pdc_lock, flags);
 335
 336	return ret;
 337}
 338
 339/**
 340 * pdc_iodc_read - Read data from the modules IODC.
 341 * @actcnt: The actual number of bytes.
 342 * @hpa: The HPA of the module for the iodc read.
 343 * @index: The iodc entry point.
 344 * @iodc_data: A buffer memory for the iodc options.
 345 * @iodc_data_size: Size of the memory buffer.
 346 *
 347 * This PDC call reads from the IODC of the module specified by the hpa
 348 * argument.
 349 */
 350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 351		  void *iodc_data, unsigned int iodc_data_size)
 352{
 353	int retval;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&pdc_lock, flags);
 357	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 358			      index, __pa(pdc_result2), iodc_data_size);
 359	convert_to_wide(pdc_result);
 360	*actcnt = pdc_result[0];
 361	memcpy(iodc_data, pdc_result2, iodc_data_size);
 362	spin_unlock_irqrestore(&pdc_lock, flags);
 363
 364	return retval;
 365}
 366EXPORT_SYMBOL(pdc_iodc_read);
 367
 368/**
 369 * pdc_system_map_find_mods - Locate unarchitected modules.
 370 * @pdc_mod_info: Return buffer address.
 371 * @mod_path: pointer to dev path structure.
 372 * @mod_index: fixed address module index.
 373 *
 374 * To locate and identify modules which reside at fixed I/O addresses, which
 375 * do not self-identify via architected bus walks.
 376 */
 377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 378			     struct pdc_module_path *mod_path, long mod_index)
 379{
 380	int retval;
 381	unsigned long flags;
 382
 383	spin_lock_irqsave(&pdc_lock, flags);
 384	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 385			      __pa(pdc_result2), mod_index);
 386	convert_to_wide(pdc_result);
 387	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 388	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 389	spin_unlock_irqrestore(&pdc_lock, flags);
 390
 391	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 392	return retval;
 393}
 394
 395/**
 396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 397 * @pdc_addr_info: Return buffer address.
 398 * @mod_index: Fixed address module index.
 399 * @addr_index: Address range index.
 400 * 
 401 * Retrieve additional information about subsequent address ranges for modules
 402 * with multiple address ranges.  
 403 */
 404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 405			      long mod_index, long addr_index)
 406{
 407	int retval;
 408	unsigned long flags;
 409
 410	spin_lock_irqsave(&pdc_lock, flags);
 411	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 412			      mod_index, addr_index);
 413	convert_to_wide(pdc_result);
 414	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 415	spin_unlock_irqrestore(&pdc_lock, flags);
 416
 417	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 418	return retval;
 419}
 420
 421/**
 422 * pdc_model_info - Return model information about the processor.
 423 * @model: The return buffer.
 424 *
 425 * Returns the version numbers, identifiers, and capabilities from the processor module.
 426 */
 427int pdc_model_info(struct pdc_model *model) 
 428{
 429	int retval;
 430	unsigned long flags;
 431
 432	spin_lock_irqsave(&pdc_lock, flags);
 433	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 434	convert_to_wide(pdc_result);
 435	memcpy(model, pdc_result, sizeof(*model));
 436	spin_unlock_irqrestore(&pdc_lock, flags);
 437
 438	return retval;
 439}
 440
 441/**
 442 * pdc_model_sysmodel - Get the system model name.
 443 * @name: A char array of at least 81 characters.
 444 *
 445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 447 * on HP/UX.
 448 */
 449int pdc_model_sysmodel(char *name)
 450{
 451        int retval;
 452	unsigned long flags;
 453
 454        spin_lock_irqsave(&pdc_lock, flags);
 455        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 456                              OS_ID_HPUX, __pa(name));
 457        convert_to_wide(pdc_result);
 458
 459        if (retval == PDC_OK) {
 460                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 461        } else {
 462                name[0] = 0;
 463        }
 464        spin_unlock_irqrestore(&pdc_lock, flags);
 465
 466        return retval;
 467}
 468
 469/**
 470 * pdc_model_versions - Identify the version number of each processor.
 471 * @cpu_id: The return buffer.
 472 * @id: The id of the processor to check.
 473 *
 474 * Returns the version number for each processor component.
 475 *
 476 * This comment was here before, but I do not know what it means :( -RB
 477 * id: 0 = cpu revision, 1 = boot-rom-version
 478 */
 479int pdc_model_versions(unsigned long *versions, int id)
 480{
 481        int retval;
 482	unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 486        convert_to_wide(pdc_result);
 487        *versions = pdc_result[0];
 488        spin_unlock_irqrestore(&pdc_lock, flags);
 489
 490        return retval;
 491}
 492
 493/**
 494 * pdc_model_cpuid - Returns the CPU_ID.
 495 * @cpu_id: The return buffer.
 496 *
 497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 498 * the processor module.
 499 */
 500int pdc_model_cpuid(unsigned long *cpu_id)
 501{
 502        int retval;
 503	unsigned long flags;
 504
 505        spin_lock_irqsave(&pdc_lock, flags);
 506        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 507        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 508        convert_to_wide(pdc_result);
 509        *cpu_id = pdc_result[0];
 510        spin_unlock_irqrestore(&pdc_lock, flags);
 511
 512        return retval;
 513}
 514
 515/**
 516 * pdc_model_capabilities - Returns the platform capabilities.
 517 * @capabilities: The return buffer.
 518 *
 519 * Returns information about platform support for 32- and/or 64-bit
 520 * OSes, IO-PDIR coherency, and virtual aliasing.
 521 */
 522int pdc_model_capabilities(unsigned long *capabilities)
 523{
 524        int retval;
 525	unsigned long flags;
 526
 527        spin_lock_irqsave(&pdc_lock, flags);
 528        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 529        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 530        convert_to_wide(pdc_result);
 531        if (retval == PDC_OK) {
 532                *capabilities = pdc_result[0];
 533        } else {
 534                *capabilities = PDC_MODEL_OS32;
 535        }
 536        spin_unlock_irqrestore(&pdc_lock, flags);
 537
 538        return retval;
 539}
 540
 541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542 * pdc_cache_info - Return cache and TLB information.
 543 * @cache_info: The return buffer.
 544 *
 545 * Returns information about the processor's cache and TLB.
 546 */
 547int pdc_cache_info(struct pdc_cache_info *cache_info)
 548{
 549        int retval;
 550	unsigned long flags;
 551
 552        spin_lock_irqsave(&pdc_lock, flags);
 553        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 554        convert_to_wide(pdc_result);
 555        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 556        spin_unlock_irqrestore(&pdc_lock, flags);
 557
 558        return retval;
 559}
 560
 561/**
 562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 563 * @space_bits: Should be 0, if not, bad mojo!
 564 *
 565 * Returns information about Space ID hashing.
 566 */
 567int pdc_spaceid_bits(unsigned long *space_bits)
 568{
 569	int retval;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&pdc_lock, flags);
 573	pdc_result[0] = 0;
 574	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 575	convert_to_wide(pdc_result);
 576	*space_bits = pdc_result[0];
 577	spin_unlock_irqrestore(&pdc_lock, flags);
 578
 579	return retval;
 580}
 581
 582#ifndef CONFIG_PA20
 583/**
 584 * pdc_btlb_info - Return block TLB information.
 585 * @btlb: The return buffer.
 586 *
 587 * Returns information about the hardware Block TLB.
 588 */
 589int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 590{
 591        int retval;
 592	unsigned long flags;
 593
 594        spin_lock_irqsave(&pdc_lock, flags);
 595        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 596        memcpy(btlb, pdc_result, sizeof(*btlb));
 597        spin_unlock_irqrestore(&pdc_lock, flags);
 598
 599        if(retval < 0) {
 600                btlb->max_size = 0;
 601        }
 602        return retval;
 603}
 604
 605/**
 606 * pdc_mem_map_hpa - Find fixed module information.  
 607 * @address: The return buffer
 608 * @mod_path: pointer to dev path structure.
 609 *
 610 * This call was developed for S700 workstations to allow the kernel to find
 611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 613 * call.
 614 *
 615 * This call is supported by all existing S700 workstations (up to  Gecko).
 616 */
 617int pdc_mem_map_hpa(struct pdc_memory_map *address,
 618		struct pdc_module_path *mod_path)
 619{
 620        int retval;
 621	unsigned long flags;
 622
 623        spin_lock_irqsave(&pdc_lock, flags);
 624        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 625        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 626				__pa(pdc_result2));
 627        memcpy(address, pdc_result, sizeof(*address));
 628        spin_unlock_irqrestore(&pdc_lock, flags);
 629
 630        return retval;
 631}
 632#endif	/* !CONFIG_PA20 */
 633
 634/**
 635 * pdc_lan_station_id - Get the LAN address.
 636 * @lan_addr: The return buffer.
 637 * @hpa: The network device HPA.
 638 *
 639 * Get the LAN station address when it is not directly available from the LAN hardware.
 640 */
 641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 642{
 643	int retval;
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&pdc_lock, flags);
 647	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 648			__pa(pdc_result), hpa);
 649	if (retval < 0) {
 650		/* FIXME: else read MAC from NVRAM */
 651		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 652	} else {
 653		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 654	}
 655	spin_unlock_irqrestore(&pdc_lock, flags);
 656
 657	return retval;
 658}
 659EXPORT_SYMBOL(pdc_lan_station_id);
 660
 661/**
 662 * pdc_stable_read - Read data from Stable Storage.
 663 * @staddr: Stable Storage address to access.
 664 * @memaddr: The memory address where Stable Storage data shall be copied.
 665 * @count: number of bytes to transfer. count is multiple of 4.
 666 *
 667 * This PDC call reads from the Stable Storage address supplied in staddr
 668 * and copies count bytes to the memory address memaddr.
 669 * The call will fail if staddr+count > PDC_STABLE size.
 670 */
 671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 672{
 673       int retval;
 674	unsigned long flags;
 675
 676       spin_lock_irqsave(&pdc_lock, flags);
 677       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 678               __pa(pdc_result), count);
 679       convert_to_wide(pdc_result);
 680       memcpy(memaddr, pdc_result, count);
 681       spin_unlock_irqrestore(&pdc_lock, flags);
 682
 683       return retval;
 684}
 685EXPORT_SYMBOL(pdc_stable_read);
 686
 687/**
 688 * pdc_stable_write - Write data to Stable Storage.
 689 * @staddr: Stable Storage address to access.
 690 * @memaddr: The memory address where Stable Storage data shall be read from.
 691 * @count: number of bytes to transfer. count is multiple of 4.
 692 *
 693 * This PDC call reads count bytes from the supplied memaddr address,
 694 * and copies count bytes to the Stable Storage address staddr.
 695 * The call will fail if staddr+count > PDC_STABLE size.
 696 */
 697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 698{
 699       int retval;
 700	unsigned long flags;
 701
 702       spin_lock_irqsave(&pdc_lock, flags);
 703       memcpy(pdc_result, memaddr, count);
 704       convert_to_wide(pdc_result);
 705       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 706               __pa(pdc_result), count);
 707       spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709       return retval;
 710}
 711EXPORT_SYMBOL(pdc_stable_write);
 712
 713/**
 714 * pdc_stable_get_size - Get Stable Storage size in bytes.
 715 * @size: pointer where the size will be stored.
 716 *
 717 * This PDC call returns the number of bytes in the processor's Stable
 718 * Storage, which is the number of contiguous bytes implemented in Stable
 719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 720 * which is a multiple of four.
 721 */
 722int pdc_stable_get_size(unsigned long *size)
 723{
 724       int retval;
 725	unsigned long flags;
 726
 727       spin_lock_irqsave(&pdc_lock, flags);
 728       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 729       *size = pdc_result[0];
 730       spin_unlock_irqrestore(&pdc_lock, flags);
 731
 732       return retval;
 733}
 734EXPORT_SYMBOL(pdc_stable_get_size);
 735
 736/**
 737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 738 *
 739 * This PDC call is meant to be used to check the integrity of the current
 740 * contents of Stable Storage.
 741 */
 742int pdc_stable_verify_contents(void)
 743{
 744       int retval;
 745	unsigned long flags;
 746
 747       spin_lock_irqsave(&pdc_lock, flags);
 748       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 749       spin_unlock_irqrestore(&pdc_lock, flags);
 750
 751       return retval;
 752}
 753EXPORT_SYMBOL(pdc_stable_verify_contents);
 754
 755/**
 756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 757 * the validity indicator.
 758 *
 759 * This PDC call will erase all contents of Stable Storage. Use with care!
 760 */
 761int pdc_stable_initialize(void)
 762{
 763       int retval;
 764	unsigned long flags;
 765
 766       spin_lock_irqsave(&pdc_lock, flags);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 768       spin_unlock_irqrestore(&pdc_lock, flags);
 769
 770       return retval;
 771}
 772EXPORT_SYMBOL(pdc_stable_initialize);
 773
 774/**
 775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 776 * @hwpath: fully bc.mod style path to the device.
 777 * @initiator: the array to return the result into
 778 *
 779 * Get the SCSI operational parameters from PDC.
 780 * Needed since HPUX never used BIOS or symbios card NVRAM.
 781 * Most ncr/sym cards won't have an entry and just use whatever
 782 * capabilities of the card are (eg Ultra, LVD). But there are
 783 * several cases where it's useful:
 784 *    o set SCSI id for Multi-initiator clusters,
 785 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 786 *    o bus width exported is less than what the interface chip supports.
 787 */
 788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 789{
 790	int retval;
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&pdc_lock, flags);
 794
 795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 797	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 798
 799	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 800			      __pa(pdc_result), __pa(hwpath));
 801	if (retval < PDC_OK)
 802		goto out;
 803
 804	if (pdc_result[0] < 16) {
 805		initiator->host_id = pdc_result[0];
 806	} else {
 807		initiator->host_id = -1;
 808	}
 809
 810	/*
 811	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 812	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 813	 */
 814	switch (pdc_result[1]) {
 815		case  1: initiator->factor = 50; break;
 816		case  2: initiator->factor = 25; break;
 817		case  5: initiator->factor = 12; break;
 818		case 25: initiator->factor = 10; break;
 819		case 20: initiator->factor = 12; break;
 820		case 40: initiator->factor = 10; break;
 821		default: initiator->factor = -1; break;
 822	}
 823
 824	if (IS_SPROCKETS()) {
 825		initiator->width = pdc_result[4];
 826		initiator->mode = pdc_result[5];
 827	} else {
 828		initiator->width = -1;
 829		initiator->mode = -1;
 830	}
 831
 832 out:
 833	spin_unlock_irqrestore(&pdc_lock, flags);
 834
 835	return (retval >= PDC_OK);
 836}
 837EXPORT_SYMBOL(pdc_get_initiator);
 838
 839
 840/**
 841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 842 * @num_entries: The return value.
 843 * @hpa: The HPA for the device.
 844 *
 845 * This PDC function returns the number of entries in the specified cell's
 846 * interrupt table.
 847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 848 */ 
 849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 850{
 851	int retval;
 852	unsigned long flags;
 853
 854	spin_lock_irqsave(&pdc_lock, flags);
 855	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 856			      __pa(pdc_result), hpa);
 857	convert_to_wide(pdc_result);
 858	*num_entries = pdc_result[0];
 859	spin_unlock_irqrestore(&pdc_lock, flags);
 860
 861	return retval;
 862}
 863
 864/** 
 865 * pdc_pci_irt - Get the PCI interrupt routing table.
 866 * @num_entries: The number of entries in the table.
 867 * @hpa: The Hard Physical Address of the device.
 868 * @tbl: 
 869 *
 870 * Get the PCI interrupt routing table for the device at the given HPA.
 871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 872 */
 873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 874{
 875	int retval;
 876	unsigned long flags;
 877
 878	BUG_ON((unsigned long)tbl & 0x7);
 879
 880	spin_lock_irqsave(&pdc_lock, flags);
 881	pdc_result[0] = num_entries;
 882	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 883			      __pa(pdc_result), hpa, __pa(tbl));
 884	spin_unlock_irqrestore(&pdc_lock, flags);
 885
 886	return retval;
 887}
 888
 889
 890#if 0	/* UNTEST CODE - left here in case someone needs it */
 891
 892/** 
 893 * pdc_pci_config_read - read PCI config space.
 894 * @hpa		token from PDC to indicate which PCI device
 895 * @pci_addr	configuration space address to read from
 896 *
 897 * Read PCI Configuration space *before* linux PCI subsystem is running.
 898 */
 899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 900{
 901	int retval;
 902	unsigned long flags;
 903
 904	spin_lock_irqsave(&pdc_lock, flags);
 905	pdc_result[0] = 0;
 906	pdc_result[1] = 0;
 907	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 908			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 909	spin_unlock_irqrestore(&pdc_lock, flags);
 910
 911	return retval ? ~0 : (unsigned int) pdc_result[0];
 912}
 913
 914
 915/** 
 916 * pdc_pci_config_write - read PCI config space.
 917 * @hpa		token from PDC to indicate which PCI device
 918 * @pci_addr	configuration space address to write
 919 * @val		value we want in the 32-bit register
 920 *
 921 * Write PCI Configuration space *before* linux PCI subsystem is running.
 922 */
 923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 924{
 925	int retval;
 926	unsigned long flags;
 927
 928	spin_lock_irqsave(&pdc_lock, flags);
 929	pdc_result[0] = 0;
 930	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 931			      __pa(pdc_result), hpa,
 932			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 933	spin_unlock_irqrestore(&pdc_lock, flags);
 934
 935	return retval;
 936}
 937#endif /* UNTESTED CODE */
 938
 939/**
 940 * pdc_tod_read - Read the Time-Of-Day clock.
 941 * @tod: The return buffer:
 942 *
 943 * Read the Time-Of-Day clock
 944 */
 945int pdc_tod_read(struct pdc_tod *tod)
 946{
 947        int retval;
 948	unsigned long flags;
 949
 950        spin_lock_irqsave(&pdc_lock, flags);
 951        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 952        convert_to_wide(pdc_result);
 953        memcpy(tod, pdc_result, sizeof(*tod));
 954        spin_unlock_irqrestore(&pdc_lock, flags);
 955
 956        return retval;
 957}
 958EXPORT_SYMBOL(pdc_tod_read);
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960/**
 961 * pdc_tod_set - Set the Time-Of-Day clock.
 962 * @sec: The number of seconds since epoch.
 963 * @usec: The number of micro seconds.
 964 *
 965 * Set the Time-Of-Day clock.
 966 */ 
 967int pdc_tod_set(unsigned long sec, unsigned long usec)
 968{
 969        int retval;
 970	unsigned long flags;
 971
 972        spin_lock_irqsave(&pdc_lock, flags);
 973        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 974        spin_unlock_irqrestore(&pdc_lock, flags);
 975
 976        return retval;
 977}
 978EXPORT_SYMBOL(pdc_tod_set);
 979
 980#ifdef CONFIG_64BIT
 981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 982		struct pdc_memory_table *tbl, unsigned long entries)
 983{
 984	int retval;
 985	unsigned long flags;
 986
 987	spin_lock_irqsave(&pdc_lock, flags);
 988	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 989	convert_to_wide(pdc_result);
 990	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 991	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 992	spin_unlock_irqrestore(&pdc_lock, flags);
 993
 994	return retval;
 995}
 996#endif /* CONFIG_64BIT */
 997
 998/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 999 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004        int retval;
1005	unsigned long flags;
1006
1007        spin_lock_irqsave(&pdc_lock, flags);
1008        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010        spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012        return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022        int retval;
1023	unsigned long flags;
1024
1025        spin_lock_irqsave(&pdc_lock, flags);
1026        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027        spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029        return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040	int retval;
1041	unsigned long flags;
1042
1043	*power_reg = (unsigned long) (-1);
1044	
1045	spin_lock_irqsave(&pdc_lock, flags);
1046	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047	if (retval == PDC_OK) {
1048                convert_to_wide(pdc_result);
1049                *power_reg = f_extend(pdc_result[0]);
1050	}
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control 
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut 
1064 * down the system. Under hardware control pressing the power button 
1065 * powers off the system immediately.
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069	int retval;
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&pdc_lock, flags);
1073	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074	spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076	return retval;
1077}
1078
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086	unsigned long flags;
1087
1088	spin_lock_irqsave(&pdc_lock, flags);
1089	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090	spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu 
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104	unsigned long flags;
1105
1106	spin_lock_irqsave(&pdc_lock, flags);
1107	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108	spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
 
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127	unsigned int i;
1128	unsigned long flags;
1129
 
 
 
1130	for (i = 0; i < count;) {
1131		switch(str[i]) {
1132		case '\n':
1133			iodc_dbuf[i+0] = '\r';
1134			iodc_dbuf[i+1] = '\n';
1135			i += 2;
 
1136			goto print;
1137		default:
1138			iodc_dbuf[i] = str[i];
1139			i++;
1140			break;
1141		}
1142	}
1143
1144print:
1145        spin_lock_irqsave(&pdc_lock, flags);
1146        real32_call(PAGE0->mem_cons.iodc_io,
1147                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150        spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152	return i;
1153}
1154
 
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163	int ch;
1164	int status;
1165	unsigned long flags;
1166
1167	/* Bail if no console input device. */
1168	if (!PAGE0->mem_kbd.iodc_io)
1169		return 0;
1170	
1171	/* wait for a keyboard (rs232)-input */
1172	spin_lock_irqsave(&pdc_lock, flags);
1173	real32_call(PAGE0->mem_kbd.iodc_io,
1174		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1176		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178	ch = *iodc_dbuf;
1179	status = *iodc_retbuf;
 
1180	spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182	if (status == 0)
1183	    return -1;
1184	
1185	return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189                 unsigned long inptr, unsigned long outputr,
1190                 unsigned long glob_cfg)
1191{
1192        int retval;
1193	unsigned long irqflags;
1194
1195        spin_lock_irqsave(&pdc_lock, irqflags);  
1196        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197        spin_unlock_irqrestore(&pdc_lock, irqflags);
1198
1199        return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213	int retval;
1214	unsigned long flags;
1215
1216	spin_lock_irqsave(&pdc_lock, flags);
1217	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219	spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221	return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236			unsigned long view_type, void *mem_addr)
1237{
1238	int retval;
1239	unsigned long flags;
1240	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242	spin_lock_irqsave(&pdc_lock, flags);
1243	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1244			      ploc, mod, view_type, __pa(&result));
1245	if(!retval) {
1246		*actcnt = pdc_result[0];
1247		memcpy(mem_addr, &result, *actcnt);
1248	}
1249	spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251	return retval;
1252}
1253
1254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263	int retval;
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&pdc_lock, flags);
1267	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268			      __pa(&pdc_result), hpa);
1269	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270	spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272	return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285	int retval;
1286	unsigned long flags;
1287
1288	spin_lock_irqsave(&pdc_lock, flags);
1289	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290			      __pa(pdc_result), cell_num);
1291	*num_entries = pdc_result[0];
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306	int retval;
1307	unsigned long flags;
1308
1309	spin_lock_irqsave(&pdc_lock, flags);
1310	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311			      __pa(r_addr), cell_num);
1312	spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314	return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1326			    unsigned long count, unsigned long offset)
1327{
1328	int retval;
1329	unsigned long flags;
1330
1331	spin_lock_irqsave(&pdc_lock, flags);
1332	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1333			      __pa(pdc_result2), count, offset);
1334	*actual_len = pdc_result[0];
1335	memcpy(mem_addr, pdc_result2, *actual_len);
1336	spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338	return retval;
1339}
1340
1341/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350	int retval;
1351	unsigned long flags;
1352
1353	spin_lock_irqsave(&pdc_lock, flags);
1354	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355					__pa(pdc_result), pci_addr, pci_size);
1356	switch(pci_size) {
1357		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1358		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1359		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1360	}
1361	spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363	return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write  request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1371 *         written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376	int retval;
1377	unsigned long flags;
1378
1379	spin_lock_irqsave(&pdc_lock, flags);
1380	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381				pci_addr, pci_size, val);
1382	spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384	return retval;
1385}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386#endif /* CONFIG_64BIT */
 
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396	/* use int, not long which is 64 bits */
1397	unsigned int arg13;
1398	unsigned int arg12;
1399	unsigned int arg11;
1400	unsigned int arg10;
1401	unsigned int arg9;
1402	unsigned int arg8;
1403	unsigned int arg7;
1404	unsigned int arg6;
1405	unsigned int arg5;
1406	unsigned int arg4;
1407	unsigned int arg3;
1408	unsigned int arg2;
1409	unsigned int arg1;
1410	unsigned int arg0;
1411	unsigned int frame_marker[8];
1412	unsigned int sp;
1413	/* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418	va_list args;
1419	extern struct narrow_stack real_stack;
1420	extern unsigned long real32_call_asm(unsigned int *,
1421					     unsigned int *, 
1422					     unsigned int);
1423	
1424	va_start(args, fn);
1425	real_stack.arg0 = va_arg(args, unsigned int);
1426	real_stack.arg1 = va_arg(args, unsigned int);
1427	real_stack.arg2 = va_arg(args, unsigned int);
1428	real_stack.arg3 = va_arg(args, unsigned int);
1429	real_stack.arg4 = va_arg(args, unsigned int);
1430	real_stack.arg5 = va_arg(args, unsigned int);
1431	real_stack.arg6 = va_arg(args, unsigned int);
1432	real_stack.arg7 = va_arg(args, unsigned int);
1433	real_stack.arg8 = va_arg(args, unsigned int);
1434	real_stack.arg9 = va_arg(args, unsigned int);
1435	real_stack.arg10 = va_arg(args, unsigned int);
1436	real_stack.arg11 = va_arg(args, unsigned int);
1437	real_stack.arg12 = va_arg(args, unsigned int);
1438	real_stack.arg13 = va_arg(args, unsigned int);
1439	va_end(args);
1440	
1441	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448	unsigned long arg0;
1449	unsigned long arg1;
1450	unsigned long arg2;
1451	unsigned long arg3;
1452	unsigned long arg4;
1453	unsigned long arg5;
1454	unsigned long arg6;
1455	unsigned long arg7;
1456	unsigned long arg8;
1457	unsigned long arg9;
1458	unsigned long arg10;
1459	unsigned long arg11;
1460	unsigned long arg12;
1461	unsigned long arg13;
1462	unsigned long frame_marker[2];	/* rp, previous sp */
1463	unsigned long sp;
1464	/* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469	va_list args;
1470	extern struct wide_stack real64_stack;
1471	extern unsigned long real64_call_asm(unsigned long *,
1472					     unsigned long *, 
1473					     unsigned long);
1474    
1475	va_start(args, fn);
1476	real64_stack.arg0 = va_arg(args, unsigned long);
1477	real64_stack.arg1 = va_arg(args, unsigned long);
1478	real64_stack.arg2 = va_arg(args, unsigned long);
1479	real64_stack.arg3 = va_arg(args, unsigned long);
1480	real64_stack.arg4 = va_arg(args, unsigned long);
1481	real64_stack.arg5 = va_arg(args, unsigned long);
1482	real64_stack.arg6 = va_arg(args, unsigned long);
1483	real64_stack.arg7 = va_arg(args, unsigned long);
1484	real64_stack.arg8 = va_arg(args, unsigned long);
1485	real64_stack.arg9 = va_arg(args, unsigned long);
1486	real64_stack.arg10 = va_arg(args, unsigned long);
1487	real64_stack.arg11 = va_arg(args, unsigned long);
1488	real64_stack.arg12 = va_arg(args, unsigned long);
1489	real64_stack.arg13 = va_arg(args, unsigned long);
1490	va_end(args);
1491	
1492	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See PDC documentation at
   8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
   9 * for documentation describing the entry points and calling
  10 * conventions defined below.
  11 *
  12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
 
 
 
 
 
 
  17 */
  18
  19/*	I think it would be in everyone's best interest to follow this
  20 *	guidelines when writing PDC wrappers:
  21 *
  22 *	 - the name of the pdc wrapper should match one of the macros
  23 *	   used for the first two arguments
  24 *	 - don't use caps for random parts of the name
  25 *	 - use the static PDC result buffers and "copyout" to structs
  26 *	   supplied by the caller to encapsulate alignment restrictions
  27 *	 - hold pdc_lock while in PDC or using static result buffers
  28 *	 - use __pa() to convert virtual (kernel) pointers to physical
  29 *	   ones.
  30 *	 - the name of the struct used for pdc return values should equal
  31 *	   one of the macros used for the first two arguments to the
  32 *	   corresponding PDC call
  33 *	 - keep the order of arguments
  34 *	 - don't be smart (setting trailing NUL bytes for strings, return
  35 *	   something useful even if the call failed) unless you are sure
  36 *	   it's not going to affect functionality or performance
  37 *
  38 *	Example:
  39 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  40 *	{
  41 *		int retval;
  42 *
  43 *		spin_lock_irq(&pdc_lock);
  44 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  45 *		convert_to_wide(pdc_result);
  46 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  47 *		spin_unlock_irq(&pdc_lock);
  48 *
  49 *		return retval;
  50 *	}
  51 *					prumpf	991016	
  52 */
  53
  54#include <linux/stdarg.h>
  55
  56#include <linux/delay.h>
  57#include <linux/init.h>
  58#include <linux/kernel.h>
  59#include <linux/module.h>
  60#include <linux/string.h>
  61#include <linux/spinlock.h>
  62
  63#include <asm/page.h>
  64#include <asm/pdc.h>
  65#include <asm/pdcpat.h>
  66#include <asm/processor.h>	/* for boot_cpu_data */
  67
  68#if defined(BOOTLOADER)
  69# undef  spin_lock_irqsave
  70# define spin_lock_irqsave(a, b) { b = 1; }
  71# undef  spin_unlock_irqrestore
  72# define spin_unlock_irqrestore(a, b)
  73#else
  74static DEFINE_SPINLOCK(pdc_lock);
  75#endif
  76
  77unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
  78unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
  79
  80#ifdef CONFIG_64BIT
  81#define WIDE_FIRMWARE 0x1
  82#define NARROW_FIRMWARE 0x2
  83
  84/* Firmware needs to be initially set to narrow to determine the 
  85 * actual firmware width. */
  86int parisc_narrow_firmware __ro_after_init = 2;
  87#endif
  88
  89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  90 * and MEM_PDC calls are always the same width as the OS.
  91 * Some PAT boxes may have 64-bit IODC I/O.
  92 *
  93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  95 * This allowed wide kernels to run on Cxxx boxes.
  96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  98 */
  99
 100#ifdef CONFIG_64BIT
 101long real64_call(unsigned long function, ...);
 102#endif
 103long real32_call(unsigned long function, ...);
 104
 105#ifdef CONFIG_64BIT
 106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 108#else
 109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 111#endif
 112
 113
 114/**
 115 * f_extend - Convert PDC addresses to kernel addresses.
 116 * @address: Address returned from PDC.
 117 *
 118 * This function is used to convert PDC addresses into kernel addresses
 119 * when the PDC address size and kernel address size are different.
 120 */
 121static unsigned long f_extend(unsigned long address)
 122{
 123#ifdef CONFIG_64BIT
 124	if(unlikely(parisc_narrow_firmware)) {
 125		if((address & 0xff000000) == 0xf0000000)
 126			return 0xf0f0f0f000000000UL | (u32)address;
 127
 128		if((address & 0xf0000000) == 0xf0000000)
 129			return 0xffffffff00000000UL | (u32)address;
 130	}
 131#endif
 132	return address;
 133}
 134
 135/**
 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 137 * @address: The return buffer from PDC.
 138 *
 139 * This function is used to convert the return buffer addresses retrieved from PDC
 140 * into kernel addresses when the PDC address size and kernel address size are
 141 * different.
 142 */
 143static void convert_to_wide(unsigned long *addr)
 144{
 145#ifdef CONFIG_64BIT
 146	int i;
 147	unsigned int *p = (unsigned int *)addr;
 148
 149	if (unlikely(parisc_narrow_firmware)) {
 150		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 151			addr[i] = p[i];
 152	}
 153#endif
 154}
 155
 156#ifdef CONFIG_64BIT
 157void set_firmware_width_unlocked(void)
 158{
 159	int ret;
 160
 161	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 162		__pa(pdc_result), 0);
 163	convert_to_wide(pdc_result);
 164	if (pdc_result[0] != NARROW_FIRMWARE)
 165		parisc_narrow_firmware = 0;
 166}
 167	
 168/**
 169 * set_firmware_width - Determine if the firmware is wide or narrow.
 170 * 
 171 * This function must be called before any pdc_* function that uses the
 172 * convert_to_wide function.
 173 */
 174void set_firmware_width(void)
 175{
 176	unsigned long flags;
 177
 178	/* already initialized? */
 179	if (parisc_narrow_firmware != 2)
 180		return;
 181
 182	spin_lock_irqsave(&pdc_lock, flags);
 183	set_firmware_width_unlocked();
 184	spin_unlock_irqrestore(&pdc_lock, flags);
 185}
 186#else
 187void set_firmware_width_unlocked(void)
 188{
 189	return;
 190}
 191
 192void set_firmware_width(void)
 193{
 194	return;
 195}
 196#endif /*CONFIG_64BIT*/
 197
 198
 199#if !defined(BOOTLOADER)
 200/**
 201 * pdc_emergency_unlock - Unlock the linux pdc lock
 202 *
 203 * This call unlocks the linux pdc lock in case we need some PDC functions
 204 * (like pdc_add_valid) during kernel stack dump.
 205 */
 206void pdc_emergency_unlock(void)
 207{
 208 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 209        if (spin_is_locked(&pdc_lock))
 210		spin_unlock(&pdc_lock);
 211}
 212
 213
 214/**
 215 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 216 * @address: Address to be verified.
 217 *
 218 * This PDC call attempts to read from the specified address and verifies
 219 * if the address is valid.
 220 * 
 221 * The return value is PDC_OK (0) in case accessing this address is valid.
 222 */
 223int pdc_add_valid(unsigned long address)
 224{
 225        int retval;
 226	unsigned long flags;
 227
 228        spin_lock_irqsave(&pdc_lock, flags);
 229        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 230        spin_unlock_irqrestore(&pdc_lock, flags);
 231
 232        return retval;
 233}
 234EXPORT_SYMBOL(pdc_add_valid);
 235
 236/**
 237 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 238 * @instr: Pointer to variable which will get instruction opcode.
 239 *
 240 * The return value is PDC_OK (0) in case call succeeded.
 241 */
 242int __init pdc_instr(unsigned int *instr)
 243{
 244	int retval;
 245	unsigned long flags;
 246
 247	spin_lock_irqsave(&pdc_lock, flags);
 248	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 249	convert_to_wide(pdc_result);
 250	*instr = pdc_result[0];
 251	spin_unlock_irqrestore(&pdc_lock, flags);
 252
 253	return retval;
 254}
 255
 256/**
 257 * pdc_chassis_info - Return chassis information.
 258 * @result: The return buffer.
 259 * @chassis_info: The memory buffer address.
 260 * @len: The size of the memory buffer address.
 261 *
 262 * An HVERSION dependent call for returning the chassis information.
 263 */
 264int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 265{
 266        int retval;
 267	unsigned long flags;
 268
 269        spin_lock_irqsave(&pdc_lock, flags);
 270        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 271        memcpy(&pdc_result2, led_info, len);
 272        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 273                              __pa(pdc_result), __pa(pdc_result2), len);
 274        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 275        memcpy(led_info, pdc_result2, len);
 276        spin_unlock_irqrestore(&pdc_lock, flags);
 277
 278        return retval;
 279}
 280
 281/**
 282 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 283 * @retval: -1 on error, 0 on success. Other value are PDC errors
 284 * 
 285 * Must be correctly formatted or expect system crash
 286 */
 287#ifdef CONFIG_64BIT
 288int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 289{
 290	int retval = 0;
 291	unsigned long flags;
 292        
 293	if (!is_pdc_pat())
 294		return -1;
 295
 296	spin_lock_irqsave(&pdc_lock, flags);
 297	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 298	spin_unlock_irqrestore(&pdc_lock, flags);
 299
 300	return retval;
 301}
 302#endif
 303
 304/**
 305 * pdc_chassis_disp - Updates chassis code
 306 * @retval: -1 on error, 0 on success
 307 */
 308int pdc_chassis_disp(unsigned long disp)
 309{
 310	int retval = 0;
 311	unsigned long flags;
 312
 313	spin_lock_irqsave(&pdc_lock, flags);
 314	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 315	spin_unlock_irqrestore(&pdc_lock, flags);
 316
 317	return retval;
 318}
 319
 320/**
 321 * pdc_cpu_rendenzvous - Stop currently executing CPU
 322 * @retval: -1 on error, 0 on success
 323 */
 324int __pdc_cpu_rendezvous(void)
 325{
 326	if (is_pdc_pat())
 327		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 328	else
 329		return mem_pdc_call(PDC_PROC, 1, 0);
 330}
 331
 332/**
 333 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
 334 */
 335void pdc_cpu_rendezvous_lock(void)
 336{
 337	spin_lock(&pdc_lock);
 338}
 339
 340/**
 341 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
 342 */
 343void pdc_cpu_rendezvous_unlock(void)
 344{
 345	spin_unlock(&pdc_lock);
 346}
 347
 348/**
 349 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
 350 * @retval: -1 on error, 0 on success
 351 */
 352int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
 353{
 354	int retval = 0;
 355	unsigned long flags;
 356
 357	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
 358		*pdc_entry = MEM_PDC;
 359		return 0;
 360	}
 361
 362	spin_lock_irqsave(&pdc_lock, flags);
 363	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
 364			__pa(pdc_result));
 365	*pdc_entry = pdc_result[0];
 366	spin_unlock_irqrestore(&pdc_lock, flags);
 367
 368	return retval;
 369}
 370/**
 371 * pdc_chassis_warn - Fetches chassis warnings
 372 * @retval: -1 on error, 0 on success
 373 */
 374int pdc_chassis_warn(unsigned long *warn)
 375{
 376	int retval = 0;
 377	unsigned long flags;
 378
 379	spin_lock_irqsave(&pdc_lock, flags);
 380	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 381	*warn = pdc_result[0];
 382	spin_unlock_irqrestore(&pdc_lock, flags);
 383
 384	return retval;
 385}
 386
 387int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 388{
 389	int ret;
 390
 391	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 392	convert_to_wide(pdc_result);
 393	pdc_coproc_info->ccr_functional = pdc_result[0];
 394	pdc_coproc_info->ccr_present = pdc_result[1];
 395	pdc_coproc_info->revision = pdc_result[17];
 396	pdc_coproc_info->model = pdc_result[18];
 397
 398	return ret;
 399}
 400
 401/**
 402 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 403 * @pdc_coproc_info: Return buffer address.
 404 *
 405 * This PDC call returns the presence and status of all the coprocessors
 406 * attached to the processor.
 407 */
 408int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 409{
 410	int ret;
 411	unsigned long flags;
 412
 413	spin_lock_irqsave(&pdc_lock, flags);
 414	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 415	spin_unlock_irqrestore(&pdc_lock, flags);
 416
 417	return ret;
 418}
 419
 420/**
 421 * pdc_iodc_read - Read data from the modules IODC.
 422 * @actcnt: The actual number of bytes.
 423 * @hpa: The HPA of the module for the iodc read.
 424 * @index: The iodc entry point.
 425 * @iodc_data: A buffer memory for the iodc options.
 426 * @iodc_data_size: Size of the memory buffer.
 427 *
 428 * This PDC call reads from the IODC of the module specified by the hpa
 429 * argument.
 430 */
 431int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 432		  void *iodc_data, unsigned int iodc_data_size)
 433{
 434	int retval;
 435	unsigned long flags;
 436
 437	spin_lock_irqsave(&pdc_lock, flags);
 438	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 439			      index, __pa(pdc_result2), iodc_data_size);
 440	convert_to_wide(pdc_result);
 441	*actcnt = pdc_result[0];
 442	memcpy(iodc_data, pdc_result2, iodc_data_size);
 443	spin_unlock_irqrestore(&pdc_lock, flags);
 444
 445	return retval;
 446}
 447EXPORT_SYMBOL(pdc_iodc_read);
 448
 449/**
 450 * pdc_system_map_find_mods - Locate unarchitected modules.
 451 * @pdc_mod_info: Return buffer address.
 452 * @mod_path: pointer to dev path structure.
 453 * @mod_index: fixed address module index.
 454 *
 455 * To locate and identify modules which reside at fixed I/O addresses, which
 456 * do not self-identify via architected bus walks.
 457 */
 458int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 459			     struct pdc_module_path *mod_path, long mod_index)
 460{
 461	int retval;
 462	unsigned long flags;
 463
 464	spin_lock_irqsave(&pdc_lock, flags);
 465	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 466			      __pa(pdc_result2), mod_index);
 467	convert_to_wide(pdc_result);
 468	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 469	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 470	spin_unlock_irqrestore(&pdc_lock, flags);
 471
 472	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 473	return retval;
 474}
 475
 476/**
 477 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 478 * @pdc_addr_info: Return buffer address.
 479 * @mod_index: Fixed address module index.
 480 * @addr_index: Address range index.
 481 * 
 482 * Retrieve additional information about subsequent address ranges for modules
 483 * with multiple address ranges.  
 484 */
 485int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 486			      long mod_index, long addr_index)
 487{
 488	int retval;
 489	unsigned long flags;
 490
 491	spin_lock_irqsave(&pdc_lock, flags);
 492	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 493			      mod_index, addr_index);
 494	convert_to_wide(pdc_result);
 495	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 496	spin_unlock_irqrestore(&pdc_lock, flags);
 497
 498	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 499	return retval;
 500}
 501
 502/**
 503 * pdc_model_info - Return model information about the processor.
 504 * @model: The return buffer.
 505 *
 506 * Returns the version numbers, identifiers, and capabilities from the processor module.
 507 */
 508int pdc_model_info(struct pdc_model *model) 
 509{
 510	int retval;
 511	unsigned long flags;
 512
 513	spin_lock_irqsave(&pdc_lock, flags);
 514	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 515	convert_to_wide(pdc_result);
 516	memcpy(model, pdc_result, sizeof(*model));
 517	spin_unlock_irqrestore(&pdc_lock, flags);
 518
 519	return retval;
 520}
 521
 522/**
 523 * pdc_model_sysmodel - Get the system model name.
 524 * @name: A char array of at least 81 characters.
 525 *
 526 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 527 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 528 * on HP/UX.
 529 */
 530int pdc_model_sysmodel(unsigned int os_id, char *name)
 531{
 532        int retval;
 533	unsigned long flags;
 534
 535        spin_lock_irqsave(&pdc_lock, flags);
 536        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 537                              os_id, __pa(name));
 538        convert_to_wide(pdc_result);
 539
 540        if (retval == PDC_OK) {
 541                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 542        } else {
 543                name[0] = 0;
 544        }
 545        spin_unlock_irqrestore(&pdc_lock, flags);
 546
 547        return retval;
 548}
 549
 550/**
 551 * pdc_model_versions - Identify the version number of each processor.
 552 * @cpu_id: The return buffer.
 553 * @id: The id of the processor to check.
 554 *
 555 * Returns the version number for each processor component.
 556 *
 557 * This comment was here before, but I do not know what it means :( -RB
 558 * id: 0 = cpu revision, 1 = boot-rom-version
 559 */
 560int pdc_model_versions(unsigned long *versions, int id)
 561{
 562        int retval;
 563	unsigned long flags;
 564
 565        spin_lock_irqsave(&pdc_lock, flags);
 566        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 567        convert_to_wide(pdc_result);
 568        *versions = pdc_result[0];
 569        spin_unlock_irqrestore(&pdc_lock, flags);
 570
 571        return retval;
 572}
 573
 574/**
 575 * pdc_model_cpuid - Returns the CPU_ID.
 576 * @cpu_id: The return buffer.
 577 *
 578 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 579 * the processor module.
 580 */
 581int pdc_model_cpuid(unsigned long *cpu_id)
 582{
 583        int retval;
 584	unsigned long flags;
 585
 586        spin_lock_irqsave(&pdc_lock, flags);
 587        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 588        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 589        convert_to_wide(pdc_result);
 590        *cpu_id = pdc_result[0];
 591        spin_unlock_irqrestore(&pdc_lock, flags);
 592
 593        return retval;
 594}
 595
 596/**
 597 * pdc_model_capabilities - Returns the platform capabilities.
 598 * @capabilities: The return buffer.
 599 *
 600 * Returns information about platform support for 32- and/or 64-bit
 601 * OSes, IO-PDIR coherency, and virtual aliasing.
 602 */
 603int pdc_model_capabilities(unsigned long *capabilities)
 604{
 605        int retval;
 606	unsigned long flags;
 607
 608        spin_lock_irqsave(&pdc_lock, flags);
 609        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 610        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 611        convert_to_wide(pdc_result);
 612        if (retval == PDC_OK) {
 613                *capabilities = pdc_result[0];
 614        } else {
 615                *capabilities = PDC_MODEL_OS32;
 616        }
 617        spin_unlock_irqrestore(&pdc_lock, flags);
 618
 619        return retval;
 620}
 621
 622/**
 623 * pdc_model_platform_info - Returns machine product and serial number.
 624 * @orig_prod_num: Return buffer for original product number.
 625 * @current_prod_num: Return buffer for current product number.
 626 * @serial_no: Return buffer for serial number.
 627 *
 628 * Returns strings containing the original and current product numbers and the
 629 * serial number of the system.
 630 */
 631int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 632		char *serial_no)
 633{
 634	int retval;
 635	unsigned long flags;
 636
 637	spin_lock_irqsave(&pdc_lock, flags);
 638	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 639		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 640	convert_to_wide(pdc_result);
 641	spin_unlock_irqrestore(&pdc_lock, flags);
 642
 643	return retval;
 644}
 645
 646/**
 647 * pdc_cache_info - Return cache and TLB information.
 648 * @cache_info: The return buffer.
 649 *
 650 * Returns information about the processor's cache and TLB.
 651 */
 652int pdc_cache_info(struct pdc_cache_info *cache_info)
 653{
 654        int retval;
 655	unsigned long flags;
 656
 657        spin_lock_irqsave(&pdc_lock, flags);
 658        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 659        convert_to_wide(pdc_result);
 660        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 661        spin_unlock_irqrestore(&pdc_lock, flags);
 662
 663        return retval;
 664}
 665
 666/**
 667 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 668 * @space_bits: Should be 0, if not, bad mojo!
 669 *
 670 * Returns information about Space ID hashing.
 671 */
 672int pdc_spaceid_bits(unsigned long *space_bits)
 673{
 674	int retval;
 675	unsigned long flags;
 676
 677	spin_lock_irqsave(&pdc_lock, flags);
 678	pdc_result[0] = 0;
 679	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 680	convert_to_wide(pdc_result);
 681	*space_bits = pdc_result[0];
 682	spin_unlock_irqrestore(&pdc_lock, flags);
 683
 684	return retval;
 685}
 686
 687#ifndef CONFIG_PA20
 688/**
 689 * pdc_btlb_info - Return block TLB information.
 690 * @btlb: The return buffer.
 691 *
 692 * Returns information about the hardware Block TLB.
 693 */
 694int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 695{
 696        int retval;
 697	unsigned long flags;
 698
 699        spin_lock_irqsave(&pdc_lock, flags);
 700        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 701        memcpy(btlb, pdc_result, sizeof(*btlb));
 702        spin_unlock_irqrestore(&pdc_lock, flags);
 703
 704        if(retval < 0) {
 705                btlb->max_size = 0;
 706        }
 707        return retval;
 708}
 709
 710/**
 711 * pdc_mem_map_hpa - Find fixed module information.  
 712 * @address: The return buffer
 713 * @mod_path: pointer to dev path structure.
 714 *
 715 * This call was developed for S700 workstations to allow the kernel to find
 716 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 717 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 718 * call.
 719 *
 720 * This call is supported by all existing S700 workstations (up to  Gecko).
 721 */
 722int pdc_mem_map_hpa(struct pdc_memory_map *address,
 723		struct pdc_module_path *mod_path)
 724{
 725        int retval;
 726	unsigned long flags;
 727
 728        spin_lock_irqsave(&pdc_lock, flags);
 729        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 730        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 731				__pa(pdc_result2));
 732        memcpy(address, pdc_result, sizeof(*address));
 733        spin_unlock_irqrestore(&pdc_lock, flags);
 734
 735        return retval;
 736}
 737#endif	/* !CONFIG_PA20 */
 738
 739/**
 740 * pdc_lan_station_id - Get the LAN address.
 741 * @lan_addr: The return buffer.
 742 * @hpa: The network device HPA.
 743 *
 744 * Get the LAN station address when it is not directly available from the LAN hardware.
 745 */
 746int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 747{
 748	int retval;
 749	unsigned long flags;
 750
 751	spin_lock_irqsave(&pdc_lock, flags);
 752	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 753			__pa(pdc_result), hpa);
 754	if (retval < 0) {
 755		/* FIXME: else read MAC from NVRAM */
 756		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 757	} else {
 758		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 759	}
 760	spin_unlock_irqrestore(&pdc_lock, flags);
 761
 762	return retval;
 763}
 764EXPORT_SYMBOL(pdc_lan_station_id);
 765
 766/**
 767 * pdc_stable_read - Read data from Stable Storage.
 768 * @staddr: Stable Storage address to access.
 769 * @memaddr: The memory address where Stable Storage data shall be copied.
 770 * @count: number of bytes to transfer. count is multiple of 4.
 771 *
 772 * This PDC call reads from the Stable Storage address supplied in staddr
 773 * and copies count bytes to the memory address memaddr.
 774 * The call will fail if staddr+count > PDC_STABLE size.
 775 */
 776int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 777{
 778       int retval;
 779	unsigned long flags;
 780
 781       spin_lock_irqsave(&pdc_lock, flags);
 782       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 783               __pa(pdc_result), count);
 784       convert_to_wide(pdc_result);
 785       memcpy(memaddr, pdc_result, count);
 786       spin_unlock_irqrestore(&pdc_lock, flags);
 787
 788       return retval;
 789}
 790EXPORT_SYMBOL(pdc_stable_read);
 791
 792/**
 793 * pdc_stable_write - Write data to Stable Storage.
 794 * @staddr: Stable Storage address to access.
 795 * @memaddr: The memory address where Stable Storage data shall be read from.
 796 * @count: number of bytes to transfer. count is multiple of 4.
 797 *
 798 * This PDC call reads count bytes from the supplied memaddr address,
 799 * and copies count bytes to the Stable Storage address staddr.
 800 * The call will fail if staddr+count > PDC_STABLE size.
 801 */
 802int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 803{
 804       int retval;
 805	unsigned long flags;
 806
 807       spin_lock_irqsave(&pdc_lock, flags);
 808       memcpy(pdc_result, memaddr, count);
 809       convert_to_wide(pdc_result);
 810       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 811               __pa(pdc_result), count);
 812       spin_unlock_irqrestore(&pdc_lock, flags);
 813
 814       return retval;
 815}
 816EXPORT_SYMBOL(pdc_stable_write);
 817
 818/**
 819 * pdc_stable_get_size - Get Stable Storage size in bytes.
 820 * @size: pointer where the size will be stored.
 821 *
 822 * This PDC call returns the number of bytes in the processor's Stable
 823 * Storage, which is the number of contiguous bytes implemented in Stable
 824 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 825 * which is a multiple of four.
 826 */
 827int pdc_stable_get_size(unsigned long *size)
 828{
 829       int retval;
 830	unsigned long flags;
 831
 832       spin_lock_irqsave(&pdc_lock, flags);
 833       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 834       *size = pdc_result[0];
 835       spin_unlock_irqrestore(&pdc_lock, flags);
 836
 837       return retval;
 838}
 839EXPORT_SYMBOL(pdc_stable_get_size);
 840
 841/**
 842 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 843 *
 844 * This PDC call is meant to be used to check the integrity of the current
 845 * contents of Stable Storage.
 846 */
 847int pdc_stable_verify_contents(void)
 848{
 849       int retval;
 850	unsigned long flags;
 851
 852       spin_lock_irqsave(&pdc_lock, flags);
 853       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 854       spin_unlock_irqrestore(&pdc_lock, flags);
 855
 856       return retval;
 857}
 858EXPORT_SYMBOL(pdc_stable_verify_contents);
 859
 860/**
 861 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 862 * the validity indicator.
 863 *
 864 * This PDC call will erase all contents of Stable Storage. Use with care!
 865 */
 866int pdc_stable_initialize(void)
 867{
 868       int retval;
 869	unsigned long flags;
 870
 871       spin_lock_irqsave(&pdc_lock, flags);
 872       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 873       spin_unlock_irqrestore(&pdc_lock, flags);
 874
 875       return retval;
 876}
 877EXPORT_SYMBOL(pdc_stable_initialize);
 878
 879/**
 880 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 881 * @hwpath: fully bc.mod style path to the device.
 882 * @initiator: the array to return the result into
 883 *
 884 * Get the SCSI operational parameters from PDC.
 885 * Needed since HPUX never used BIOS or symbios card NVRAM.
 886 * Most ncr/sym cards won't have an entry and just use whatever
 887 * capabilities of the card are (eg Ultra, LVD). But there are
 888 * several cases where it's useful:
 889 *    o set SCSI id for Multi-initiator clusters,
 890 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 891 *    o bus width exported is less than what the interface chip supports.
 892 */
 893int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 894{
 895	int retval;
 896	unsigned long flags;
 897
 898	spin_lock_irqsave(&pdc_lock, flags);
 899
 900/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 901#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 902	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 903
 904	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 905			      __pa(pdc_result), __pa(hwpath));
 906	if (retval < PDC_OK)
 907		goto out;
 908
 909	if (pdc_result[0] < 16) {
 910		initiator->host_id = pdc_result[0];
 911	} else {
 912		initiator->host_id = -1;
 913	}
 914
 915	/*
 916	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 917	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 918	 */
 919	switch (pdc_result[1]) {
 920		case  1: initiator->factor = 50; break;
 921		case  2: initiator->factor = 25; break;
 922		case  5: initiator->factor = 12; break;
 923		case 25: initiator->factor = 10; break;
 924		case 20: initiator->factor = 12; break;
 925		case 40: initiator->factor = 10; break;
 926		default: initiator->factor = -1; break;
 927	}
 928
 929	if (IS_SPROCKETS()) {
 930		initiator->width = pdc_result[4];
 931		initiator->mode = pdc_result[5];
 932	} else {
 933		initiator->width = -1;
 934		initiator->mode = -1;
 935	}
 936
 937 out:
 938	spin_unlock_irqrestore(&pdc_lock, flags);
 939
 940	return (retval >= PDC_OK);
 941}
 942EXPORT_SYMBOL(pdc_get_initiator);
 943
 944
 945/**
 946 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 947 * @num_entries: The return value.
 948 * @hpa: The HPA for the device.
 949 *
 950 * This PDC function returns the number of entries in the specified cell's
 951 * interrupt table.
 952 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 953 */ 
 954int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 955{
 956	int retval;
 957	unsigned long flags;
 958
 959	spin_lock_irqsave(&pdc_lock, flags);
 960	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 961			      __pa(pdc_result), hpa);
 962	convert_to_wide(pdc_result);
 963	*num_entries = pdc_result[0];
 964	spin_unlock_irqrestore(&pdc_lock, flags);
 965
 966	return retval;
 967}
 968
 969/** 
 970 * pdc_pci_irt - Get the PCI interrupt routing table.
 971 * @num_entries: The number of entries in the table.
 972 * @hpa: The Hard Physical Address of the device.
 973 * @tbl: 
 974 *
 975 * Get the PCI interrupt routing table for the device at the given HPA.
 976 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 977 */
 978int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 979{
 980	int retval;
 981	unsigned long flags;
 982
 983	BUG_ON((unsigned long)tbl & 0x7);
 984
 985	spin_lock_irqsave(&pdc_lock, flags);
 986	pdc_result[0] = num_entries;
 987	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 988			      __pa(pdc_result), hpa, __pa(tbl));
 989	spin_unlock_irqrestore(&pdc_lock, flags);
 990
 991	return retval;
 992}
 993
 994
 995#if 0	/* UNTEST CODE - left here in case someone needs it */
 996
 997/** 
 998 * pdc_pci_config_read - read PCI config space.
 999 * @hpa		token from PDC to indicate which PCI device
1000 * @pci_addr	configuration space address to read from
1001 *
1002 * Read PCI Configuration space *before* linux PCI subsystem is running.
1003 */
1004unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1005{
1006	int retval;
1007	unsigned long flags;
1008
1009	spin_lock_irqsave(&pdc_lock, flags);
1010	pdc_result[0] = 0;
1011	pdc_result[1] = 0;
1012	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
1013			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1014	spin_unlock_irqrestore(&pdc_lock, flags);
1015
1016	return retval ? ~0 : (unsigned int) pdc_result[0];
1017}
1018
1019
1020/** 
1021 * pdc_pci_config_write - read PCI config space.
1022 * @hpa		token from PDC to indicate which PCI device
1023 * @pci_addr	configuration space address to write
1024 * @val		value we want in the 32-bit register
1025 *
1026 * Write PCI Configuration space *before* linux PCI subsystem is running.
1027 */
1028void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1029{
1030	int retval;
1031	unsigned long flags;
1032
1033	spin_lock_irqsave(&pdc_lock, flags);
1034	pdc_result[0] = 0;
1035	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
1036			      __pa(pdc_result), hpa,
1037			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1038	spin_unlock_irqrestore(&pdc_lock, flags);
1039
1040	return retval;
1041}
1042#endif /* UNTESTED CODE */
1043
1044/**
1045 * pdc_tod_read - Read the Time-Of-Day clock.
1046 * @tod: The return buffer:
1047 *
1048 * Read the Time-Of-Day clock
1049 */
1050int pdc_tod_read(struct pdc_tod *tod)
1051{
1052        int retval;
1053	unsigned long flags;
1054
1055        spin_lock_irqsave(&pdc_lock, flags);
1056        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1057        convert_to_wide(pdc_result);
1058        memcpy(tod, pdc_result, sizeof(*tod));
1059        spin_unlock_irqrestore(&pdc_lock, flags);
1060
1061        return retval;
1062}
1063EXPORT_SYMBOL(pdc_tod_read);
1064
1065int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1072	convert_to_wide(pdc_result);
1073	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1074	spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076	return retval;
1077}
1078
1079int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1080		unsigned long *pdt_entries_ptr)
1081{
1082	int retval;
1083	unsigned long flags;
1084
1085	spin_lock_irqsave(&pdc_lock, flags);
1086	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1087			__pa(pdt_entries_ptr));
1088	if (retval == PDC_OK) {
1089		convert_to_wide(pdc_result);
1090		memcpy(pret, pdc_result, sizeof(*pret));
1091	}
1092	spin_unlock_irqrestore(&pdc_lock, flags);
1093
1094#ifdef CONFIG_64BIT
1095	/*
1096	 * 64-bit kernels should not call this PDT function in narrow mode.
1097	 * The pdt_entries_ptr array above will now contain 32-bit values
1098	 */
1099	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1100		return PDC_ERROR;
1101#endif
1102
1103	return retval;
1104}
1105
1106/**
1107 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1108 * @ret: pointer to return buffer
1109 */
1110int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1111{
1112	int retval;
1113	unsigned long flags;
1114
1115	spin_lock_irqsave(&pdc_lock, flags);
1116	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1117			      __pa(ret), sizeof(*ret));
1118	spin_unlock_irqrestore(&pdc_lock, flags);
1119	return retval;
1120}
1121
1122/**
1123 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1124 * @ret: pointer to return buffer
1125 */
1126int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1127{
1128	int retval;
1129	unsigned long flags;
1130
1131	spin_lock_irqsave(&pdc_lock, flags);
1132	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1133			      __pa(ret), sizeof(*ret));
1134	spin_unlock_irqrestore(&pdc_lock, flags);
1135	return retval;
1136}
1137
1138/**
1139 * pdc_tod_set - Set the Time-Of-Day clock.
1140 * @sec: The number of seconds since epoch.
1141 * @usec: The number of micro seconds.
1142 *
1143 * Set the Time-Of-Day clock.
1144 */ 
1145int pdc_tod_set(unsigned long sec, unsigned long usec)
1146{
1147        int retval;
1148	unsigned long flags;
1149
1150        spin_lock_irqsave(&pdc_lock, flags);
1151        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1152        spin_unlock_irqrestore(&pdc_lock, flags);
1153
1154        return retval;
1155}
1156EXPORT_SYMBOL(pdc_tod_set);
1157
1158#ifdef CONFIG_64BIT
1159int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1160		struct pdc_memory_table *tbl, unsigned long entries)
1161{
1162	int retval;
1163	unsigned long flags;
1164
1165	spin_lock_irqsave(&pdc_lock, flags);
1166	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1167	convert_to_wide(pdc_result);
1168	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1169	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1170	spin_unlock_irqrestore(&pdc_lock, flags);
1171
1172	return retval;
1173}
1174#endif /* CONFIG_64BIT */
1175
1176/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1177 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1178 * it later. :)
1179 */
1180int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1181{
1182        int retval;
1183	unsigned long flags;
1184
1185        spin_lock_irqsave(&pdc_lock, flags);
1186        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1187                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1188        spin_unlock_irqrestore(&pdc_lock, flags);
1189
1190        return retval;
1191}
1192
1193/*
1194 * pdc_do_reset - Reset the system.
1195 *
1196 * Reset the system.
1197 */
1198int pdc_do_reset(void)
1199{
1200        int retval;
1201	unsigned long flags;
1202
1203        spin_lock_irqsave(&pdc_lock, flags);
1204        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1205        spin_unlock_irqrestore(&pdc_lock, flags);
1206
1207        return retval;
1208}
1209
1210/*
1211 * pdc_soft_power_info - Enable soft power switch.
1212 * @power_reg: address of soft power register
1213 *
1214 * Return the absolute address of the soft power switch register
1215 */
1216int __init pdc_soft_power_info(unsigned long *power_reg)
1217{
1218	int retval;
1219	unsigned long flags;
1220
1221	*power_reg = (unsigned long) (-1);
1222	
1223	spin_lock_irqsave(&pdc_lock, flags);
1224	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1225	if (retval == PDC_OK) {
1226                convert_to_wide(pdc_result);
1227                *power_reg = f_extend(pdc_result[0]);
1228	}
1229	spin_unlock_irqrestore(&pdc_lock, flags);
1230
1231	return retval;
1232}
1233
1234/*
1235 * pdc_soft_power_button - Control the soft power button behaviour
1236 * @sw_control: 0 for hardware control, 1 for software control 
1237 *
1238 *
1239 * This PDC function places the soft power button under software or
1240 * hardware control.
1241 * Under software control the OS may control to when to allow to shut 
1242 * down the system. Under hardware control pressing the power button 
1243 * powers off the system immediately.
1244 */
1245int pdc_soft_power_button(int sw_control)
1246{
1247	int retval;
1248	unsigned long flags;
1249
1250	spin_lock_irqsave(&pdc_lock, flags);
1251	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1252	spin_unlock_irqrestore(&pdc_lock, flags);
1253
1254	return retval;
1255}
1256
1257/*
1258 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1259 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1260 * who knows what other platform firmware might do with this OS "hook".
1261 */
1262void pdc_io_reset(void)
1263{
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&pdc_lock, flags);
1267	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1268	spin_unlock_irqrestore(&pdc_lock, flags);
1269}
1270
1271/*
1272 * pdc_io_reset_devices - Hack to Stop USB controller
1273 *
1274 * If PDC used the usb controller, the usb controller
1275 * is still running and will crash the machines during iommu 
1276 * setup, because of still running DMA. This PDC call
1277 * stops the USB controller.
1278 * Normally called after calling pdc_io_reset().
1279 */
1280void pdc_io_reset_devices(void)
1281{
1282	unsigned long flags;
1283
1284	spin_lock_irqsave(&pdc_lock, flags);
1285	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1286	spin_unlock_irqrestore(&pdc_lock, flags);
1287}
1288
1289#endif /* defined(BOOTLOADER) */
1290
1291/* locked by pdc_lock */
1292static char iodc_dbuf[4096] __page_aligned_bss;
1293
1294/**
1295 * pdc_iodc_print - Console print using IODC.
1296 * @str: the string to output.
1297 * @count: length of str
1298 *
1299 * Note that only these special chars are architected for console IODC io:
1300 * BEL, BS, CR, and LF. Others are passed through.
1301 * Since the HP console requires CR+LF to perform a 'newline', we translate
1302 * "\n" to "\r\n".
1303 */
1304int pdc_iodc_print(const unsigned char *str, unsigned count)
1305{
1306	unsigned int i, found = 0;
1307	unsigned long flags;
1308
1309	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1310
1311	spin_lock_irqsave(&pdc_lock, flags);
1312	for (i = 0; i < count;) {
1313		switch(str[i]) {
1314		case '\n':
1315			iodc_dbuf[i+0] = '\r';
1316			iodc_dbuf[i+1] = '\n';
1317			i += 2;
1318			found = 1;
1319			goto print;
1320		default:
1321			iodc_dbuf[i] = str[i];
1322			i++;
1323			break;
1324		}
1325	}
1326
1327print:
1328	real32_call(PAGE0->mem_cons.iodc_io,
1329		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1330		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1331		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1332	spin_unlock_irqrestore(&pdc_lock, flags);
 
1333
1334	return i - found;
1335}
1336
1337#if !defined(BOOTLOADER)
1338/**
1339 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1340 *
1341 * Read a character (non-blocking) from the PDC console, returns -1 if
1342 * key is not present.
1343 */
1344int pdc_iodc_getc(void)
1345{
1346	int ch;
1347	int status;
1348	unsigned long flags;
1349
1350	/* Bail if no console input device. */
1351	if (!PAGE0->mem_kbd.iodc_io)
1352		return 0;
1353	
1354	/* wait for a keyboard (rs232)-input */
1355	spin_lock_irqsave(&pdc_lock, flags);
1356	real32_call(PAGE0->mem_kbd.iodc_io,
1357		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1358		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1359		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1360
1361	ch = *iodc_dbuf;
1362	/* like convert_to_wide() but for first return value only: */
1363	status = *(int *)&pdc_result;
1364	spin_unlock_irqrestore(&pdc_lock, flags);
1365
1366	if (status == 0)
1367	    return -1;
1368	
1369	return ch;
1370}
1371
1372int pdc_sti_call(unsigned long func, unsigned long flags,
1373                 unsigned long inptr, unsigned long outputr,
1374                 unsigned long glob_cfg)
1375{
1376        int retval;
1377	unsigned long irqflags;
1378
1379        spin_lock_irqsave(&pdc_lock, irqflags);  
1380        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1381        spin_unlock_irqrestore(&pdc_lock, irqflags);
1382
1383        return retval;
1384}
1385EXPORT_SYMBOL(pdc_sti_call);
1386
1387#ifdef CONFIG_64BIT
1388/**
1389 * pdc_pat_cell_get_number - Returns the cell number.
1390 * @cell_info: The return buffer.
1391 *
1392 * This PDC call returns the cell number of the cell from which the call
1393 * is made.
1394 */
1395int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1396{
1397	int retval;
1398	unsigned long flags;
1399
1400	spin_lock_irqsave(&pdc_lock, flags);
1401	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1402	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1403	spin_unlock_irqrestore(&pdc_lock, flags);
1404
1405	return retval;
1406}
1407
1408/**
1409 * pdc_pat_cell_module - Retrieve the cell's module information.
1410 * @actcnt: The number of bytes written to mem_addr.
1411 * @ploc: The physical location.
1412 * @mod: The module index.
1413 * @view_type: The view of the address type.
1414 * @mem_addr: The return buffer.
1415 *
1416 * This PDC call returns information about each module attached to the cell
1417 * at the specified location.
1418 */
1419int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1420			unsigned long view_type, void *mem_addr)
1421{
1422	int retval;
1423	unsigned long flags;
1424	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1425
1426	spin_lock_irqsave(&pdc_lock, flags);
1427	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1428			      ploc, mod, view_type, __pa(&result));
1429	if(!retval) {
1430		*actcnt = pdc_result[0];
1431		memcpy(mem_addr, &result, *actcnt);
1432	}
1433	spin_unlock_irqrestore(&pdc_lock, flags);
1434
1435	return retval;
1436}
1437
1438/**
1439 * pdc_pat_cell_info - Retrieve the cell's information.
1440 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1441 * @actcnt: The number of bytes which should be written to info.
1442 * @offset: offset of the structure.
1443 * @cell_number: The cell number which should be asked, or -1 for current cell.
1444 *
1445 * This PDC call returns information about the given cell (or all cells).
1446 */
1447int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1448		unsigned long *actcnt, unsigned long offset,
1449		unsigned long cell_number)
1450{
1451	int retval;
1452	unsigned long flags;
1453	struct pdc_pat_cell_info_rtn_block result;
1454
1455	spin_lock_irqsave(&pdc_lock, flags);
1456	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1457			__pa(pdc_result), __pa(&result), *actcnt,
1458			offset, cell_number);
1459	if (!retval) {
1460		*actcnt = pdc_result[0];
1461		memcpy(info, &result, *actcnt);
1462	}
1463	spin_unlock_irqrestore(&pdc_lock, flags);
1464
1465	return retval;
1466}
1467
1468/**
1469 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1470 * @cpu_info: The return buffer.
1471 * @hpa: The Hard Physical Address of the CPU.
1472 *
1473 * Retrieve the cpu number for the cpu at the specified HPA.
1474 */
1475int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1476{
1477	int retval;
1478	unsigned long flags;
1479
1480	spin_lock_irqsave(&pdc_lock, flags);
1481	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1482			      __pa(&pdc_result), hpa);
1483	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1484	spin_unlock_irqrestore(&pdc_lock, flags);
1485
1486	return retval;
1487}
1488
1489/**
1490 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1491 * @num_entries: The return value.
1492 * @cell_num: The target cell.
1493 *
1494 * This PDC function returns the number of entries in the specified cell's
1495 * interrupt table.
1496 */
1497int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1498{
1499	int retval;
1500	unsigned long flags;
1501
1502	spin_lock_irqsave(&pdc_lock, flags);
1503	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1504			      __pa(pdc_result), cell_num);
1505	*num_entries = pdc_result[0];
1506	spin_unlock_irqrestore(&pdc_lock, flags);
1507
1508	return retval;
1509}
1510
1511/**
1512 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1513 * @r_addr: The return buffer.
1514 * @cell_num: The target cell.
1515 *
1516 * This PDC function returns the actual interrupt table for the specified cell.
1517 */
1518int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1519{
1520	int retval;
1521	unsigned long flags;
1522
1523	spin_lock_irqsave(&pdc_lock, flags);
1524	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1525			      __pa(r_addr), cell_num);
1526	spin_unlock_irqrestore(&pdc_lock, flags);
1527
1528	return retval;
1529}
1530
1531/**
1532 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1533 * @actlen: The return buffer.
1534 * @mem_addr: Pointer to the memory buffer.
1535 * @count: The number of bytes to read from the buffer.
1536 * @offset: The offset with respect to the beginning of the buffer.
1537 *
1538 */
1539int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1540			    unsigned long count, unsigned long offset)
1541{
1542	int retval;
1543	unsigned long flags;
1544
1545	spin_lock_irqsave(&pdc_lock, flags);
1546	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1547			      __pa(pdc_result2), count, offset);
1548	*actual_len = pdc_result[0];
1549	memcpy(mem_addr, pdc_result2, *actual_len);
1550	spin_unlock_irqrestore(&pdc_lock, flags);
1551
1552	return retval;
1553}
1554
1555/**
1556 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1557 * @legacy_rev: The legacy revision.
1558 * @pat_rev: The PAT revision.
1559 * @pdc_cap: The PDC capabilities.
1560 *
1561 */
1562int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1563		unsigned long *pat_rev, unsigned long *pdc_cap)
1564{
1565	int retval;
1566	unsigned long flags;
1567
1568	spin_lock_irqsave(&pdc_lock, flags);
1569	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1570				__pa(pdc_result));
1571	if (retval == PDC_OK) {
1572		*legacy_rev = pdc_result[0];
1573		*pat_rev = pdc_result[1];
1574		*pdc_cap = pdc_result[2];
1575	}
1576	spin_unlock_irqrestore(&pdc_lock, flags);
1577
1578	return retval;
1579}
1580
1581
1582/**
1583 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1584 * @pci_addr: PCI configuration space address for which the read request is being made.
1585 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1586 * @mem_addr: Pointer to return memory buffer.
1587 *
1588 */
1589int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1590{
1591	int retval;
1592	unsigned long flags;
1593
1594	spin_lock_irqsave(&pdc_lock, flags);
1595	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1596					__pa(pdc_result), pci_addr, pci_size);
1597	switch(pci_size) {
1598		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1599		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1600		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1601	}
1602	spin_unlock_irqrestore(&pdc_lock, flags);
1603
1604	return retval;
1605}
1606
1607/**
1608 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1609 * @pci_addr: PCI configuration space address for which the write  request is being made.
1610 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1611 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1612 *         written to PCI Config space.
1613 *
1614 */
1615int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1616{
1617	int retval;
1618	unsigned long flags;
1619
1620	spin_lock_irqsave(&pdc_lock, flags);
1621	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1622				pci_addr, pci_size, val);
1623	spin_unlock_irqrestore(&pdc_lock, flags);
1624
1625	return retval;
1626}
1627
1628/**
1629 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1630 * @rinfo: memory pdt information
1631 *
1632 */
1633int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1634{
1635	int retval;
1636	unsigned long flags;
1637
1638	spin_lock_irqsave(&pdc_lock, flags);
1639	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1640			__pa(&pdc_result));
1641	if (retval == PDC_OK)
1642		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1643	spin_unlock_irqrestore(&pdc_lock, flags);
1644
1645	return retval;
1646}
1647
1648/**
1649 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1650 *				table of a cell
1651 * @rinfo: memory pdt information
1652 * @cell: cell number
1653 *
1654 */
1655int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1656		unsigned long cell)
1657{
1658	int retval;
1659	unsigned long flags;
1660
1661	spin_lock_irqsave(&pdc_lock, flags);
1662	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1663			__pa(&pdc_result), cell);
1664	if (retval == PDC_OK)
1665		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1666	spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668	return retval;
1669}
1670
1671/**
1672 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1673 * @pret: array of PDT entries
1674 * @pdt_entries_ptr: ptr to hold number of PDT entries
1675 * @max_entries: maximum number of entries to be read
1676 *
1677 */
1678int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1679		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1680{
1681	int retval;
1682	unsigned long flags, entries;
1683
1684	spin_lock_irqsave(&pdc_lock, flags);
1685	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1686	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1687			__pa(&pdc_result), parisc_cell_num,
1688			__pa(pdt_entries_ptr));
1689
1690	if (retval == PDC_OK) {
1691		/* build up return value as for PDC_PAT_MEM_PD_READ */
1692		entries = min(pdc_result[0], max_entries);
1693		pret->pdt_entries = entries;
1694		pret->actual_count_bytes = entries * sizeof(unsigned long);
1695	}
1696
1697	spin_unlock_irqrestore(&pdc_lock, flags);
1698	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1699
1700	return retval;
1701}
1702/**
1703 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1704 * @pret: array of PDT entries
1705 * @pdt_entries_ptr: ptr to hold number of PDT entries
1706 * @count: number of bytes to read
1707 * @offset: offset to start (in bytes)
1708 *
1709 */
1710int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1711		unsigned long *pdt_entries_ptr, unsigned long count,
1712		unsigned long offset)
1713{
1714	int retval;
1715	unsigned long flags, entries;
1716
1717	spin_lock_irqsave(&pdc_lock, flags);
1718	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1719		__pa(&pdc_result), __pa(pdt_entries_ptr),
1720		count, offset);
1721
1722	if (retval == PDC_OK) {
1723		entries = min(pdc_result[0], count);
1724		pret->actual_count_bytes = entries;
1725		pret->pdt_entries = entries / sizeof(unsigned long);
1726	}
1727
1728	spin_unlock_irqrestore(&pdc_lock, flags);
1729
1730	return retval;
1731}
1732
1733/**
1734 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1735 * @pret: ptr to hold returned information
1736 * @phys_addr: physical address to examine
1737 *
1738 */
1739int pdc_pat_mem_get_dimm_phys_location(
1740		struct pdc_pat_mem_phys_mem_location *pret,
1741		unsigned long phys_addr)
1742{
1743	int retval;
1744	unsigned long flags;
1745
1746	spin_lock_irqsave(&pdc_lock, flags);
1747	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1748		__pa(&pdc_result), phys_addr);
1749
1750	if (retval == PDC_OK)
1751		memcpy(pret, &pdc_result, sizeof(*pret));
1752
1753	spin_unlock_irqrestore(&pdc_lock, flags);
1754
1755	return retval;
1756}
1757#endif /* CONFIG_64BIT */
1758#endif /* defined(BOOTLOADER) */
1759
1760
1761/***************** 32-bit real-mode calls ***********/
1762/* The struct below is used
1763 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1764 * real32_call_asm() then uses this stack in narrow real mode
1765 */
1766
1767struct narrow_stack {
1768	/* use int, not long which is 64 bits */
1769	unsigned int arg13;
1770	unsigned int arg12;
1771	unsigned int arg11;
1772	unsigned int arg10;
1773	unsigned int arg9;
1774	unsigned int arg8;
1775	unsigned int arg7;
1776	unsigned int arg6;
1777	unsigned int arg5;
1778	unsigned int arg4;
1779	unsigned int arg3;
1780	unsigned int arg2;
1781	unsigned int arg1;
1782	unsigned int arg0;
1783	unsigned int frame_marker[8];
1784	unsigned int sp;
1785	/* in reality, there's nearly 8k of stack after this */
1786};
1787
1788long real32_call(unsigned long fn, ...)
1789{
1790	va_list args;
1791	extern struct narrow_stack real_stack;
1792	extern unsigned long real32_call_asm(unsigned int *,
1793					     unsigned int *, 
1794					     unsigned int);
1795	
1796	va_start(args, fn);
1797	real_stack.arg0 = va_arg(args, unsigned int);
1798	real_stack.arg1 = va_arg(args, unsigned int);
1799	real_stack.arg2 = va_arg(args, unsigned int);
1800	real_stack.arg3 = va_arg(args, unsigned int);
1801	real_stack.arg4 = va_arg(args, unsigned int);
1802	real_stack.arg5 = va_arg(args, unsigned int);
1803	real_stack.arg6 = va_arg(args, unsigned int);
1804	real_stack.arg7 = va_arg(args, unsigned int);
1805	real_stack.arg8 = va_arg(args, unsigned int);
1806	real_stack.arg9 = va_arg(args, unsigned int);
1807	real_stack.arg10 = va_arg(args, unsigned int);
1808	real_stack.arg11 = va_arg(args, unsigned int);
1809	real_stack.arg12 = va_arg(args, unsigned int);
1810	real_stack.arg13 = va_arg(args, unsigned int);
1811	va_end(args);
1812	
1813	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1814}
1815
1816#ifdef CONFIG_64BIT
1817/***************** 64-bit real-mode calls ***********/
1818
1819struct wide_stack {
1820	unsigned long arg0;
1821	unsigned long arg1;
1822	unsigned long arg2;
1823	unsigned long arg3;
1824	unsigned long arg4;
1825	unsigned long arg5;
1826	unsigned long arg6;
1827	unsigned long arg7;
1828	unsigned long arg8;
1829	unsigned long arg9;
1830	unsigned long arg10;
1831	unsigned long arg11;
1832	unsigned long arg12;
1833	unsigned long arg13;
1834	unsigned long frame_marker[2];	/* rp, previous sp */
1835	unsigned long sp;
1836	/* in reality, there's nearly 8k of stack after this */
1837};
1838
1839long real64_call(unsigned long fn, ...)
1840{
1841	va_list args;
1842	extern struct wide_stack real64_stack;
1843	extern unsigned long real64_call_asm(unsigned long *,
1844					     unsigned long *, 
1845					     unsigned long);
1846    
1847	va_start(args, fn);
1848	real64_stack.arg0 = va_arg(args, unsigned long);
1849	real64_stack.arg1 = va_arg(args, unsigned long);
1850	real64_stack.arg2 = va_arg(args, unsigned long);
1851	real64_stack.arg3 = va_arg(args, unsigned long);
1852	real64_stack.arg4 = va_arg(args, unsigned long);
1853	real64_stack.arg5 = va_arg(args, unsigned long);
1854	real64_stack.arg6 = va_arg(args, unsigned long);
1855	real64_stack.arg7 = va_arg(args, unsigned long);
1856	real64_stack.arg8 = va_arg(args, unsigned long);
1857	real64_stack.arg9 = va_arg(args, unsigned long);
1858	real64_stack.arg10 = va_arg(args, unsigned long);
1859	real64_stack.arg11 = va_arg(args, unsigned long);
1860	real64_stack.arg12 = va_arg(args, unsigned long);
1861	real64_stack.arg13 = va_arg(args, unsigned long);
1862	va_end(args);
1863	
1864	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1865}
1866
1867#endif /* CONFIG_64BIT */