Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_abort_on_overflow __read_mostly;
 31
 32struct inet_timewait_death_row tcp_death_row = {
 33	.sysctl_max_tw_buckets = NR_FILE * 2,
 34	.hashinfo	= &tcp_hashinfo,
 35};
 36EXPORT_SYMBOL_GPL(tcp_death_row);
 37
 38static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 39{
 40	if (seq == s_win)
 41		return true;
 42	if (after(end_seq, s_win) && before(seq, e_win))
 43		return true;
 44	return seq == e_win && seq == end_seq;
 45}
 46
 47static enum tcp_tw_status
 48tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 49				  const struct sk_buff *skb, int mib_idx)
 50{
 51	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 52
 53	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 54				  &tcptw->tw_last_oow_ack_time)) {
 55		/* Send ACK. Note, we do not put the bucket,
 56		 * it will be released by caller.
 57		 */
 58		return TCP_TW_ACK;
 59	}
 60
 61	/* We are rate-limiting, so just release the tw sock and drop skb. */
 62	inet_twsk_put(tw);
 63	return TCP_TW_SUCCESS;
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
 
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return tcp_timewait_check_oow_rate_limit(
125				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127		if (th->rst)
128			goto kill;
129
130		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131			return TCP_TW_RST;
132
133		/* Dup ACK? */
134		if (!th->ack ||
135		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137			inet_twsk_put(tw);
138			return TCP_TW_SUCCESS;
139		}
140
141		/* New data or FIN. If new data arrive after half-duplex close,
142		 * reset.
143		 */
144		if (!th->fin ||
145		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146			return TCP_TW_RST;
147
148		/* FIN arrived, enter true time-wait state. */
149		tw->tw_substate	  = TCP_TIME_WAIT;
150		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151		if (tmp_opt.saw_tstamp) {
152			tcptw->tw_ts_recent_stamp = get_seconds();
153			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154		}
155
156		if (tcp_death_row.sysctl_tw_recycle &&
157		    tcptw->tw_ts_recent_stamp &&
158		    tcp_tw_remember_stamp(tw))
159			inet_twsk_reschedule(tw, tw->tw_timeout);
160		else
161			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule_put(tw);
195				return TCP_TW_SUCCESS;
196			}
 
 
197		}
198		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249
250		return tcp_timewait_check_oow_rate_limit(
251			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252	}
253	inet_twsk_put(tw);
254	return TCP_TW_SUCCESS;
255}
256EXPORT_SYMBOL(tcp_timewait_state_process);
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258/*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261void tcp_time_wait(struct sock *sk, int state, int timeo)
262{
263	const struct inet_connection_sock *icsk = inet_csk(sk);
264	const struct tcp_sock *tp = tcp_sk(sk);
 
265	struct inet_timewait_sock *tw;
266	bool recycle_ok = false;
267
268	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269		recycle_ok = tcp_remember_stamp(sk);
270
271	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272
273	if (tw) {
274		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276		struct inet_sock *inet = inet_sk(sk);
277
278		tw->tw_transparent	= inet->transparent;
 
 
279		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281		tcptw->tw_snd_nxt	= tp->snd_nxt;
282		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285		tcptw->tw_ts_offset	= tp->tsoffset;
286		tcptw->tw_last_oow_ack_time = 0;
287
288#if IS_ENABLED(CONFIG_IPV6)
289		if (tw->tw_family == PF_INET6) {
290			struct ipv6_pinfo *np = inet6_sk(sk);
291
292			tw->tw_v6_daddr = sk->sk_v6_daddr;
293			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294			tw->tw_tclass = np->tclass;
295			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
 
296			tw->tw_ipv6only = sk->sk_ipv6only;
297		}
298#endif
299
300#ifdef CONFIG_TCP_MD5SIG
301		/*
302		 * The timewait bucket does not have the key DB from the
303		 * sock structure. We just make a quick copy of the
304		 * md5 key being used (if indeed we are using one)
305		 * so the timewait ack generating code has the key.
306		 */
307		do {
308			struct tcp_md5sig_key *key;
309			tcptw->tw_md5_key = NULL;
310			key = tp->af_specific->md5_lookup(sk, sk);
311			if (key) {
312				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314					BUG();
315			}
316		} while (0);
317#endif
318
319		/* Get the TIME_WAIT timeout firing. */
320		if (timeo < rto)
321			timeo = rto;
322
323		if (recycle_ok) {
324			tw->tw_timeout = rto;
325		} else {
326			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327			if (state == TCP_TIME_WAIT)
328				timeo = TCP_TIMEWAIT_LEN;
329		}
330
 
 
 
 
 
331		inet_twsk_schedule(tw, timeo);
332		/* Linkage updates. */
333		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334		inet_twsk_put(tw);
 
 
335	} else {
336		/* Sorry, if we're out of memory, just CLOSE this
337		 * socket up.  We've got bigger problems than
338		 * non-graceful socket closings.
339		 */
340		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341	}
342
343	tcp_update_metrics(sk);
344	tcp_done(sk);
345}
 
346
347void tcp_twsk_destructor(struct sock *sk)
348{
349#ifdef CONFIG_TCP_MD5SIG
350	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
351
352	if (twsk->tw_md5_key)
353		kfree_rcu(twsk->tw_md5_key, rcu);
 
 
 
354#endif
355}
356EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358/* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361void tcp_openreq_init_rwin(struct request_sock *req,
362			   const struct sock *sk_listener,
363			   const struct dst_entry *dst)
364{
365	struct inet_request_sock *ireq = inet_rsk(req);
366	const struct tcp_sock *tp = tcp_sk(sk_listener);
367	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368	int full_space = tcp_full_space(sk_listener);
369	int mss = dst_metric_advmss(dst);
370	u32 window_clamp;
371	__u8 rcv_wscale;
 
 
372
373	if (user_mss && user_mss < mss)
374		mss = user_mss;
375
376	window_clamp = READ_ONCE(tp->window_clamp);
377	/* Set this up on the first call only */
378	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380	/* limit the window selection if the user enforce a smaller rx buffer */
381	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383		req->rsk_window_clamp = full_space;
384
 
 
 
 
 
 
385	/* tcp_full_space because it is guaranteed to be the first packet */
386	tcp_select_initial_window(full_space,
387		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388		&req->rsk_rcv_wnd,
389		&req->rsk_window_clamp,
390		ireq->wscale_ok,
391		&rcv_wscale,
392		dst_metric(dst, RTAX_INITRWND));
393	ireq->rcv_wscale = rcv_wscale;
394}
395EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398				  const struct request_sock *req)
399{
400	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401}
402
403void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404{
405	struct inet_connection_sock *icsk = inet_csk(sk);
406	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407	bool ca_got_dst = false;
408
409	if (ca_key != TCP_CA_UNSPEC) {
410		const struct tcp_congestion_ops *ca;
411
412		rcu_read_lock();
413		ca = tcp_ca_find_key(ca_key);
414		if (likely(ca && try_module_get(ca->owner))) {
415			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416			icsk->icsk_ca_ops = ca;
417			ca_got_dst = true;
418		}
419		rcu_read_unlock();
420	}
421
422	/* If no valid choice made yet, assign current system default ca. */
423	if (!ca_got_dst &&
424	    (!icsk->icsk_ca_setsockopt ||
425	     !try_module_get(icsk->icsk_ca_ops->owner)))
426		tcp_assign_congestion_control(sk);
427
428	tcp_set_ca_state(sk, TCP_CA_Open);
429}
430EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438struct sock *tcp_create_openreq_child(const struct sock *sk,
439				      struct request_sock *req,
440				      struct sk_buff *skb)
441{
442	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
443
444	if (newsk) {
445		const struct inet_request_sock *ireq = inet_rsk(req);
446		struct tcp_request_sock *treq = tcp_rsk(req);
447		struct inet_connection_sock *newicsk = inet_csk(newsk);
448		struct tcp_sock *newtp = tcp_sk(newsk);
449
450		/* Now setup tcp_sock */
451		newtp->pred_flags = 0;
452
453		newtp->rcv_wup = newtp->copied_seq =
454		newtp->rcv_nxt = treq->rcv_isn + 1;
455		newtp->segs_in = 1;
456
457		newtp->snd_sml = newtp->snd_una =
458		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459
460		tcp_prequeue_init(newtp);
461		INIT_LIST_HEAD(&newtp->tsq_node);
462
463		tcp_init_wl(newtp, treq->rcv_isn);
464
465		newtp->srtt_us = 0;
466		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467		newtp->rtt_min[0].rtt = ~0U;
468		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469
470		newtp->packets_out = 0;
471		newtp->retrans_out = 0;
472		newtp->sacked_out = 0;
473		newtp->fackets_out = 0;
474		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
475		tcp_enable_early_retrans(newtp);
476		newtp->tlp_high_seq = 0;
477		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
478		newsk->sk_txhash = treq->txhash;
479		newtp->last_oow_ack_time = 0;
480		newtp->total_retrans = req->num_retrans;
481
482		/* So many TCP implementations out there (incorrectly) count the
483		 * initial SYN frame in their delayed-ACK and congestion control
484		 * algorithms that we must have the following bandaid to talk
485		 * efficiently to them.  -DaveM
486		 */
487		newtp->snd_cwnd = TCP_INIT_CWND;
488		newtp->snd_cwnd_cnt = 0;
489
490		tcp_init_xmit_timers(newsk);
491		__skb_queue_head_init(&newtp->out_of_order_queue);
492		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
493
494		newtp->rx_opt.saw_tstamp = 0;
495
496		newtp->rx_opt.dsack = 0;
497		newtp->rx_opt.num_sacks = 0;
498
499		newtp->urg_data = 0;
500
501		if (sock_flag(newsk, SOCK_KEEPOPEN))
502			inet_csk_reset_keepalive_timer(newsk,
503						       keepalive_time_when(newtp));
504
505		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
506		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
507			if (sysctl_tcp_fack)
508				tcp_enable_fack(newtp);
509		}
510		newtp->window_clamp = req->rsk_window_clamp;
511		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
512		newtp->rcv_wnd = req->rsk_rcv_wnd;
513		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
514		if (newtp->rx_opt.wscale_ok) {
515			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
516			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
517		} else {
518			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
519			newtp->window_clamp = min(newtp->window_clamp, 65535U);
520		}
521		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
522				  newtp->rx_opt.snd_wscale);
523		newtp->max_window = newtp->snd_wnd;
524
525		if (newtp->rx_opt.tstamp_ok) {
526			newtp->rx_opt.ts_recent = req->ts_recent;
527			newtp->rx_opt.ts_recent_stamp = get_seconds();
528			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529		} else {
530			newtp->rx_opt.ts_recent_stamp = 0;
531			newtp->tcp_header_len = sizeof(struct tcphdr);
532		}
533		newtp->tsoffset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
534#ifdef CONFIG_TCP_MD5SIG
535		newtp->md5sig_info = NULL;	/*XXX*/
536		if (newtp->af_specific->md5_lookup(sk, newsk))
537			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
538#endif
539		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
540			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
541		newtp->rx_opt.mss_clamp = req->mss;
542		tcp_ecn_openreq_child(newtp, req);
543		newtp->fastopen_rsk = NULL;
544		newtp->syn_data_acked = 0;
545		newtp->rack.mstamp.v64 = 0;
546		newtp->rack.advanced = 0;
 
 
 
547
548		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
549	}
550	return newsk;
551}
552EXPORT_SYMBOL(tcp_create_openreq_child);
553
554/*
555 * Process an incoming packet for SYN_RECV sockets represented as a
556 * request_sock. Normally sk is the listener socket but for TFO it
557 * points to the child socket.
558 *
559 * XXX (TFO) - The current impl contains a special check for ack
560 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
561 *
562 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
563 */
564
565struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
566			   struct request_sock *req,
567			   bool fastopen)
568{
569	struct tcp_options_received tmp_opt;
570	struct sock *child;
571	const struct tcphdr *th = tcp_hdr(skb);
572	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
573	bool paws_reject = false;
574	bool own_req;
575
576	tmp_opt.saw_tstamp = 0;
577	if (th->doff > (sizeof(struct tcphdr)>>2)) {
578		tcp_parse_options(skb, &tmp_opt, 0, NULL);
579
580		if (tmp_opt.saw_tstamp) {
581			tmp_opt.ts_recent = req->ts_recent;
 
 
582			/* We do not store true stamp, but it is not required,
583			 * it can be estimated (approximately)
584			 * from another data.
585			 */
586			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
587			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588		}
589	}
590
591	/* Check for pure retransmitted SYN. */
592	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593	    flg == TCP_FLAG_SYN &&
594	    !paws_reject) {
595		/*
596		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597		 * this case on figure 6 and figure 8, but formal
598		 * protocol description says NOTHING.
599		 * To be more exact, it says that we should send ACK,
600		 * because this segment (at least, if it has no data)
601		 * is out of window.
602		 *
603		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604		 *  describe SYN-RECV state. All the description
605		 *  is wrong, we cannot believe to it and should
606		 *  rely only on common sense and implementation
607		 *  experience.
608		 *
609		 * Enforce "SYN-ACK" according to figure 8, figure 6
610		 * of RFC793, fixed by RFC1122.
611		 *
612		 * Note that even if there is new data in the SYN packet
613		 * they will be thrown away too.
614		 *
615		 * Reset timer after retransmitting SYNACK, similar to
616		 * the idea of fast retransmit in recovery.
617		 */
618		if (!tcp_oow_rate_limited(sock_net(sk), skb,
619					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
620					  &tcp_rsk(req)->last_oow_ack_time) &&
621
622		    !inet_rtx_syn_ack(sk, req)) {
623			unsigned long expires = jiffies;
624
625			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
626				       TCP_RTO_MAX);
627			if (!fastopen)
628				mod_timer_pending(&req->rsk_timer, expires);
629			else
630				req->rsk_timer.expires = expires;
631		}
632		return NULL;
633	}
634
635	/* Further reproduces section "SEGMENT ARRIVES"
636	   for state SYN-RECEIVED of RFC793.
637	   It is broken, however, it does not work only
638	   when SYNs are crossed.
639
640	   You would think that SYN crossing is impossible here, since
641	   we should have a SYN_SENT socket (from connect()) on our end,
642	   but this is not true if the crossed SYNs were sent to both
643	   ends by a malicious third party.  We must defend against this,
644	   and to do that we first verify the ACK (as per RFC793, page
645	   36) and reset if it is invalid.  Is this a true full defense?
646	   To convince ourselves, let us consider a way in which the ACK
647	   test can still pass in this 'malicious crossed SYNs' case.
648	   Malicious sender sends identical SYNs (and thus identical sequence
649	   numbers) to both A and B:
650
651		A: gets SYN, seq=7
652		B: gets SYN, seq=7
653
654	   By our good fortune, both A and B select the same initial
655	   send sequence number of seven :-)
656
657		A: sends SYN|ACK, seq=7, ack_seq=8
658		B: sends SYN|ACK, seq=7, ack_seq=8
659
660	   So we are now A eating this SYN|ACK, ACK test passes.  So
661	   does sequence test, SYN is truncated, and thus we consider
662	   it a bare ACK.
663
664	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
665	   bare ACK.  Otherwise, we create an established connection.  Both
666	   ends (listening sockets) accept the new incoming connection and try
667	   to talk to each other. 8-)
668
669	   Note: This case is both harmless, and rare.  Possibility is about the
670	   same as us discovering intelligent life on another plant tomorrow.
671
672	   But generally, we should (RFC lies!) to accept ACK
673	   from SYNACK both here and in tcp_rcv_state_process().
674	   tcp_rcv_state_process() does not, hence, we do not too.
675
676	   Note that the case is absolutely generic:
677	   we cannot optimize anything here without
678	   violating protocol. All the checks must be made
679	   before attempt to create socket.
680	 */
681
682	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
683	 *                  and the incoming segment acknowledges something not yet
684	 *                  sent (the segment carries an unacceptable ACK) ...
685	 *                  a reset is sent."
686	 *
687	 * Invalid ACK: reset will be sent by listening socket.
688	 * Note that the ACK validity check for a Fast Open socket is done
689	 * elsewhere and is checked directly against the child socket rather
690	 * than req because user data may have been sent out.
691	 */
692	if ((flg & TCP_FLAG_ACK) && !fastopen &&
693	    (TCP_SKB_CB(skb)->ack_seq !=
694	     tcp_rsk(req)->snt_isn + 1))
695		return sk;
696
697	/* Also, it would be not so bad idea to check rcv_tsecr, which
698	 * is essentially ACK extension and too early or too late values
699	 * should cause reset in unsynchronized states.
700	 */
701
702	/* RFC793: "first check sequence number". */
703
704	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
705					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
706		/* Out of window: send ACK and drop. */
707		if (!(flg & TCP_FLAG_RST))
 
 
 
708			req->rsk_ops->send_ack(sk, skb, req);
709		if (paws_reject)
710			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
711		return NULL;
712	}
713
714	/* In sequence, PAWS is OK. */
715
716	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
717		req->ts_recent = tmp_opt.rcv_tsval;
718
719	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
720		/* Truncate SYN, it is out of window starting
721		   at tcp_rsk(req)->rcv_isn + 1. */
722		flg &= ~TCP_FLAG_SYN;
723	}
724
725	/* RFC793: "second check the RST bit" and
726	 *	   "fourth, check the SYN bit"
727	 */
728	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
729		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
730		goto embryonic_reset;
731	}
732
733	/* ACK sequence verified above, just make sure ACK is
734	 * set.  If ACK not set, just silently drop the packet.
735	 *
736	 * XXX (TFO) - if we ever allow "data after SYN", the
737	 * following check needs to be removed.
738	 */
739	if (!(flg & TCP_FLAG_ACK))
740		return NULL;
741
742	/* For Fast Open no more processing is needed (sk is the
743	 * child socket).
744	 */
745	if (fastopen)
746		return sk;
747
748	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
749	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
750	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
751		inet_rsk(req)->acked = 1;
752		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
753		return NULL;
754	}
755
756	/* OK, ACK is valid, create big socket and
757	 * feed this segment to it. It will repeat all
758	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
759	 * ESTABLISHED STATE. If it will be dropped after
760	 * socket is created, wait for troubles.
761	 */
762	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
763							 req, &own_req);
764	if (!child)
765		goto listen_overflow;
766
 
 
 
 
 
 
767	sock_rps_save_rxhash(child, skb);
768	tcp_synack_rtt_meas(child, req);
 
769	return inet_csk_complete_hashdance(sk, child, req, own_req);
770
771listen_overflow:
772	if (!sysctl_tcp_abort_on_overflow) {
 
 
 
773		inet_rsk(req)->acked = 1;
774		return NULL;
775	}
776
777embryonic_reset:
778	if (!(flg & TCP_FLAG_RST)) {
779		/* Received a bad SYN pkt - for TFO We try not to reset
780		 * the local connection unless it's really necessary to
781		 * avoid becoming vulnerable to outside attack aiming at
782		 * resetting legit local connections.
783		 */
784		req->rsk_ops->send_reset(sk, skb);
785	} else if (fastopen) { /* received a valid RST pkt */
786		reqsk_fastopen_remove(sk, req, true);
787		tcp_reset(sk);
788	}
789	if (!fastopen) {
790		inet_csk_reqsk_queue_drop(sk, req);
791		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
 
 
 
792	}
793	return NULL;
794}
795EXPORT_SYMBOL(tcp_check_req);
796
797/*
798 * Queue segment on the new socket if the new socket is active,
799 * otherwise we just shortcircuit this and continue with
800 * the new socket.
801 *
802 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
803 * when entering. But other states are possible due to a race condition
804 * where after __inet_lookup_established() fails but before the listener
805 * locked is obtained, other packets cause the same connection to
806 * be created.
807 */
808
809int tcp_child_process(struct sock *parent, struct sock *child,
810		      struct sk_buff *skb)
 
811{
812	int ret = 0;
813	int state = child->sk_state;
 
 
 
814
815	tcp_segs_in(tcp_sk(child), skb);
816	if (!sock_owned_by_user(child)) {
817		ret = tcp_rcv_state_process(child, skb);
818		/* Wakeup parent, send SIGIO */
819		if (state == TCP_SYN_RECV && child->sk_state != state)
820			parent->sk_data_ready(parent);
821	} else {
822		/* Alas, it is possible again, because we do lookup
823		 * in main socket hash table and lock on listening
824		 * socket does not protect us more.
825		 */
826		__sk_add_backlog(child, skb);
827	}
828
829	bh_unlock_sock(child);
830	sock_put(child);
831	return ret;
832}
833EXPORT_SYMBOL(tcp_child_process);
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 
 
 
 
 
 22#include <net/tcp.h>
 
 23#include <net/xfrm.h>
 24#include <net/busy_poll.h>
 
 
 
 
 
 
 
 25
 26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 27{
 28	if (seq == s_win)
 29		return true;
 30	if (after(end_seq, s_win) && before(seq, e_win))
 31		return true;
 32	return seq == e_win && seq == end_seq;
 33}
 34
 35static enum tcp_tw_status
 36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 37				  const struct sk_buff *skb, int mib_idx)
 38{
 39	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 40
 41	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 42				  &tcptw->tw_last_oow_ack_time)) {
 43		/* Send ACK. Note, we do not put the bucket,
 44		 * it will be released by caller.
 45		 */
 46		return TCP_TW_ACK;
 47	}
 48
 49	/* We are rate-limiting, so just release the tw sock and drop skb. */
 50	inet_twsk_put(tw);
 51	return TCP_TW_SUCCESS;
 52}
 53
 54/*
 55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 56 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 57 *   (and, probably, tail of data) and one or more our ACKs are lost.
 58 * * What is TIME-WAIT timeout? It is associated with maximal packet
 59 *   lifetime in the internet, which results in wrong conclusion, that
 60 *   it is set to catch "old duplicate segments" wandering out of their path.
 61 *   It is not quite correct. This timeout is calculated so that it exceeds
 62 *   maximal retransmission timeout enough to allow to lose one (or more)
 63 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 64 * * When TIME-WAIT socket receives RST, it means that another end
 65 *   finally closed and we are allowed to kill TIME-WAIT too.
 66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 67 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 68 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 69 * * If we invented some more clever way to catch duplicates
 70 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 71 *
 72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 74 * from the very beginning.
 75 *
 76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 77 * is _not_ stateless. It means, that strictly speaking we must
 78 * spinlock it. I do not want! Well, probability of misbehaviour
 79 * is ridiculously low and, seems, we could use some mb() tricks
 80 * to avoid misread sequence numbers, states etc.  --ANK
 81 *
 82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 83 */
 84enum tcp_tw_status
 85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 86			   const struct tcphdr *th)
 87{
 88	struct tcp_options_received tmp_opt;
 89	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 90	bool paws_reject = false;
 91
 92	tmp_opt.saw_tstamp = 0;
 93	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
 94		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
 95
 96		if (tmp_opt.saw_tstamp) {
 97			if (tmp_opt.rcv_tsecr)
 98				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
 99			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
100			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
101			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102		}
103	}
104
105	if (tw->tw_substate == TCP_FIN_WAIT2) {
106		/* Just repeat all the checks of tcp_rcv_state_process() */
107
108		/* Out of window, send ACK */
109		if (paws_reject ||
110		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111				   tcptw->tw_rcv_nxt,
112				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113			return tcp_timewait_check_oow_rate_limit(
114				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116		if (th->rst)
117			goto kill;
118
119		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120			return TCP_TW_RST;
121
122		/* Dup ACK? */
123		if (!th->ack ||
124		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126			inet_twsk_put(tw);
127			return TCP_TW_SUCCESS;
128		}
129
130		/* New data or FIN. If new data arrive after half-duplex close,
131		 * reset.
132		 */
133		if (!th->fin ||
134		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135			return TCP_TW_RST;
136
137		/* FIN arrived, enter true time-wait state. */
138		tw->tw_substate	  = TCP_TIME_WAIT;
139		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140		if (tmp_opt.saw_tstamp) {
141			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
143		}
144
145		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
146		return TCP_TW_ACK;
147	}
148
149	/*
150	 *	Now real TIME-WAIT state.
151	 *
152	 *	RFC 1122:
153	 *	"When a connection is [...] on TIME-WAIT state [...]
154	 *	[a TCP] MAY accept a new SYN from the remote TCP to
155	 *	reopen the connection directly, if it:
156	 *
157	 *	(1)  assigns its initial sequence number for the new
158	 *	connection to be larger than the largest sequence
159	 *	number it used on the previous connection incarnation,
160	 *	and
161	 *
162	 *	(2)  returns to TIME-WAIT state if the SYN turns out
163	 *	to be an old duplicate".
164	 */
165
166	if (!paws_reject &&
167	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169		/* In window segment, it may be only reset or bare ack. */
170
171		if (th->rst) {
172			/* This is TIME_WAIT assassination, in two flavors.
173			 * Oh well... nobody has a sufficient solution to this
174			 * protocol bug yet.
175			 */
176			if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178				inet_twsk_deschedule_put(tw);
179				return TCP_TW_SUCCESS;
180			}
181		} else {
182			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183		}
 
184
185		if (tmp_opt.saw_tstamp) {
186			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
187			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188		}
189
190		inet_twsk_put(tw);
191		return TCP_TW_SUCCESS;
192	}
193
194	/* Out of window segment.
195
196	   All the segments are ACKed immediately.
197
198	   The only exception is new SYN. We accept it, if it is
199	   not old duplicate and we are not in danger to be killed
200	   by delayed old duplicates. RFC check is that it has
201	   newer sequence number works at rates <40Mbit/sec.
202	   However, if paws works, it is reliable AND even more,
203	   we even may relax silly seq space cutoff.
204
205	   RED-PEN: we violate main RFC requirement, if this SYN will appear
206	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
207	   we must return socket to time-wait state. It is not good,
208	   but not fatal yet.
209	 */
210
211	if (th->syn && !th->rst && !th->ack && !paws_reject &&
212	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213	     (tmp_opt.saw_tstamp &&
214	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216		if (isn == 0)
217			isn++;
218		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219		return TCP_TW_SYN;
220	}
221
222	if (paws_reject)
223		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225	if (!th->rst) {
226		/* In this case we must reset the TIMEWAIT timer.
227		 *
228		 * If it is ACKless SYN it may be both old duplicate
229		 * and new good SYN with random sequence number <rcv_nxt.
230		 * Do not reschedule in the last case.
231		 */
232		if (paws_reject || th->ack)
233			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234
235		return tcp_timewait_check_oow_rate_limit(
236			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237	}
238	inet_twsk_put(tw);
239	return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246	const struct tcp_sock *tp = tcp_sk(sk);
247	struct tcp_md5sig_key *key;
248
249	/*
250	 * The timewait bucket does not have the key DB from the
251	 * sock structure. We just make a quick copy of the
252	 * md5 key being used (if indeed we are using one)
253	 * so the timewait ack generating code has the key.
254	 */
255	tcptw->tw_md5_key = NULL;
256	if (!static_branch_unlikely(&tcp_md5_needed.key))
257		return;
258
259	key = tp->af_specific->md5_lookup(sk, sk);
260	if (key) {
261		tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262		if (!tcptw->tw_md5_key)
263			return;
264		if (!tcp_alloc_md5sig_pool())
265			goto out_free;
266		if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267			goto out_free;
268	}
269	return;
270out_free:
271	WARN_ON_ONCE(1);
272	kfree(tcptw->tw_md5_key);
273	tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
282	const struct inet_connection_sock *icsk = inet_csk(sk);
283	const struct tcp_sock *tp = tcp_sk(sk);
284	struct net *net = sock_net(sk);
285	struct inet_timewait_sock *tw;
 
286
287	tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
 
 
 
288
289	if (tw) {
290		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292		struct inet_sock *inet = inet_sk(sk);
293
294		tw->tw_transparent	= inet->transparent;
295		tw->tw_mark		= sk->sk_mark;
296		tw->tw_priority		= sk->sk_priority;
297		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
298		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
299		tcptw->tw_snd_nxt	= tp->snd_nxt;
300		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
301		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
302		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303		tcptw->tw_ts_offset	= tp->tsoffset;
304		tcptw->tw_last_oow_ack_time = 0;
305		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
306#if IS_ENABLED(CONFIG_IPV6)
307		if (tw->tw_family == PF_INET6) {
308			struct ipv6_pinfo *np = inet6_sk(sk);
309
310			tw->tw_v6_daddr = sk->sk_v6_daddr;
311			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312			tw->tw_tclass = np->tclass;
313			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314			tw->tw_txhash = sk->sk_txhash;
315			tw->tw_ipv6only = sk->sk_ipv6only;
316		}
317#endif
318
319		tcp_time_wait_init(sk, tcptw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320
321		/* Get the TIME_WAIT timeout firing. */
322		if (timeo < rto)
323			timeo = rto;
324
325		if (state == TCP_TIME_WAIT)
326			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
327
328		/* tw_timer is pinned, so we need to make sure BH are disabled
329		 * in following section, otherwise timer handler could run before
330		 * we complete the initialization.
331		 */
332		local_bh_disable();
333		inet_twsk_schedule(tw, timeo);
334		/* Linkage updates.
335		 * Note that access to tw after this point is illegal.
336		 */
337		inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338		local_bh_enable();
339	} else {
340		/* Sorry, if we're out of memory, just CLOSE this
341		 * socket up.  We've got bigger problems than
342		 * non-graceful socket closings.
343		 */
344		NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345	}
346
347	tcp_update_metrics(sk);
348	tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355	if (static_branch_unlikely(&tcp_md5_needed.key)) {
356		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358		if (twsk->tw_md5_key) {
359			kfree_rcu(twsk->tw_md5_key, rcu);
360			static_branch_slow_dec_deferred(&tcp_md5_needed);
361		}
362	}
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369	bool purged_once = false;
370	struct net *net;
371
372	list_for_each_entry(net, net_exit_list, exit_list) {
373		if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374			/* Even if tw_refcount == 1, we must clean up kernel reqsk */
375			inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376		} else if (!purged_once) {
377			/* The last refcount is decremented in tcp_sk_exit_batch() */
378			if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379				continue;
380
381			inet_twsk_purge(&tcp_hashinfo, family);
382			purged_once = true;
383		}
384	}
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392			   const struct sock *sk_listener,
393			   const struct dst_entry *dst)
394{
395	struct inet_request_sock *ireq = inet_rsk(req);
396	const struct tcp_sock *tp = tcp_sk(sk_listener);
 
397	int full_space = tcp_full_space(sk_listener);
 
398	u32 window_clamp;
399	__u8 rcv_wscale;
400	u32 rcv_wnd;
401	int mss;
402
403	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 
 
404	window_clamp = READ_ONCE(tp->window_clamp);
405	/* Set this up on the first call only */
406	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408	/* limit the window selection if the user enforce a smaller rx buffer */
409	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411		req->rsk_window_clamp = full_space;
412
413	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414	if (rcv_wnd == 0)
415		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416	else if (full_space < rcv_wnd * mss)
417		full_space = rcv_wnd * mss;
418
419	/* tcp_full_space because it is guaranteed to be the first packet */
420	tcp_select_initial_window(sk_listener, full_space,
421		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422		&req->rsk_rcv_wnd,
423		&req->rsk_window_clamp,
424		ireq->wscale_ok,
425		&rcv_wscale,
426		rcv_wnd);
427	ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432				  const struct request_sock *req)
433{
434	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439	struct inet_connection_sock *icsk = inet_csk(sk);
440	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441	bool ca_got_dst = false;
442
443	if (ca_key != TCP_CA_UNSPEC) {
444		const struct tcp_congestion_ops *ca;
445
446		rcu_read_lock();
447		ca = tcp_ca_find_key(ca_key);
448		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450			icsk->icsk_ca_ops = ca;
451			ca_got_dst = true;
452		}
453		rcu_read_unlock();
454	}
455
456	/* If no valid choice made yet, assign current system default ca. */
457	if (!ca_got_dst &&
458	    (!icsk->icsk_ca_setsockopt ||
459	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460		tcp_assign_congestion_control(sk);
461
462	tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467				    struct request_sock *req,
468				    struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471	struct inet_request_sock *ireq;
472
473	if (static_branch_unlikely(&tcp_have_smc)) {
474		ireq = inet_rsk(req);
475		if (oldtp->syn_smc && !ireq->smc_ok)
476			newtp->syn_smc = 0;
477	}
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488				      struct request_sock *req,
489				      struct sk_buff *skb)
490{
491	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492	const struct inet_request_sock *ireq = inet_rsk(req);
493	struct tcp_request_sock *treq = tcp_rsk(req);
494	struct inet_connection_sock *newicsk;
495	struct tcp_sock *oldtp, *newtp;
496	u32 seq;
497
498	if (!newsk)
499		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500
501	newicsk = inet_csk(newsk);
502	newtp = tcp_sk(newsk);
503	oldtp = tcp_sk(sk);
504
505	smc_check_reset_syn_req(oldtp, req, newtp);
506
507	/* Now setup tcp_sock */
508	newtp->pred_flags = 0;
509
510	seq = treq->rcv_isn + 1;
511	newtp->rcv_wup = seq;
512	WRITE_ONCE(newtp->copied_seq, seq);
513	WRITE_ONCE(newtp->rcv_nxt, seq);
514	newtp->segs_in = 1;
515
516	seq = treq->snt_isn + 1;
517	newtp->snd_sml = newtp->snd_una = seq;
518	WRITE_ONCE(newtp->snd_nxt, seq);
519	newtp->snd_up = seq;
520
521	INIT_LIST_HEAD(&newtp->tsq_node);
522	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524	tcp_init_wl(newtp, treq->rcv_isn);
525
526	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529	newtp->lsndtime = tcp_jiffies32;
530	newsk->sk_txhash = treq->txhash;
531	newtp->total_retrans = req->num_retrans;
532
533	tcp_init_xmit_timers(newsk);
534	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536	if (sock_flag(newsk, SOCK_KEEPOPEN))
537		inet_csk_reset_keepalive_timer(newsk,
538					       keepalive_time_when(newtp));
539
540	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541	newtp->rx_opt.sack_ok = ireq->sack_ok;
542	newtp->window_clamp = req->rsk_window_clamp;
543	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544	newtp->rcv_wnd = req->rsk_rcv_wnd;
545	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546	if (newtp->rx_opt.wscale_ok) {
547		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549	} else {
550		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551		newtp->window_clamp = min(newtp->window_clamp, 65535U);
552	}
553	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554	newtp->max_window = newtp->snd_wnd;
555
556	if (newtp->rx_opt.tstamp_ok) {
557		newtp->rx_opt.ts_recent = req->ts_recent;
558		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560	} else {
561		newtp->rx_opt.ts_recent_stamp = 0;
562		newtp->tcp_header_len = sizeof(struct tcphdr);
563	}
564	if (req->num_timeout) {
565		newtp->undo_marker = treq->snt_isn;
566		newtp->retrans_stamp = div_u64(treq->snt_synack,
567					       USEC_PER_SEC / TCP_TS_HZ);
568	}
569	newtp->tsoffset = treq->ts_off;
570#ifdef CONFIG_TCP_MD5SIG
571	newtp->md5sig_info = NULL;	/*XXX*/
572	if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
575	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577	newtp->rx_opt.mss_clamp = req->mss;
578	tcp_ecn_openreq_child(newtp, req);
579	newtp->fastopen_req = NULL;
580	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582	newtp->bpf_chg_cc_inprogress = 0;
583	tcp_bpf_clone(sk, newsk);
584
585	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
586
 
 
587	return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603			   struct request_sock *req,
604			   bool fastopen, bool *req_stolen)
605{
606	struct tcp_options_received tmp_opt;
607	struct sock *child;
608	const struct tcphdr *th = tcp_hdr(skb);
609	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610	bool paws_reject = false;
611	bool own_req;
612
613	tmp_opt.saw_tstamp = 0;
614	if (th->doff > (sizeof(struct tcphdr)>>2)) {
615		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617		if (tmp_opt.saw_tstamp) {
618			tmp_opt.ts_recent = req->ts_recent;
619			if (tmp_opt.rcv_tsecr)
620				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621			/* We do not store true stamp, but it is not required,
622			 * it can be estimated (approximately)
623			 * from another data.
624			 */
625			tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627		}
628	}
629
630	/* Check for pure retransmitted SYN. */
631	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632	    flg == TCP_FLAG_SYN &&
633	    !paws_reject) {
634		/*
635		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636		 * this case on figure 6 and figure 8, but formal
637		 * protocol description says NOTHING.
638		 * To be more exact, it says that we should send ACK,
639		 * because this segment (at least, if it has no data)
640		 * is out of window.
641		 *
642		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643		 *  describe SYN-RECV state. All the description
644		 *  is wrong, we cannot believe to it and should
645		 *  rely only on common sense and implementation
646		 *  experience.
647		 *
648		 * Enforce "SYN-ACK" according to figure 8, figure 6
649		 * of RFC793, fixed by RFC1122.
650		 *
651		 * Note that even if there is new data in the SYN packet
652		 * they will be thrown away too.
653		 *
654		 * Reset timer after retransmitting SYNACK, similar to
655		 * the idea of fast retransmit in recovery.
656		 */
657		if (!tcp_oow_rate_limited(sock_net(sk), skb,
658					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659					  &tcp_rsk(req)->last_oow_ack_time) &&
660
661		    !inet_rtx_syn_ack(sk, req)) {
662			unsigned long expires = jiffies;
663
664			expires += reqsk_timeout(req, TCP_RTO_MAX);
 
665			if (!fastopen)
666				mod_timer_pending(&req->rsk_timer, expires);
667			else
668				req->rsk_timer.expires = expires;
669		}
670		return NULL;
671	}
672
673	/* Further reproduces section "SEGMENT ARRIVES"
674	   for state SYN-RECEIVED of RFC793.
675	   It is broken, however, it does not work only
676	   when SYNs are crossed.
677
678	   You would think that SYN crossing is impossible here, since
679	   we should have a SYN_SENT socket (from connect()) on our end,
680	   but this is not true if the crossed SYNs were sent to both
681	   ends by a malicious third party.  We must defend against this,
682	   and to do that we first verify the ACK (as per RFC793, page
683	   36) and reset if it is invalid.  Is this a true full defense?
684	   To convince ourselves, let us consider a way in which the ACK
685	   test can still pass in this 'malicious crossed SYNs' case.
686	   Malicious sender sends identical SYNs (and thus identical sequence
687	   numbers) to both A and B:
688
689		A: gets SYN, seq=7
690		B: gets SYN, seq=7
691
692	   By our good fortune, both A and B select the same initial
693	   send sequence number of seven :-)
694
695		A: sends SYN|ACK, seq=7, ack_seq=8
696		B: sends SYN|ACK, seq=7, ack_seq=8
697
698	   So we are now A eating this SYN|ACK, ACK test passes.  So
699	   does sequence test, SYN is truncated, and thus we consider
700	   it a bare ACK.
701
702	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703	   bare ACK.  Otherwise, we create an established connection.  Both
704	   ends (listening sockets) accept the new incoming connection and try
705	   to talk to each other. 8-)
706
707	   Note: This case is both harmless, and rare.  Possibility is about the
708	   same as us discovering intelligent life on another plant tomorrow.
709
710	   But generally, we should (RFC lies!) to accept ACK
711	   from SYNACK both here and in tcp_rcv_state_process().
712	   tcp_rcv_state_process() does not, hence, we do not too.
713
714	   Note that the case is absolutely generic:
715	   we cannot optimize anything here without
716	   violating protocol. All the checks must be made
717	   before attempt to create socket.
718	 */
719
720	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
721	 *                  and the incoming segment acknowledges something not yet
722	 *                  sent (the segment carries an unacceptable ACK) ...
723	 *                  a reset is sent."
724	 *
725	 * Invalid ACK: reset will be sent by listening socket.
726	 * Note that the ACK validity check for a Fast Open socket is done
727	 * elsewhere and is checked directly against the child socket rather
728	 * than req because user data may have been sent out.
729	 */
730	if ((flg & TCP_FLAG_ACK) && !fastopen &&
731	    (TCP_SKB_CB(skb)->ack_seq !=
732	     tcp_rsk(req)->snt_isn + 1))
733		return sk;
734
735	/* Also, it would be not so bad idea to check rcv_tsecr, which
736	 * is essentially ACK extension and too early or too late values
737	 * should cause reset in unsynchronized states.
738	 */
739
740	/* RFC793: "first check sequence number". */
741
742	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744		/* Out of window: send ACK and drop. */
745		if (!(flg & TCP_FLAG_RST) &&
746		    !tcp_oow_rate_limited(sock_net(sk), skb,
747					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748					  &tcp_rsk(req)->last_oow_ack_time))
749			req->rsk_ops->send_ack(sk, skb, req);
750		if (paws_reject)
751			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752		return NULL;
753	}
754
755	/* In sequence, PAWS is OK. */
756
757	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758		req->ts_recent = tmp_opt.rcv_tsval;
759
760	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761		/* Truncate SYN, it is out of window starting
762		   at tcp_rsk(req)->rcv_isn + 1. */
763		flg &= ~TCP_FLAG_SYN;
764	}
765
766	/* RFC793: "second check the RST bit" and
767	 *	   "fourth, check the SYN bit"
768	 */
769	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771		goto embryonic_reset;
772	}
773
774	/* ACK sequence verified above, just make sure ACK is
775	 * set.  If ACK not set, just silently drop the packet.
776	 *
777	 * XXX (TFO) - if we ever allow "data after SYN", the
778	 * following check needs to be removed.
779	 */
780	if (!(flg & TCP_FLAG_ACK))
781		return NULL;
782
783	/* For Fast Open no more processing is needed (sk is the
784	 * child socket).
785	 */
786	if (fastopen)
787		return sk;
788
789	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792		inet_rsk(req)->acked = 1;
793		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794		return NULL;
795	}
796
797	/* OK, ACK is valid, create big socket and
798	 * feed this segment to it. It will repeat all
799	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800	 * ESTABLISHED STATE. If it will be dropped after
801	 * socket is created, wait for troubles.
802	 */
803	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804							 req, &own_req);
805	if (!child)
806		goto listen_overflow;
807
808	if (own_req && rsk_drop_req(req)) {
809		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810		inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811		return child;
812	}
813
814	sock_rps_save_rxhash(child, skb);
815	tcp_synack_rtt_meas(child, req);
816	*req_stolen = !own_req;
817	return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820	if (sk != req->rsk_listener)
821		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824		inet_rsk(req)->acked = 1;
825		return NULL;
826	}
827
828embryonic_reset:
829	if (!(flg & TCP_FLAG_RST)) {
830		/* Received a bad SYN pkt - for TFO We try not to reset
831		 * the local connection unless it's really necessary to
832		 * avoid becoming vulnerable to outside attack aiming at
833		 * resetting legit local connections.
834		 */
835		req->rsk_ops->send_reset(sk, skb);
836	} else if (fastopen) { /* received a valid RST pkt */
837		reqsk_fastopen_remove(sk, req, true);
838		tcp_reset(sk, skb);
839	}
840	if (!fastopen) {
841		bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843		if (unlinked)
844			__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845		*req_stolen = !unlinked;
846	}
847	return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864		      struct sk_buff *skb)
865	__releases(&((child)->sk_lock.slock))
866{
867	int ret = 0;
868	int state = child->sk_state;
869
870	/* record sk_napi_id and sk_rx_queue_mapping of child. */
871	sk_mark_napi_id_set(child, skb);
872
873	tcp_segs_in(tcp_sk(child), skb);
874	if (!sock_owned_by_user(child)) {
875		ret = tcp_rcv_state_process(child, skb);
876		/* Wakeup parent, send SIGIO */
877		if (state == TCP_SYN_RECV && child->sk_state != state)
878			parent->sk_data_ready(parent);
879	} else {
880		/* Alas, it is possible again, because we do lookup
881		 * in main socket hash table and lock on listening
882		 * socket does not protect us more.
883		 */
884		__sk_add_backlog(child, skb);
885	}
886
887	bh_unlock_sock(child);
888	sock_put(child);
889	return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);