Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Slab allocator functions that are independent of the allocator strategy
   3 *
   4 * (C) 2012 Christoph Lameter <cl@linux.com>
   5 */
   6#include <linux/slab.h>
   7
   8#include <linux/mm.h>
   9#include <linux/poison.h>
  10#include <linux/interrupt.h>
  11#include <linux/memory.h>
 
  12#include <linux/compiler.h>
 
  13#include <linux/module.h>
  14#include <linux/cpu.h>
  15#include <linux/uaccess.h>
  16#include <linux/seq_file.h>
  17#include <linux/proc_fs.h>
 
 
  18#include <asm/cacheflush.h>
  19#include <asm/tlbflush.h>
  20#include <asm/page.h>
  21#include <linux/memcontrol.h>
 
 
 
 
  22
  23#define CREATE_TRACE_POINTS
  24#include <trace/events/kmem.h>
  25
  26#include "slab.h"
  27
  28enum slab_state slab_state;
  29LIST_HEAD(slab_caches);
  30DEFINE_MUTEX(slab_mutex);
  31struct kmem_cache *kmem_cache;
  32
 
 
 
 
 
  33/*
  34 * Set of flags that will prevent slab merging
  35 */
  36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  37		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  38		SLAB_FAILSLAB | SLAB_KASAN)
  39
  40#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  41			 SLAB_NOTRACK | SLAB_ACCOUNT)
  42
  43/*
  44 * Merge control. If this is set then no merging of slab caches will occur.
  45 * (Could be removed. This was introduced to pacify the merge skeptics.)
  46 */
  47static int slab_nomerge;
  48
  49static int __init setup_slab_nomerge(char *str)
  50{
  51	slab_nomerge = 1;
 
 
 
 
 
 
  52	return 1;
  53}
  54
  55#ifdef CONFIG_SLUB
  56__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
 
  57#endif
  58
  59__setup("slab_nomerge", setup_slab_nomerge);
 
  60
  61/*
  62 * Determine the size of a slab object
  63 */
  64unsigned int kmem_cache_size(struct kmem_cache *s)
  65{
  66	return s->object_size;
  67}
  68EXPORT_SYMBOL(kmem_cache_size);
  69
  70#ifdef CONFIG_DEBUG_VM
  71static int kmem_cache_sanity_check(const char *name, size_t size)
  72{
  73	struct kmem_cache *s = NULL;
  74
  75	if (!name || in_interrupt() || size < sizeof(void *) ||
  76		size > KMALLOC_MAX_SIZE) {
  77		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  78		return -EINVAL;
  79	}
  80
  81	list_for_each_entry(s, &slab_caches, list) {
  82		char tmp;
  83		int res;
  84
  85		/*
  86		 * This happens when the module gets unloaded and doesn't
  87		 * destroy its slab cache and no-one else reuses the vmalloc
  88		 * area of the module.  Print a warning.
  89		 */
  90		res = probe_kernel_address(s->name, tmp);
  91		if (res) {
  92			pr_err("Slab cache with size %d has lost its name\n",
  93			       s->object_size);
  94			continue;
  95		}
  96	}
  97
  98	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  99	return 0;
 100}
 101#else
 102static inline int kmem_cache_sanity_check(const char *name, size_t size)
 103{
 104	return 0;
 105}
 106#endif
 107
 108void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
 109{
 110	size_t i;
 111
 112	for (i = 0; i < nr; i++) {
 113		if (s)
 114			kmem_cache_free(s, p[i]);
 115		else
 116			kfree(p[i]);
 117	}
 118}
 119
 120int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
 121								void **p)
 122{
 123	size_t i;
 124
 125	for (i = 0; i < nr; i++) {
 126		void *x = p[i] = kmem_cache_alloc(s, flags);
 127		if (!x) {
 128			__kmem_cache_free_bulk(s, i, p);
 129			return 0;
 130		}
 131	}
 132	return i;
 133}
 134
 135#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 136void slab_init_memcg_params(struct kmem_cache *s)
 137{
 138	s->memcg_params.is_root_cache = true;
 139	INIT_LIST_HEAD(&s->memcg_params.list);
 140	RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
 141}
 142
 143static int init_memcg_params(struct kmem_cache *s,
 144		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 145{
 146	struct memcg_cache_array *arr;
 
 
 
 
 
 
 
 
 147
 148	if (memcg) {
 149		s->memcg_params.is_root_cache = false;
 150		s->memcg_params.memcg = memcg;
 151		s->memcg_params.root_cache = root_cache;
 152		return 0;
 153	}
 154
 155	slab_init_memcg_params(s);
 156
 157	if (!memcg_nr_cache_ids)
 158		return 0;
 159
 160	arr = kzalloc(sizeof(struct memcg_cache_array) +
 161		      memcg_nr_cache_ids * sizeof(void *),
 162		      GFP_KERNEL);
 163	if (!arr)
 164		return -ENOMEM;
 165
 166	RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
 167	return 0;
 168}
 169
 170static void destroy_memcg_params(struct kmem_cache *s)
 171{
 172	if (is_root_cache(s))
 173		kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
 174}
 175
 176static int update_memcg_params(struct kmem_cache *s, int new_array_size)
 177{
 178	struct memcg_cache_array *old, *new;
 179
 180	if (!is_root_cache(s))
 181		return 0;
 182
 183	new = kzalloc(sizeof(struct memcg_cache_array) +
 184		      new_array_size * sizeof(void *), GFP_KERNEL);
 185	if (!new)
 186		return -ENOMEM;
 187
 188	old = rcu_dereference_protected(s->memcg_params.memcg_caches,
 189					lockdep_is_held(&slab_mutex));
 190	if (old)
 191		memcpy(new->entries, old->entries,
 192		       memcg_nr_cache_ids * sizeof(void *));
 193
 194	rcu_assign_pointer(s->memcg_params.memcg_caches, new);
 195	if (old)
 196		kfree_rcu(old, rcu);
 197	return 0;
 198}
 199
 200int memcg_update_all_caches(int num_memcgs)
 201{
 202	struct kmem_cache *s;
 203	int ret = 0;
 204
 205	mutex_lock(&slab_mutex);
 206	list_for_each_entry(s, &slab_caches, list) {
 207		ret = update_memcg_params(s, num_memcgs);
 208		/*
 209		 * Instead of freeing the memory, we'll just leave the caches
 210		 * up to this point in an updated state.
 211		 */
 212		if (ret)
 213			break;
 214	}
 215	mutex_unlock(&slab_mutex);
 216	return ret;
 217}
 218#else
 219static inline int init_memcg_params(struct kmem_cache *s,
 220		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 221{
 222	return 0;
 223}
 224
 225static inline void destroy_memcg_params(struct kmem_cache *s)
 226{
 227}
 228#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 229
 230/*
 231 * Find a mergeable slab cache
 232 */
 233int slab_unmergeable(struct kmem_cache *s)
 234{
 235	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 236		return 1;
 237
 238	if (!is_root_cache(s))
 239		return 1;
 240
 241	if (s->ctor)
 
 242		return 1;
 
 243
 244	/*
 245	 * We may have set a slab to be unmergeable during bootstrap.
 246	 */
 247	if (s->refcount < 0)
 248		return 1;
 249
 250	return 0;
 251}
 252
 253struct kmem_cache *find_mergeable(size_t size, size_t align,
 254		unsigned long flags, const char *name, void (*ctor)(void *))
 255{
 256	struct kmem_cache *s;
 257
 258	if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
 259		return NULL;
 260
 261	if (ctor)
 262		return NULL;
 263
 264	size = ALIGN(size, sizeof(void *));
 265	align = calculate_alignment(flags, align, size);
 266	size = ALIGN(size, align);
 267	flags = kmem_cache_flags(size, flags, name, NULL);
 
 
 
 268
 269	list_for_each_entry_reverse(s, &slab_caches, list) {
 270		if (slab_unmergeable(s))
 271			continue;
 272
 273		if (size > s->size)
 274			continue;
 275
 276		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 277			continue;
 278		/*
 279		 * Check if alignment is compatible.
 280		 * Courtesy of Adrian Drzewiecki
 281		 */
 282		if ((s->size & ~(align - 1)) != s->size)
 283			continue;
 284
 285		if (s->size - size >= sizeof(void *))
 286			continue;
 287
 288		if (IS_ENABLED(CONFIG_SLAB) && align &&
 289			(align > s->align || s->align % align))
 290			continue;
 291
 292		return s;
 293	}
 294	return NULL;
 295}
 296
 297/*
 298 * Figure out what the alignment of the objects will be given a set of
 299 * flags, a user specified alignment and the size of the objects.
 300 */
 301unsigned long calculate_alignment(unsigned long flags,
 302		unsigned long align, unsigned long size)
 303{
 304	/*
 305	 * If the user wants hardware cache aligned objects then follow that
 306	 * suggestion if the object is sufficiently large.
 307	 *
 308	 * The hardware cache alignment cannot override the specified
 309	 * alignment though. If that is greater then use it.
 310	 */
 311	if (flags & SLAB_HWCACHE_ALIGN) {
 312		unsigned long ralign = cache_line_size();
 313		while (size <= ralign / 2)
 314			ralign /= 2;
 315		align = max(align, ralign);
 316	}
 317
 318	if (align < ARCH_SLAB_MINALIGN)
 319		align = ARCH_SLAB_MINALIGN;
 320
 321	return ALIGN(align, sizeof(void *));
 322}
 323
 324static struct kmem_cache *create_cache(const char *name,
 325		size_t object_size, size_t size, size_t align,
 326		unsigned long flags, void (*ctor)(void *),
 327		struct mem_cgroup *memcg, struct kmem_cache *root_cache)
 
 328{
 329	struct kmem_cache *s;
 330	int err;
 331
 
 
 
 332	err = -ENOMEM;
 333	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 334	if (!s)
 335		goto out;
 336
 337	s->name = name;
 338	s->object_size = object_size;
 339	s->size = size;
 340	s->align = align;
 341	s->ctor = ctor;
 342
 343	err = init_memcg_params(s, memcg, root_cache);
 344	if (err)
 345		goto out_free_cache;
 346
 347	err = __kmem_cache_create(s, flags);
 348	if (err)
 349		goto out_free_cache;
 350
 351	s->refcount = 1;
 352	list_add(&s->list, &slab_caches);
 353out:
 354	if (err)
 355		return ERR_PTR(err);
 356	return s;
 357
 358out_free_cache:
 359	destroy_memcg_params(s);
 360	kmem_cache_free(kmem_cache, s);
 361	goto out;
 362}
 363
 364/*
 365 * kmem_cache_create - Create a cache.
 
 366 * @name: A string which is used in /proc/slabinfo to identify this cache.
 367 * @size: The size of objects to be created in this cache.
 368 * @align: The required alignment for the objects.
 369 * @flags: SLAB flags
 
 
 370 * @ctor: A constructor for the objects.
 371 *
 372 * Returns a ptr to the cache on success, NULL on failure.
 373 * Cannot be called within a interrupt, but can be interrupted.
 374 * The @ctor is run when new pages are allocated by the cache.
 375 *
 376 * The flags are
 377 *
 378 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 379 * to catch references to uninitialised memory.
 380 *
 381 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 382 * for buffer overruns.
 383 *
 384 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 385 * cacheline.  This can be beneficial if you're counting cycles as closely
 386 * as davem.
 
 
 387 */
 388struct kmem_cache *
 389kmem_cache_create(const char *name, size_t size, size_t align,
 390		  unsigned long flags, void (*ctor)(void *))
 
 
 
 391{
 392	struct kmem_cache *s = NULL;
 393	const char *cache_name;
 394	int err;
 395
 396	get_online_cpus();
 397	get_online_mems();
 398	memcg_get_cache_ids();
 
 
 
 
 
 
 
 
 
 
 399
 400	mutex_lock(&slab_mutex);
 401
 402	err = kmem_cache_sanity_check(name, size);
 403	if (err) {
 404		goto out_unlock;
 405	}
 406
 
 
 
 
 
 
 407	/*
 408	 * Some allocators will constraint the set of valid flags to a subset
 409	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 410	 * case, and we'll just provide them with a sanitized version of the
 411	 * passed flags.
 412	 */
 413	flags &= CACHE_CREATE_MASK;
 414
 415	s = __kmem_cache_alias(name, size, align, flags, ctor);
 
 
 
 
 
 
 
 416	if (s)
 417		goto out_unlock;
 418
 419	cache_name = kstrdup_const(name, GFP_KERNEL);
 420	if (!cache_name) {
 421		err = -ENOMEM;
 422		goto out_unlock;
 423	}
 424
 425	s = create_cache(cache_name, size, size,
 426			 calculate_alignment(flags, align, size),
 427			 flags, ctor, NULL, NULL);
 428	if (IS_ERR(s)) {
 429		err = PTR_ERR(s);
 430		kfree_const(cache_name);
 431	}
 432
 433out_unlock:
 434	mutex_unlock(&slab_mutex);
 435
 436	memcg_put_cache_ids();
 437	put_online_mems();
 438	put_online_cpus();
 439
 440	if (err) {
 441		if (flags & SLAB_PANIC)
 442			panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
 443				name, err);
 444		else {
 445			pr_warn("kmem_cache_create(%s) failed with error %d\n",
 446				name, err);
 447			dump_stack();
 448		}
 449		return NULL;
 450	}
 451	return s;
 452}
 453EXPORT_SYMBOL(kmem_cache_create);
 454
 455static int shutdown_cache(struct kmem_cache *s,
 456		struct list_head *release, bool *need_rcu_barrier)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457{
 458	if (__kmem_cache_shutdown(s) != 0)
 459		return -EBUSY;
 460
 461	if (s->flags & SLAB_DESTROY_BY_RCU)
 462		*need_rcu_barrier = true;
 463
 464	list_move(&s->list, release);
 465	return 0;
 466}
 
 467
 468static void release_caches(struct list_head *release, bool need_rcu_barrier)
 469{
 470	struct kmem_cache *s, *s2;
 471
 472	if (need_rcu_barrier)
 473		rcu_barrier();
 474
 475	list_for_each_entry_safe(s, s2, release, list) {
 476#ifdef SLAB_SUPPORTS_SYSFS
 477		sysfs_slab_remove(s);
 478#else
 479		slab_kmem_cache_release(s);
 480#endif
 481	}
 482}
 483
 484#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
 485/*
 486 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
 487 * @memcg: The memory cgroup the new cache is for.
 488 * @root_cache: The parent of the new cache.
 489 *
 490 * This function attempts to create a kmem cache that will serve allocation
 491 * requests going from @memcg to @root_cache. The new cache inherits properties
 492 * from its parent.
 493 */
 494void memcg_create_kmem_cache(struct mem_cgroup *memcg,
 495			     struct kmem_cache *root_cache)
 496{
 497	static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
 498	struct cgroup_subsys_state *css = &memcg->css;
 499	struct memcg_cache_array *arr;
 500	struct kmem_cache *s = NULL;
 501	char *cache_name;
 502	int idx;
 503
 504	get_online_cpus();
 505	get_online_mems();
 506
 507	mutex_lock(&slab_mutex);
 508
 509	/*
 510	 * The memory cgroup could have been offlined while the cache
 511	 * creation work was pending.
 512	 */
 513	if (memcg->kmem_state != KMEM_ONLINE)
 514		goto out_unlock;
 515
 516	idx = memcg_cache_id(memcg);
 517	arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
 518					lockdep_is_held(&slab_mutex));
 519
 520	/*
 521	 * Since per-memcg caches are created asynchronously on first
 522	 * allocation (see memcg_kmem_get_cache()), several threads can try to
 523	 * create the same cache, but only one of them may succeed.
 524	 */
 525	if (arr->entries[idx])
 526		goto out_unlock;
 527
 528	cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
 529	cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
 530			       css->id, memcg_name_buf);
 531	if (!cache_name)
 532		goto out_unlock;
 533
 534	s = create_cache(cache_name, root_cache->object_size,
 535			 root_cache->size, root_cache->align,
 536			 root_cache->flags, root_cache->ctor,
 537			 memcg, root_cache);
 538	/*
 539	 * If we could not create a memcg cache, do not complain, because
 540	 * that's not critical at all as we can always proceed with the root
 541	 * cache.
 542	 */
 543	if (IS_ERR(s)) {
 544		kfree(cache_name);
 545		goto out_unlock;
 546	}
 547
 548	list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
 549
 550	/*
 551	 * Since readers won't lock (see cache_from_memcg_idx()), we need a
 552	 * barrier here to ensure nobody will see the kmem_cache partially
 553	 * initialized.
 554	 */
 555	smp_wmb();
 556	arr->entries[idx] = s;
 557
 558out_unlock:
 559	mutex_unlock(&slab_mutex);
 560
 561	put_online_mems();
 562	put_online_cpus();
 563}
 564
 565void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
 566{
 567	int idx;
 568	struct memcg_cache_array *arr;
 569	struct kmem_cache *s, *c;
 570
 571	idx = memcg_cache_id(memcg);
 572
 573	get_online_cpus();
 574	get_online_mems();
 575
 576	mutex_lock(&slab_mutex);
 577	list_for_each_entry(s, &slab_caches, list) {
 578		if (!is_root_cache(s))
 579			continue;
 580
 581		arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 582						lockdep_is_held(&slab_mutex));
 583		c = arr->entries[idx];
 584		if (!c)
 585			continue;
 586
 587		__kmem_cache_shrink(c, true);
 588		arr->entries[idx] = NULL;
 589	}
 590	mutex_unlock(&slab_mutex);
 591
 592	put_online_mems();
 593	put_online_cpus();
 594}
 595
 596static int __shutdown_memcg_cache(struct kmem_cache *s,
 597		struct list_head *release, bool *need_rcu_barrier)
 598{
 599	BUG_ON(is_root_cache(s));
 600
 601	if (shutdown_cache(s, release, need_rcu_barrier))
 602		return -EBUSY;
 603
 604	list_del(&s->memcg_params.list);
 605	return 0;
 606}
 
 607
 608void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
 609{
 610	LIST_HEAD(release);
 611	bool need_rcu_barrier = false;
 612	struct kmem_cache *s, *s2;
 613
 614	get_online_cpus();
 615	get_online_mems();
 616
 
 
 
 
 
 
 617	mutex_lock(&slab_mutex);
 618	list_for_each_entry_safe(s, s2, &slab_caches, list) {
 619		if (is_root_cache(s) || s->memcg_params.memcg != memcg)
 620			continue;
 621		/*
 622		 * The cgroup is about to be freed and therefore has no charges
 623		 * left. Hence, all its caches must be empty by now.
 624		 */
 625		BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
 626	}
 627	mutex_unlock(&slab_mutex);
 628
 629	put_online_mems();
 630	put_online_cpus();
 
 
 631
 632	release_caches(&release, need_rcu_barrier);
 
 
 
 
 633}
 634
 635static int shutdown_memcg_caches(struct kmem_cache *s,
 636		struct list_head *release, bool *need_rcu_barrier)
 637{
 638	struct memcg_cache_array *arr;
 639	struct kmem_cache *c, *c2;
 640	LIST_HEAD(busy);
 641	int i;
 642
 643	BUG_ON(!is_root_cache(s));
 644
 645	/*
 646	 * First, shutdown active caches, i.e. caches that belong to online
 647	 * memory cgroups.
 648	 */
 649	arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
 650					lockdep_is_held(&slab_mutex));
 651	for_each_memcg_cache_index(i) {
 652		c = arr->entries[i];
 653		if (!c)
 654			continue;
 655		if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
 656			/*
 657			 * The cache still has objects. Move it to a temporary
 658			 * list so as not to try to destroy it for a second
 659			 * time while iterating over inactive caches below.
 660			 */
 661			list_move(&c->memcg_params.list, &busy);
 662		else
 663			/*
 664			 * The cache is empty and will be destroyed soon. Clear
 665			 * the pointer to it in the memcg_caches array so that
 666			 * it will never be accessed even if the root cache
 667			 * stays alive.
 668			 */
 669			arr->entries[i] = NULL;
 670	}
 671
 672	/*
 673	 * Second, shutdown all caches left from memory cgroups that are now
 674	 * offline.
 675	 */
 676	list_for_each_entry_safe(c, c2, &s->memcg_params.list,
 677				 memcg_params.list)
 678		__shutdown_memcg_cache(c, release, need_rcu_barrier);
 679
 680	list_splice(&busy, &s->memcg_params.list);
 
 
 
 
 
 
 681
 682	/*
 683	 * A cache being destroyed must be empty. In particular, this means
 684	 * that all per memcg caches attached to it must be empty too.
 685	 */
 686	if (!list_empty(&s->memcg_params.list))
 687		return -EBUSY;
 688	return 0;
 689}
 690#else
 691static inline int shutdown_memcg_caches(struct kmem_cache *s,
 692		struct list_head *release, bool *need_rcu_barrier)
 693{
 694	return 0;
 695}
 696#endif /* CONFIG_MEMCG && !CONFIG_SLOB */
 697
 698void slab_kmem_cache_release(struct kmem_cache *s)
 699{
 700	__kmem_cache_release(s);
 701	destroy_memcg_params(s);
 702	kfree_const(s->name);
 703	kmem_cache_free(kmem_cache, s);
 704}
 705
 706void kmem_cache_destroy(struct kmem_cache *s)
 707{
 708	LIST_HEAD(release);
 709	bool need_rcu_barrier = false;
 710	int err;
 711
 712	if (unlikely(!s))
 713		return;
 714
 715	get_online_cpus();
 716	get_online_mems();
 717
 718	mutex_lock(&slab_mutex);
 719
 720	s->refcount--;
 721	if (s->refcount)
 722		goto out_unlock;
 723
 724	err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
 725	if (!err)
 726		err = shutdown_cache(s, &release, &need_rcu_barrier);
 727
 728	if (err) {
 729		pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
 730		       s->name);
 731		dump_stack();
 732	}
 733out_unlock:
 734	mutex_unlock(&slab_mutex);
 735
 736	put_online_mems();
 737	put_online_cpus();
 738
 739	release_caches(&release, need_rcu_barrier);
 740}
 741EXPORT_SYMBOL(kmem_cache_destroy);
 742
 743/**
 744 * kmem_cache_shrink - Shrink a cache.
 745 * @cachep: The cache to shrink.
 746 *
 747 * Releases as many slabs as possible for a cache.
 748 * To help debugging, a zero exit status indicates all slabs were released.
 
 
 749 */
 750int kmem_cache_shrink(struct kmem_cache *cachep)
 751{
 752	int ret;
 753
 754	get_online_cpus();
 755	get_online_mems();
 756	ret = __kmem_cache_shrink(cachep, false);
 757	put_online_mems();
 758	put_online_cpus();
 759	return ret;
 760}
 761EXPORT_SYMBOL(kmem_cache_shrink);
 762
 763bool slab_is_available(void)
 764{
 765	return slab_state >= UP;
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768#ifndef CONFIG_SLOB
 769/* Create a cache during boot when no slab services are available yet */
 770void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
 771		unsigned long flags)
 
 772{
 773	int err;
 
 774
 775	s->name = name;
 776	s->size = s->object_size = size;
 777	s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
 778
 779	slab_init_memcg_params(s);
 
 
 
 
 
 
 
 
 
 
 
 780
 781	err = __kmem_cache_create(s, flags);
 782
 783	if (err)
 784		panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
 785					name, size, err);
 786
 787	s->refcount = -1;	/* Exempt from merging for now */
 788}
 789
 790struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
 791				unsigned long flags)
 
 792{
 793	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 794
 795	if (!s)
 796		panic("Out of memory when creating slab %s\n", name);
 797
 798	create_boot_cache(s, name, size, flags);
 
 
 799	list_add(&s->list, &slab_caches);
 800	s->refcount = 1;
 801	return s;
 802}
 803
 804struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
 
 
 805EXPORT_SYMBOL(kmalloc_caches);
 806
 807#ifdef CONFIG_ZONE_DMA
 808struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
 809EXPORT_SYMBOL(kmalloc_dma_caches);
 810#endif
 811
 812/*
 813 * Conversion table for small slabs sizes / 8 to the index in the
 814 * kmalloc array. This is necessary for slabs < 192 since we have non power
 815 * of two cache sizes there. The size of larger slabs can be determined using
 816 * fls.
 817 */
 818static s8 size_index[24] = {
 819	3,	/* 8 */
 820	4,	/* 16 */
 821	5,	/* 24 */
 822	5,	/* 32 */
 823	6,	/* 40 */
 824	6,	/* 48 */
 825	6,	/* 56 */
 826	6,	/* 64 */
 827	1,	/* 72 */
 828	1,	/* 80 */
 829	1,	/* 88 */
 830	1,	/* 96 */
 831	7,	/* 104 */
 832	7,	/* 112 */
 833	7,	/* 120 */
 834	7,	/* 128 */
 835	2,	/* 136 */
 836	2,	/* 144 */
 837	2,	/* 152 */
 838	2,	/* 160 */
 839	2,	/* 168 */
 840	2,	/* 176 */
 841	2,	/* 184 */
 842	2	/* 192 */
 843};
 844
 845static inline int size_index_elem(size_t bytes)
 846{
 847	return (bytes - 1) / 8;
 848}
 849
 850/*
 851 * Find the kmem_cache structure that serves a given size of
 852 * allocation
 853 */
 854struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 855{
 856	int index;
 857
 858	if (unlikely(size > KMALLOC_MAX_SIZE)) {
 859		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
 860		return NULL;
 861	}
 862
 863	if (size <= 192) {
 864		if (!size)
 865			return ZERO_SIZE_PTR;
 866
 867		index = size_index[size_index_elem(size)];
 868	} else
 
 
 869		index = fls(size - 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870
 871#ifdef CONFIG_ZONE_DMA
 872	if (unlikely((flags & GFP_DMA)))
 873		return kmalloc_dma_caches[index];
 
 
 
 
 
 
 
 
 874
 
 
 
 
 875#endif
 876	return kmalloc_caches[index];
 
 
 
 
 
 
 
 877}
 878
 879/*
 880 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 881 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
 882 * kmalloc-67108864.
 883 */
 884static struct {
 885	const char *name;
 886	unsigned long size;
 887} const kmalloc_info[] __initconst = {
 888	{NULL,                      0},		{"kmalloc-96",             96},
 889	{"kmalloc-192",           192},		{"kmalloc-8",               8},
 890	{"kmalloc-16",             16},		{"kmalloc-32",             32},
 891	{"kmalloc-64",             64},		{"kmalloc-128",           128},
 892	{"kmalloc-256",           256},		{"kmalloc-512",           512},
 893	{"kmalloc-1024",         1024},		{"kmalloc-2048",         2048},
 894	{"kmalloc-4096",         4096},		{"kmalloc-8192",         8192},
 895	{"kmalloc-16384",       16384},		{"kmalloc-32768",       32768},
 896	{"kmalloc-65536",       65536},		{"kmalloc-131072",     131072},
 897	{"kmalloc-262144",     262144},		{"kmalloc-524288",     524288},
 898	{"kmalloc-1048576",   1048576},		{"kmalloc-2097152",   2097152},
 899	{"kmalloc-4194304",   4194304},		{"kmalloc-8388608",   8388608},
 900	{"kmalloc-16777216", 16777216},		{"kmalloc-33554432", 33554432},
 901	{"kmalloc-67108864", 67108864}
 
 
 
 
 
 902};
 903
 904/*
 905 * Patch up the size_index table if we have strange large alignment
 906 * requirements for the kmalloc array. This is only the case for
 907 * MIPS it seems. The standard arches will not generate any code here.
 908 *
 909 * Largest permitted alignment is 256 bytes due to the way we
 910 * handle the index determination for the smaller caches.
 911 *
 912 * Make sure that nothing crazy happens if someone starts tinkering
 913 * around with ARCH_KMALLOC_MINALIGN
 914 */
 915void __init setup_kmalloc_cache_index_table(void)
 916{
 917	int i;
 918
 919	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 920		(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
 921
 922	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 923		int elem = size_index_elem(i);
 924
 925		if (elem >= ARRAY_SIZE(size_index))
 926			break;
 927		size_index[elem] = KMALLOC_SHIFT_LOW;
 928	}
 929
 930	if (KMALLOC_MIN_SIZE >= 64) {
 931		/*
 932		 * The 96 byte size cache is not used if the alignment
 933		 * is 64 byte.
 934		 */
 935		for (i = 64 + 8; i <= 96; i += 8)
 936			size_index[size_index_elem(i)] = 7;
 937
 938	}
 939
 940	if (KMALLOC_MIN_SIZE >= 128) {
 941		/*
 942		 * The 192 byte sized cache is not used if the alignment
 943		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 944		 * instead.
 945		 */
 946		for (i = 128 + 8; i <= 192; i += 8)
 947			size_index[size_index_elem(i)] = 8;
 948	}
 949}
 950
 951static void __init new_kmalloc_cache(int idx, unsigned long flags)
 
 952{
 953	kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
 954					kmalloc_info[idx].size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 955}
 956
 957/*
 958 * Create the kmalloc array. Some of the regular kmalloc arrays
 959 * may already have been created because they were needed to
 960 * enable allocations for slab creation.
 961 */
 962void __init create_kmalloc_caches(unsigned long flags)
 963{
 964	int i;
 
 965
 966	for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 967		if (!kmalloc_caches[i])
 968			new_kmalloc_cache(i, flags);
 
 
 
 
 969
 970		/*
 971		 * Caches that are not of the two-to-the-power-of size.
 972		 * These have to be created immediately after the
 973		 * earlier power of two caches
 974		 */
 975		if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
 976			new_kmalloc_cache(1, flags);
 977		if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
 978			new_kmalloc_cache(2, flags);
 
 
 
 979	}
 980
 981	/* Kmalloc array is now usable */
 982	slab_state = UP;
 
 983
 984#ifdef CONFIG_ZONE_DMA
 985	for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
 986		struct kmem_cache *s = kmalloc_caches[i];
 987
 988		if (s) {
 989			int size = kmalloc_size(i);
 990			char *n = kasprintf(GFP_NOWAIT,
 991				 "dma-kmalloc-%d", size);
 992
 993			BUG_ON(!n);
 994			kmalloc_dma_caches[i] = create_kmalloc_cache(n,
 995				size, SLAB_CACHE_DMA | flags);
 996		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 997	}
 
 
 
 998#endif
 
 
 999}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000#endif /* !CONFIG_SLOB */
1001
 
 
 
 
 
 
 
 
 
 
 
 
1002/*
1003 * To avoid unnecessary overhead, we pass through large allocation requests
1004 * directly to the page allocator. We use __GFP_COMP, because we will need to
1005 * know the allocation order to free the pages properly in kfree.
1006 */
1007void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
 
1008{
1009	void *ret;
1010	struct page *page;
 
 
 
 
 
1011
1012	flags |= __GFP_COMP;
1013	page = alloc_kmem_pages(flags, order);
1014	ret = page ? page_address(page) : NULL;
1015	kmemleak_alloc(ret, size, 1, flags);
1016	kasan_kmalloc_large(ret, size, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1017	return ret;
1018}
1019EXPORT_SYMBOL(kmalloc_order);
1020
1021#ifdef CONFIG_TRACING
1022void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1023{
1024	void *ret = kmalloc_order(size, flags, order);
1025	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
 
 
1026	return ret;
1027}
1028EXPORT_SYMBOL(kmalloc_order_trace);
1029#endif
 
 
 
 
 
 
 
 
 
 
1030
1031#ifdef CONFIG_SLABINFO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1032
 
1033#ifdef CONFIG_SLAB
1034#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1035#else
1036#define SLABINFO_RIGHTS S_IRUSR
1037#endif
1038
1039static void print_slabinfo_header(struct seq_file *m)
1040{
1041	/*
1042	 * Output format version, so at least we can change it
1043	 * without _too_ many complaints.
1044	 */
1045#ifdef CONFIG_DEBUG_SLAB
1046	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1047#else
1048	seq_puts(m, "slabinfo - version: 2.1\n");
1049#endif
1050	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1051	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1052	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1053#ifdef CONFIG_DEBUG_SLAB
1054	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1055	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1056#endif
1057	seq_putc(m, '\n');
1058}
1059
1060void *slab_start(struct seq_file *m, loff_t *pos)
1061{
1062	mutex_lock(&slab_mutex);
1063	return seq_list_start(&slab_caches, *pos);
1064}
1065
1066void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1067{
1068	return seq_list_next(p, &slab_caches, pos);
1069}
1070
1071void slab_stop(struct seq_file *m, void *p)
1072{
1073	mutex_unlock(&slab_mutex);
1074}
1075
1076static void
1077memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1078{
1079	struct kmem_cache *c;
1080	struct slabinfo sinfo;
1081
1082	if (!is_root_cache(s))
1083		return;
1084
1085	for_each_memcg_cache(c, s) {
1086		memset(&sinfo, 0, sizeof(sinfo));
1087		get_slabinfo(c, &sinfo);
1088
1089		info->active_slabs += sinfo.active_slabs;
1090		info->num_slabs += sinfo.num_slabs;
1091		info->shared_avail += sinfo.shared_avail;
1092		info->active_objs += sinfo.active_objs;
1093		info->num_objs += sinfo.num_objs;
1094	}
1095}
1096
1097static void cache_show(struct kmem_cache *s, struct seq_file *m)
1098{
1099	struct slabinfo sinfo;
1100
1101	memset(&sinfo, 0, sizeof(sinfo));
1102	get_slabinfo(s, &sinfo);
1103
1104	memcg_accumulate_slabinfo(s, &sinfo);
1105
1106	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1107		   cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
1108		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1109
1110	seq_printf(m, " : tunables %4u %4u %4u",
1111		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1112	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1113		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1114	slabinfo_show_stats(m, s);
1115	seq_putc(m, '\n');
1116}
1117
1118static int slab_show(struct seq_file *m, void *p)
1119{
1120	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1121
1122	if (p == slab_caches.next)
1123		print_slabinfo_header(m);
1124	if (is_root_cache(s))
1125		cache_show(s, m);
1126	return 0;
1127}
1128
1129#if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1130int memcg_slab_show(struct seq_file *m, void *p)
1131{
1132	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1133	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1134
1135	if (p == slab_caches.next)
1136		print_slabinfo_header(m);
1137	if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
1138		cache_show(s, m);
1139	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140}
1141#endif
1142
1143/*
1144 * slabinfo_op - iterator that generates /proc/slabinfo
1145 *
1146 * Output layout:
1147 * cache-name
1148 * num-active-objs
1149 * total-objs
1150 * object size
1151 * num-active-slabs
1152 * total-slabs
1153 * num-pages-per-slab
1154 * + further values on SMP and with statistics enabled
1155 */
1156static const struct seq_operations slabinfo_op = {
1157	.start = slab_start,
1158	.next = slab_next,
1159	.stop = slab_stop,
1160	.show = slab_show,
1161};
1162
1163static int slabinfo_open(struct inode *inode, struct file *file)
1164{
1165	return seq_open(file, &slabinfo_op);
1166}
1167
1168static const struct file_operations proc_slabinfo_operations = {
1169	.open		= slabinfo_open,
1170	.read		= seq_read,
1171	.write          = slabinfo_write,
1172	.llseek		= seq_lseek,
1173	.release	= seq_release,
 
1174};
1175
1176static int __init slab_proc_init(void)
1177{
1178	proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1179						&proc_slabinfo_operations);
1180	return 0;
1181}
1182module_init(slab_proc_init);
1183#endif /* CONFIG_SLABINFO */
1184
1185static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1186					   gfp_t flags)
 
 
1187{
1188	void *ret;
1189	size_t ks = 0;
1190
1191	if (p)
 
 
 
1192		ks = ksize(p);
 
 
1193
 
1194	if (ks >= new_size) {
1195		kasan_krealloc((void *)p, new_size, flags);
1196		return (void *)p;
1197	}
1198
1199	ret = kmalloc_track_caller(new_size, flags);
1200	if (ret && p)
1201		memcpy(ret, p, ks);
 
 
 
 
1202
1203	return ret;
1204}
1205
1206/**
1207 * __krealloc - like krealloc() but don't free @p.
1208 * @p: object to reallocate memory for.
1209 * @new_size: how many bytes of memory are required.
1210 * @flags: the type of memory to allocate.
1211 *
1212 * This function is like krealloc() except it never frees the originally
1213 * allocated buffer. Use this if you don't want to free the buffer immediately
1214 * like, for example, with RCU.
1215 */
1216void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1217{
1218	if (unlikely(!new_size))
1219		return ZERO_SIZE_PTR;
1220
1221	return __do_krealloc(p, new_size, flags);
1222
1223}
1224EXPORT_SYMBOL(__krealloc);
1225
1226/**
1227 * krealloc - reallocate memory. The contents will remain unchanged.
1228 * @p: object to reallocate memory for.
1229 * @new_size: how many bytes of memory are required.
1230 * @flags: the type of memory to allocate.
1231 *
1232 * The contents of the object pointed to are preserved up to the
1233 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
1234 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
1235 * %NULL pointer, the object pointed to is freed.
 
 
1236 */
1237void *krealloc(const void *p, size_t new_size, gfp_t flags)
1238{
1239	void *ret;
1240
1241	if (unlikely(!new_size)) {
1242		kfree(p);
1243		return ZERO_SIZE_PTR;
1244	}
1245
1246	ret = __do_krealloc(p, new_size, flags);
1247	if (ret && p != ret)
1248		kfree(p);
1249
1250	return ret;
1251}
1252EXPORT_SYMBOL(krealloc);
1253
1254/**
1255 * kzfree - like kfree but zero memory
1256 * @p: object to free memory of
1257 *
1258 * The memory of the object @p points to is zeroed before freed.
1259 * If @p is %NULL, kzfree() does nothing.
1260 *
1261 * Note: this function zeroes the whole allocated buffer which can be a good
1262 * deal bigger than the requested buffer size passed to kmalloc(). So be
1263 * careful when using this function in performance sensitive code.
1264 */
1265void kzfree(const void *p)
1266{
1267	size_t ks;
1268	void *mem = (void *)p;
1269
1270	if (unlikely(ZERO_OR_NULL_PTR(mem)))
1271		return;
1272	ks = ksize(mem);
1273	memset(mem, 0, ks);
 
 
 
1274	kfree(mem);
1275}
1276EXPORT_SYMBOL(kzfree);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277
1278/* Tracepoints definitions. */
1279EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1280EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1281EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1282EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1283EXPORT_TRACEPOINT_SYMBOL(kfree);
1284EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Slab allocator functions that are independent of the allocator strategy
   4 *
   5 * (C) 2012 Christoph Lameter <cl@linux.com>
   6 */
   7#include <linux/slab.h>
   8
   9#include <linux/mm.h>
  10#include <linux/poison.h>
  11#include <linux/interrupt.h>
  12#include <linux/memory.h>
  13#include <linux/cache.h>
  14#include <linux/compiler.h>
  15#include <linux/kfence.h>
  16#include <linux/module.h>
  17#include <linux/cpu.h>
  18#include <linux/uaccess.h>
  19#include <linux/seq_file.h>
  20#include <linux/proc_fs.h>
  21#include <linux/debugfs.h>
  22#include <linux/kasan.h>
  23#include <asm/cacheflush.h>
  24#include <asm/tlbflush.h>
  25#include <asm/page.h>
  26#include <linux/memcontrol.h>
  27#include <linux/stackdepot.h>
  28
  29#include "internal.h"
  30#include "slab.h"
  31
  32#define CREATE_TRACE_POINTS
  33#include <trace/events/kmem.h>
  34
 
 
  35enum slab_state slab_state;
  36LIST_HEAD(slab_caches);
  37DEFINE_MUTEX(slab_mutex);
  38struct kmem_cache *kmem_cache;
  39
  40static LIST_HEAD(slab_caches_to_rcu_destroy);
  41static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
  42static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
  43		    slab_caches_to_rcu_destroy_workfn);
  44
  45/*
  46 * Set of flags that will prevent slab merging
  47 */
  48#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  49		SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
  50		SLAB_FAILSLAB | kasan_never_merge())
  51
  52#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
  53			 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
  54
  55/*
  56 * Merge control. If this is set then no merging of slab caches will occur.
 
  57 */
  58static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
  59
  60static int __init setup_slab_nomerge(char *str)
  61{
  62	slab_nomerge = true;
  63	return 1;
  64}
  65
  66static int __init setup_slab_merge(char *str)
  67{
  68	slab_nomerge = false;
  69	return 1;
  70}
  71
  72#ifdef CONFIG_SLUB
  73__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
  74__setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
  75#endif
  76
  77__setup("slab_nomerge", setup_slab_nomerge);
  78__setup("slab_merge", setup_slab_merge);
  79
  80/*
  81 * Determine the size of a slab object
  82 */
  83unsigned int kmem_cache_size(struct kmem_cache *s)
  84{
  85	return s->object_size;
  86}
  87EXPORT_SYMBOL(kmem_cache_size);
  88
  89#ifdef CONFIG_DEBUG_VM
  90static int kmem_cache_sanity_check(const char *name, unsigned int size)
  91{
  92	if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
 
 
 
  93		pr_err("kmem_cache_create(%s) integrity check failed\n", name);
  94		return -EINVAL;
  95	}
  96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
  98	return 0;
  99}
 100#else
 101static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
 102{
 103	return 0;
 104}
 105#endif
 106
 107/*
 108 * Figure out what the alignment of the objects will be given a set of
 109 * flags, a user specified alignment and the size of the objects.
 110 */
 111static unsigned int calculate_alignment(slab_flags_t flags,
 112		unsigned int align, unsigned int size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113{
 114	/*
 115	 * If the user wants hardware cache aligned objects then follow that
 116	 * suggestion if the object is sufficiently large.
 117	 *
 118	 * The hardware cache alignment cannot override the specified
 119	 * alignment though. If that is greater then use it.
 120	 */
 121	if (flags & SLAB_HWCACHE_ALIGN) {
 122		unsigned int ralign;
 123
 124		ralign = cache_line_size();
 125		while (size <= ralign / 2)
 126			ralign /= 2;
 127		align = max(align, ralign);
 
 128	}
 129
 130	align = max(align, arch_slab_minalign());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131
 132	return ALIGN(align, sizeof(void *));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133}
 
 134
 135/*
 136 * Find a mergeable slab cache
 137 */
 138int slab_unmergeable(struct kmem_cache *s)
 139{
 140	if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
 141		return 1;
 142
 143	if (s->ctor)
 144		return 1;
 145
 146#ifdef CONFIG_HARDENED_USERCOPY
 147	if (s->usersize)
 148		return 1;
 149#endif
 150
 151	/*
 152	 * We may have set a slab to be unmergeable during bootstrap.
 153	 */
 154	if (s->refcount < 0)
 155		return 1;
 156
 157	return 0;
 158}
 159
 160struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
 161		slab_flags_t flags, const char *name, void (*ctor)(void *))
 162{
 163	struct kmem_cache *s;
 164
 165	if (slab_nomerge)
 166		return NULL;
 167
 168	if (ctor)
 169		return NULL;
 170
 171	size = ALIGN(size, sizeof(void *));
 172	align = calculate_alignment(flags, align, size);
 173	size = ALIGN(size, align);
 174	flags = kmem_cache_flags(size, flags, name);
 175
 176	if (flags & SLAB_NEVER_MERGE)
 177		return NULL;
 178
 179	list_for_each_entry_reverse(s, &slab_caches, list) {
 180		if (slab_unmergeable(s))
 181			continue;
 182
 183		if (size > s->size)
 184			continue;
 185
 186		if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
 187			continue;
 188		/*
 189		 * Check if alignment is compatible.
 190		 * Courtesy of Adrian Drzewiecki
 191		 */
 192		if ((s->size & ~(align - 1)) != s->size)
 193			continue;
 194
 195		if (s->size - size >= sizeof(void *))
 196			continue;
 197
 198		if (IS_ENABLED(CONFIG_SLAB) && align &&
 199			(align > s->align || s->align % align))
 200			continue;
 201
 202		return s;
 203	}
 204	return NULL;
 205}
 206
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207static struct kmem_cache *create_cache(const char *name,
 208		unsigned int object_size, unsigned int align,
 209		slab_flags_t flags, unsigned int useroffset,
 210		unsigned int usersize, void (*ctor)(void *),
 211		struct kmem_cache *root_cache)
 212{
 213	struct kmem_cache *s;
 214	int err;
 215
 216	if (WARN_ON(useroffset + usersize > object_size))
 217		useroffset = usersize = 0;
 218
 219	err = -ENOMEM;
 220	s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
 221	if (!s)
 222		goto out;
 223
 224	s->name = name;
 225	s->size = s->object_size = object_size;
 
 226	s->align = align;
 227	s->ctor = ctor;
 228#ifdef CONFIG_HARDENED_USERCOPY
 229	s->useroffset = useroffset;
 230	s->usersize = usersize;
 231#endif
 232
 233	err = __kmem_cache_create(s, flags);
 234	if (err)
 235		goto out_free_cache;
 236
 237	s->refcount = 1;
 238	list_add(&s->list, &slab_caches);
 239out:
 240	if (err)
 241		return ERR_PTR(err);
 242	return s;
 243
 244out_free_cache:
 
 245	kmem_cache_free(kmem_cache, s);
 246	goto out;
 247}
 248
 249/**
 250 * kmem_cache_create_usercopy - Create a cache with a region suitable
 251 * for copying to userspace
 252 * @name: A string which is used in /proc/slabinfo to identify this cache.
 253 * @size: The size of objects to be created in this cache.
 254 * @align: The required alignment for the objects.
 255 * @flags: SLAB flags
 256 * @useroffset: Usercopy region offset
 257 * @usersize: Usercopy region size
 258 * @ctor: A constructor for the objects.
 259 *
 
 260 * Cannot be called within a interrupt, but can be interrupted.
 261 * The @ctor is run when new pages are allocated by the cache.
 262 *
 263 * The flags are
 264 *
 265 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 266 * to catch references to uninitialised memory.
 267 *
 268 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 269 * for buffer overruns.
 270 *
 271 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 272 * cacheline.  This can be beneficial if you're counting cycles as closely
 273 * as davem.
 274 *
 275 * Return: a pointer to the cache on success, NULL on failure.
 276 */
 277struct kmem_cache *
 278kmem_cache_create_usercopy(const char *name,
 279		  unsigned int size, unsigned int align,
 280		  slab_flags_t flags,
 281		  unsigned int useroffset, unsigned int usersize,
 282		  void (*ctor)(void *))
 283{
 284	struct kmem_cache *s = NULL;
 285	const char *cache_name;
 286	int err;
 287
 288#ifdef CONFIG_SLUB_DEBUG
 289	/*
 290	 * If no slub_debug was enabled globally, the static key is not yet
 291	 * enabled by setup_slub_debug(). Enable it if the cache is being
 292	 * created with any of the debugging flags passed explicitly.
 293	 * It's also possible that this is the first cache created with
 294	 * SLAB_STORE_USER and we should init stack_depot for it.
 295	 */
 296	if (flags & SLAB_DEBUG_FLAGS)
 297		static_branch_enable(&slub_debug_enabled);
 298	if (flags & SLAB_STORE_USER)
 299		stack_depot_init();
 300#endif
 301
 302	mutex_lock(&slab_mutex);
 303
 304	err = kmem_cache_sanity_check(name, size);
 305	if (err) {
 306		goto out_unlock;
 307	}
 308
 309	/* Refuse requests with allocator specific flags */
 310	if (flags & ~SLAB_FLAGS_PERMITTED) {
 311		err = -EINVAL;
 312		goto out_unlock;
 313	}
 314
 315	/*
 316	 * Some allocators will constraint the set of valid flags to a subset
 317	 * of all flags. We expect them to define CACHE_CREATE_MASK in this
 318	 * case, and we'll just provide them with a sanitized version of the
 319	 * passed flags.
 320	 */
 321	flags &= CACHE_CREATE_MASK;
 322
 323	/* Fail closed on bad usersize of useroffset values. */
 324	if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) ||
 325	    WARN_ON(!usersize && useroffset) ||
 326	    WARN_ON(size < usersize || size - usersize < useroffset))
 327		usersize = useroffset = 0;
 328
 329	if (!usersize)
 330		s = __kmem_cache_alias(name, size, align, flags, ctor);
 331	if (s)
 332		goto out_unlock;
 333
 334	cache_name = kstrdup_const(name, GFP_KERNEL);
 335	if (!cache_name) {
 336		err = -ENOMEM;
 337		goto out_unlock;
 338	}
 339
 340	s = create_cache(cache_name, size,
 341			 calculate_alignment(flags, align, size),
 342			 flags, useroffset, usersize, ctor, NULL);
 343	if (IS_ERR(s)) {
 344		err = PTR_ERR(s);
 345		kfree_const(cache_name);
 346	}
 347
 348out_unlock:
 349	mutex_unlock(&slab_mutex);
 350
 
 
 
 
 351	if (err) {
 352		if (flags & SLAB_PANIC)
 353			panic("%s: Failed to create slab '%s'. Error %d\n",
 354				__func__, name, err);
 355		else {
 356			pr_warn("%s(%s) failed with error %d\n",
 357				__func__, name, err);
 358			dump_stack();
 359		}
 360		return NULL;
 361	}
 362	return s;
 363}
 364EXPORT_SYMBOL(kmem_cache_create_usercopy);
 365
 366/**
 367 * kmem_cache_create - Create a cache.
 368 * @name: A string which is used in /proc/slabinfo to identify this cache.
 369 * @size: The size of objects to be created in this cache.
 370 * @align: The required alignment for the objects.
 371 * @flags: SLAB flags
 372 * @ctor: A constructor for the objects.
 373 *
 374 * Cannot be called within a interrupt, but can be interrupted.
 375 * The @ctor is run when new pages are allocated by the cache.
 376 *
 377 * The flags are
 378 *
 379 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 380 * to catch references to uninitialised memory.
 381 *
 382 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
 383 * for buffer overruns.
 384 *
 385 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 386 * cacheline.  This can be beneficial if you're counting cycles as closely
 387 * as davem.
 388 *
 389 * Return: a pointer to the cache on success, NULL on failure.
 390 */
 391struct kmem_cache *
 392kmem_cache_create(const char *name, unsigned int size, unsigned int align,
 393		slab_flags_t flags, void (*ctor)(void *))
 394{
 395	return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
 396					  ctor);
 
 
 
 
 
 
 397}
 398EXPORT_SYMBOL(kmem_cache_create);
 399
 
 
 
 
 
 
 
 
 400#ifdef SLAB_SUPPORTS_SYSFS
 
 
 
 
 
 
 
 
 401/*
 402 * For a given kmem_cache, kmem_cache_destroy() should only be called
 403 * once or there will be a use-after-free problem. The actual deletion
 404 * and release of the kobject does not need slab_mutex or cpu_hotplug_lock
 405 * protection. So they are now done without holding those locks.
 406 *
 407 * Note that there will be a slight delay in the deletion of sysfs files
 408 * if kmem_cache_release() is called indrectly from a work function.
 409 */
 410static void kmem_cache_release(struct kmem_cache *s)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411{
 412	sysfs_slab_unlink(s);
 413	sysfs_slab_release(s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414}
 415#else
 416static void kmem_cache_release(struct kmem_cache *s)
 
 417{
 418	slab_kmem_cache_release(s);
 
 
 
 
 
 
 419}
 420#endif
 421
 422static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
 423{
 424	LIST_HEAD(to_destroy);
 
 425	struct kmem_cache *s, *s2;
 426
 427	/*
 428	 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
 429	 * @slab_caches_to_rcu_destroy list.  The slab pages are freed
 430	 * through RCU and the associated kmem_cache are dereferenced
 431	 * while freeing the pages, so the kmem_caches should be freed only
 432	 * after the pending RCU operations are finished.  As rcu_barrier()
 433	 * is a pretty slow operation, we batch all pending destructions
 434	 * asynchronously.
 435	 */
 436	mutex_lock(&slab_mutex);
 437	list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
 
 
 
 
 
 
 
 
 438	mutex_unlock(&slab_mutex);
 439
 440	if (list_empty(&to_destroy))
 441		return;
 442
 443	rcu_barrier();
 444
 445	list_for_each_entry_safe(s, s2, &to_destroy, list) {
 446		debugfs_slab_release(s);
 447		kfence_shutdown_cache(s);
 448		kmem_cache_release(s);
 449	}
 450}
 451
 452static int shutdown_cache(struct kmem_cache *s)
 
 453{
 454	/* free asan quarantined objects */
 455	kasan_cache_shutdown(s);
 
 
 
 
 456
 457	if (__kmem_cache_shutdown(s) != 0)
 458		return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459
 460	list_del(&s->list);
 
 
 
 
 
 
 461
 462	if (s->flags & SLAB_TYPESAFE_BY_RCU) {
 463		list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
 464		schedule_work(&slab_caches_to_rcu_destroy_work);
 465	} else {
 466		kfence_shutdown_cache(s);
 467		debugfs_slab_release(s);
 468	}
 469
 
 
 
 
 
 
 470	return 0;
 471}
 
 
 
 
 
 
 
 472
 473void slab_kmem_cache_release(struct kmem_cache *s)
 474{
 475	__kmem_cache_release(s);
 
 476	kfree_const(s->name);
 477	kmem_cache_free(kmem_cache, s);
 478}
 479
 480void kmem_cache_destroy(struct kmem_cache *s)
 481{
 482	int refcnt;
 483	bool rcu_set;
 
 484
 485	if (unlikely(!s) || !kasan_check_byte(s))
 486		return;
 487
 488	cpus_read_lock();
 
 
 489	mutex_lock(&slab_mutex);
 490
 491	rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU;
 
 
 492
 493	refcnt = --s->refcount;
 494	if (refcnt)
 495		goto out_unlock;
 496
 497	WARN(shutdown_cache(s),
 498	     "%s %s: Slab cache still has objects when called from %pS",
 499	     __func__, s->name, (void *)_RET_IP_);
 
 
 500out_unlock:
 501	mutex_unlock(&slab_mutex);
 502	cpus_read_unlock();
 503	if (!refcnt && !rcu_set)
 504		kmem_cache_release(s);
 
 
 505}
 506EXPORT_SYMBOL(kmem_cache_destroy);
 507
 508/**
 509 * kmem_cache_shrink - Shrink a cache.
 510 * @cachep: The cache to shrink.
 511 *
 512 * Releases as many slabs as possible for a cache.
 513 * To help debugging, a zero exit status indicates all slabs were released.
 514 *
 515 * Return: %0 if all slabs were released, non-zero otherwise
 516 */
 517int kmem_cache_shrink(struct kmem_cache *cachep)
 518{
 519	kasan_cache_shrink(cachep);
 520
 521	return __kmem_cache_shrink(cachep);
 
 
 
 
 
 522}
 523EXPORT_SYMBOL(kmem_cache_shrink);
 524
 525bool slab_is_available(void)
 526{
 527	return slab_state >= UP;
 528}
 529
 530#ifdef CONFIG_PRINTK
 531/**
 532 * kmem_valid_obj - does the pointer reference a valid slab object?
 533 * @object: pointer to query.
 534 *
 535 * Return: %true if the pointer is to a not-yet-freed object from
 536 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
 537 * is to an already-freed object, and %false otherwise.
 538 */
 539bool kmem_valid_obj(void *object)
 540{
 541	struct folio *folio;
 542
 543	/* Some arches consider ZERO_SIZE_PTR to be a valid address. */
 544	if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
 545		return false;
 546	folio = virt_to_folio(object);
 547	return folio_test_slab(folio);
 548}
 549EXPORT_SYMBOL_GPL(kmem_valid_obj);
 550
 551static void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
 552{
 553	if (__kfence_obj_info(kpp, object, slab))
 554		return;
 555	__kmem_obj_info(kpp, object, slab);
 556}
 557
 558/**
 559 * kmem_dump_obj - Print available slab provenance information
 560 * @object: slab object for which to find provenance information.
 561 *
 562 * This function uses pr_cont(), so that the caller is expected to have
 563 * printed out whatever preamble is appropriate.  The provenance information
 564 * depends on the type of object and on how much debugging is enabled.
 565 * For a slab-cache object, the fact that it is a slab object is printed,
 566 * and, if available, the slab name, return address, and stack trace from
 567 * the allocation and last free path of that object.
 568 *
 569 * This function will splat if passed a pointer to a non-slab object.
 570 * If you are not sure what type of object you have, you should instead
 571 * use mem_dump_obj().
 572 */
 573void kmem_dump_obj(void *object)
 574{
 575	char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
 576	int i;
 577	struct slab *slab;
 578	unsigned long ptroffset;
 579	struct kmem_obj_info kp = { };
 580
 581	if (WARN_ON_ONCE(!virt_addr_valid(object)))
 582		return;
 583	slab = virt_to_slab(object);
 584	if (WARN_ON_ONCE(!slab)) {
 585		pr_cont(" non-slab memory.\n");
 586		return;
 587	}
 588	kmem_obj_info(&kp, object, slab);
 589	if (kp.kp_slab_cache)
 590		pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
 591	else
 592		pr_cont(" slab%s", cp);
 593	if (is_kfence_address(object))
 594		pr_cont(" (kfence)");
 595	if (kp.kp_objp)
 596		pr_cont(" start %px", kp.kp_objp);
 597	if (kp.kp_data_offset)
 598		pr_cont(" data offset %lu", kp.kp_data_offset);
 599	if (kp.kp_objp) {
 600		ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
 601		pr_cont(" pointer offset %lu", ptroffset);
 602	}
 603	if (kp.kp_slab_cache && kp.kp_slab_cache->object_size)
 604		pr_cont(" size %u", kp.kp_slab_cache->object_size);
 605	if (kp.kp_ret)
 606		pr_cont(" allocated at %pS\n", kp.kp_ret);
 607	else
 608		pr_cont("\n");
 609	for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
 610		if (!kp.kp_stack[i])
 611			break;
 612		pr_info("    %pS\n", kp.kp_stack[i]);
 613	}
 614
 615	if (kp.kp_free_stack[0])
 616		pr_cont(" Free path:\n");
 617
 618	for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
 619		if (!kp.kp_free_stack[i])
 620			break;
 621		pr_info("    %pS\n", kp.kp_free_stack[i]);
 622	}
 623
 624}
 625EXPORT_SYMBOL_GPL(kmem_dump_obj);
 626#endif
 627
 628#ifndef CONFIG_SLOB
 629/* Create a cache during boot when no slab services are available yet */
 630void __init create_boot_cache(struct kmem_cache *s, const char *name,
 631		unsigned int size, slab_flags_t flags,
 632		unsigned int useroffset, unsigned int usersize)
 633{
 634	int err;
 635	unsigned int align = ARCH_KMALLOC_MINALIGN;
 636
 637	s->name = name;
 638	s->size = s->object_size = size;
 
 639
 640	/*
 641	 * For power of two sizes, guarantee natural alignment for kmalloc
 642	 * caches, regardless of SL*B debugging options.
 643	 */
 644	if (is_power_of_2(size))
 645		align = max(align, size);
 646	s->align = calculate_alignment(flags, align, size);
 647
 648#ifdef CONFIG_HARDENED_USERCOPY
 649	s->useroffset = useroffset;
 650	s->usersize = usersize;
 651#endif
 652
 653	err = __kmem_cache_create(s, flags);
 654
 655	if (err)
 656		panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
 657					name, size, err);
 658
 659	s->refcount = -1;	/* Exempt from merging for now */
 660}
 661
 662struct kmem_cache *__init create_kmalloc_cache(const char *name,
 663		unsigned int size, slab_flags_t flags,
 664		unsigned int useroffset, unsigned int usersize)
 665{
 666	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
 667
 668	if (!s)
 669		panic("Out of memory when creating slab %s\n", name);
 670
 671	create_boot_cache(s, name, size, flags | SLAB_KMALLOC, useroffset,
 672								usersize);
 673	kasan_cache_create_kmalloc(s);
 674	list_add(&s->list, &slab_caches);
 675	s->refcount = 1;
 676	return s;
 677}
 678
 679struct kmem_cache *
 680kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
 681{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
 682EXPORT_SYMBOL(kmalloc_caches);
 683
 
 
 
 
 
 684/*
 685 * Conversion table for small slabs sizes / 8 to the index in the
 686 * kmalloc array. This is necessary for slabs < 192 since we have non power
 687 * of two cache sizes there. The size of larger slabs can be determined using
 688 * fls.
 689 */
 690static u8 size_index[24] __ro_after_init = {
 691	3,	/* 8 */
 692	4,	/* 16 */
 693	5,	/* 24 */
 694	5,	/* 32 */
 695	6,	/* 40 */
 696	6,	/* 48 */
 697	6,	/* 56 */
 698	6,	/* 64 */
 699	1,	/* 72 */
 700	1,	/* 80 */
 701	1,	/* 88 */
 702	1,	/* 96 */
 703	7,	/* 104 */
 704	7,	/* 112 */
 705	7,	/* 120 */
 706	7,	/* 128 */
 707	2,	/* 136 */
 708	2,	/* 144 */
 709	2,	/* 152 */
 710	2,	/* 160 */
 711	2,	/* 168 */
 712	2,	/* 176 */
 713	2,	/* 184 */
 714	2	/* 192 */
 715};
 716
 717static inline unsigned int size_index_elem(unsigned int bytes)
 718{
 719	return (bytes - 1) / 8;
 720}
 721
 722/*
 723 * Find the kmem_cache structure that serves a given size of
 724 * allocation
 725 */
 726struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
 727{
 728	unsigned int index;
 
 
 
 
 
 729
 730	if (size <= 192) {
 731		if (!size)
 732			return ZERO_SIZE_PTR;
 733
 734		index = size_index[size_index_elem(size)];
 735	} else {
 736		if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
 737			return NULL;
 738		index = fls(size - 1);
 739	}
 740
 741	return kmalloc_caches[kmalloc_type(flags)][index];
 742}
 743
 744size_t kmalloc_size_roundup(size_t size)
 745{
 746	struct kmem_cache *c;
 747
 748	/* Short-circuit the 0 size case. */
 749	if (unlikely(size == 0))
 750		return 0;
 751	/* Short-circuit saturated "too-large" case. */
 752	if (unlikely(size == SIZE_MAX))
 753		return SIZE_MAX;
 754	/* Above the smaller buckets, size is a multiple of page size. */
 755	if (size > KMALLOC_MAX_CACHE_SIZE)
 756		return PAGE_SIZE << get_order(size);
 757
 758	/* The flags don't matter since size_index is common to all. */
 759	c = kmalloc_slab(size, GFP_KERNEL);
 760	return c ? c->object_size : 0;
 761}
 762EXPORT_SYMBOL(kmalloc_size_roundup);
 763
 764#ifdef CONFIG_ZONE_DMA
 765#define KMALLOC_DMA_NAME(sz)	.name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
 766#else
 767#define KMALLOC_DMA_NAME(sz)
 768#endif
 769
 770#ifdef CONFIG_MEMCG_KMEM
 771#define KMALLOC_CGROUP_NAME(sz)	.name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
 772#else
 773#define KMALLOC_CGROUP_NAME(sz)
 774#endif
 775
 776#ifndef CONFIG_SLUB_TINY
 777#define KMALLOC_RCL_NAME(sz)	.name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz,
 778#else
 779#define KMALLOC_RCL_NAME(sz)
 780#endif
 781
 782#define INIT_KMALLOC_INFO(__size, __short_size)			\
 783{								\
 784	.name[KMALLOC_NORMAL]  = "kmalloc-" #__short_size,	\
 785	KMALLOC_RCL_NAME(__short_size)				\
 786	KMALLOC_CGROUP_NAME(__short_size)			\
 787	KMALLOC_DMA_NAME(__short_size)				\
 788	.size = __size,						\
 789}
 790
 791/*
 792 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
 793 * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is
 794 * kmalloc-2M.
 795 */
 796const struct kmalloc_info_struct kmalloc_info[] __initconst = {
 797	INIT_KMALLOC_INFO(0, 0),
 798	INIT_KMALLOC_INFO(96, 96),
 799	INIT_KMALLOC_INFO(192, 192),
 800	INIT_KMALLOC_INFO(8, 8),
 801	INIT_KMALLOC_INFO(16, 16),
 802	INIT_KMALLOC_INFO(32, 32),
 803	INIT_KMALLOC_INFO(64, 64),
 804	INIT_KMALLOC_INFO(128, 128),
 805	INIT_KMALLOC_INFO(256, 256),
 806	INIT_KMALLOC_INFO(512, 512),
 807	INIT_KMALLOC_INFO(1024, 1k),
 808	INIT_KMALLOC_INFO(2048, 2k),
 809	INIT_KMALLOC_INFO(4096, 4k),
 810	INIT_KMALLOC_INFO(8192, 8k),
 811	INIT_KMALLOC_INFO(16384, 16k),
 812	INIT_KMALLOC_INFO(32768, 32k),
 813	INIT_KMALLOC_INFO(65536, 64k),
 814	INIT_KMALLOC_INFO(131072, 128k),
 815	INIT_KMALLOC_INFO(262144, 256k),
 816	INIT_KMALLOC_INFO(524288, 512k),
 817	INIT_KMALLOC_INFO(1048576, 1M),
 818	INIT_KMALLOC_INFO(2097152, 2M)
 819};
 820
 821/*
 822 * Patch up the size_index table if we have strange large alignment
 823 * requirements for the kmalloc array. This is only the case for
 824 * MIPS it seems. The standard arches will not generate any code here.
 825 *
 826 * Largest permitted alignment is 256 bytes due to the way we
 827 * handle the index determination for the smaller caches.
 828 *
 829 * Make sure that nothing crazy happens if someone starts tinkering
 830 * around with ARCH_KMALLOC_MINALIGN
 831 */
 832void __init setup_kmalloc_cache_index_table(void)
 833{
 834	unsigned int i;
 835
 836	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
 837		!is_power_of_2(KMALLOC_MIN_SIZE));
 838
 839	for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
 840		unsigned int elem = size_index_elem(i);
 841
 842		if (elem >= ARRAY_SIZE(size_index))
 843			break;
 844		size_index[elem] = KMALLOC_SHIFT_LOW;
 845	}
 846
 847	if (KMALLOC_MIN_SIZE >= 64) {
 848		/*
 849		 * The 96 byte sized cache is not used if the alignment
 850		 * is 64 byte.
 851		 */
 852		for (i = 64 + 8; i <= 96; i += 8)
 853			size_index[size_index_elem(i)] = 7;
 854
 855	}
 856
 857	if (KMALLOC_MIN_SIZE >= 128) {
 858		/*
 859		 * The 192 byte sized cache is not used if the alignment
 860		 * is 128 byte. Redirect kmalloc to use the 256 byte cache
 861		 * instead.
 862		 */
 863		for (i = 128 + 8; i <= 192; i += 8)
 864			size_index[size_index_elem(i)] = 8;
 865	}
 866}
 867
 868static void __init
 869new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
 870{
 871	if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) {
 872		flags |= SLAB_RECLAIM_ACCOUNT;
 873	} else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
 874		if (mem_cgroup_kmem_disabled()) {
 875			kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
 876			return;
 877		}
 878		flags |= SLAB_ACCOUNT;
 879	} else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) {
 880		flags |= SLAB_CACHE_DMA;
 881	}
 882
 883	kmalloc_caches[type][idx] = create_kmalloc_cache(
 884					kmalloc_info[idx].name[type],
 885					kmalloc_info[idx].size, flags, 0,
 886					kmalloc_info[idx].size);
 887
 888	/*
 889	 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
 890	 * KMALLOC_NORMAL caches.
 891	 */
 892	if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
 893		kmalloc_caches[type][idx]->refcount = -1;
 894}
 895
 896/*
 897 * Create the kmalloc array. Some of the regular kmalloc arrays
 898 * may already have been created because they were needed to
 899 * enable allocations for slab creation.
 900 */
 901void __init create_kmalloc_caches(slab_flags_t flags)
 902{
 903	int i;
 904	enum kmalloc_cache_type type;
 905
 906	/*
 907	 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
 908	 */
 909	for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) {
 910		for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
 911			if (!kmalloc_caches[type][i])
 912				new_kmalloc_cache(i, type, flags);
 913
 914			/*
 915			 * Caches that are not of the two-to-the-power-of size.
 916			 * These have to be created immediately after the
 917			 * earlier power of two caches
 918			 */
 919			if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
 920					!kmalloc_caches[type][1])
 921				new_kmalloc_cache(1, type, flags);
 922			if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
 923					!kmalloc_caches[type][2])
 924				new_kmalloc_cache(2, type, flags);
 925		}
 926	}
 927
 928	/* Kmalloc array is now usable */
 929	slab_state = UP;
 930}
 931
 932void free_large_kmalloc(struct folio *folio, void *object)
 933{
 934	unsigned int order = folio_order(folio);
 935
 936	if (WARN_ON_ONCE(order == 0))
 937		pr_warn_once("object pointer: 0x%p\n", object);
 938
 939	kmemleak_free(object);
 940	kasan_kfree_large(object);
 941	kmsan_kfree_large(object);
 942
 943	mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B,
 944			      -(PAGE_SIZE << order));
 945	__free_pages(folio_page(folio, 0), order);
 946}
 947
 948static void *__kmalloc_large_node(size_t size, gfp_t flags, int node);
 949static __always_inline
 950void *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
 951{
 952	struct kmem_cache *s;
 953	void *ret;
 954
 955	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
 956		ret = __kmalloc_large_node(size, flags, node);
 957		trace_kmalloc(caller, ret, size,
 958			      PAGE_SIZE << get_order(size), flags, node);
 959		return ret;
 960	}
 961
 962	s = kmalloc_slab(size, flags);
 963
 964	if (unlikely(ZERO_OR_NULL_PTR(s)))
 965		return s;
 966
 967	ret = __kmem_cache_alloc_node(s, flags, node, size, caller);
 968	ret = kasan_kmalloc(s, ret, size, flags);
 969	trace_kmalloc(caller, ret, size, s->size, flags, node);
 970	return ret;
 971}
 972
 973void *__kmalloc_node(size_t size, gfp_t flags, int node)
 974{
 975	return __do_kmalloc_node(size, flags, node, _RET_IP_);
 976}
 977EXPORT_SYMBOL(__kmalloc_node);
 978
 979void *__kmalloc(size_t size, gfp_t flags)
 980{
 981	return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_);
 982}
 983EXPORT_SYMBOL(__kmalloc);
 984
 985void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
 986				  int node, unsigned long caller)
 987{
 988	return __do_kmalloc_node(size, flags, node, caller);
 989}
 990EXPORT_SYMBOL(__kmalloc_node_track_caller);
 991
 992/**
 993 * kfree - free previously allocated memory
 994 * @object: pointer returned by kmalloc.
 995 *
 996 * If @object is NULL, no operation is performed.
 997 *
 998 * Don't free memory not originally allocated by kmalloc()
 999 * or you will run into trouble.
1000 */
1001void kfree(const void *object)
1002{
1003	struct folio *folio;
1004	struct slab *slab;
1005	struct kmem_cache *s;
1006
1007	trace_kfree(_RET_IP_, object);
1008
1009	if (unlikely(ZERO_OR_NULL_PTR(object)))
1010		return;
1011
1012	folio = virt_to_folio(object);
1013	if (unlikely(!folio_test_slab(folio))) {
1014		free_large_kmalloc(folio, (void *)object);
1015		return;
1016	}
1017
1018	slab = folio_slab(folio);
1019	s = slab->slab_cache;
1020	__kmem_cache_free(s, (void *)object, _RET_IP_);
1021}
1022EXPORT_SYMBOL(kfree);
1023
1024/**
1025 * __ksize -- Report full size of underlying allocation
1026 * @object: pointer to the object
1027 *
1028 * This should only be used internally to query the true size of allocations.
1029 * It is not meant to be a way to discover the usable size of an allocation
1030 * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond
1031 * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS,
1032 * and/or FORTIFY_SOURCE.
1033 *
1034 * Return: size of the actual memory used by @object in bytes
1035 */
1036size_t __ksize(const void *object)
1037{
1038	struct folio *folio;
1039
1040	if (unlikely(object == ZERO_SIZE_PTR))
1041		return 0;
1042
1043	folio = virt_to_folio(object);
1044
1045	if (unlikely(!folio_test_slab(folio))) {
1046		if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE))
1047			return 0;
1048		if (WARN_ON(object != folio_address(folio)))
1049			return 0;
1050		return folio_size(folio);
1051	}
1052
1053#ifdef CONFIG_SLUB_DEBUG
1054	skip_orig_size_check(folio_slab(folio)->slab_cache, object);
1055#endif
1056
1057	return slab_ksize(folio_slab(folio)->slab_cache);
1058}
1059
1060void *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
1061{
1062	void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE,
1063					    size, _RET_IP_);
1064
1065	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
1066
1067	ret = kasan_kmalloc(s, ret, size, gfpflags);
1068	return ret;
1069}
1070EXPORT_SYMBOL(kmalloc_trace);
1071
1072void *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags,
1073			 int node, size_t size)
1074{
1075	void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_);
1076
1077	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
1078
1079	ret = kasan_kmalloc(s, ret, size, gfpflags);
1080	return ret;
1081}
1082EXPORT_SYMBOL(kmalloc_node_trace);
1083#endif /* !CONFIG_SLOB */
1084
1085gfp_t kmalloc_fix_flags(gfp_t flags)
1086{
1087	gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1088
1089	flags &= ~GFP_SLAB_BUG_MASK;
1090	pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1091			invalid_mask, &invalid_mask, flags, &flags);
1092	dump_stack();
1093
1094	return flags;
1095}
1096
1097/*
1098 * To avoid unnecessary overhead, we pass through large allocation requests
1099 * directly to the page allocator. We use __GFP_COMP, because we will need to
1100 * know the allocation order to free the pages properly in kfree.
1101 */
1102
1103static void *__kmalloc_large_node(size_t size, gfp_t flags, int node)
1104{
 
1105	struct page *page;
1106	void *ptr = NULL;
1107	unsigned int order = get_order(size);
1108
1109	if (unlikely(flags & GFP_SLAB_BUG_MASK))
1110		flags = kmalloc_fix_flags(flags);
1111
1112	flags |= __GFP_COMP;
1113	page = alloc_pages_node(node, flags, order);
1114	if (page) {
1115		ptr = page_address(page);
1116		mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
1117				      PAGE_SIZE << order);
1118	}
1119
1120	ptr = kasan_kmalloc_large(ptr, size, flags);
1121	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1122	kmemleak_alloc(ptr, size, 1, flags);
1123	kmsan_kmalloc_large(ptr, size, flags);
1124
1125	return ptr;
1126}
1127
1128void *kmalloc_large(size_t size, gfp_t flags)
1129{
1130	void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE);
1131
1132	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1133		      flags, NUMA_NO_NODE);
1134	return ret;
1135}
1136EXPORT_SYMBOL(kmalloc_large);
1137
1138void *kmalloc_large_node(size_t size, gfp_t flags, int node)
 
1139{
1140	void *ret = __kmalloc_large_node(size, flags, node);
1141
1142	trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
1143		      flags, node);
1144	return ret;
1145}
1146EXPORT_SYMBOL(kmalloc_large_node);
1147
1148#ifdef CONFIG_SLAB_FREELIST_RANDOM
1149/* Randomize a generic freelist */
1150static void freelist_randomize(struct rnd_state *state, unsigned int *list,
1151			       unsigned int count)
1152{
1153	unsigned int rand;
1154	unsigned int i;
1155
1156	for (i = 0; i < count; i++)
1157		list[i] = i;
1158
1159	/* Fisher-Yates shuffle */
1160	for (i = count - 1; i > 0; i--) {
1161		rand = prandom_u32_state(state);
1162		rand %= (i + 1);
1163		swap(list[i], list[rand]);
1164	}
1165}
1166
1167/* Create a random sequence per cache */
1168int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
1169				    gfp_t gfp)
1170{
1171	struct rnd_state state;
1172
1173	if (count < 2 || cachep->random_seq)
1174		return 0;
1175
1176	cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1177	if (!cachep->random_seq)
1178		return -ENOMEM;
1179
1180	/* Get best entropy at this stage of boot */
1181	prandom_seed_state(&state, get_random_long());
1182
1183	freelist_randomize(&state, cachep->random_seq, count);
1184	return 0;
1185}
1186
1187/* Destroy the per-cache random freelist sequence */
1188void cache_random_seq_destroy(struct kmem_cache *cachep)
1189{
1190	kfree(cachep->random_seq);
1191	cachep->random_seq = NULL;
1192}
1193#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1194
1195#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1196#ifdef CONFIG_SLAB
1197#define SLABINFO_RIGHTS (0600)
1198#else
1199#define SLABINFO_RIGHTS (0400)
1200#endif
1201
1202static void print_slabinfo_header(struct seq_file *m)
1203{
1204	/*
1205	 * Output format version, so at least we can change it
1206	 * without _too_ many complaints.
1207	 */
1208#ifdef CONFIG_DEBUG_SLAB
1209	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1210#else
1211	seq_puts(m, "slabinfo - version: 2.1\n");
1212#endif
1213	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1214	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1215	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1216#ifdef CONFIG_DEBUG_SLAB
1217	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1218	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1219#endif
1220	seq_putc(m, '\n');
1221}
1222
1223static void *slab_start(struct seq_file *m, loff_t *pos)
1224{
1225	mutex_lock(&slab_mutex);
1226	return seq_list_start(&slab_caches, *pos);
1227}
1228
1229static void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1230{
1231	return seq_list_next(p, &slab_caches, pos);
1232}
1233
1234static void slab_stop(struct seq_file *m, void *p)
1235{
1236	mutex_unlock(&slab_mutex);
1237}
1238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239static void cache_show(struct kmem_cache *s, struct seq_file *m)
1240{
1241	struct slabinfo sinfo;
1242
1243	memset(&sinfo, 0, sizeof(sinfo));
1244	get_slabinfo(s, &sinfo);
1245
 
 
1246	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1247		   s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1248		   sinfo.objects_per_slab, (1 << sinfo.cache_order));
1249
1250	seq_printf(m, " : tunables %4u %4u %4u",
1251		   sinfo.limit, sinfo.batchcount, sinfo.shared);
1252	seq_printf(m, " : slabdata %6lu %6lu %6lu",
1253		   sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1254	slabinfo_show_stats(m, s);
1255	seq_putc(m, '\n');
1256}
1257
1258static int slab_show(struct seq_file *m, void *p)
1259{
1260	struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1261
1262	if (p == slab_caches.next)
1263		print_slabinfo_header(m);
1264	cache_show(s, m);
 
1265	return 0;
1266}
1267
1268void dump_unreclaimable_slab(void)
 
1269{
1270	struct kmem_cache *s;
1271	struct slabinfo sinfo;
1272
1273	/*
1274	 * Here acquiring slab_mutex is risky since we don't prefer to get
1275	 * sleep in oom path. But, without mutex hold, it may introduce a
1276	 * risk of crash.
1277	 * Use mutex_trylock to protect the list traverse, dump nothing
1278	 * without acquiring the mutex.
1279	 */
1280	if (!mutex_trylock(&slab_mutex)) {
1281		pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1282		return;
1283	}
1284
1285	pr_info("Unreclaimable slab info:\n");
1286	pr_info("Name                      Used          Total\n");
1287
1288	list_for_each_entry(s, &slab_caches, list) {
1289		if (s->flags & SLAB_RECLAIM_ACCOUNT)
1290			continue;
1291
1292		get_slabinfo(s, &sinfo);
1293
1294		if (sinfo.num_objs > 0)
1295			pr_info("%-17s %10luKB %10luKB\n", s->name,
1296				(sinfo.active_objs * s->size) / 1024,
1297				(sinfo.num_objs * s->size) / 1024);
1298	}
1299	mutex_unlock(&slab_mutex);
1300}
 
1301
1302/*
1303 * slabinfo_op - iterator that generates /proc/slabinfo
1304 *
1305 * Output layout:
1306 * cache-name
1307 * num-active-objs
1308 * total-objs
1309 * object size
1310 * num-active-slabs
1311 * total-slabs
1312 * num-pages-per-slab
1313 * + further values on SMP and with statistics enabled
1314 */
1315static const struct seq_operations slabinfo_op = {
1316	.start = slab_start,
1317	.next = slab_next,
1318	.stop = slab_stop,
1319	.show = slab_show,
1320};
1321
1322static int slabinfo_open(struct inode *inode, struct file *file)
1323{
1324	return seq_open(file, &slabinfo_op);
1325}
1326
1327static const struct proc_ops slabinfo_proc_ops = {
1328	.proc_flags	= PROC_ENTRY_PERMANENT,
1329	.proc_open	= slabinfo_open,
1330	.proc_read	= seq_read,
1331	.proc_write	= slabinfo_write,
1332	.proc_lseek	= seq_lseek,
1333	.proc_release	= seq_release,
1334};
1335
1336static int __init slab_proc_init(void)
1337{
1338	proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
 
1339	return 0;
1340}
1341module_init(slab_proc_init);
 
1342
1343#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1344
1345static __always_inline __realloc_size(2) void *
1346__do_krealloc(const void *p, size_t new_size, gfp_t flags)
1347{
1348	void *ret;
1349	size_t ks;
1350
1351	/* Check for double-free before calling ksize. */
1352	if (likely(!ZERO_OR_NULL_PTR(p))) {
1353		if (!kasan_check_byte(p))
1354			return NULL;
1355		ks = ksize(p);
1356	} else
1357		ks = 0;
1358
1359	/* If the object still fits, repoison it precisely. */
1360	if (ks >= new_size) {
1361		p = kasan_krealloc((void *)p, new_size, flags);
1362		return (void *)p;
1363	}
1364
1365	ret = kmalloc_track_caller(new_size, flags);
1366	if (ret && p) {
1367		/* Disable KASAN checks as the object's redzone is accessed. */
1368		kasan_disable_current();
1369		memcpy(ret, kasan_reset_tag(p), ks);
1370		kasan_enable_current();
1371	}
1372
1373	return ret;
1374}
1375
1376/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377 * krealloc - reallocate memory. The contents will remain unchanged.
1378 * @p: object to reallocate memory for.
1379 * @new_size: how many bytes of memory are required.
1380 * @flags: the type of memory to allocate.
1381 *
1382 * The contents of the object pointed to are preserved up to the
1383 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1384 * If @p is %NULL, krealloc() behaves exactly like kmalloc().  If @new_size
1385 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1386 *
1387 * Return: pointer to the allocated memory or %NULL in case of error
1388 */
1389void *krealloc(const void *p, size_t new_size, gfp_t flags)
1390{
1391	void *ret;
1392
1393	if (unlikely(!new_size)) {
1394		kfree(p);
1395		return ZERO_SIZE_PTR;
1396	}
1397
1398	ret = __do_krealloc(p, new_size, flags);
1399	if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1400		kfree(p);
1401
1402	return ret;
1403}
1404EXPORT_SYMBOL(krealloc);
1405
1406/**
1407 * kfree_sensitive - Clear sensitive information in memory before freeing
1408 * @p: object to free memory of
1409 *
1410 * The memory of the object @p points to is zeroed before freed.
1411 * If @p is %NULL, kfree_sensitive() does nothing.
1412 *
1413 * Note: this function zeroes the whole allocated buffer which can be a good
1414 * deal bigger than the requested buffer size passed to kmalloc(). So be
1415 * careful when using this function in performance sensitive code.
1416 */
1417void kfree_sensitive(const void *p)
1418{
1419	size_t ks;
1420	void *mem = (void *)p;
1421
 
 
1422	ks = ksize(mem);
1423	if (ks) {
1424		kasan_unpoison_range(mem, ks);
1425		memzero_explicit(mem, ks);
1426	}
1427	kfree(mem);
1428}
1429EXPORT_SYMBOL(kfree_sensitive);
1430
1431size_t ksize(const void *objp)
1432{
1433	/*
1434	 * We need to first check that the pointer to the object is valid.
1435	 * The KASAN report printed from ksize() is more useful, then when
1436	 * it's printed later when the behaviour could be undefined due to
1437	 * a potential use-after-free or double-free.
1438	 *
1439	 * We use kasan_check_byte(), which is supported for the hardware
1440	 * tag-based KASAN mode, unlike kasan_check_read/write().
1441	 *
1442	 * If the pointed to memory is invalid, we return 0 to avoid users of
1443	 * ksize() writing to and potentially corrupting the memory region.
1444	 *
1445	 * We want to perform the check before __ksize(), to avoid potentially
1446	 * crashing in __ksize() due to accessing invalid metadata.
1447	 */
1448	if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1449		return 0;
1450
1451	return kfence_ksize(objp) ?: __ksize(objp);
1452}
1453EXPORT_SYMBOL(ksize);
1454
1455/* Tracepoints definitions. */
1456EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1457EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
 
 
1458EXPORT_TRACEPOINT_SYMBOL(kfree);
1459EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1460
1461int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1462{
1463	if (__should_failslab(s, gfpflags))
1464		return -ENOMEM;
1465	return 0;
1466}
1467ALLOW_ERROR_INJECTION(should_failslab, ERRNO);