Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v4.6
 
  1/*
  2 * linux/mm/page_isolation.c
  3 */
  4
  5#include <linux/mm.h>
  6#include <linux/page-isolation.h>
  7#include <linux/pageblock-flags.h>
  8#include <linux/memory.h>
  9#include <linux/hugetlb.h>
 
 
 10#include "internal.h"
 11
 12#define CREATE_TRACE_POINTS
 13#include <trace/events/page_isolation.h>
 14
 15static int set_migratetype_isolate(struct page *page,
 16				bool skip_hwpoisoned_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 17{
 18	struct zone *zone;
 19	unsigned long flags, pfn;
 20	struct memory_isolate_notify arg;
 21	int notifier_ret;
 22	int ret = -EBUSY;
 23
 24	zone = page_zone(page);
 
 25
 26	spin_lock_irqsave(&zone->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28	pfn = page_to_pfn(page);
 29	arg.start_pfn = pfn;
 30	arg.nr_pages = pageblock_nr_pages;
 31	arg.pages_found = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33	/*
 34	 * It may be possible to isolate a pageblock even if the
 35	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
 36	 * notifier chain is used by balloon drivers to return the
 37	 * number of pages in a range that are held by the balloon
 38	 * driver to shrink memory. If all the pages are accounted for
 39	 * by balloons, are free, or on the LRU, isolation can continue.
 40	 * Later, for example, when memory hotplug notifier runs, these
 41	 * pages reported as "can be isolated" should be isolated(freed)
 42	 * by the balloon driver through the memory notifier chain.
 43	 */
 44	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
 45	notifier_ret = notifier_to_errno(notifier_ret);
 46	if (notifier_ret)
 47		goto out;
 
 48	/*
 49	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
 50	 * We just check MOVABLE pages.
 
 
 
 51	 */
 52	if (!has_unmovable_pages(zone, page, arg.pages_found,
 53				 skip_hwpoisoned_pages))
 54		ret = 0;
 55
 56	/*
 57	 * immobile means "not-on-lru" paes. If immobile is larger than
 58	 * removable-by-driver pages reported by notifier, we'll fail.
 59	 */
 60
 61out:
 62	if (!ret) {
 63		unsigned long nr_pages;
 64		int migratetype = get_pageblock_migratetype(page);
 65
 66		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
 67		zone->nr_isolate_pageblock++;
 68		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
 
 69
 70		__mod_zone_freepage_state(zone, -nr_pages, migratetype);
 
 
 71	}
 72
 73	spin_unlock_irqrestore(&zone->lock, flags);
 74	if (!ret)
 75		drain_all_pages(zone);
 76	return ret;
 
 
 
 
 
 
 77}
 78
 79static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
 80{
 81	struct zone *zone;
 82	unsigned long flags, nr_pages;
 83	struct page *isolated_page = NULL;
 84	unsigned int order;
 85	unsigned long page_idx, buddy_idx;
 86	struct page *buddy;
 87
 88	zone = page_zone(page);
 89	spin_lock_irqsave(&zone->lock, flags);
 90	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
 91		goto out;
 92
 93	/*
 94	 * Because freepage with more than pageblock_order on isolated
 95	 * pageblock is restricted to merge due to freepage counting problem,
 96	 * it is possible that there is free buddy page.
 97	 * move_freepages_block() doesn't care of merge so we need other
 98	 * approach in order to merge them. Isolation and free will make
 99	 * these pages to be merged.
100	 */
101	if (PageBuddy(page)) {
102		order = page_order(page);
103		if (order >= pageblock_order) {
104			page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
105			buddy_idx = __find_buddy_index(page_idx, order);
106			buddy = page + (buddy_idx - page_idx);
107
108			if (pfn_valid_within(page_to_pfn(buddy)) &&
109			    !is_migrate_isolate_page(buddy)) {
110				__isolate_free_page(page, order);
111				kernel_map_pages(page, (1 << order), 1);
112				set_page_refcounted(page);
113				isolated_page = page;
114			}
115		}
116	}
117
118	/*
119	 * If we isolate freepage with more than pageblock_order, there
120	 * should be no freepage in the range, so we could avoid costly
121	 * pageblock scanning for freepage moving.
 
 
 
 
 
122	 */
123	if (!isolated_page) {
124		nr_pages = move_freepages_block(zone, page, migratetype);
125		__mod_zone_freepage_state(zone, nr_pages, migratetype);
126	}
127	set_pageblock_migratetype(page, migratetype);
 
 
128	zone->nr_isolate_pageblock--;
129out:
130	spin_unlock_irqrestore(&zone->lock, flags);
131	if (isolated_page)
132		__free_pages(isolated_page, order);
133}
134
135static inline struct page *
136__first_valid_page(unsigned long pfn, unsigned long nr_pages)
137{
138	int i;
139	for (i = 0; i < nr_pages; i++)
140		if (pfn_valid_within(pfn + i))
141			break;
142	if (unlikely(i == nr_pages))
143		return NULL;
144	return pfn_to_page(pfn + i);
 
 
 
 
145}
146
147/*
148 * start_isolate_page_range() -- make page-allocation-type of range of pages
149 * to be MIGRATE_ISOLATE.
150 * @start_pfn: The lower PFN of the range to be isolated.
151 * @end_pfn: The upper PFN of the range to be isolated.
152 * @migratetype: migrate type to set in error recovery.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153 *
154 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
155 * the range will never be allocated. Any free pages and pages freed in the
156 * future will not be allocated again.
 
 
 
 
 
 
 
157 *
158 * start_pfn/end_pfn must be aligned to pageblock_order.
159 * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160 */
161int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
162			     unsigned migratetype, bool skip_hwpoisoned_pages)
163{
164	unsigned long pfn;
165	unsigned long undo_pfn;
166	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
168	BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
169	BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
170
171	for (pfn = start_pfn;
172	     pfn < end_pfn;
173	     pfn += pageblock_nr_pages) {
174		page = __first_valid_page(pfn, pageblock_nr_pages);
175		if (page &&
176		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
177			undo_pfn = pfn;
178			goto undo;
 
 
 
179		}
180	}
181	return 0;
182undo:
183	for (pfn = start_pfn;
184	     pfn < undo_pfn;
185	     pfn += pageblock_nr_pages)
186		unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
187
188	return -EBUSY;
189}
190
191/*
192 * Make isolated pages available again.
193 */
194int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
195			    unsigned migratetype)
196{
197	unsigned long pfn;
198	struct page *page;
 
 
199
200	BUG_ON(!IS_ALIGNED(start_pfn, pageblock_nr_pages));
201	BUG_ON(!IS_ALIGNED(end_pfn, pageblock_nr_pages));
202
203	for (pfn = start_pfn;
204	     pfn < end_pfn;
205	     pfn += pageblock_nr_pages) {
206		page = __first_valid_page(pfn, pageblock_nr_pages);
207		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
208			continue;
209		unset_migratetype_isolate(page, migratetype);
210	}
211	return 0;
212}
213/*
214 * Test all pages in the range is free(means isolated) or not.
215 * all pages in [start_pfn...end_pfn) must be in the same zone.
216 * zone->lock must be held before call this.
217 *
218 * Returns the last tested pfn.
219 */
220static unsigned long
221__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
222				  bool skip_hwpoisoned_pages)
223{
224	struct page *page;
225
226	while (pfn < end_pfn) {
227		if (!pfn_valid_within(pfn)) {
228			pfn++;
229			continue;
230		}
231		page = pfn_to_page(pfn);
232		if (PageBuddy(page))
233			/*
234			 * If the page is on a free list, it has to be on
235			 * the correct MIGRATE_ISOLATE freelist. There is no
236			 * simple way to verify that as VM_BUG_ON(), though.
237			 */
238			pfn += 1 << page_order(page);
239		else if (skip_hwpoisoned_pages && PageHWPoison(page))
240			/* A HWPoisoned page cannot be also PageBuddy */
241			pfn++;
 
 
 
 
 
 
 
 
242		else
243			break;
244	}
245
246	return pfn;
247}
248
 
249int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
250			bool skip_hwpoisoned_pages)
251{
252	unsigned long pfn, flags;
253	struct page *page;
254	struct zone *zone;
 
255
256	/*
257	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
258	 * are not aligned to pageblock_nr_pages.
259	 * Then we just check migratetype first.
260	 */
261	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
262		page = __first_valid_page(pfn, pageblock_nr_pages);
263		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
264			break;
265	}
266	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
267	if ((pfn < end_pfn) || !page)
268		return -EBUSY;
 
 
 
269	/* Check all pages are free or marked as ISOLATED */
270	zone = page_zone(page);
271	spin_lock_irqsave(&zone->lock, flags);
272	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
273						skip_hwpoisoned_pages);
274	spin_unlock_irqrestore(&zone->lock, flags);
275
276	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
277
278	return pfn < end_pfn ? -EBUSY : 0;
279}
280
281struct page *alloc_migrate_target(struct page *page, unsigned long private,
282				  int **resultp)
283{
284	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
285
286	/*
287	 * TODO: allocate a destination hugepage from a nearest neighbor node,
288	 * accordance with memory policy of the user process if possible. For
289	 * now as a simple work-around, we use the next node for destination.
290	 */
291	if (PageHuge(page)) {
292		int node = next_online_node(page_to_nid(page));
293		if (node == MAX_NUMNODES)
294			node = first_online_node;
295		return alloc_huge_page_node(page_hstate(compound_head(page)),
296					    node);
297	}
298
299	if (PageHighMem(page))
300		gfp_mask |= __GFP_HIGHMEM;
301
302	return alloc_page(gfp_mask);
303}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/mm/page_isolation.c
  4 */
  5
  6#include <linux/mm.h>
  7#include <linux/page-isolation.h>
  8#include <linux/pageblock-flags.h>
  9#include <linux/memory.h>
 10#include <linux/hugetlb.h>
 11#include <linux/page_owner.h>
 12#include <linux/migrate.h>
 13#include "internal.h"
 14
 15#define CREATE_TRACE_POINTS
 16#include <trace/events/page_isolation.h>
 17
 18/*
 19 * This function checks whether the range [start_pfn, end_pfn) includes
 20 * unmovable pages or not. The range must fall into a single pageblock and
 21 * consequently belong to a single zone.
 22 *
 23 * PageLRU check without isolation or lru_lock could race so that
 24 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 25 * check without lock_page also may miss some movable non-lru pages at
 26 * race condition. So you can't expect this function should be exact.
 27 *
 28 * Returns a page without holding a reference. If the caller wants to
 29 * dereference that page (e.g., dumping), it has to make sure that it
 30 * cannot get removed (e.g., via memory unplug) concurrently.
 31 *
 32 */
 33static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
 34				int migratetype, int flags)
 35{
 36	struct page *page = pfn_to_page(start_pfn);
 37	struct zone *zone = page_zone(page);
 38	unsigned long pfn;
 
 
 39
 40	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
 41		  pageblock_start_pfn(end_pfn - 1));
 42
 43	if (is_migrate_cma_page(page)) {
 44		/*
 45		 * CMA allocations (alloc_contig_range) really need to mark
 46		 * isolate CMA pageblocks even when they are not movable in fact
 47		 * so consider them movable here.
 48		 */
 49		if (is_migrate_cma(migratetype))
 50			return NULL;
 51
 52		return page;
 53	}
 54
 55	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
 56		page = pfn_to_page(pfn);
 57
 58		/*
 59		 * Both, bootmem allocations and memory holes are marked
 60		 * PG_reserved and are unmovable. We can even have unmovable
 61		 * allocations inside ZONE_MOVABLE, for example when
 62		 * specifying "movablecore".
 63		 */
 64		if (PageReserved(page))
 65			return page;
 66
 67		/*
 68		 * If the zone is movable and we have ruled out all reserved
 69		 * pages then it should be reasonably safe to assume the rest
 70		 * is movable.
 71		 */
 72		if (zone_idx(zone) == ZONE_MOVABLE)
 73			continue;
 74
 75		/*
 76		 * Hugepages are not in LRU lists, but they're movable.
 77		 * THPs are on the LRU, but need to be counted as #small pages.
 78		 * We need not scan over tail pages because we don't
 79		 * handle each tail page individually in migration.
 80		 */
 81		if (PageHuge(page) || PageTransCompound(page)) {
 82			struct page *head = compound_head(page);
 83			unsigned int skip_pages;
 84
 85			if (PageHuge(page)) {
 86				if (!hugepage_migration_supported(page_hstate(head)))
 87					return page;
 88			} else if (!PageLRU(head) && !__PageMovable(head)) {
 89				return page;
 90			}
 91
 92			skip_pages = compound_nr(head) - (page - head);
 93			pfn += skip_pages - 1;
 94			continue;
 95		}
 96
 97		/*
 98		 * We can't use page_count without pin a page
 99		 * because another CPU can free compound page.
100		 * This check already skips compound tails of THP
101		 * because their page->_refcount is zero at all time.
102		 */
103		if (!page_ref_count(page)) {
104			if (PageBuddy(page))
105				pfn += (1 << buddy_order(page)) - 1;
106			continue;
107		}
108
109		/*
110		 * The HWPoisoned page may be not in buddy system, and
111		 * page_count() is not 0.
112		 */
113		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114			continue;
115
116		/*
117		 * We treat all PageOffline() pages as movable when offlining
118		 * to give drivers a chance to decrement their reference count
119		 * in MEM_GOING_OFFLINE in order to indicate that these pages
120		 * can be offlined as there are no direct references anymore.
121		 * For actually unmovable PageOffline() where the driver does
122		 * not support this, we will fail later when trying to actually
123		 * move these pages that still have a reference count > 0.
124		 * (false negatives in this function only)
125		 */
126		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127			continue;
128
129		if (__PageMovable(page) || PageLRU(page))
130			continue;
131
132		/*
133		 * If there are RECLAIMABLE pages, we need to check
134		 * it.  But now, memory offline itself doesn't call
135		 * shrink_node_slabs() and it still to be fixed.
136		 */
137		return page;
138	}
139	return NULL;
140}
141
142/*
143 * This function set pageblock migratetype to isolate if no unmovable page is
144 * present in [start_pfn, end_pfn). The pageblock must intersect with
145 * [start_pfn, end_pfn).
146 */
147static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148			unsigned long start_pfn, unsigned long end_pfn)
149{
150	struct zone *zone = page_zone(page);
151	struct page *unmovable;
152	unsigned long flags;
153	unsigned long check_unmovable_start, check_unmovable_end;
154
155	spin_lock_irqsave(&zone->lock, flags);
156
157	/*
158	 * We assume the caller intended to SET migrate type to isolate.
159	 * If it is already set, then someone else must have raced and
160	 * set it before us.
 
 
 
 
 
 
161	 */
162	if (is_migrate_isolate_page(page)) {
163		spin_unlock_irqrestore(&zone->lock, flags);
164		return -EBUSY;
165	}
166
167	/*
168	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
169	 * We just check MOVABLE pages.
170	 *
171	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
172	 * to avoid redundant checks.
173	 */
174	check_unmovable_start = max(page_to_pfn(page), start_pfn);
175	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
176				  end_pfn);
177
178	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
179			migratetype, isol_flags);
180	if (!unmovable) {
 
 
 
 
181		unsigned long nr_pages;
182		int mt = get_pageblock_migratetype(page);
183
184		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
185		zone->nr_isolate_pageblock++;
186		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE,
187									NULL);
188
189		__mod_zone_freepage_state(zone, -nr_pages, mt);
190		spin_unlock_irqrestore(&zone->lock, flags);
191		return 0;
192	}
193
194	spin_unlock_irqrestore(&zone->lock, flags);
195	if (isol_flags & REPORT_FAILURE) {
196		/*
197		 * printk() with zone->lock held will likely trigger a
198		 * lockdep splat, so defer it here.
199		 */
200		dump_page(unmovable, "unmovable page");
201	}
202
203	return -EBUSY;
204}
205
206static void unset_migratetype_isolate(struct page *page, int migratetype)
207{
208	struct zone *zone;
209	unsigned long flags, nr_pages;
210	bool isolated_page = false;
211	unsigned int order;
 
212	struct page *buddy;
213
214	zone = page_zone(page);
215	spin_lock_irqsave(&zone->lock, flags);
216	if (!is_migrate_isolate_page(page))
217		goto out;
218
219	/*
220	 * Because freepage with more than pageblock_order on isolated
221	 * pageblock is restricted to merge due to freepage counting problem,
222	 * it is possible that there is free buddy page.
223	 * move_freepages_block() doesn't care of merge so we need other
224	 * approach in order to merge them. Isolation and free will make
225	 * these pages to be merged.
226	 */
227	if (PageBuddy(page)) {
228		order = buddy_order(page);
229		if (order >= pageblock_order && order < MAX_ORDER - 1) {
230			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
231						    order, NULL);
232			if (buddy && !is_migrate_isolate_page(buddy)) {
233				isolated_page = !!__isolate_free_page(page, order);
234				/*
235				 * Isolating a free page in an isolated pageblock
236				 * is expected to always work as watermarks don't
237				 * apply here.
238				 */
239				VM_WARN_ON(!isolated_page);
240			}
241		}
242	}
243
244	/*
245	 * If we isolate freepage with more than pageblock_order, there
246	 * should be no freepage in the range, so we could avoid costly
247	 * pageblock scanning for freepage moving.
248	 *
249	 * We didn't actually touch any of the isolated pages, so place them
250	 * to the tail of the freelist. This is an optimization for memory
251	 * onlining - just onlined memory won't immediately be considered for
252	 * allocation.
253	 */
254	if (!isolated_page) {
255		nr_pages = move_freepages_block(zone, page, migratetype, NULL);
256		__mod_zone_freepage_state(zone, nr_pages, migratetype);
257	}
258	set_pageblock_migratetype(page, migratetype);
259	if (isolated_page)
260		__putback_isolated_page(page, order, migratetype);
261	zone->nr_isolate_pageblock--;
262out:
263	spin_unlock_irqrestore(&zone->lock, flags);
 
 
264}
265
266static inline struct page *
267__first_valid_page(unsigned long pfn, unsigned long nr_pages)
268{
269	int i;
270
271	for (i = 0; i < nr_pages; i++) {
272		struct page *page;
273
274		page = pfn_to_online_page(pfn + i);
275		if (!page)
276			continue;
277		return page;
278	}
279	return NULL;
280}
281
282/**
283 * isolate_single_pageblock() -- tries to isolate a pageblock that might be
284 * within a free or in-use page.
285 * @boundary_pfn:		pageblock-aligned pfn that a page might cross
286 * @flags:			isolation flags
287 * @gfp_flags:			GFP flags used for migrating pages
288 * @isolate_before:	isolate the pageblock before the boundary_pfn
289 * @skip_isolation:	the flag to skip the pageblock isolation in second
290 *			isolate_single_pageblock()
291 * @migratetype:	migrate type to set in error recovery.
292 *
293 * Free and in-use pages can be as big as MAX_ORDER-1 and contain more than one
294 * pageblock. When not all pageblocks within a page are isolated at the same
295 * time, free page accounting can go wrong. For example, in the case of
296 * MAX_ORDER-1 = pageblock_order + 1, a MAX_ORDER-1 page has two pagelbocks.
297 * [         MAX_ORDER-1         ]
298 * [  pageblock0  |  pageblock1  ]
299 * When either pageblock is isolated, if it is a free page, the page is not
300 * split into separate migratetype lists, which is supposed to; if it is an
301 * in-use page and freed later, __free_one_page() does not split the free page
302 * either. The function handles this by splitting the free page or migrating
303 * the in-use page then splitting the free page.
304 */
305static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
306			gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
307			int migratetype)
308{
309	unsigned long start_pfn;
310	unsigned long isolate_pageblock;
311	unsigned long pfn;
312	struct zone *zone;
313	int ret;
314
315	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
316
317	if (isolate_before)
318		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
319	else
320		isolate_pageblock = boundary_pfn;
321
322	/*
323	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
324	 * only isolating a subset of pageblocks from a bigger than pageblock
325	 * free or in-use page. Also make sure all to-be-isolated pageblocks
326	 * are within the same zone.
327	 */
328	zone  = page_zone(pfn_to_page(isolate_pageblock));
329	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
330				      zone->zone_start_pfn);
331
332	if (skip_isolation) {
333		int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
334
335		VM_BUG_ON(!is_migrate_isolate(mt));
336	} else {
337		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
338				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
339
340		if (ret)
341			return ret;
342	}
343
344	/*
345	 * Bail out early when the to-be-isolated pageblock does not form
346	 * a free or in-use page across boundary_pfn:
347	 *
348	 * 1. isolate before boundary_pfn: the page after is not online
349	 * 2. isolate after boundary_pfn: the page before is not online
350	 *
351	 * This also ensures correctness. Without it, when isolate after
352	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
353	 * __first_valid_page() will return unexpected NULL in the for loop
354	 * below.
355	 */
356	if (isolate_before) {
357		if (!pfn_to_online_page(boundary_pfn))
358			return 0;
359	} else {
360		if (!pfn_to_online_page(boundary_pfn - 1))
361			return 0;
362	}
363
364	for (pfn = start_pfn; pfn < boundary_pfn;) {
365		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
366
367		VM_BUG_ON(!page);
368		pfn = page_to_pfn(page);
369		/*
370		 * start_pfn is MAX_ORDER_NR_PAGES aligned, if there is any
371		 * free pages in [start_pfn, boundary_pfn), its head page will
372		 * always be in the range.
373		 */
374		if (PageBuddy(page)) {
375			int order = buddy_order(page);
376
377			if (pfn + (1UL << order) > boundary_pfn) {
378				/* free page changed before split, check it again */
379				if (split_free_page(page, order, boundary_pfn - pfn))
380					continue;
381			}
382
383			pfn += 1UL << order;
384			continue;
385		}
386		/*
387		 * migrate compound pages then let the free page handling code
388		 * above do the rest. If migration is not possible, just fail.
389		 */
390		if (PageCompound(page)) {
391			struct page *head = compound_head(page);
392			unsigned long head_pfn = page_to_pfn(head);
393			unsigned long nr_pages = compound_nr(head);
394
395			if (head_pfn + nr_pages <= boundary_pfn) {
396				pfn = head_pfn + nr_pages;
397				continue;
398			}
399#if defined CONFIG_COMPACTION || defined CONFIG_CMA
400			/*
401			 * hugetlb, lru compound (THP), and movable compound pages
402			 * can be migrated. Otherwise, fail the isolation.
403			 */
404			if (PageHuge(page) || PageLRU(page) || __PageMovable(page)) {
405				int order;
406				unsigned long outer_pfn;
407				int page_mt = get_pageblock_migratetype(page);
408				bool isolate_page = !is_migrate_isolate_page(page);
409				struct compact_control cc = {
410					.nr_migratepages = 0,
411					.order = -1,
412					.zone = page_zone(pfn_to_page(head_pfn)),
413					.mode = MIGRATE_SYNC,
414					.ignore_skip_hint = true,
415					.no_set_skip_hint = true,
416					.gfp_mask = gfp_flags,
417					.alloc_contig = true,
418				};
419				INIT_LIST_HEAD(&cc.migratepages);
420
421				/*
422				 * XXX: mark the page as MIGRATE_ISOLATE so that
423				 * no one else can grab the freed page after migration.
424				 * Ideally, the page should be freed as two separate
425				 * pages to be added into separate migratetype free
426				 * lists.
427				 */
428				if (isolate_page) {
429					ret = set_migratetype_isolate(page, page_mt,
430						flags, head_pfn, head_pfn + nr_pages);
431					if (ret)
432						goto failed;
433				}
434
435				ret = __alloc_contig_migrate_range(&cc, head_pfn,
436							head_pfn + nr_pages);
437
438				/*
439				 * restore the page's migratetype so that it can
440				 * be split into separate migratetype free lists
441				 * later.
442				 */
443				if (isolate_page)
444					unset_migratetype_isolate(page, page_mt);
445
446				if (ret)
447					goto failed;
448				/*
449				 * reset pfn to the head of the free page, so
450				 * that the free page handling code above can split
451				 * the free page to the right migratetype list.
452				 *
453				 * head_pfn is not used here as a hugetlb page order
454				 * can be bigger than MAX_ORDER-1, but after it is
455				 * freed, the free page order is not. Use pfn within
456				 * the range to find the head of the free page.
457				 */
458				order = 0;
459				outer_pfn = pfn;
460				while (!PageBuddy(pfn_to_page(outer_pfn))) {
461					/* stop if we cannot find the free page */
462					if (++order >= MAX_ORDER)
463						goto failed;
464					outer_pfn &= ~0UL << order;
465				}
466				pfn = outer_pfn;
467				continue;
468			} else
469#endif
470				goto failed;
471		}
472
473		pfn++;
474	}
475	return 0;
476failed:
477	/* restore the original migratetype */
478	if (!skip_isolation)
479		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
480	return -EBUSY;
481}
482
483/**
484 * start_isolate_page_range() - make page-allocation-type of range of pages to
485 * be MIGRATE_ISOLATE.
486 * @start_pfn:		The lower PFN of the range to be isolated.
487 * @end_pfn:		The upper PFN of the range to be isolated.
488 * @migratetype:	Migrate type to set in error recovery.
489 * @flags:		The following flags are allowed (they can be combined in
490 *			a bit mask)
491 *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
492 *					 e.g., skip over PageHWPoison() pages
493 *					 and PageOffline() pages.
494 *			REPORT_FAILURE - report details about the failure to
495 *			isolate the range
496 * @gfp_flags:		GFP flags used for migrating pages that sit across the
497 *			range boundaries.
498 *
499 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
500 * the range will never be allocated. Any free pages and pages freed in the
501 * future will not be allocated again. If specified range includes migrate types
502 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
503 * pages in the range finally, the caller have to free all pages in the range.
504 * test_page_isolated() can be used for test it.
505 *
506 * The function first tries to isolate the pageblocks at the beginning and end
507 * of the range, since there might be pages across the range boundaries.
508 * Afterwards, it isolates the rest of the range.
509 *
510 * There is no high level synchronization mechanism that prevents two threads
511 * from trying to isolate overlapping ranges. If this happens, one thread
512 * will notice pageblocks in the overlapping range already set to isolate.
513 * This happens in set_migratetype_isolate, and set_migratetype_isolate
514 * returns an error. We then clean up by restoring the migration type on
515 * pageblocks we may have modified and return -EBUSY to caller. This
516 * prevents two threads from simultaneously working on overlapping ranges.
517 *
518 * Please note that there is no strong synchronization with the page allocator
519 * either. Pages might be freed while their page blocks are marked ISOLATED.
520 * A call to drain_all_pages() after isolation can flush most of them. However
521 * in some cases pages might still end up on pcp lists and that would allow
522 * for their allocation even when they are in fact isolated already. Depending
523 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
524 * might be used to flush and disable pcplist before isolation and enable after
525 * unisolation.
526 *
527 * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
528 */
529int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
530			     int migratetype, int flags, gfp_t gfp_flags)
531{
532	unsigned long pfn;
 
533	struct page *page;
534	/* isolation is done at page block granularity */
535	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
536	unsigned long isolate_end = pageblock_align(end_pfn);
537	int ret;
538	bool skip_isolation = false;
539
540	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
541	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
542			skip_isolation, migratetype);
543	if (ret)
544		return ret;
545
546	if (isolate_start == isolate_end - pageblock_nr_pages)
547		skip_isolation = true;
548
549	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
550	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
551			skip_isolation, migratetype);
552	if (ret) {
553		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
554		return ret;
555	}
556
557	/* skip isolated pageblocks at the beginning and end */
558	for (pfn = isolate_start + pageblock_nr_pages;
559	     pfn < isolate_end - pageblock_nr_pages;
 
 
560	     pfn += pageblock_nr_pages) {
561		page = __first_valid_page(pfn, pageblock_nr_pages);
562		if (page && set_migratetype_isolate(page, migratetype, flags,
563					start_pfn, end_pfn)) {
564			undo_isolate_page_range(isolate_start, pfn, migratetype);
565			unset_migratetype_isolate(
566				pfn_to_page(isolate_end - pageblock_nr_pages),
567				migratetype);
568			return -EBUSY;
569		}
570	}
571	return 0;
 
 
 
 
 
 
 
572}
573
574/*
575 * Make isolated pages available again.
576 */
577void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
578			    int migratetype)
579{
580	unsigned long pfn;
581	struct page *page;
582	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
583	unsigned long isolate_end = pageblock_align(end_pfn);
584
585	for (pfn = isolate_start;
586	     pfn < isolate_end;
 
 
 
587	     pfn += pageblock_nr_pages) {
588		page = __first_valid_page(pfn, pageblock_nr_pages);
589		if (!page || !is_migrate_isolate_page(page))
590			continue;
591		unset_migratetype_isolate(page, migratetype);
592	}
 
593}
594/*
595 * Test all pages in the range is free(means isolated) or not.
596 * all pages in [start_pfn...end_pfn) must be in the same zone.
597 * zone->lock must be held before call this.
598 *
599 * Returns the last tested pfn.
600 */
601static unsigned long
602__test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
603				  int flags)
604{
605	struct page *page;
606
607	while (pfn < end_pfn) {
 
 
 
 
608		page = pfn_to_page(pfn);
609		if (PageBuddy(page))
610			/*
611			 * If the page is on a free list, it has to be on
612			 * the correct MIGRATE_ISOLATE freelist. There is no
613			 * simple way to verify that as VM_BUG_ON(), though.
614			 */
615			pfn += 1 << buddy_order(page);
616		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
617			/* A HWPoisoned page cannot be also PageBuddy */
618			pfn++;
619		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
620			 !page_count(page))
621			/*
622			 * The responsible driver agreed to skip PageOffline()
623			 * pages when offlining memory by dropping its
624			 * reference in MEM_GOING_OFFLINE.
625			 */
626			pfn++;
627		else
628			break;
629	}
630
631	return pfn;
632}
633
634/* Caller should ensure that requested range is in a single zone */
635int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
636			int isol_flags)
637{
638	unsigned long pfn, flags;
639	struct page *page;
640	struct zone *zone;
641	int ret;
642
643	/*
644	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
645	 * are not aligned to pageblock_nr_pages.
646	 * Then we just check migratetype first.
647	 */
648	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
649		page = __first_valid_page(pfn, pageblock_nr_pages);
650		if (page && !is_migrate_isolate_page(page))
651			break;
652	}
653	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
654	if ((pfn < end_pfn) || !page) {
655		ret = -EBUSY;
656		goto out;
657	}
658
659	/* Check all pages are free or marked as ISOLATED */
660	zone = page_zone(page);
661	spin_lock_irqsave(&zone->lock, flags);
662	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
 
663	spin_unlock_irqrestore(&zone->lock, flags);
664
665	ret = pfn < end_pfn ? -EBUSY : 0;
 
 
 
 
 
 
 
 
666
667out:
668	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
669
670	return ret;
671}