Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * fs/kernfs/file.c - kernfs file implementation
  3 *
  4 * Copyright (c) 2001-3 Patrick Mochel
  5 * Copyright (c) 2007 SUSE Linux Products GmbH
  6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
  7 *
  8 * This file is released under the GPLv2.
  9 */
 10
 11#include <linux/fs.h>
 12#include <linux/seq_file.h>
 13#include <linux/slab.h>
 14#include <linux/poll.h>
 15#include <linux/pagemap.h>
 16#include <linux/sched.h>
 17#include <linux/fsnotify.h>
 
 18
 19#include "kernfs-internal.h"
 20
 21/*
 22 * There's one kernfs_open_file for each open file and one kernfs_open_node
 23 * for each kernfs_node with one or more open files.
 24 *
 25 * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
 26 * protected by kernfs_open_node_lock.
 27 *
 28 * filp->private_data points to seq_file whose ->private points to
 29 * kernfs_open_file.  kernfs_open_files are chained at
 30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
 31 */
 32static DEFINE_SPINLOCK(kernfs_open_node_lock);
 33static DEFINE_MUTEX(kernfs_open_file_mutex);
 34
 35struct kernfs_open_node {
 36	atomic_t		refcnt;
 37	atomic_t		event;
 38	wait_queue_head_t	poll;
 39	struct list_head	files; /* goes through kernfs_open_file.list */
 
 
 40};
 41
 42/*
 43 * kernfs_notify() may be called from any context and bounces notifications
 44 * through a work item.  To minimize space overhead in kernfs_node, the
 45 * pending queue is implemented as a singly linked list of kernfs_nodes.
 46 * The list is terminated with the self pointer so that whether a
 47 * kernfs_node is on the list or not can be determined by testing the next
 48 * pointer for NULL.
 49 */
 50#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
 51
 52static DEFINE_SPINLOCK(kernfs_notify_lock);
 53static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
 54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55static struct kernfs_open_file *kernfs_of(struct file *file)
 56{
 57	return ((struct seq_file *)file->private_data)->private;
 58}
 59
 60/*
 61 * Determine the kernfs_ops for the given kernfs_node.  This function must
 62 * be called while holding an active reference.
 63 */
 64static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
 65{
 66	if (kn->flags & KERNFS_LOCKDEP)
 67		lockdep_assert_held(kn);
 68	return kn->attr.ops;
 69}
 70
 71/*
 72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
 73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
 74 * a seq_file iteration which is fully initialized with an active reference
 75 * or an aborted kernfs_seq_start() due to get_active failure.  The
 76 * position pointer is the only context for each seq_file iteration and
 77 * thus the stop condition should be encoded in it.  As the return value is
 78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
 79 * choice to indicate get_active failure.
 80 *
 81 * Unfortunately, this is complicated due to the optional custom seq_file
 82 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
 83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
 84 * custom seq_file operations and thus can't decide whether put_active
 85 * should be performed or not only on ERR_PTR(-ENODEV).
 86 *
 87 * This is worked around by factoring out the custom seq_stop() and
 88 * put_active part into kernfs_seq_stop_active(), skipping it from
 89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
 90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
 91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
 92 */
 93static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
 94{
 95	struct kernfs_open_file *of = sf->private;
 96	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 97
 98	if (ops->seq_stop)
 99		ops->seq_stop(sf, v);
100	kernfs_put_active(of->kn);
101}
102
103static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104{
105	struct kernfs_open_file *of = sf->private;
106	const struct kernfs_ops *ops;
107
108	/*
109	 * @of->mutex nests outside active ref and is primarily to ensure that
110	 * the ops aren't called concurrently for the same open file.
111	 */
112	mutex_lock(&of->mutex);
113	if (!kernfs_get_active(of->kn))
114		return ERR_PTR(-ENODEV);
115
116	ops = kernfs_ops(of->kn);
117	if (ops->seq_start) {
118		void *next = ops->seq_start(sf, ppos);
119		/* see the comment above kernfs_seq_stop_active() */
120		if (next == ERR_PTR(-ENODEV))
121			kernfs_seq_stop_active(sf, next);
122		return next;
123	} else {
124		/*
125		 * The same behavior and code as single_open().  Returns
126		 * !NULL if pos is at the beginning; otherwise, NULL.
127		 */
128		return NULL + !*ppos;
129	}
 
130}
131
132static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133{
134	struct kernfs_open_file *of = sf->private;
135	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136
137	if (ops->seq_next) {
138		void *next = ops->seq_next(sf, v, ppos);
139		/* see the comment above kernfs_seq_stop_active() */
140		if (next == ERR_PTR(-ENODEV))
141			kernfs_seq_stop_active(sf, next);
142		return next;
143	} else {
144		/*
145		 * The same behavior and code as single_open(), always
146		 * terminate after the initial read.
147		 */
148		++*ppos;
149		return NULL;
150	}
151}
152
153static void kernfs_seq_stop(struct seq_file *sf, void *v)
154{
155	struct kernfs_open_file *of = sf->private;
156
157	if (v != ERR_PTR(-ENODEV))
158		kernfs_seq_stop_active(sf, v);
159	mutex_unlock(&of->mutex);
160}
161
162static int kernfs_seq_show(struct seq_file *sf, void *v)
163{
164	struct kernfs_open_file *of = sf->private;
165
166	of->event = atomic_read(&of->kn->attr.open->event);
167
168	return of->kn->attr.ops->seq_show(sf, v);
169}
170
171static const struct seq_operations kernfs_seq_ops = {
172	.start = kernfs_seq_start,
173	.next = kernfs_seq_next,
174	.stop = kernfs_seq_stop,
175	.show = kernfs_seq_show,
176};
177
178/*
179 * As reading a bin file can have side-effects, the exact offset and bytes
180 * specified in read(2) call should be passed to the read callback making
181 * it difficult to use seq_file.  Implement simplistic custom buffering for
182 * bin files.
183 */
184static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185				       char __user *user_buf, size_t count,
186				       loff_t *ppos)
187{
188	ssize_t len = min_t(size_t, count, PAGE_SIZE);
 
189	const struct kernfs_ops *ops;
190	char *buf;
191
192	buf = of->prealloc_buf;
193	if (!buf)
 
 
194		buf = kmalloc(len, GFP_KERNEL);
195	if (!buf)
196		return -ENOMEM;
197
198	/*
199	 * @of->mutex nests outside active ref and is used both to ensure that
200	 * the ops aren't called concurrently for the same open file, and
201	 * to provide exclusive access to ->prealloc_buf (when that exists).
202	 */
203	mutex_lock(&of->mutex);
204	if (!kernfs_get_active(of->kn)) {
205		len = -ENODEV;
206		mutex_unlock(&of->mutex);
207		goto out_free;
208	}
209
210	of->event = atomic_read(&of->kn->attr.open->event);
 
211	ops = kernfs_ops(of->kn);
212	if (ops->read)
213		len = ops->read(of, buf, len, *ppos);
214	else
215		len = -EINVAL;
216
 
 
 
217	if (len < 0)
218		goto out_unlock;
219
220	if (copy_to_user(user_buf, buf, len)) {
221		len = -EFAULT;
222		goto out_unlock;
223	}
224
225	*ppos += len;
226
227 out_unlock:
228	kernfs_put_active(of->kn);
229	mutex_unlock(&of->mutex);
230 out_free:
231	if (buf != of->prealloc_buf)
 
 
232		kfree(buf);
233	return len;
234}
235
236/**
237 * kernfs_fop_read - kernfs vfs read callback
238 * @file: file pointer
239 * @user_buf: data to write
240 * @count: number of bytes
241 * @ppos: starting offset
242 */
243static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
244			       size_t count, loff_t *ppos)
245{
246	struct kernfs_open_file *of = kernfs_of(file);
247
248	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
249		return seq_read(file, user_buf, count, ppos);
250	else
251		return kernfs_file_direct_read(of, user_buf, count, ppos);
252}
253
254/**
255 * kernfs_fop_write - kernfs vfs write callback
256 * @file: file pointer
257 * @user_buf: data to write
258 * @count: number of bytes
259 * @ppos: starting offset
260 *
261 * Copy data in from userland and pass it to the matching kernfs write
262 * operation.
263 *
264 * There is no easy way for us to know if userspace is only doing a partial
265 * write, so we don't support them. We expect the entire buffer to come on
266 * the first write.  Hint: if you're writing a value, first read the file,
267 * modify only the the value you're changing, then write entire buffer
268 * back.
269 */
270static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
271				size_t count, loff_t *ppos)
272{
273	struct kernfs_open_file *of = kernfs_of(file);
 
274	const struct kernfs_ops *ops;
275	size_t len;
276	char *buf;
277
278	if (of->atomic_write_len) {
279		len = count;
280		if (len > of->atomic_write_len)
281			return -E2BIG;
282	} else {
283		len = min_t(size_t, count, PAGE_SIZE);
284	}
285
286	buf = of->prealloc_buf;
287	if (!buf)
 
 
288		buf = kmalloc(len + 1, GFP_KERNEL);
289	if (!buf)
290		return -ENOMEM;
291
 
 
 
 
 
 
292	/*
293	 * @of->mutex nests outside active ref and is used both to ensure that
294	 * the ops aren't called concurrently for the same open file, and
295	 * to provide exclusive access to ->prealloc_buf (when that exists).
296	 */
297	mutex_lock(&of->mutex);
298	if (!kernfs_get_active(of->kn)) {
299		mutex_unlock(&of->mutex);
300		len = -ENODEV;
301		goto out_free;
302	}
303
304	if (copy_from_user(buf, user_buf, len)) {
305		len = -EFAULT;
306		goto out_unlock;
307	}
308	buf[len] = '\0';	/* guarantee string termination */
309
310	ops = kernfs_ops(of->kn);
311	if (ops->write)
312		len = ops->write(of, buf, len, *ppos);
313	else
314		len = -EINVAL;
315
316	if (len > 0)
317		*ppos += len;
318
319out_unlock:
320	kernfs_put_active(of->kn);
321	mutex_unlock(&of->mutex);
 
 
 
 
322out_free:
323	if (buf != of->prealloc_buf)
 
 
324		kfree(buf);
325	return len;
326}
327
328static void kernfs_vma_open(struct vm_area_struct *vma)
329{
330	struct file *file = vma->vm_file;
331	struct kernfs_open_file *of = kernfs_of(file);
332
333	if (!of->vm_ops)
334		return;
335
336	if (!kernfs_get_active(of->kn))
337		return;
338
339	if (of->vm_ops->open)
340		of->vm_ops->open(vma);
341
342	kernfs_put_active(of->kn);
343}
344
345static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
346{
347	struct file *file = vma->vm_file;
348	struct kernfs_open_file *of = kernfs_of(file);
349	int ret;
350
351	if (!of->vm_ops)
352		return VM_FAULT_SIGBUS;
353
354	if (!kernfs_get_active(of->kn))
355		return VM_FAULT_SIGBUS;
356
357	ret = VM_FAULT_SIGBUS;
358	if (of->vm_ops->fault)
359		ret = of->vm_ops->fault(vma, vmf);
360
361	kernfs_put_active(of->kn);
362	return ret;
363}
364
365static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
366				   struct vm_fault *vmf)
367{
368	struct file *file = vma->vm_file;
369	struct kernfs_open_file *of = kernfs_of(file);
370	int ret;
371
372	if (!of->vm_ops)
373		return VM_FAULT_SIGBUS;
374
375	if (!kernfs_get_active(of->kn))
376		return VM_FAULT_SIGBUS;
377
378	ret = 0;
379	if (of->vm_ops->page_mkwrite)
380		ret = of->vm_ops->page_mkwrite(vma, vmf);
381	else
382		file_update_time(file);
383
384	kernfs_put_active(of->kn);
385	return ret;
386}
387
388static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
389			     void *buf, int len, int write)
390{
391	struct file *file = vma->vm_file;
392	struct kernfs_open_file *of = kernfs_of(file);
393	int ret;
394
395	if (!of->vm_ops)
396		return -EINVAL;
397
398	if (!kernfs_get_active(of->kn))
399		return -EINVAL;
400
401	ret = -EINVAL;
402	if (of->vm_ops->access)
403		ret = of->vm_ops->access(vma, addr, buf, len, write);
404
405	kernfs_put_active(of->kn);
406	return ret;
407}
408
409#ifdef CONFIG_NUMA
410static int kernfs_vma_set_policy(struct vm_area_struct *vma,
411				 struct mempolicy *new)
412{
413	struct file *file = vma->vm_file;
414	struct kernfs_open_file *of = kernfs_of(file);
415	int ret;
416
417	if (!of->vm_ops)
418		return 0;
419
420	if (!kernfs_get_active(of->kn))
421		return -EINVAL;
422
423	ret = 0;
424	if (of->vm_ops->set_policy)
425		ret = of->vm_ops->set_policy(vma, new);
426
427	kernfs_put_active(of->kn);
428	return ret;
429}
430
431static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
432					       unsigned long addr)
433{
434	struct file *file = vma->vm_file;
435	struct kernfs_open_file *of = kernfs_of(file);
436	struct mempolicy *pol;
437
438	if (!of->vm_ops)
439		return vma->vm_policy;
440
441	if (!kernfs_get_active(of->kn))
442		return vma->vm_policy;
443
444	pol = vma->vm_policy;
445	if (of->vm_ops->get_policy)
446		pol = of->vm_ops->get_policy(vma, addr);
447
448	kernfs_put_active(of->kn);
449	return pol;
450}
451
452#endif
453
454static const struct vm_operations_struct kernfs_vm_ops = {
455	.open		= kernfs_vma_open,
456	.fault		= kernfs_vma_fault,
457	.page_mkwrite	= kernfs_vma_page_mkwrite,
458	.access		= kernfs_vma_access,
459#ifdef CONFIG_NUMA
460	.set_policy	= kernfs_vma_set_policy,
461	.get_policy	= kernfs_vma_get_policy,
462#endif
463};
464
465static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
466{
467	struct kernfs_open_file *of = kernfs_of(file);
468	const struct kernfs_ops *ops;
469	int rc;
470
471	/*
472	 * mmap path and of->mutex are prone to triggering spurious lockdep
473	 * warnings and we don't want to add spurious locking dependency
474	 * between the two.  Check whether mmap is actually implemented
475	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
476	 * comment in kernfs_file_open() for more details.
477	 */
478	if (!(of->kn->flags & KERNFS_HAS_MMAP))
479		return -ENODEV;
480
481	mutex_lock(&of->mutex);
482
483	rc = -ENODEV;
484	if (!kernfs_get_active(of->kn))
485		goto out_unlock;
486
487	ops = kernfs_ops(of->kn);
488	rc = ops->mmap(of, vma);
489	if (rc)
490		goto out_put;
491
492	/*
493	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
494	 * to satisfy versions of X which crash if the mmap fails: that
495	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
496	 */
497	if (vma->vm_file != file)
498		goto out_put;
499
500	rc = -EINVAL;
501	if (of->mmapped && of->vm_ops != vma->vm_ops)
502		goto out_put;
503
504	/*
505	 * It is not possible to successfully wrap close.
506	 * So error if someone is trying to use close.
507	 */
508	rc = -EINVAL;
509	if (vma->vm_ops && vma->vm_ops->close)
510		goto out_put;
511
512	rc = 0;
513	of->mmapped = 1;
 
514	of->vm_ops = vma->vm_ops;
515	vma->vm_ops = &kernfs_vm_ops;
516out_put:
517	kernfs_put_active(of->kn);
518out_unlock:
519	mutex_unlock(&of->mutex);
520
521	return rc;
522}
523
524/**
525 *	kernfs_get_open_node - get or create kernfs_open_node
526 *	@kn: target kernfs_node
527 *	@of: kernfs_open_file for this instance of open
528 *
529 *	If @kn->attr.open exists, increment its reference count; otherwise,
530 *	create one.  @of is chained to the files list.
531 *
532 *	LOCKING:
533 *	Kernel thread context (may sleep).
534 *
535 *	RETURNS:
536 *	0 on success, -errno on failure.
537 */
538static int kernfs_get_open_node(struct kernfs_node *kn,
539				struct kernfs_open_file *of)
540{
541	struct kernfs_open_node *on, *new_on = NULL;
542
543 retry:
544	mutex_lock(&kernfs_open_file_mutex);
545	spin_lock_irq(&kernfs_open_node_lock);
546
547	if (!kn->attr.open && new_on) {
548		kn->attr.open = new_on;
549		new_on = NULL;
550	}
551
552	on = kn->attr.open;
553	if (on) {
554		atomic_inc(&on->refcnt);
555		list_add_tail(&of->list, &on->files);
556	}
557
558	spin_unlock_irq(&kernfs_open_node_lock);
559	mutex_unlock(&kernfs_open_file_mutex);
560
561	if (on) {
562		kfree(new_on);
563		return 0;
 
 
 
 
 
 
 
 
564	}
565
566	/* not there, initialize a new one and retry */
567	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
568	if (!new_on)
569		return -ENOMEM;
570
571	atomic_set(&new_on->refcnt, 0);
572	atomic_set(&new_on->event, 1);
573	init_waitqueue_head(&new_on->poll);
574	INIT_LIST_HEAD(&new_on->files);
575	goto retry;
576}
577
578/**
579 *	kernfs_put_open_node - put kernfs_open_node
580 *	@kn: target kernfs_nodet
 
581 *	@of: associated kernfs_open_file
 
582 *
583 *	Put @kn->attr.open and unlink @of from the files list.  If
584 *	reference count reaches zero, disassociate and free it.
 
585 *
586 *	LOCKING:
587 *	None.
588 */
589static void kernfs_put_open_node(struct kernfs_node *kn,
590				 struct kernfs_open_file *of)
 
591{
592	struct kernfs_open_node *on = kn->attr.open;
593	unsigned long flags;
594
595	mutex_lock(&kernfs_open_file_mutex);
596	spin_lock_irqsave(&kernfs_open_node_lock, flags);
597
598	if (of)
599		list_del(&of->list);
 
 
 
600
601	if (atomic_dec_and_test(&on->refcnt))
602		kn->attr.open = NULL;
603	else
604		on = NULL;
 
 
 
 
 
 
605
606	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
607	mutex_unlock(&kernfs_open_file_mutex);
 
 
608
609	kfree(on);
610}
611
612static int kernfs_fop_open(struct inode *inode, struct file *file)
613{
614	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
615	struct kernfs_root *root = kernfs_root(kn);
616	const struct kernfs_ops *ops;
617	struct kernfs_open_file *of;
618	bool has_read, has_write, has_mmap;
619	int error = -EACCES;
620
621	if (!kernfs_get_active(kn))
622		return -ENODEV;
623
624	ops = kernfs_ops(kn);
625
626	has_read = ops->seq_show || ops->read || ops->mmap;
627	has_write = ops->write || ops->mmap;
628	has_mmap = ops->mmap;
629
630	/* see the flag definition for details */
631	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
632		if ((file->f_mode & FMODE_WRITE) &&
633		    (!(inode->i_mode & S_IWUGO) || !has_write))
634			goto err_out;
635
636		if ((file->f_mode & FMODE_READ) &&
637		    (!(inode->i_mode & S_IRUGO) || !has_read))
638			goto err_out;
639	}
640
641	/* allocate a kernfs_open_file for the file */
642	error = -ENOMEM;
643	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
644	if (!of)
645		goto err_out;
646
647	/*
648	 * The following is done to give a different lockdep key to
649	 * @of->mutex for files which implement mmap.  This is a rather
650	 * crude way to avoid false positive lockdep warning around
651	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
652	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
653	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
654	 * open file has a separate mutex, it's okay as long as those don't
655	 * happen on the same file.  At this point, we can't easily give
656	 * each file a separate locking class.  Let's differentiate on
657	 * whether the file has mmap or not for now.
658	 *
659	 * Both paths of the branch look the same.  They're supposed to
660	 * look that way and give @of->mutex different static lockdep keys.
661	 */
662	if (has_mmap)
663		mutex_init(&of->mutex);
664	else
665		mutex_init(&of->mutex);
666
667	of->kn = kn;
668	of->file = file;
669
670	/*
671	 * Write path needs to atomic_write_len outside active reference.
672	 * Cache it in open_file.  See kernfs_fop_write() for details.
673	 */
674	of->atomic_write_len = ops->atomic_write_len;
675
676	error = -EINVAL;
677	/*
678	 * ->seq_show is incompatible with ->prealloc,
679	 * as seq_read does its own allocation.
680	 * ->read must be used instead.
681	 */
682	if (ops->prealloc && ops->seq_show)
683		goto err_free;
684	if (ops->prealloc) {
685		int len = of->atomic_write_len ?: PAGE_SIZE;
686		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
687		error = -ENOMEM;
688		if (!of->prealloc_buf)
689			goto err_free;
 
690	}
691
692	/*
693	 * Always instantiate seq_file even if read access doesn't use
694	 * seq_file or is not requested.  This unifies private data access
695	 * and readable regular files are the vast majority anyway.
696	 */
697	if (ops->seq_show)
698		error = seq_open(file, &kernfs_seq_ops);
699	else
700		error = seq_open(file, NULL);
701	if (error)
702		goto err_free;
703
704	((struct seq_file *)file->private_data)->private = of;
 
705
706	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
707	if (file->f_mode & FMODE_WRITE)
708		file->f_mode |= FMODE_PWRITE;
709
710	/* make sure we have open node struct */
711	error = kernfs_get_open_node(kn, of);
712	if (error)
713		goto err_close;
 
 
 
 
 
 
 
714
715	/* open succeeded, put active references */
716	kernfs_put_active(kn);
717	return 0;
718
719err_close:
 
 
720	seq_release(inode, file);
721err_free:
722	kfree(of->prealloc_buf);
723	kfree(of);
724err_out:
725	kernfs_put_active(kn);
726	return error;
727}
728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
729static int kernfs_fop_release(struct inode *inode, struct file *filp)
730{
731	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
732	struct kernfs_open_file *of = kernfs_of(filp);
733
734	kernfs_put_open_node(kn, of);
 
 
 
 
 
 
 
 
735	seq_release(inode, filp);
736	kfree(of->prealloc_buf);
737	kfree(of);
738
739	return 0;
740}
741
742void kernfs_unmap_bin_file(struct kernfs_node *kn)
743{
744	struct kernfs_open_node *on;
745	struct kernfs_open_file *of;
746
747	if (!(kn->flags & KERNFS_HAS_MMAP))
748		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
749
750	spin_lock_irq(&kernfs_open_node_lock);
751	on = kn->attr.open;
752	if (on)
753		atomic_inc(&on->refcnt);
754	spin_unlock_irq(&kernfs_open_node_lock);
755	if (!on)
756		return;
 
757
758	mutex_lock(&kernfs_open_file_mutex);
759	list_for_each_entry(of, &on->files, list) {
760		struct inode *inode = file_inode(of->file);
761		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 
 
 
 
 
 
 
 
762	}
763	mutex_unlock(&kernfs_open_file_mutex);
764
765	kernfs_put_open_node(kn, NULL);
 
766}
767
768/*
769 * Kernfs attribute files are pollable.  The idea is that you read
770 * the content and then you use 'poll' or 'select' to wait for
771 * the content to change.  When the content changes (assuming the
772 * manager for the kobject supports notification), poll will
773 * return POLLERR|POLLPRI, and select will return the fd whether
774 * it is waiting for read, write, or exceptions.
775 * Once poll/select indicates that the value has changed, you
776 * need to close and re-open the file, or seek to 0 and read again.
777 * Reminder: this only works for attributes which actively support
778 * it, and it is not possible to test an attribute from userspace
779 * to see if it supports poll (Neither 'poll' nor 'select' return
780 * an appropriate error code).  When in doubt, set a suitable timeout value.
781 */
782static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
783{
784	struct kernfs_open_file *of = kernfs_of(filp);
785	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
786	struct kernfs_open_node *on = kn->attr.open;
787
788	if (!kernfs_get_active(kn))
789		goto trigger;
790
791	poll_wait(filp, &on->poll, wait);
792
793	kernfs_put_active(kn);
794
795	if (of->event != atomic_read(&on->event))
796		goto trigger;
797
798	return DEFAULT_POLLMASK;
 
799
800 trigger:
801	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
802}
803
804static void kernfs_notify_workfn(struct work_struct *work)
805{
806	struct kernfs_node *kn;
807	struct kernfs_open_node *on;
808	struct kernfs_super_info *info;
 
809repeat:
810	/* pop one off the notify_list */
811	spin_lock_irq(&kernfs_notify_lock);
812	kn = kernfs_notify_list;
813	if (kn == KERNFS_NOTIFY_EOL) {
814		spin_unlock_irq(&kernfs_notify_lock);
815		return;
816	}
817	kernfs_notify_list = kn->attr.notify_next;
818	kn->attr.notify_next = NULL;
819	spin_unlock_irq(&kernfs_notify_lock);
820
821	/* kick poll */
822	spin_lock_irq(&kernfs_open_node_lock);
823
824	on = kn->attr.open;
825	if (on) {
826		atomic_inc(&on->event);
827		wake_up_interruptible(&on->poll);
828	}
829
830	spin_unlock_irq(&kernfs_open_node_lock);
831
832	/* kick fsnotify */
833	mutex_lock(&kernfs_mutex);
834
835	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 
 
836		struct inode *inode;
837		struct dentry *dentry;
838
839		inode = ilookup(info->sb, kn->ino);
 
 
 
 
 
 
840		if (!inode)
841			continue;
842
843		dentry = d_find_any_alias(inode);
844		if (dentry) {
845			fsnotify_parent(NULL, dentry, FS_MODIFY);
846			fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
847				 NULL, 0);
848			dput(dentry);
 
 
 
 
 
 
849		}
850
 
 
 
851		iput(inode);
852	}
853
854	mutex_unlock(&kernfs_mutex);
855	kernfs_put(kn);
856	goto repeat;
857}
858
859/**
860 * kernfs_notify - notify a kernfs file
861 * @kn: file to notify
862 *
863 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
864 * context.
865 */
866void kernfs_notify(struct kernfs_node *kn)
867{
868	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
869	unsigned long flags;
 
870
871	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
872		return;
873
 
 
 
 
 
 
 
 
 
 
874	spin_lock_irqsave(&kernfs_notify_lock, flags);
875	if (!kn->attr.notify_next) {
876		kernfs_get(kn);
877		kn->attr.notify_next = kernfs_notify_list;
878		kernfs_notify_list = kn;
879		schedule_work(&kernfs_notify_work);
880	}
881	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
882}
883EXPORT_SYMBOL_GPL(kernfs_notify);
884
885const struct file_operations kernfs_file_fops = {
886	.read		= kernfs_fop_read,
887	.write		= kernfs_fop_write,
888	.llseek		= generic_file_llseek,
889	.mmap		= kernfs_fop_mmap,
890	.open		= kernfs_fop_open,
891	.release	= kernfs_fop_release,
892	.poll		= kernfs_fop_poll,
 
 
 
893};
894
895/**
896 * __kernfs_create_file - kernfs internal function to create a file
897 * @parent: directory to create the file in
898 * @name: name of the file
899 * @mode: mode of the file
 
 
900 * @size: size of the file
901 * @ops: kernfs operations for the file
902 * @priv: private data for the file
903 * @ns: optional namespace tag of the file
904 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
905 *
906 * Returns the created node on success, ERR_PTR() value on error.
907 */
908struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
909					 const char *name,
910					 umode_t mode, loff_t size,
 
911					 const struct kernfs_ops *ops,
912					 void *priv, const void *ns,
913					 struct lock_class_key *key)
914{
915	struct kernfs_node *kn;
916	unsigned flags;
917	int rc;
918
919	flags = KERNFS_FILE;
920
921	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
 
922	if (!kn)
923		return ERR_PTR(-ENOMEM);
924
925	kn->attr.ops = ops;
926	kn->attr.size = size;
927	kn->ns = ns;
928	kn->priv = priv;
929
930#ifdef CONFIG_DEBUG_LOCK_ALLOC
931	if (key) {
932		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
933		kn->flags |= KERNFS_LOCKDEP;
934	}
935#endif
936
937	/*
938	 * kn->attr.ops is accesible only while holding active ref.  We
939	 * need to know whether some ops are implemented outside active
940	 * ref.  Cache their existence in flags.
941	 */
942	if (ops->seq_show)
943		kn->flags |= KERNFS_HAS_SEQ_SHOW;
944	if (ops->mmap)
945		kn->flags |= KERNFS_HAS_MMAP;
 
 
946
947	rc = kernfs_add_one(kn);
948	if (rc) {
949		kernfs_put(kn);
950		return ERR_PTR(rc);
951	}
952	return kn;
953}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * fs/kernfs/file.c - kernfs file implementation
   4 *
   5 * Copyright (c) 2001-3 Patrick Mochel
   6 * Copyright (c) 2007 SUSE Linux Products GmbH
   7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
 
 
   8 */
   9
  10#include <linux/fs.h>
  11#include <linux/seq_file.h>
  12#include <linux/slab.h>
  13#include <linux/poll.h>
  14#include <linux/pagemap.h>
  15#include <linux/sched/mm.h>
  16#include <linux/fsnotify.h>
  17#include <linux/uio.h>
  18
  19#include "kernfs-internal.h"
  20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21struct kernfs_open_node {
  22	struct rcu_head		rcu_head;
  23	atomic_t		event;
  24	wait_queue_head_t	poll;
  25	struct list_head	files; /* goes through kernfs_open_file.list */
  26	unsigned int		nr_mmapped;
  27	unsigned int		nr_to_release;
  28};
  29
  30/*
  31 * kernfs_notify() may be called from any context and bounces notifications
  32 * through a work item.  To minimize space overhead in kernfs_node, the
  33 * pending queue is implemented as a singly linked list of kernfs_nodes.
  34 * The list is terminated with the self pointer so that whether a
  35 * kernfs_node is on the list or not can be determined by testing the next
  36 * pointer for %NULL.
  37 */
  38#define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
  39
  40static DEFINE_SPINLOCK(kernfs_notify_lock);
  41static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
  42
  43static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn)
  44{
  45	int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS);
  46
  47	return &kernfs_locks->open_file_mutex[idx];
  48}
  49
  50static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn)
  51{
  52	struct mutex *lock;
  53
  54	lock = kernfs_open_file_mutex_ptr(kn);
  55
  56	mutex_lock(lock);
  57
  58	return lock;
  59}
  60
  61/**
  62 * of_on - Get the kernfs_open_node of the specified kernfs_open_file
  63 * @of: target kernfs_open_file
  64 *
  65 * Return: the kernfs_open_node of the kernfs_open_file
  66 */
  67static struct kernfs_open_node *of_on(struct kernfs_open_file *of)
  68{
  69	return rcu_dereference_protected(of->kn->attr.open,
  70					 !list_empty(&of->list));
  71}
  72
  73/**
  74 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn
  75 *
  76 * @kn: target kernfs_node.
  77 *
  78 * Fetch and return ->attr.open of @kn when caller holds the
  79 * kernfs_open_file_mutex_ptr(kn).
  80 *
  81 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when
  82 * the caller guarantees that this mutex is being held, other updaters can't
  83 * change ->attr.open and this means that we can safely deref ->attr.open
  84 * outside RCU read-side critical section.
  85 *
  86 * The caller needs to make sure that kernfs_open_file_mutex is held.
  87 *
  88 * Return: @kn->attr.open when kernfs_open_file_mutex is held.
  89 */
  90static struct kernfs_open_node *
  91kernfs_deref_open_node_locked(struct kernfs_node *kn)
  92{
  93	return rcu_dereference_protected(kn->attr.open,
  94				lockdep_is_held(kernfs_open_file_mutex_ptr(kn)));
  95}
  96
  97static struct kernfs_open_file *kernfs_of(struct file *file)
  98{
  99	return ((struct seq_file *)file->private_data)->private;
 100}
 101
 102/*
 103 * Determine the kernfs_ops for the given kernfs_node.  This function must
 104 * be called while holding an active reference.
 105 */
 106static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
 107{
 108	if (kn->flags & KERNFS_LOCKDEP)
 109		lockdep_assert_held(kn);
 110	return kn->attr.ops;
 111}
 112
 113/*
 114 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
 115 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
 116 * a seq_file iteration which is fully initialized with an active reference
 117 * or an aborted kernfs_seq_start() due to get_active failure.  The
 118 * position pointer is the only context for each seq_file iteration and
 119 * thus the stop condition should be encoded in it.  As the return value is
 120 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
 121 * choice to indicate get_active failure.
 122 *
 123 * Unfortunately, this is complicated due to the optional custom seq_file
 124 * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
 125 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
 126 * custom seq_file operations and thus can't decide whether put_active
 127 * should be performed or not only on ERR_PTR(-ENODEV).
 128 *
 129 * This is worked around by factoring out the custom seq_stop() and
 130 * put_active part into kernfs_seq_stop_active(), skipping it from
 131 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
 132 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
 133 * that kernfs_seq_stop_active() is skipped only after get_active failure.
 134 */
 135static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
 136{
 137	struct kernfs_open_file *of = sf->private;
 138	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 139
 140	if (ops->seq_stop)
 141		ops->seq_stop(sf, v);
 142	kernfs_put_active(of->kn);
 143}
 144
 145static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
 146{
 147	struct kernfs_open_file *of = sf->private;
 148	const struct kernfs_ops *ops;
 149
 150	/*
 151	 * @of->mutex nests outside active ref and is primarily to ensure that
 152	 * the ops aren't called concurrently for the same open file.
 153	 */
 154	mutex_lock(&of->mutex);
 155	if (!kernfs_get_active(of->kn))
 156		return ERR_PTR(-ENODEV);
 157
 158	ops = kernfs_ops(of->kn);
 159	if (ops->seq_start) {
 160		void *next = ops->seq_start(sf, ppos);
 161		/* see the comment above kernfs_seq_stop_active() */
 162		if (next == ERR_PTR(-ENODEV))
 163			kernfs_seq_stop_active(sf, next);
 164		return next;
 
 
 
 
 
 
 165	}
 166	return single_start(sf, ppos);
 167}
 168
 169static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
 170{
 171	struct kernfs_open_file *of = sf->private;
 172	const struct kernfs_ops *ops = kernfs_ops(of->kn);
 173
 174	if (ops->seq_next) {
 175		void *next = ops->seq_next(sf, v, ppos);
 176		/* see the comment above kernfs_seq_stop_active() */
 177		if (next == ERR_PTR(-ENODEV))
 178			kernfs_seq_stop_active(sf, next);
 179		return next;
 180	} else {
 181		/*
 182		 * The same behavior and code as single_open(), always
 183		 * terminate after the initial read.
 184		 */
 185		++*ppos;
 186		return NULL;
 187	}
 188}
 189
 190static void kernfs_seq_stop(struct seq_file *sf, void *v)
 191{
 192	struct kernfs_open_file *of = sf->private;
 193
 194	if (v != ERR_PTR(-ENODEV))
 195		kernfs_seq_stop_active(sf, v);
 196	mutex_unlock(&of->mutex);
 197}
 198
 199static int kernfs_seq_show(struct seq_file *sf, void *v)
 200{
 201	struct kernfs_open_file *of = sf->private;
 202
 203	of->event = atomic_read(&of_on(of)->event);
 204
 205	return of->kn->attr.ops->seq_show(sf, v);
 206}
 207
 208static const struct seq_operations kernfs_seq_ops = {
 209	.start = kernfs_seq_start,
 210	.next = kernfs_seq_next,
 211	.stop = kernfs_seq_stop,
 212	.show = kernfs_seq_show,
 213};
 214
 215/*
 216 * As reading a bin file can have side-effects, the exact offset and bytes
 217 * specified in read(2) call should be passed to the read callback making
 218 * it difficult to use seq_file.  Implement simplistic custom buffering for
 219 * bin files.
 220 */
 221static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 
 
 222{
 223	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 224	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
 225	const struct kernfs_ops *ops;
 226	char *buf;
 227
 228	buf = of->prealloc_buf;
 229	if (buf)
 230		mutex_lock(&of->prealloc_mutex);
 231	else
 232		buf = kmalloc(len, GFP_KERNEL);
 233	if (!buf)
 234		return -ENOMEM;
 235
 236	/*
 237	 * @of->mutex nests outside active ref and is used both to ensure that
 238	 * the ops aren't called concurrently for the same open file.
 
 239	 */
 240	mutex_lock(&of->mutex);
 241	if (!kernfs_get_active(of->kn)) {
 242		len = -ENODEV;
 243		mutex_unlock(&of->mutex);
 244		goto out_free;
 245	}
 246
 247	of->event = atomic_read(&of_on(of)->event);
 248
 249	ops = kernfs_ops(of->kn);
 250	if (ops->read)
 251		len = ops->read(of, buf, len, iocb->ki_pos);
 252	else
 253		len = -EINVAL;
 254
 255	kernfs_put_active(of->kn);
 256	mutex_unlock(&of->mutex);
 257
 258	if (len < 0)
 259		goto out_free;
 260
 261	if (copy_to_iter(buf, len, iter) != len) {
 262		len = -EFAULT;
 263		goto out_free;
 264	}
 265
 266	iocb->ki_pos += len;
 267
 
 
 
 268 out_free:
 269	if (buf == of->prealloc_buf)
 270		mutex_unlock(&of->prealloc_mutex);
 271	else
 272		kfree(buf);
 273	return len;
 274}
 275
 276static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
 
 
 
 
 
 
 
 
 277{
 278	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
 279		return seq_read_iter(iocb, iter);
 280	return kernfs_file_read_iter(iocb, iter);
 
 
 
 281}
 282
 283/*
 
 
 
 
 
 
 284 * Copy data in from userland and pass it to the matching kernfs write
 285 * operation.
 286 *
 287 * There is no easy way for us to know if userspace is only doing a partial
 288 * write, so we don't support them. We expect the entire buffer to come on
 289 * the first write.  Hint: if you're writing a value, first read the file,
 290 * modify only the value you're changing, then write entire buffer
 291 * back.
 292 */
 293static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
 
 294{
 295	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
 296	ssize_t len = iov_iter_count(iter);
 297	const struct kernfs_ops *ops;
 
 298	char *buf;
 299
 300	if (of->atomic_write_len) {
 
 301		if (len > of->atomic_write_len)
 302			return -E2BIG;
 303	} else {
 304		len = min_t(size_t, len, PAGE_SIZE);
 305	}
 306
 307	buf = of->prealloc_buf;
 308	if (buf)
 309		mutex_lock(&of->prealloc_mutex);
 310	else
 311		buf = kmalloc(len + 1, GFP_KERNEL);
 312	if (!buf)
 313		return -ENOMEM;
 314
 315	if (copy_from_iter(buf, len, iter) != len) {
 316		len = -EFAULT;
 317		goto out_free;
 318	}
 319	buf[len] = '\0';	/* guarantee string termination */
 320
 321	/*
 322	 * @of->mutex nests outside active ref and is used both to ensure that
 323	 * the ops aren't called concurrently for the same open file.
 
 324	 */
 325	mutex_lock(&of->mutex);
 326	if (!kernfs_get_active(of->kn)) {
 327		mutex_unlock(&of->mutex);
 328		len = -ENODEV;
 329		goto out_free;
 330	}
 331
 
 
 
 
 
 
 332	ops = kernfs_ops(of->kn);
 333	if (ops->write)
 334		len = ops->write(of, buf, len, iocb->ki_pos);
 335	else
 336		len = -EINVAL;
 337
 
 
 
 
 338	kernfs_put_active(of->kn);
 339	mutex_unlock(&of->mutex);
 340
 341	if (len > 0)
 342		iocb->ki_pos += len;
 343
 344out_free:
 345	if (buf == of->prealloc_buf)
 346		mutex_unlock(&of->prealloc_mutex);
 347	else
 348		kfree(buf);
 349	return len;
 350}
 351
 352static void kernfs_vma_open(struct vm_area_struct *vma)
 353{
 354	struct file *file = vma->vm_file;
 355	struct kernfs_open_file *of = kernfs_of(file);
 356
 357	if (!of->vm_ops)
 358		return;
 359
 360	if (!kernfs_get_active(of->kn))
 361		return;
 362
 363	if (of->vm_ops->open)
 364		of->vm_ops->open(vma);
 365
 366	kernfs_put_active(of->kn);
 367}
 368
 369static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
 370{
 371	struct file *file = vmf->vma->vm_file;
 372	struct kernfs_open_file *of = kernfs_of(file);
 373	vm_fault_t ret;
 374
 375	if (!of->vm_ops)
 376		return VM_FAULT_SIGBUS;
 377
 378	if (!kernfs_get_active(of->kn))
 379		return VM_FAULT_SIGBUS;
 380
 381	ret = VM_FAULT_SIGBUS;
 382	if (of->vm_ops->fault)
 383		ret = of->vm_ops->fault(vmf);
 384
 385	kernfs_put_active(of->kn);
 386	return ret;
 387}
 388
 389static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
 
 390{
 391	struct file *file = vmf->vma->vm_file;
 392	struct kernfs_open_file *of = kernfs_of(file);
 393	vm_fault_t ret;
 394
 395	if (!of->vm_ops)
 396		return VM_FAULT_SIGBUS;
 397
 398	if (!kernfs_get_active(of->kn))
 399		return VM_FAULT_SIGBUS;
 400
 401	ret = 0;
 402	if (of->vm_ops->page_mkwrite)
 403		ret = of->vm_ops->page_mkwrite(vmf);
 404	else
 405		file_update_time(file);
 406
 407	kernfs_put_active(of->kn);
 408	return ret;
 409}
 410
 411static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
 412			     void *buf, int len, int write)
 413{
 414	struct file *file = vma->vm_file;
 415	struct kernfs_open_file *of = kernfs_of(file);
 416	int ret;
 417
 418	if (!of->vm_ops)
 419		return -EINVAL;
 420
 421	if (!kernfs_get_active(of->kn))
 422		return -EINVAL;
 423
 424	ret = -EINVAL;
 425	if (of->vm_ops->access)
 426		ret = of->vm_ops->access(vma, addr, buf, len, write);
 427
 428	kernfs_put_active(of->kn);
 429	return ret;
 430}
 431
 432#ifdef CONFIG_NUMA
 433static int kernfs_vma_set_policy(struct vm_area_struct *vma,
 434				 struct mempolicy *new)
 435{
 436	struct file *file = vma->vm_file;
 437	struct kernfs_open_file *of = kernfs_of(file);
 438	int ret;
 439
 440	if (!of->vm_ops)
 441		return 0;
 442
 443	if (!kernfs_get_active(of->kn))
 444		return -EINVAL;
 445
 446	ret = 0;
 447	if (of->vm_ops->set_policy)
 448		ret = of->vm_ops->set_policy(vma, new);
 449
 450	kernfs_put_active(of->kn);
 451	return ret;
 452}
 453
 454static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
 455					       unsigned long addr)
 456{
 457	struct file *file = vma->vm_file;
 458	struct kernfs_open_file *of = kernfs_of(file);
 459	struct mempolicy *pol;
 460
 461	if (!of->vm_ops)
 462		return vma->vm_policy;
 463
 464	if (!kernfs_get_active(of->kn))
 465		return vma->vm_policy;
 466
 467	pol = vma->vm_policy;
 468	if (of->vm_ops->get_policy)
 469		pol = of->vm_ops->get_policy(vma, addr);
 470
 471	kernfs_put_active(of->kn);
 472	return pol;
 473}
 474
 475#endif
 476
 477static const struct vm_operations_struct kernfs_vm_ops = {
 478	.open		= kernfs_vma_open,
 479	.fault		= kernfs_vma_fault,
 480	.page_mkwrite	= kernfs_vma_page_mkwrite,
 481	.access		= kernfs_vma_access,
 482#ifdef CONFIG_NUMA
 483	.set_policy	= kernfs_vma_set_policy,
 484	.get_policy	= kernfs_vma_get_policy,
 485#endif
 486};
 487
 488static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
 489{
 490	struct kernfs_open_file *of = kernfs_of(file);
 491	const struct kernfs_ops *ops;
 492	int rc;
 493
 494	/*
 495	 * mmap path and of->mutex are prone to triggering spurious lockdep
 496	 * warnings and we don't want to add spurious locking dependency
 497	 * between the two.  Check whether mmap is actually implemented
 498	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
 499	 * comment in kernfs_file_open() for more details.
 500	 */
 501	if (!(of->kn->flags & KERNFS_HAS_MMAP))
 502		return -ENODEV;
 503
 504	mutex_lock(&of->mutex);
 505
 506	rc = -ENODEV;
 507	if (!kernfs_get_active(of->kn))
 508		goto out_unlock;
 509
 510	ops = kernfs_ops(of->kn);
 511	rc = ops->mmap(of, vma);
 512	if (rc)
 513		goto out_put;
 514
 515	/*
 516	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
 517	 * to satisfy versions of X which crash if the mmap fails: that
 518	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
 519	 */
 520	if (vma->vm_file != file)
 521		goto out_put;
 522
 523	rc = -EINVAL;
 524	if (of->mmapped && of->vm_ops != vma->vm_ops)
 525		goto out_put;
 526
 527	/*
 528	 * It is not possible to successfully wrap close.
 529	 * So error if someone is trying to use close.
 530	 */
 
 531	if (vma->vm_ops && vma->vm_ops->close)
 532		goto out_put;
 533
 534	rc = 0;
 535	of->mmapped = true;
 536	of_on(of)->nr_mmapped++;
 537	of->vm_ops = vma->vm_ops;
 538	vma->vm_ops = &kernfs_vm_ops;
 539out_put:
 540	kernfs_put_active(of->kn);
 541out_unlock:
 542	mutex_unlock(&of->mutex);
 543
 544	return rc;
 545}
 546
 547/**
 548 *	kernfs_get_open_node - get or create kernfs_open_node
 549 *	@kn: target kernfs_node
 550 *	@of: kernfs_open_file for this instance of open
 551 *
 552 *	If @kn->attr.open exists, increment its reference count; otherwise,
 553 *	create one.  @of is chained to the files list.
 554 *
 555 *	Locking:
 556 *	Kernel thread context (may sleep).
 557 *
 558 *	Return:
 559 *	%0 on success, -errno on failure.
 560 */
 561static int kernfs_get_open_node(struct kernfs_node *kn,
 562				struct kernfs_open_file *of)
 563{
 564	struct kernfs_open_node *on;
 565	struct mutex *mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566
 567	mutex = kernfs_open_file_mutex_lock(kn);
 568	on = kernfs_deref_open_node_locked(kn);
 569
 570	if (!on) {
 571		/* not there, initialize a new one */
 572		on = kzalloc(sizeof(*on), GFP_KERNEL);
 573		if (!on) {
 574			mutex_unlock(mutex);
 575			return -ENOMEM;
 576		}
 577		atomic_set(&on->event, 1);
 578		init_waitqueue_head(&on->poll);
 579		INIT_LIST_HEAD(&on->files);
 580		rcu_assign_pointer(kn->attr.open, on);
 581	}
 582
 583	list_add_tail(&of->list, &on->files);
 584	if (kn->flags & KERNFS_HAS_RELEASE)
 585		on->nr_to_release++;
 
 586
 587	mutex_unlock(mutex);
 588	return 0;
 
 
 
 589}
 590
 591/**
 592 *	kernfs_unlink_open_file - Unlink @of from @kn.
 593 *
 594 *	@kn: target kernfs_node
 595 *	@of: associated kernfs_open_file
 596 *	@open_failed: ->open() failed, cancel ->release()
 597 *
 598 *	Unlink @of from list of @kn's associated open files. If list of
 599 *	associated open files becomes empty, disassociate and free
 600 *	kernfs_open_node.
 601 *
 602 *	LOCKING:
 603 *	None.
 604 */
 605static void kernfs_unlink_open_file(struct kernfs_node *kn,
 606				    struct kernfs_open_file *of,
 607				    bool open_failed)
 608{
 609	struct kernfs_open_node *on;
 610	struct mutex *mutex;
 611
 612	mutex = kernfs_open_file_mutex_lock(kn);
 
 613
 614	on = kernfs_deref_open_node_locked(kn);
 615	if (!on) {
 616		mutex_unlock(mutex);
 617		return;
 618	}
 619
 620	if (of) {
 621		if (kn->flags & KERNFS_HAS_RELEASE) {
 622			WARN_ON_ONCE(of->released == open_failed);
 623			if (open_failed)
 624				on->nr_to_release--;
 625		}
 626		if (of->mmapped)
 627			on->nr_mmapped--;
 628		list_del(&of->list);
 629	}
 630
 631	if (list_empty(&on->files)) {
 632		rcu_assign_pointer(kn->attr.open, NULL);
 633		kfree_rcu(on, rcu_head);
 634	}
 635
 636	mutex_unlock(mutex);
 637}
 638
 639static int kernfs_fop_open(struct inode *inode, struct file *file)
 640{
 641	struct kernfs_node *kn = inode->i_private;
 642	struct kernfs_root *root = kernfs_root(kn);
 643	const struct kernfs_ops *ops;
 644	struct kernfs_open_file *of;
 645	bool has_read, has_write, has_mmap;
 646	int error = -EACCES;
 647
 648	if (!kernfs_get_active(kn))
 649		return -ENODEV;
 650
 651	ops = kernfs_ops(kn);
 652
 653	has_read = ops->seq_show || ops->read || ops->mmap;
 654	has_write = ops->write || ops->mmap;
 655	has_mmap = ops->mmap;
 656
 657	/* see the flag definition for details */
 658	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
 659		if ((file->f_mode & FMODE_WRITE) &&
 660		    (!(inode->i_mode & S_IWUGO) || !has_write))
 661			goto err_out;
 662
 663		if ((file->f_mode & FMODE_READ) &&
 664		    (!(inode->i_mode & S_IRUGO) || !has_read))
 665			goto err_out;
 666	}
 667
 668	/* allocate a kernfs_open_file for the file */
 669	error = -ENOMEM;
 670	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
 671	if (!of)
 672		goto err_out;
 673
 674	/*
 675	 * The following is done to give a different lockdep key to
 676	 * @of->mutex for files which implement mmap.  This is a rather
 677	 * crude way to avoid false positive lockdep warning around
 678	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
 679	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
 680	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
 681	 * open file has a separate mutex, it's okay as long as those don't
 682	 * happen on the same file.  At this point, we can't easily give
 683	 * each file a separate locking class.  Let's differentiate on
 684	 * whether the file has mmap or not for now.
 685	 *
 686	 * Both paths of the branch look the same.  They're supposed to
 687	 * look that way and give @of->mutex different static lockdep keys.
 688	 */
 689	if (has_mmap)
 690		mutex_init(&of->mutex);
 691	else
 692		mutex_init(&of->mutex);
 693
 694	of->kn = kn;
 695	of->file = file;
 696
 697	/*
 698	 * Write path needs to atomic_write_len outside active reference.
 699	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
 700	 */
 701	of->atomic_write_len = ops->atomic_write_len;
 702
 703	error = -EINVAL;
 704	/*
 705	 * ->seq_show is incompatible with ->prealloc,
 706	 * as seq_read does its own allocation.
 707	 * ->read must be used instead.
 708	 */
 709	if (ops->prealloc && ops->seq_show)
 710		goto err_free;
 711	if (ops->prealloc) {
 712		int len = of->atomic_write_len ?: PAGE_SIZE;
 713		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
 714		error = -ENOMEM;
 715		if (!of->prealloc_buf)
 716			goto err_free;
 717		mutex_init(&of->prealloc_mutex);
 718	}
 719
 720	/*
 721	 * Always instantiate seq_file even if read access doesn't use
 722	 * seq_file or is not requested.  This unifies private data access
 723	 * and readable regular files are the vast majority anyway.
 724	 */
 725	if (ops->seq_show)
 726		error = seq_open(file, &kernfs_seq_ops);
 727	else
 728		error = seq_open(file, NULL);
 729	if (error)
 730		goto err_free;
 731
 732	of->seq_file = file->private_data;
 733	of->seq_file->private = of;
 734
 735	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
 736	if (file->f_mode & FMODE_WRITE)
 737		file->f_mode |= FMODE_PWRITE;
 738
 739	/* make sure we have open node struct */
 740	error = kernfs_get_open_node(kn, of);
 741	if (error)
 742		goto err_seq_release;
 743
 744	if (ops->open) {
 745		/* nobody has access to @of yet, skip @of->mutex */
 746		error = ops->open(of);
 747		if (error)
 748			goto err_put_node;
 749	}
 750
 751	/* open succeeded, put active references */
 752	kernfs_put_active(kn);
 753	return 0;
 754
 755err_put_node:
 756	kernfs_unlink_open_file(kn, of, true);
 757err_seq_release:
 758	seq_release(inode, file);
 759err_free:
 760	kfree(of->prealloc_buf);
 761	kfree(of);
 762err_out:
 763	kernfs_put_active(kn);
 764	return error;
 765}
 766
 767/* used from release/drain to ensure that ->release() is called exactly once */
 768static void kernfs_release_file(struct kernfs_node *kn,
 769				struct kernfs_open_file *of)
 770{
 771	/*
 772	 * @of is guaranteed to have no other file operations in flight and
 773	 * we just want to synchronize release and drain paths.
 774	 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used
 775	 * here because drain path may be called from places which can
 776	 * cause circular dependency.
 777	 */
 778	lockdep_assert_held(kernfs_open_file_mutex_ptr(kn));
 779
 780	if (!of->released) {
 781		/*
 782		 * A file is never detached without being released and we
 783		 * need to be able to release files which are deactivated
 784		 * and being drained.  Don't use kernfs_ops().
 785		 */
 786		kn->attr.ops->release(of);
 787		of->released = true;
 788		of_on(of)->nr_to_release--;
 789	}
 790}
 791
 792static int kernfs_fop_release(struct inode *inode, struct file *filp)
 793{
 794	struct kernfs_node *kn = inode->i_private;
 795	struct kernfs_open_file *of = kernfs_of(filp);
 796
 797	if (kn->flags & KERNFS_HAS_RELEASE) {
 798		struct mutex *mutex;
 799
 800		mutex = kernfs_open_file_mutex_lock(kn);
 801		kernfs_release_file(kn, of);
 802		mutex_unlock(mutex);
 803	}
 804
 805	kernfs_unlink_open_file(kn, of, false);
 806	seq_release(inode, filp);
 807	kfree(of->prealloc_buf);
 808	kfree(of);
 809
 810	return 0;
 811}
 812
 813bool kernfs_should_drain_open_files(struct kernfs_node *kn)
 814{
 815	struct kernfs_open_node *on;
 816	bool ret;
 817
 818	/*
 819	 * @kn being deactivated guarantees that @kn->attr.open can't change
 820	 * beneath us making the lockless test below safe.
 821	 */
 822	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
 823
 824	rcu_read_lock();
 825	on = rcu_dereference(kn->attr.open);
 826	ret = on && (on->nr_mmapped || on->nr_to_release);
 827	rcu_read_unlock();
 828
 829	return ret;
 830}
 831
 832void kernfs_drain_open_files(struct kernfs_node *kn)
 833{
 834	struct kernfs_open_node *on;
 835	struct kernfs_open_file *of;
 836	struct mutex *mutex;
 837
 838	mutex = kernfs_open_file_mutex_lock(kn);
 839	on = kernfs_deref_open_node_locked(kn);
 840	if (!on) {
 841		mutex_unlock(mutex);
 
 
 842		return;
 843	}
 844
 
 845	list_for_each_entry(of, &on->files, list) {
 846		struct inode *inode = file_inode(of->file);
 847
 848		if (of->mmapped) {
 849			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
 850			of->mmapped = false;
 851			on->nr_mmapped--;
 852		}
 853
 854		if (kn->flags & KERNFS_HAS_RELEASE)
 855			kernfs_release_file(kn, of);
 856	}
 
 857
 858	WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release);
 859	mutex_unlock(mutex);
 860}
 861
 862/*
 863 * Kernfs attribute files are pollable.  The idea is that you read
 864 * the content and then you use 'poll' or 'select' to wait for
 865 * the content to change.  When the content changes (assuming the
 866 * manager for the kobject supports notification), poll will
 867 * return EPOLLERR|EPOLLPRI, and select will return the fd whether
 868 * it is waiting for read, write, or exceptions.
 869 * Once poll/select indicates that the value has changed, you
 870 * need to close and re-open the file, or seek to 0 and read again.
 871 * Reminder: this only works for attributes which actively support
 872 * it, and it is not possible to test an attribute from userspace
 873 * to see if it supports poll (Neither 'poll' nor 'select' return
 874 * an appropriate error code).  When in doubt, set a suitable timeout value.
 875 */
 876__poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
 877{
 878	struct kernfs_open_node *on = of_on(of);
 
 
 879
 880	poll_wait(of->file, &on->poll, wait);
 
 
 
 
 
 881
 882	if (of->event != atomic_read(&on->event))
 883		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 884
 885	return DEFAULT_POLLMASK;
 886}
 887
 888static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
 889{
 890	struct kernfs_open_file *of = kernfs_of(filp);
 891	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
 892	__poll_t ret;
 893
 894	if (!kernfs_get_active(kn))
 895		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
 896
 897	if (kn->attr.ops->poll)
 898		ret = kn->attr.ops->poll(of, wait);
 899	else
 900		ret = kernfs_generic_poll(of, wait);
 901
 902	kernfs_put_active(kn);
 903	return ret;
 904}
 905
 906static void kernfs_notify_workfn(struct work_struct *work)
 907{
 908	struct kernfs_node *kn;
 
 909	struct kernfs_super_info *info;
 910	struct kernfs_root *root;
 911repeat:
 912	/* pop one off the notify_list */
 913	spin_lock_irq(&kernfs_notify_lock);
 914	kn = kernfs_notify_list;
 915	if (kn == KERNFS_NOTIFY_EOL) {
 916		spin_unlock_irq(&kernfs_notify_lock);
 917		return;
 918	}
 919	kernfs_notify_list = kn->attr.notify_next;
 920	kn->attr.notify_next = NULL;
 921	spin_unlock_irq(&kernfs_notify_lock);
 922
 923	root = kernfs_root(kn);
 
 
 
 
 
 
 
 
 
 
 924	/* kick fsnotify */
 925	down_write(&root->kernfs_rwsem);
 926
 927	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
 928		struct kernfs_node *parent;
 929		struct inode *p_inode = NULL;
 930		struct inode *inode;
 931		struct qstr name;
 932
 933		/*
 934		 * We want fsnotify_modify() on @kn but as the
 935		 * modifications aren't originating from userland don't
 936		 * have the matching @file available.  Look up the inodes
 937		 * and generate the events manually.
 938		 */
 939		inode = ilookup(info->sb, kernfs_ino(kn));
 940		if (!inode)
 941			continue;
 942
 943		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
 944		parent = kernfs_get_parent(kn);
 945		if (parent) {
 946			p_inode = ilookup(info->sb, kernfs_ino(parent));
 947			if (p_inode) {
 948				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
 949					 inode, FSNOTIFY_EVENT_INODE,
 950					 p_inode, &name, inode, 0);
 951				iput(p_inode);
 952			}
 953
 954			kernfs_put(parent);
 955		}
 956
 957		if (!p_inode)
 958			fsnotify_inode(inode, FS_MODIFY);
 959
 960		iput(inode);
 961	}
 962
 963	up_write(&root->kernfs_rwsem);
 964	kernfs_put(kn);
 965	goto repeat;
 966}
 967
 968/**
 969 * kernfs_notify - notify a kernfs file
 970 * @kn: file to notify
 971 *
 972 * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
 973 * context.
 974 */
 975void kernfs_notify(struct kernfs_node *kn)
 976{
 977	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
 978	unsigned long flags;
 979	struct kernfs_open_node *on;
 980
 981	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
 982		return;
 983
 984	/* kick poll immediately */
 985	rcu_read_lock();
 986	on = rcu_dereference(kn->attr.open);
 987	if (on) {
 988		atomic_inc(&on->event);
 989		wake_up_interruptible(&on->poll);
 990	}
 991	rcu_read_unlock();
 992
 993	/* schedule work to kick fsnotify */
 994	spin_lock_irqsave(&kernfs_notify_lock, flags);
 995	if (!kn->attr.notify_next) {
 996		kernfs_get(kn);
 997		kn->attr.notify_next = kernfs_notify_list;
 998		kernfs_notify_list = kn;
 999		schedule_work(&kernfs_notify_work);
1000	}
1001	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
1002}
1003EXPORT_SYMBOL_GPL(kernfs_notify);
1004
1005const struct file_operations kernfs_file_fops = {
1006	.read_iter	= kernfs_fop_read_iter,
1007	.write_iter	= kernfs_fop_write_iter,
1008	.llseek		= generic_file_llseek,
1009	.mmap		= kernfs_fop_mmap,
1010	.open		= kernfs_fop_open,
1011	.release	= kernfs_fop_release,
1012	.poll		= kernfs_fop_poll,
1013	.fsync		= noop_fsync,
1014	.splice_read	= generic_file_splice_read,
1015	.splice_write	= iter_file_splice_write,
1016};
1017
1018/**
1019 * __kernfs_create_file - kernfs internal function to create a file
1020 * @parent: directory to create the file in
1021 * @name: name of the file
1022 * @mode: mode of the file
1023 * @uid: uid of the file
1024 * @gid: gid of the file
1025 * @size: size of the file
1026 * @ops: kernfs operations for the file
1027 * @priv: private data for the file
1028 * @ns: optional namespace tag of the file
1029 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
1030 *
1031 * Return: the created node on success, ERR_PTR() value on error.
1032 */
1033struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
1034					 const char *name,
1035					 umode_t mode, kuid_t uid, kgid_t gid,
1036					 loff_t size,
1037					 const struct kernfs_ops *ops,
1038					 void *priv, const void *ns,
1039					 struct lock_class_key *key)
1040{
1041	struct kernfs_node *kn;
1042	unsigned flags;
1043	int rc;
1044
1045	flags = KERNFS_FILE;
1046
1047	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
1048			     uid, gid, flags);
1049	if (!kn)
1050		return ERR_PTR(-ENOMEM);
1051
1052	kn->attr.ops = ops;
1053	kn->attr.size = size;
1054	kn->ns = ns;
1055	kn->priv = priv;
1056
1057#ifdef CONFIG_DEBUG_LOCK_ALLOC
1058	if (key) {
1059		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
1060		kn->flags |= KERNFS_LOCKDEP;
1061	}
1062#endif
1063
1064	/*
1065	 * kn->attr.ops is accessible only while holding active ref.  We
1066	 * need to know whether some ops are implemented outside active
1067	 * ref.  Cache their existence in flags.
1068	 */
1069	if (ops->seq_show)
1070		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1071	if (ops->mmap)
1072		kn->flags |= KERNFS_HAS_MMAP;
1073	if (ops->release)
1074		kn->flags |= KERNFS_HAS_RELEASE;
1075
1076	rc = kernfs_add_one(kn);
1077	if (rc) {
1078		kernfs_put(kn);
1079		return ERR_PTR(rc);
1080	}
1081	return kn;
1082}