Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
   3
   4/* ethtool support for iavf */
   5#include "iavf.h"
   6
   7#include <linux/uaccess.h>
   8
   9/* ethtool statistics helpers */
  10
  11/**
  12 * struct iavf_stats - definition for an ethtool statistic
  13 * @stat_string: statistic name to display in ethtool -S output
  14 * @sizeof_stat: the sizeof() the stat, must be no greater than sizeof(u64)
  15 * @stat_offset: offsetof() the stat from a base pointer
  16 *
  17 * This structure defines a statistic to be added to the ethtool stats buffer.
  18 * It defines a statistic as offset from a common base pointer. Stats should
  19 * be defined in constant arrays using the IAVF_STAT macro, with every element
  20 * of the array using the same _type for calculating the sizeof_stat and
  21 * stat_offset.
  22 *
  23 * The @sizeof_stat is expected to be sizeof(u8), sizeof(u16), sizeof(u32) or
  24 * sizeof(u64). Other sizes are not expected and will produce a WARN_ONCE from
  25 * the iavf_add_ethtool_stat() helper function.
  26 *
  27 * The @stat_string is interpreted as a format string, allowing formatted
  28 * values to be inserted while looping over multiple structures for a given
  29 * statistics array. Thus, every statistic string in an array should have the
  30 * same type and number of format specifiers, to be formatted by variadic
  31 * arguments to the iavf_add_stat_string() helper function.
  32 **/
  33struct iavf_stats {
  34	char stat_string[ETH_GSTRING_LEN];
  35	int sizeof_stat;
  36	int stat_offset;
  37};
  38
  39/* Helper macro to define an iavf_stat structure with proper size and type.
  40 * Use this when defining constant statistics arrays. Note that @_type expects
  41 * only a type name and is used multiple times.
  42 */
  43#define IAVF_STAT(_type, _name, _stat) { \
  44	.stat_string = _name, \
  45	.sizeof_stat = sizeof_field(_type, _stat), \
  46	.stat_offset = offsetof(_type, _stat) \
  47}
  48
  49/* Helper macro for defining some statistics related to queues */
  50#define IAVF_QUEUE_STAT(_name, _stat) \
  51	IAVF_STAT(struct iavf_ring, _name, _stat)
  52
  53/* Stats associated with a Tx or Rx ring */
  54static const struct iavf_stats iavf_gstrings_queue_stats[] = {
  55	IAVF_QUEUE_STAT("%s-%u.packets", stats.packets),
  56	IAVF_QUEUE_STAT("%s-%u.bytes", stats.bytes),
  57};
  58
  59/**
  60 * iavf_add_one_ethtool_stat - copy the stat into the supplied buffer
  61 * @data: location to store the stat value
  62 * @pointer: basis for where to copy from
  63 * @stat: the stat definition
  64 *
  65 * Copies the stat data defined by the pointer and stat structure pair into
  66 * the memory supplied as data. Used to implement iavf_add_ethtool_stats and
  67 * iavf_add_queue_stats. If the pointer is null, data will be zero'd.
  68 */
  69static void
  70iavf_add_one_ethtool_stat(u64 *data, void *pointer,
  71			  const struct iavf_stats *stat)
  72{
  73	char *p;
  74
  75	if (!pointer) {
  76		/* ensure that the ethtool data buffer is zero'd for any stats
  77		 * which don't have a valid pointer.
  78		 */
  79		*data = 0;
  80		return;
  81	}
  82
  83	p = (char *)pointer + stat->stat_offset;
  84	switch (stat->sizeof_stat) {
  85	case sizeof(u64):
  86		*data = *((u64 *)p);
  87		break;
  88	case sizeof(u32):
  89		*data = *((u32 *)p);
  90		break;
  91	case sizeof(u16):
  92		*data = *((u16 *)p);
  93		break;
  94	case sizeof(u8):
  95		*data = *((u8 *)p);
  96		break;
  97	default:
  98		WARN_ONCE(1, "unexpected stat size for %s",
  99			  stat->stat_string);
 100		*data = 0;
 101	}
 102}
 103
 104/**
 105 * __iavf_add_ethtool_stats - copy stats into the ethtool supplied buffer
 106 * @data: ethtool stats buffer
 107 * @pointer: location to copy stats from
 108 * @stats: array of stats to copy
 109 * @size: the size of the stats definition
 110 *
 111 * Copy the stats defined by the stats array using the pointer as a base into
 112 * the data buffer supplied by ethtool. Updates the data pointer to point to
 113 * the next empty location for successive calls to __iavf_add_ethtool_stats.
 114 * If pointer is null, set the data values to zero and update the pointer to
 115 * skip these stats.
 116 **/
 117static void
 118__iavf_add_ethtool_stats(u64 **data, void *pointer,
 119			 const struct iavf_stats stats[],
 120			 const unsigned int size)
 121{
 122	unsigned int i;
 123
 124	for (i = 0; i < size; i++)
 125		iavf_add_one_ethtool_stat((*data)++, pointer, &stats[i]);
 126}
 127
 128/**
 129 * iavf_add_ethtool_stats - copy stats into ethtool supplied buffer
 130 * @data: ethtool stats buffer
 131 * @pointer: location where stats are stored
 132 * @stats: static const array of stat definitions
 133 *
 134 * Macro to ease the use of __iavf_add_ethtool_stats by taking a static
 135 * constant stats array and passing the ARRAY_SIZE(). This avoids typos by
 136 * ensuring that we pass the size associated with the given stats array.
 137 *
 138 * The parameter @stats is evaluated twice, so parameters with side effects
 139 * should be avoided.
 140 **/
 141#define iavf_add_ethtool_stats(data, pointer, stats) \
 142	__iavf_add_ethtool_stats(data, pointer, stats, ARRAY_SIZE(stats))
 143
 144/**
 145 * iavf_add_queue_stats - copy queue statistics into supplied buffer
 146 * @data: ethtool stats buffer
 147 * @ring: the ring to copy
 148 *
 149 * Queue statistics must be copied while protected by
 150 * u64_stats_fetch_begin, so we can't directly use iavf_add_ethtool_stats.
 151 * Assumes that queue stats are defined in iavf_gstrings_queue_stats. If the
 152 * ring pointer is null, zero out the queue stat values and update the data
 153 * pointer. Otherwise safely copy the stats from the ring into the supplied
 154 * buffer and update the data pointer when finished.
 155 *
 156 * This function expects to be called while under rcu_read_lock().
 157 **/
 158static void
 159iavf_add_queue_stats(u64 **data, struct iavf_ring *ring)
 160{
 161	const unsigned int size = ARRAY_SIZE(iavf_gstrings_queue_stats);
 162	const struct iavf_stats *stats = iavf_gstrings_queue_stats;
 163	unsigned int start;
 164	unsigned int i;
 165
 166	/* To avoid invalid statistics values, ensure that we keep retrying
 167	 * the copy until we get a consistent value according to
 168	 * u64_stats_fetch_retry. But first, make sure our ring is
 169	 * non-null before attempting to access its syncp.
 170	 */
 171	do {
 172		start = !ring ? 0 : u64_stats_fetch_begin(&ring->syncp);
 173		for (i = 0; i < size; i++)
 174			iavf_add_one_ethtool_stat(&(*data)[i], ring, &stats[i]);
 175	} while (ring && u64_stats_fetch_retry(&ring->syncp, start));
 176
 177	/* Once we successfully copy the stats in, update the data pointer */
 178	*data += size;
 179}
 180
 181/**
 182 * __iavf_add_stat_strings - copy stat strings into ethtool buffer
 183 * @p: ethtool supplied buffer
 184 * @stats: stat definitions array
 185 * @size: size of the stats array
 186 *
 187 * Format and copy the strings described by stats into the buffer pointed at
 188 * by p.
 189 **/
 190static void __iavf_add_stat_strings(u8 **p, const struct iavf_stats stats[],
 191				    const unsigned int size, ...)
 192{
 193	unsigned int i;
 194
 195	for (i = 0; i < size; i++) {
 196		va_list args;
 197
 198		va_start(args, size);
 199		vsnprintf(*p, ETH_GSTRING_LEN, stats[i].stat_string, args);
 200		*p += ETH_GSTRING_LEN;
 201		va_end(args);
 202	}
 203}
 204
 205/**
 206 * iavf_add_stat_strings - copy stat strings into ethtool buffer
 207 * @p: ethtool supplied buffer
 208 * @stats: stat definitions array
 209 *
 210 * Format and copy the strings described by the const static stats value into
 211 * the buffer pointed at by p.
 212 *
 213 * The parameter @stats is evaluated twice, so parameters with side effects
 214 * should be avoided. Additionally, stats must be an array such that
 215 * ARRAY_SIZE can be called on it.
 216 **/
 217#define iavf_add_stat_strings(p, stats, ...) \
 218	__iavf_add_stat_strings(p, stats, ARRAY_SIZE(stats), ## __VA_ARGS__)
 219
 220#define VF_STAT(_name, _stat) \
 221	IAVF_STAT(struct iavf_adapter, _name, _stat)
 222
 223static const struct iavf_stats iavf_gstrings_stats[] = {
 224	VF_STAT("rx_bytes", current_stats.rx_bytes),
 225	VF_STAT("rx_unicast", current_stats.rx_unicast),
 226	VF_STAT("rx_multicast", current_stats.rx_multicast),
 227	VF_STAT("rx_broadcast", current_stats.rx_broadcast),
 228	VF_STAT("rx_discards", current_stats.rx_discards),
 229	VF_STAT("rx_unknown_protocol", current_stats.rx_unknown_protocol),
 230	VF_STAT("tx_bytes", current_stats.tx_bytes),
 231	VF_STAT("tx_unicast", current_stats.tx_unicast),
 232	VF_STAT("tx_multicast", current_stats.tx_multicast),
 233	VF_STAT("tx_broadcast", current_stats.tx_broadcast),
 234	VF_STAT("tx_discards", current_stats.tx_discards),
 235	VF_STAT("tx_errors", current_stats.tx_errors),
 236};
 237
 238#define IAVF_STATS_LEN	ARRAY_SIZE(iavf_gstrings_stats)
 239
 240#define IAVF_QUEUE_STATS_LEN	ARRAY_SIZE(iavf_gstrings_queue_stats)
 241
 242/* For now we have one and only one private flag and it is only defined
 243 * when we have support for the SKIP_CPU_SYNC DMA attribute.  Instead
 244 * of leaving all this code sitting around empty we will strip it unless
 245 * our one private flag is actually available.
 246 */
 247struct iavf_priv_flags {
 248	char flag_string[ETH_GSTRING_LEN];
 249	u32 flag;
 250	bool read_only;
 251};
 252
 253#define IAVF_PRIV_FLAG(_name, _flag, _read_only) { \
 254	.flag_string = _name, \
 255	.flag = _flag, \
 256	.read_only = _read_only, \
 257}
 258
 259static const struct iavf_priv_flags iavf_gstrings_priv_flags[] = {
 260	IAVF_PRIV_FLAG("legacy-rx", IAVF_FLAG_LEGACY_RX, 0),
 261};
 262
 263#define IAVF_PRIV_FLAGS_STR_LEN ARRAY_SIZE(iavf_gstrings_priv_flags)
 264
 265/**
 266 * iavf_get_link_ksettings - Get Link Speed and Duplex settings
 267 * @netdev: network interface device structure
 268 * @cmd: ethtool command
 269 *
 270 * Reports speed/duplex settings. Because this is a VF, we don't know what
 271 * kind of link we really have, so we fake it.
 272 **/
 273static int iavf_get_link_ksettings(struct net_device *netdev,
 274				   struct ethtool_link_ksettings *cmd)
 275{
 276	struct iavf_adapter *adapter = netdev_priv(netdev);
 277
 278	ethtool_link_ksettings_zero_link_mode(cmd, supported);
 279	cmd->base.autoneg = AUTONEG_DISABLE;
 280	cmd->base.port = PORT_NONE;
 281	cmd->base.duplex = DUPLEX_FULL;
 282
 283	if (ADV_LINK_SUPPORT(adapter)) {
 284		if (adapter->link_speed_mbps &&
 285		    adapter->link_speed_mbps < U32_MAX)
 286			cmd->base.speed = adapter->link_speed_mbps;
 287		else
 288			cmd->base.speed = SPEED_UNKNOWN;
 289
 290		return 0;
 291	}
 292
 293	switch (adapter->link_speed) {
 294	case VIRTCHNL_LINK_SPEED_40GB:
 295		cmd->base.speed = SPEED_40000;
 296		break;
 297	case VIRTCHNL_LINK_SPEED_25GB:
 298		cmd->base.speed = SPEED_25000;
 299		break;
 300	case VIRTCHNL_LINK_SPEED_20GB:
 301		cmd->base.speed = SPEED_20000;
 302		break;
 303	case VIRTCHNL_LINK_SPEED_10GB:
 304		cmd->base.speed = SPEED_10000;
 305		break;
 306	case VIRTCHNL_LINK_SPEED_5GB:
 307		cmd->base.speed = SPEED_5000;
 308		break;
 309	case VIRTCHNL_LINK_SPEED_2_5GB:
 310		cmd->base.speed = SPEED_2500;
 311		break;
 312	case VIRTCHNL_LINK_SPEED_1GB:
 313		cmd->base.speed = SPEED_1000;
 314		break;
 315	case VIRTCHNL_LINK_SPEED_100MB:
 316		cmd->base.speed = SPEED_100;
 317		break;
 318	default:
 319		break;
 320	}
 321
 322	return 0;
 323}
 324
 325/**
 326 * iavf_get_sset_count - Get length of string set
 327 * @netdev: network interface device structure
 328 * @sset: id of string set
 329 *
 330 * Reports size of various string tables.
 331 **/
 332static int iavf_get_sset_count(struct net_device *netdev, int sset)
 333{
 334	/* Report the maximum number queues, even if not every queue is
 335	 * currently configured. Since allocation of queues is in pairs,
 336	 * use netdev->real_num_tx_queues * 2. The real_num_tx_queues is set
 337	 * at device creation and never changes.
 338	 */
 339
 340	if (sset == ETH_SS_STATS)
 341		return IAVF_STATS_LEN +
 342			(IAVF_QUEUE_STATS_LEN * 2 *
 343			 netdev->real_num_tx_queues);
 344	else if (sset == ETH_SS_PRIV_FLAGS)
 345		return IAVF_PRIV_FLAGS_STR_LEN;
 346	else
 347		return -EINVAL;
 348}
 349
 350/**
 351 * iavf_get_ethtool_stats - report device statistics
 352 * @netdev: network interface device structure
 353 * @stats: ethtool statistics structure
 354 * @data: pointer to data buffer
 355 *
 356 * All statistics are added to the data buffer as an array of u64.
 357 **/
 358static void iavf_get_ethtool_stats(struct net_device *netdev,
 359				   struct ethtool_stats *stats, u64 *data)
 360{
 361	struct iavf_adapter *adapter = netdev_priv(netdev);
 362	unsigned int i;
 363
 364	/* Explicitly request stats refresh */
 365	iavf_schedule_request_stats(adapter);
 366
 367	iavf_add_ethtool_stats(&data, adapter, iavf_gstrings_stats);
 368
 369	rcu_read_lock();
 370	/* As num_active_queues describe both tx and rx queues, we can use
 371	 * it to iterate over rings' stats.
 372	 */
 373	for (i = 0; i < adapter->num_active_queues; i++) {
 374		struct iavf_ring *ring;
 375
 376		/* Tx rings stats */
 377		ring = &adapter->tx_rings[i];
 378		iavf_add_queue_stats(&data, ring);
 379
 380		/* Rx rings stats */
 381		ring = &adapter->rx_rings[i];
 382		iavf_add_queue_stats(&data, ring);
 383	}
 384	rcu_read_unlock();
 385}
 386
 387/**
 388 * iavf_get_priv_flag_strings - Get private flag strings
 389 * @netdev: network interface device structure
 390 * @data: buffer for string data
 391 *
 392 * Builds the private flags string table
 393 **/
 394static void iavf_get_priv_flag_strings(struct net_device *netdev, u8 *data)
 395{
 396	unsigned int i;
 397
 398	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
 399		snprintf(data, ETH_GSTRING_LEN, "%s",
 400			 iavf_gstrings_priv_flags[i].flag_string);
 401		data += ETH_GSTRING_LEN;
 402	}
 403}
 404
 405/**
 406 * iavf_get_stat_strings - Get stat strings
 407 * @netdev: network interface device structure
 408 * @data: buffer for string data
 409 *
 410 * Builds the statistics string table
 411 **/
 412static void iavf_get_stat_strings(struct net_device *netdev, u8 *data)
 413{
 414	unsigned int i;
 415
 416	iavf_add_stat_strings(&data, iavf_gstrings_stats);
 417
 418	/* Queues are always allocated in pairs, so we just use
 419	 * real_num_tx_queues for both Tx and Rx queues.
 420	 */
 421	for (i = 0; i < netdev->real_num_tx_queues; i++) {
 422		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
 423				      "tx", i);
 424		iavf_add_stat_strings(&data, iavf_gstrings_queue_stats,
 425				      "rx", i);
 426	}
 427}
 428
 429/**
 430 * iavf_get_strings - Get string set
 431 * @netdev: network interface device structure
 432 * @sset: id of string set
 433 * @data: buffer for string data
 434 *
 435 * Builds string tables for various string sets
 436 **/
 437static void iavf_get_strings(struct net_device *netdev, u32 sset, u8 *data)
 438{
 439	switch (sset) {
 440	case ETH_SS_STATS:
 441		iavf_get_stat_strings(netdev, data);
 442		break;
 443	case ETH_SS_PRIV_FLAGS:
 444		iavf_get_priv_flag_strings(netdev, data);
 445		break;
 446	default:
 447		break;
 448	}
 449}
 450
 451/**
 452 * iavf_get_priv_flags - report device private flags
 453 * @netdev: network interface device structure
 454 *
 455 * The get string set count and the string set should be matched for each
 456 * flag returned.  Add new strings for each flag to the iavf_gstrings_priv_flags
 457 * array.
 458 *
 459 * Returns a u32 bitmap of flags.
 460 **/
 461static u32 iavf_get_priv_flags(struct net_device *netdev)
 462{
 463	struct iavf_adapter *adapter = netdev_priv(netdev);
 464	u32 i, ret_flags = 0;
 465
 466	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
 467		const struct iavf_priv_flags *priv_flags;
 468
 469		priv_flags = &iavf_gstrings_priv_flags[i];
 470
 471		if (priv_flags->flag & adapter->flags)
 472			ret_flags |= BIT(i);
 473	}
 474
 475	return ret_flags;
 476}
 477
 478/**
 479 * iavf_set_priv_flags - set private flags
 480 * @netdev: network interface device structure
 481 * @flags: bit flags to be set
 482 **/
 483static int iavf_set_priv_flags(struct net_device *netdev, u32 flags)
 484{
 485	struct iavf_adapter *adapter = netdev_priv(netdev);
 486	u32 orig_flags, new_flags, changed_flags;
 487	u32 i;
 488
 489	orig_flags = READ_ONCE(adapter->flags);
 490	new_flags = orig_flags;
 491
 492	for (i = 0; i < IAVF_PRIV_FLAGS_STR_LEN; i++) {
 493		const struct iavf_priv_flags *priv_flags;
 494
 495		priv_flags = &iavf_gstrings_priv_flags[i];
 496
 497		if (flags & BIT(i))
 498			new_flags |= priv_flags->flag;
 499		else
 500			new_flags &= ~(priv_flags->flag);
 501
 502		if (priv_flags->read_only &&
 503		    ((orig_flags ^ new_flags) & ~BIT(i)))
 504			return -EOPNOTSUPP;
 505	}
 506
 507	/* Before we finalize any flag changes, any checks which we need to
 508	 * perform to determine if the new flags will be supported should go
 509	 * here...
 510	 */
 511
 512	/* Compare and exchange the new flags into place. If we failed, that
 513	 * is if cmpxchg returns anything but the old value, this means
 514	 * something else must have modified the flags variable since we
 515	 * copied it. We'll just punt with an error and log something in the
 516	 * message buffer.
 517	 */
 518	if (cmpxchg(&adapter->flags, orig_flags, new_flags) != orig_flags) {
 519		dev_warn(&adapter->pdev->dev,
 520			 "Unable to update adapter->flags as it was modified by another thread...\n");
 521		return -EAGAIN;
 522	}
 523
 524	changed_flags = orig_flags ^ new_flags;
 525
 526	/* Process any additional changes needed as a result of flag changes.
 527	 * The changed_flags value reflects the list of bits that were changed
 528	 * in the code above.
 529	 */
 530
 531	/* issue a reset to force legacy-rx change to take effect */
 532	if (changed_flags & IAVF_FLAG_LEGACY_RX) {
 533		if (netif_running(netdev)) {
 534			adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 535			queue_work(adapter->wq, &adapter->reset_task);
 536		}
 537	}
 538
 539	return 0;
 540}
 541
 542/**
 543 * iavf_get_msglevel - Get debug message level
 544 * @netdev: network interface device structure
 545 *
 546 * Returns current debug message level.
 547 **/
 548static u32 iavf_get_msglevel(struct net_device *netdev)
 549{
 550	struct iavf_adapter *adapter = netdev_priv(netdev);
 551
 552	return adapter->msg_enable;
 553}
 554
 555/**
 556 * iavf_set_msglevel - Set debug message level
 557 * @netdev: network interface device structure
 558 * @data: message level
 559 *
 560 * Set current debug message level. Higher values cause the driver to
 561 * be noisier.
 562 **/
 563static void iavf_set_msglevel(struct net_device *netdev, u32 data)
 564{
 565	struct iavf_adapter *adapter = netdev_priv(netdev);
 566
 567	if (IAVF_DEBUG_USER & data)
 568		adapter->hw.debug_mask = data;
 569	adapter->msg_enable = data;
 570}
 571
 572/**
 573 * iavf_get_drvinfo - Get driver info
 574 * @netdev: network interface device structure
 575 * @drvinfo: ethool driver info structure
 576 *
 577 * Returns information about the driver and device for display to the user.
 578 **/
 579static void iavf_get_drvinfo(struct net_device *netdev,
 580			     struct ethtool_drvinfo *drvinfo)
 581{
 582	struct iavf_adapter *adapter = netdev_priv(netdev);
 583
 584	strscpy(drvinfo->driver, iavf_driver_name, 32);
 585	strscpy(drvinfo->fw_version, "N/A", 4);
 586	strscpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
 587	drvinfo->n_priv_flags = IAVF_PRIV_FLAGS_STR_LEN;
 588}
 589
 590/**
 591 * iavf_get_ringparam - Get ring parameters
 592 * @netdev: network interface device structure
 593 * @ring: ethtool ringparam structure
 594 * @kernel_ring: ethtool extenal ringparam structure
 595 * @extack: netlink extended ACK report struct
 596 *
 597 * Returns current ring parameters. TX and RX rings are reported separately,
 598 * but the number of rings is not reported.
 599 **/
 600static void iavf_get_ringparam(struct net_device *netdev,
 601			       struct ethtool_ringparam *ring,
 602			       struct kernel_ethtool_ringparam *kernel_ring,
 603			       struct netlink_ext_ack *extack)
 604{
 605	struct iavf_adapter *adapter = netdev_priv(netdev);
 606
 607	ring->rx_max_pending = IAVF_MAX_RXD;
 608	ring->tx_max_pending = IAVF_MAX_TXD;
 609	ring->rx_pending = adapter->rx_desc_count;
 610	ring->tx_pending = adapter->tx_desc_count;
 611}
 612
 613/**
 614 * iavf_set_ringparam - Set ring parameters
 615 * @netdev: network interface device structure
 616 * @ring: ethtool ringparam structure
 617 * @kernel_ring: ethtool external ringparam structure
 618 * @extack: netlink extended ACK report struct
 619 *
 620 * Sets ring parameters. TX and RX rings are controlled separately, but the
 621 * number of rings is not specified, so all rings get the same settings.
 622 **/
 623static int iavf_set_ringparam(struct net_device *netdev,
 624			      struct ethtool_ringparam *ring,
 625			      struct kernel_ethtool_ringparam *kernel_ring,
 626			      struct netlink_ext_ack *extack)
 627{
 628	struct iavf_adapter *adapter = netdev_priv(netdev);
 629	u32 new_rx_count, new_tx_count;
 630
 631	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 632		return -EINVAL;
 633
 634	if (ring->tx_pending > IAVF_MAX_TXD ||
 635	    ring->tx_pending < IAVF_MIN_TXD ||
 636	    ring->rx_pending > IAVF_MAX_RXD ||
 637	    ring->rx_pending < IAVF_MIN_RXD) {
 638		netdev_err(netdev, "Descriptors requested (Tx: %d / Rx: %d) out of range [%d-%d] (increment %d)\n",
 639			   ring->tx_pending, ring->rx_pending, IAVF_MIN_TXD,
 640			   IAVF_MAX_RXD, IAVF_REQ_DESCRIPTOR_MULTIPLE);
 641		return -EINVAL;
 642	}
 643
 644	new_tx_count = ALIGN(ring->tx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
 645	if (new_tx_count != ring->tx_pending)
 646		netdev_info(netdev, "Requested Tx descriptor count rounded up to %d\n",
 647			    new_tx_count);
 648
 649	new_rx_count = ALIGN(ring->rx_pending, IAVF_REQ_DESCRIPTOR_MULTIPLE);
 650	if (new_rx_count != ring->rx_pending)
 651		netdev_info(netdev, "Requested Rx descriptor count rounded up to %d\n",
 652			    new_rx_count);
 653
 654	/* if nothing to do return success */
 655	if ((new_tx_count == adapter->tx_desc_count) &&
 656	    (new_rx_count == adapter->rx_desc_count)) {
 657		netdev_dbg(netdev, "Nothing to change, descriptor count is same as requested\n");
 658		return 0;
 659	}
 660
 661	if (new_tx_count != adapter->tx_desc_count) {
 662		netdev_dbg(netdev, "Changing Tx descriptor count from %d to %d\n",
 663			   adapter->tx_desc_count, new_tx_count);
 664		adapter->tx_desc_count = new_tx_count;
 665	}
 666
 667	if (new_rx_count != adapter->rx_desc_count) {
 668		netdev_dbg(netdev, "Changing Rx descriptor count from %d to %d\n",
 669			   adapter->rx_desc_count, new_rx_count);
 670		adapter->rx_desc_count = new_rx_count;
 671	}
 672
 673	if (netif_running(netdev)) {
 674		adapter->flags |= IAVF_FLAG_RESET_NEEDED;
 675		queue_work(adapter->wq, &adapter->reset_task);
 676	}
 677
 678	return 0;
 679}
 680
 681/**
 682 * __iavf_get_coalesce - get per-queue coalesce settings
 683 * @netdev: the netdev to check
 684 * @ec: ethtool coalesce data structure
 685 * @queue: which queue to pick
 686 *
 687 * Gets the per-queue settings for coalescence. Specifically Rx and Tx usecs
 688 * are per queue. If queue is <0 then we default to queue 0 as the
 689 * representative value.
 690 **/
 691static int __iavf_get_coalesce(struct net_device *netdev,
 692			       struct ethtool_coalesce *ec, int queue)
 693{
 694	struct iavf_adapter *adapter = netdev_priv(netdev);
 695	struct iavf_ring *rx_ring, *tx_ring;
 696
 697	/* Rx and Tx usecs per queue value. If user doesn't specify the
 698	 * queue, return queue 0's value to represent.
 699	 */
 700	if (queue < 0)
 701		queue = 0;
 702	else if (queue >= adapter->num_active_queues)
 703		return -EINVAL;
 704
 705	rx_ring = &adapter->rx_rings[queue];
 706	tx_ring = &adapter->tx_rings[queue];
 707
 708	if (ITR_IS_DYNAMIC(rx_ring->itr_setting))
 709		ec->use_adaptive_rx_coalesce = 1;
 710
 711	if (ITR_IS_DYNAMIC(tx_ring->itr_setting))
 712		ec->use_adaptive_tx_coalesce = 1;
 713
 714	ec->rx_coalesce_usecs = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
 715	ec->tx_coalesce_usecs = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
 716
 717	return 0;
 718}
 719
 720/**
 721 * iavf_get_coalesce - Get interrupt coalescing settings
 722 * @netdev: network interface device structure
 723 * @ec: ethtool coalesce structure
 724 * @kernel_coal: ethtool CQE mode setting structure
 725 * @extack: extack for reporting error messages
 726 *
 727 * Returns current coalescing settings. This is referred to elsewhere in the
 728 * driver as Interrupt Throttle Rate, as this is how the hardware describes
 729 * this functionality. Note that if per-queue settings have been modified this
 730 * only represents the settings of queue 0.
 731 **/
 732static int iavf_get_coalesce(struct net_device *netdev,
 733			     struct ethtool_coalesce *ec,
 734			     struct kernel_ethtool_coalesce *kernel_coal,
 735			     struct netlink_ext_ack *extack)
 736{
 737	return __iavf_get_coalesce(netdev, ec, -1);
 738}
 739
 740/**
 741 * iavf_get_per_queue_coalesce - get coalesce values for specific queue
 742 * @netdev: netdev to read
 743 * @ec: coalesce settings from ethtool
 744 * @queue: the queue to read
 745 *
 746 * Read specific queue's coalesce settings.
 747 **/
 748static int iavf_get_per_queue_coalesce(struct net_device *netdev, u32 queue,
 749				       struct ethtool_coalesce *ec)
 750{
 751	return __iavf_get_coalesce(netdev, ec, queue);
 752}
 753
 754/**
 755 * iavf_set_itr_per_queue - set ITR values for specific queue
 756 * @adapter: the VF adapter struct to set values for
 757 * @ec: coalesce settings from ethtool
 758 * @queue: the queue to modify
 759 *
 760 * Change the ITR settings for a specific queue.
 761 **/
 762static int iavf_set_itr_per_queue(struct iavf_adapter *adapter,
 763				  struct ethtool_coalesce *ec, int queue)
 764{
 765	struct iavf_ring *rx_ring = &adapter->rx_rings[queue];
 766	struct iavf_ring *tx_ring = &adapter->tx_rings[queue];
 767	struct iavf_q_vector *q_vector;
 768	u16 itr_setting;
 769
 770	itr_setting = rx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
 771
 772	if (ec->rx_coalesce_usecs != itr_setting &&
 773	    ec->use_adaptive_rx_coalesce) {
 774		netif_info(adapter, drv, adapter->netdev,
 775			   "Rx interrupt throttling cannot be changed if adaptive-rx is enabled\n");
 776		return -EINVAL;
 777	}
 778
 779	itr_setting = tx_ring->itr_setting & ~IAVF_ITR_DYNAMIC;
 780
 781	if (ec->tx_coalesce_usecs != itr_setting &&
 782	    ec->use_adaptive_tx_coalesce) {
 783		netif_info(adapter, drv, adapter->netdev,
 784			   "Tx interrupt throttling cannot be changed if adaptive-tx is enabled\n");
 785		return -EINVAL;
 786	}
 787
 788	rx_ring->itr_setting = ITR_REG_ALIGN(ec->rx_coalesce_usecs);
 789	tx_ring->itr_setting = ITR_REG_ALIGN(ec->tx_coalesce_usecs);
 790
 791	rx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
 792	if (!ec->use_adaptive_rx_coalesce)
 793		rx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
 794
 795	tx_ring->itr_setting |= IAVF_ITR_DYNAMIC;
 796	if (!ec->use_adaptive_tx_coalesce)
 797		tx_ring->itr_setting ^= IAVF_ITR_DYNAMIC;
 798
 799	q_vector = rx_ring->q_vector;
 800	q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
 801
 802	q_vector = tx_ring->q_vector;
 803	q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
 804
 805	/* The interrupt handler itself will take care of programming
 806	 * the Tx and Rx ITR values based on the values we have entered
 807	 * into the q_vector, no need to write the values now.
 808	 */
 809	return 0;
 810}
 811
 812/**
 813 * __iavf_set_coalesce - set coalesce settings for particular queue
 814 * @netdev: the netdev to change
 815 * @ec: ethtool coalesce settings
 816 * @queue: the queue to change
 817 *
 818 * Sets the coalesce settings for a particular queue.
 819 **/
 820static int __iavf_set_coalesce(struct net_device *netdev,
 821			       struct ethtool_coalesce *ec, int queue)
 822{
 823	struct iavf_adapter *adapter = netdev_priv(netdev);
 824	int i;
 825
 826	if (ec->rx_coalesce_usecs == 0) {
 827		if (ec->use_adaptive_rx_coalesce)
 828			netif_info(adapter, drv, netdev, "rx-usecs=0, need to disable adaptive-rx for a complete disable\n");
 829	} else if ((ec->rx_coalesce_usecs < IAVF_MIN_ITR) ||
 830		   (ec->rx_coalesce_usecs > IAVF_MAX_ITR)) {
 831		netif_info(adapter, drv, netdev, "Invalid value, rx-usecs range is 0-8160\n");
 832		return -EINVAL;
 833	} else if (ec->tx_coalesce_usecs == 0) {
 834		if (ec->use_adaptive_tx_coalesce)
 835			netif_info(adapter, drv, netdev, "tx-usecs=0, need to disable adaptive-tx for a complete disable\n");
 836	} else if ((ec->tx_coalesce_usecs < IAVF_MIN_ITR) ||
 837		   (ec->tx_coalesce_usecs > IAVF_MAX_ITR)) {
 838		netif_info(adapter, drv, netdev, "Invalid value, tx-usecs range is 0-8160\n");
 839		return -EINVAL;
 840	}
 841
 842	/* Rx and Tx usecs has per queue value. If user doesn't specify the
 843	 * queue, apply to all queues.
 844	 */
 845	if (queue < 0) {
 846		for (i = 0; i < adapter->num_active_queues; i++)
 847			if (iavf_set_itr_per_queue(adapter, ec, i))
 848				return -EINVAL;
 849	} else if (queue < adapter->num_active_queues) {
 850		if (iavf_set_itr_per_queue(adapter, ec, queue))
 851			return -EINVAL;
 852	} else {
 853		netif_info(adapter, drv, netdev, "Invalid queue value, queue range is 0 - %d\n",
 854			   adapter->num_active_queues - 1);
 855		return -EINVAL;
 856	}
 857
 858	return 0;
 859}
 860
 861/**
 862 * iavf_set_coalesce - Set interrupt coalescing settings
 863 * @netdev: network interface device structure
 864 * @ec: ethtool coalesce structure
 865 * @kernel_coal: ethtool CQE mode setting structure
 866 * @extack: extack for reporting error messages
 867 *
 868 * Change current coalescing settings for every queue.
 869 **/
 870static int iavf_set_coalesce(struct net_device *netdev,
 871			     struct ethtool_coalesce *ec,
 872			     struct kernel_ethtool_coalesce *kernel_coal,
 873			     struct netlink_ext_ack *extack)
 874{
 875	return __iavf_set_coalesce(netdev, ec, -1);
 876}
 877
 878/**
 879 * iavf_set_per_queue_coalesce - set specific queue's coalesce settings
 880 * @netdev: the netdev to change
 881 * @ec: ethtool's coalesce settings
 882 * @queue: the queue to modify
 883 *
 884 * Modifies a specific queue's coalesce settings.
 885 */
 886static int iavf_set_per_queue_coalesce(struct net_device *netdev, u32 queue,
 887				       struct ethtool_coalesce *ec)
 888{
 889	return __iavf_set_coalesce(netdev, ec, queue);
 890}
 891
 892/**
 893 * iavf_fltr_to_ethtool_flow - convert filter type values to ethtool
 894 * flow type values
 895 * @flow: filter type to be converted
 896 *
 897 * Returns the corresponding ethtool flow type.
 898 */
 899static int iavf_fltr_to_ethtool_flow(enum iavf_fdir_flow_type flow)
 900{
 901	switch (flow) {
 902	case IAVF_FDIR_FLOW_IPV4_TCP:
 903		return TCP_V4_FLOW;
 904	case IAVF_FDIR_FLOW_IPV4_UDP:
 905		return UDP_V4_FLOW;
 906	case IAVF_FDIR_FLOW_IPV4_SCTP:
 907		return SCTP_V4_FLOW;
 908	case IAVF_FDIR_FLOW_IPV4_AH:
 909		return AH_V4_FLOW;
 910	case IAVF_FDIR_FLOW_IPV4_ESP:
 911		return ESP_V4_FLOW;
 912	case IAVF_FDIR_FLOW_IPV4_OTHER:
 913		return IPV4_USER_FLOW;
 914	case IAVF_FDIR_FLOW_IPV6_TCP:
 915		return TCP_V6_FLOW;
 916	case IAVF_FDIR_FLOW_IPV6_UDP:
 917		return UDP_V6_FLOW;
 918	case IAVF_FDIR_FLOW_IPV6_SCTP:
 919		return SCTP_V6_FLOW;
 920	case IAVF_FDIR_FLOW_IPV6_AH:
 921		return AH_V6_FLOW;
 922	case IAVF_FDIR_FLOW_IPV6_ESP:
 923		return ESP_V6_FLOW;
 924	case IAVF_FDIR_FLOW_IPV6_OTHER:
 925		return IPV6_USER_FLOW;
 926	case IAVF_FDIR_FLOW_NON_IP_L2:
 927		return ETHER_FLOW;
 928	default:
 929		/* 0 is undefined ethtool flow */
 930		return 0;
 931	}
 932}
 933
 934/**
 935 * iavf_ethtool_flow_to_fltr - convert ethtool flow type to filter enum
 936 * @eth: Ethtool flow type to be converted
 937 *
 938 * Returns flow enum
 939 */
 940static enum iavf_fdir_flow_type iavf_ethtool_flow_to_fltr(int eth)
 941{
 942	switch (eth) {
 943	case TCP_V4_FLOW:
 944		return IAVF_FDIR_FLOW_IPV4_TCP;
 945	case UDP_V4_FLOW:
 946		return IAVF_FDIR_FLOW_IPV4_UDP;
 947	case SCTP_V4_FLOW:
 948		return IAVF_FDIR_FLOW_IPV4_SCTP;
 949	case AH_V4_FLOW:
 950		return IAVF_FDIR_FLOW_IPV4_AH;
 951	case ESP_V4_FLOW:
 952		return IAVF_FDIR_FLOW_IPV4_ESP;
 953	case IPV4_USER_FLOW:
 954		return IAVF_FDIR_FLOW_IPV4_OTHER;
 955	case TCP_V6_FLOW:
 956		return IAVF_FDIR_FLOW_IPV6_TCP;
 957	case UDP_V6_FLOW:
 958		return IAVF_FDIR_FLOW_IPV6_UDP;
 959	case SCTP_V6_FLOW:
 960		return IAVF_FDIR_FLOW_IPV6_SCTP;
 961	case AH_V6_FLOW:
 962		return IAVF_FDIR_FLOW_IPV6_AH;
 963	case ESP_V6_FLOW:
 964		return IAVF_FDIR_FLOW_IPV6_ESP;
 965	case IPV6_USER_FLOW:
 966		return IAVF_FDIR_FLOW_IPV6_OTHER;
 967	case ETHER_FLOW:
 968		return IAVF_FDIR_FLOW_NON_IP_L2;
 969	default:
 970		return IAVF_FDIR_FLOW_NONE;
 971	}
 972}
 973
 974/**
 975 * iavf_is_mask_valid - check mask field set
 976 * @mask: full mask to check
 977 * @field: field for which mask should be valid
 978 *
 979 * If the mask is fully set return true. If it is not valid for field return
 980 * false.
 981 */
 982static bool iavf_is_mask_valid(u64 mask, u64 field)
 983{
 984	return (mask & field) == field;
 985}
 986
 987/**
 988 * iavf_parse_rx_flow_user_data - deconstruct user-defined data
 989 * @fsp: pointer to ethtool Rx flow specification
 990 * @fltr: pointer to Flow Director filter for userdef data storage
 991 *
 992 * Returns 0 on success, negative error value on failure
 993 */
 994static int
 995iavf_parse_rx_flow_user_data(struct ethtool_rx_flow_spec *fsp,
 996			     struct iavf_fdir_fltr *fltr)
 997{
 998	struct iavf_flex_word *flex;
 999	int i, cnt = 0;
1000
1001	if (!(fsp->flow_type & FLOW_EXT))
1002		return 0;
1003
1004	for (i = 0; i < IAVF_FLEX_WORD_NUM; i++) {
1005#define IAVF_USERDEF_FLEX_WORD_M	GENMASK(15, 0)
1006#define IAVF_USERDEF_FLEX_OFFS_S	16
1007#define IAVF_USERDEF_FLEX_OFFS_M	GENMASK(31, IAVF_USERDEF_FLEX_OFFS_S)
1008#define IAVF_USERDEF_FLEX_FLTR_M	GENMASK(31, 0)
1009		u32 value = be32_to_cpu(fsp->h_ext.data[i]);
1010		u32 mask = be32_to_cpu(fsp->m_ext.data[i]);
1011
1012		if (!value || !mask)
1013			continue;
1014
1015		if (!iavf_is_mask_valid(mask, IAVF_USERDEF_FLEX_FLTR_M))
1016			return -EINVAL;
1017
1018		/* 504 is the maximum value for offsets, and offset is measured
1019		 * from the start of the MAC address.
1020		 */
1021#define IAVF_USERDEF_FLEX_MAX_OFFS_VAL 504
1022		flex = &fltr->flex_words[cnt++];
1023		flex->word = value & IAVF_USERDEF_FLEX_WORD_M;
1024		flex->offset = (value & IAVF_USERDEF_FLEX_OFFS_M) >>
1025			     IAVF_USERDEF_FLEX_OFFS_S;
1026		if (flex->offset > IAVF_USERDEF_FLEX_MAX_OFFS_VAL)
1027			return -EINVAL;
1028	}
1029
1030	fltr->flex_cnt = cnt;
1031
1032	return 0;
1033}
1034
1035/**
1036 * iavf_fill_rx_flow_ext_data - fill the additional data
1037 * @fsp: pointer to ethtool Rx flow specification
1038 * @fltr: pointer to Flow Director filter to get additional data
1039 */
1040static void
1041iavf_fill_rx_flow_ext_data(struct ethtool_rx_flow_spec *fsp,
1042			   struct iavf_fdir_fltr *fltr)
1043{
1044	if (!fltr->ext_mask.usr_def[0] && !fltr->ext_mask.usr_def[1])
1045		return;
1046
1047	fsp->flow_type |= FLOW_EXT;
1048
1049	memcpy(fsp->h_ext.data, fltr->ext_data.usr_def, sizeof(fsp->h_ext.data));
1050	memcpy(fsp->m_ext.data, fltr->ext_mask.usr_def, sizeof(fsp->m_ext.data));
1051}
1052
1053/**
1054 * iavf_get_ethtool_fdir_entry - fill ethtool structure with Flow Director filter data
1055 * @adapter: the VF adapter structure that contains filter list
1056 * @cmd: ethtool command data structure to receive the filter data
1057 *
1058 * Returns 0 as expected for success by ethtool
1059 */
1060static int
1061iavf_get_ethtool_fdir_entry(struct iavf_adapter *adapter,
1062			    struct ethtool_rxnfc *cmd)
1063{
1064	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1065	struct iavf_fdir_fltr *rule = NULL;
1066	int ret = 0;
1067
1068	if (!FDIR_FLTR_SUPPORT(adapter))
1069		return -EOPNOTSUPP;
1070
1071	spin_lock_bh(&adapter->fdir_fltr_lock);
1072
1073	rule = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1074	if (!rule) {
1075		ret = -EINVAL;
1076		goto release_lock;
1077	}
1078
1079	fsp->flow_type = iavf_fltr_to_ethtool_flow(rule->flow_type);
1080
1081	memset(&fsp->m_u, 0, sizeof(fsp->m_u));
1082	memset(&fsp->m_ext, 0, sizeof(fsp->m_ext));
1083
1084	switch (fsp->flow_type) {
1085	case TCP_V4_FLOW:
1086	case UDP_V4_FLOW:
1087	case SCTP_V4_FLOW:
1088		fsp->h_u.tcp_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1089		fsp->h_u.tcp_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1090		fsp->h_u.tcp_ip4_spec.psrc = rule->ip_data.src_port;
1091		fsp->h_u.tcp_ip4_spec.pdst = rule->ip_data.dst_port;
1092		fsp->h_u.tcp_ip4_spec.tos = rule->ip_data.tos;
1093		fsp->m_u.tcp_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1094		fsp->m_u.tcp_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1095		fsp->m_u.tcp_ip4_spec.psrc = rule->ip_mask.src_port;
1096		fsp->m_u.tcp_ip4_spec.pdst = rule->ip_mask.dst_port;
1097		fsp->m_u.tcp_ip4_spec.tos = rule->ip_mask.tos;
1098		break;
1099	case AH_V4_FLOW:
1100	case ESP_V4_FLOW:
1101		fsp->h_u.ah_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1102		fsp->h_u.ah_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1103		fsp->h_u.ah_ip4_spec.spi = rule->ip_data.spi;
1104		fsp->h_u.ah_ip4_spec.tos = rule->ip_data.tos;
1105		fsp->m_u.ah_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1106		fsp->m_u.ah_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1107		fsp->m_u.ah_ip4_spec.spi = rule->ip_mask.spi;
1108		fsp->m_u.ah_ip4_spec.tos = rule->ip_mask.tos;
1109		break;
1110	case IPV4_USER_FLOW:
1111		fsp->h_u.usr_ip4_spec.ip4src = rule->ip_data.v4_addrs.src_ip;
1112		fsp->h_u.usr_ip4_spec.ip4dst = rule->ip_data.v4_addrs.dst_ip;
1113		fsp->h_u.usr_ip4_spec.l4_4_bytes = rule->ip_data.l4_header;
1114		fsp->h_u.usr_ip4_spec.tos = rule->ip_data.tos;
1115		fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
1116		fsp->h_u.usr_ip4_spec.proto = rule->ip_data.proto;
1117		fsp->m_u.usr_ip4_spec.ip4src = rule->ip_mask.v4_addrs.src_ip;
1118		fsp->m_u.usr_ip4_spec.ip4dst = rule->ip_mask.v4_addrs.dst_ip;
1119		fsp->m_u.usr_ip4_spec.l4_4_bytes = rule->ip_mask.l4_header;
1120		fsp->m_u.usr_ip4_spec.tos = rule->ip_mask.tos;
1121		fsp->m_u.usr_ip4_spec.ip_ver = 0xFF;
1122		fsp->m_u.usr_ip4_spec.proto = rule->ip_mask.proto;
1123		break;
1124	case TCP_V6_FLOW:
1125	case UDP_V6_FLOW:
1126	case SCTP_V6_FLOW:
1127		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1128		       sizeof(struct in6_addr));
1129		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1130		       sizeof(struct in6_addr));
1131		fsp->h_u.tcp_ip6_spec.psrc = rule->ip_data.src_port;
1132		fsp->h_u.tcp_ip6_spec.pdst = rule->ip_data.dst_port;
1133		fsp->h_u.tcp_ip6_spec.tclass = rule->ip_data.tclass;
1134		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1135		       sizeof(struct in6_addr));
1136		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1137		       sizeof(struct in6_addr));
1138		fsp->m_u.tcp_ip6_spec.psrc = rule->ip_mask.src_port;
1139		fsp->m_u.tcp_ip6_spec.pdst = rule->ip_mask.dst_port;
1140		fsp->m_u.tcp_ip6_spec.tclass = rule->ip_mask.tclass;
1141		break;
1142	case AH_V6_FLOW:
1143	case ESP_V6_FLOW:
1144		memcpy(fsp->h_u.ah_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1145		       sizeof(struct in6_addr));
1146		memcpy(fsp->h_u.ah_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1147		       sizeof(struct in6_addr));
1148		fsp->h_u.ah_ip6_spec.spi = rule->ip_data.spi;
1149		fsp->h_u.ah_ip6_spec.tclass = rule->ip_data.tclass;
1150		memcpy(fsp->m_u.ah_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1151		       sizeof(struct in6_addr));
1152		memcpy(fsp->m_u.ah_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1153		       sizeof(struct in6_addr));
1154		fsp->m_u.ah_ip6_spec.spi = rule->ip_mask.spi;
1155		fsp->m_u.ah_ip6_spec.tclass = rule->ip_mask.tclass;
1156		break;
1157	case IPV6_USER_FLOW:
1158		memcpy(fsp->h_u.usr_ip6_spec.ip6src, &rule->ip_data.v6_addrs.src_ip,
1159		       sizeof(struct in6_addr));
1160		memcpy(fsp->h_u.usr_ip6_spec.ip6dst, &rule->ip_data.v6_addrs.dst_ip,
1161		       sizeof(struct in6_addr));
1162		fsp->h_u.usr_ip6_spec.l4_4_bytes = rule->ip_data.l4_header;
1163		fsp->h_u.usr_ip6_spec.tclass = rule->ip_data.tclass;
1164		fsp->h_u.usr_ip6_spec.l4_proto = rule->ip_data.proto;
1165		memcpy(fsp->m_u.usr_ip6_spec.ip6src, &rule->ip_mask.v6_addrs.src_ip,
1166		       sizeof(struct in6_addr));
1167		memcpy(fsp->m_u.usr_ip6_spec.ip6dst, &rule->ip_mask.v6_addrs.dst_ip,
1168		       sizeof(struct in6_addr));
1169		fsp->m_u.usr_ip6_spec.l4_4_bytes = rule->ip_mask.l4_header;
1170		fsp->m_u.usr_ip6_spec.tclass = rule->ip_mask.tclass;
1171		fsp->m_u.usr_ip6_spec.l4_proto = rule->ip_mask.proto;
1172		break;
1173	case ETHER_FLOW:
1174		fsp->h_u.ether_spec.h_proto = rule->eth_data.etype;
1175		fsp->m_u.ether_spec.h_proto = rule->eth_mask.etype;
1176		break;
1177	default:
1178		ret = -EINVAL;
1179		break;
1180	}
1181
1182	iavf_fill_rx_flow_ext_data(fsp, rule);
1183
1184	if (rule->action == VIRTCHNL_ACTION_DROP)
1185		fsp->ring_cookie = RX_CLS_FLOW_DISC;
1186	else
1187		fsp->ring_cookie = rule->q_index;
1188
1189release_lock:
1190	spin_unlock_bh(&adapter->fdir_fltr_lock);
1191	return ret;
1192}
1193
1194/**
1195 * iavf_get_fdir_fltr_ids - fill buffer with filter IDs of active filters
1196 * @adapter: the VF adapter structure containing the filter list
1197 * @cmd: ethtool command data structure
1198 * @rule_locs: ethtool array passed in from OS to receive filter IDs
1199 *
1200 * Returns 0 as expected for success by ethtool
1201 */
1202static int
1203iavf_get_fdir_fltr_ids(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd,
1204		       u32 *rule_locs)
1205{
1206	struct iavf_fdir_fltr *fltr;
1207	unsigned int cnt = 0;
1208	int val = 0;
1209
1210	if (!FDIR_FLTR_SUPPORT(adapter))
1211		return -EOPNOTSUPP;
1212
1213	cmd->data = IAVF_MAX_FDIR_FILTERS;
1214
1215	spin_lock_bh(&adapter->fdir_fltr_lock);
1216
1217	list_for_each_entry(fltr, &adapter->fdir_list_head, list) {
1218		if (cnt == cmd->rule_cnt) {
1219			val = -EMSGSIZE;
1220			goto release_lock;
1221		}
1222		rule_locs[cnt] = fltr->loc;
1223		cnt++;
1224	}
1225
1226release_lock:
1227	spin_unlock_bh(&adapter->fdir_fltr_lock);
1228	if (!val)
1229		cmd->rule_cnt = cnt;
1230
1231	return val;
1232}
1233
1234/**
1235 * iavf_add_fdir_fltr_info - Set the input set for Flow Director filter
1236 * @adapter: pointer to the VF adapter structure
1237 * @fsp: pointer to ethtool Rx flow specification
1238 * @fltr: filter structure
1239 */
1240static int
1241iavf_add_fdir_fltr_info(struct iavf_adapter *adapter, struct ethtool_rx_flow_spec *fsp,
1242			struct iavf_fdir_fltr *fltr)
1243{
1244	u32 flow_type, q_index = 0;
1245	enum virtchnl_action act;
1246	int err;
1247
1248	if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
1249		act = VIRTCHNL_ACTION_DROP;
1250	} else {
1251		q_index = fsp->ring_cookie;
1252		if (q_index >= adapter->num_active_queues)
1253			return -EINVAL;
1254
1255		act = VIRTCHNL_ACTION_QUEUE;
1256	}
1257
1258	fltr->action = act;
1259	fltr->loc = fsp->location;
1260	fltr->q_index = q_index;
1261
1262	if (fsp->flow_type & FLOW_EXT) {
1263		memcpy(fltr->ext_data.usr_def, fsp->h_ext.data,
1264		       sizeof(fltr->ext_data.usr_def));
1265		memcpy(fltr->ext_mask.usr_def, fsp->m_ext.data,
1266		       sizeof(fltr->ext_mask.usr_def));
1267	}
1268
1269	flow_type = fsp->flow_type & ~(FLOW_EXT | FLOW_MAC_EXT | FLOW_RSS);
1270	fltr->flow_type = iavf_ethtool_flow_to_fltr(flow_type);
1271
1272	switch (flow_type) {
1273	case TCP_V4_FLOW:
1274	case UDP_V4_FLOW:
1275	case SCTP_V4_FLOW:
1276		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.tcp_ip4_spec.ip4src;
1277		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.tcp_ip4_spec.ip4dst;
1278		fltr->ip_data.src_port = fsp->h_u.tcp_ip4_spec.psrc;
1279		fltr->ip_data.dst_port = fsp->h_u.tcp_ip4_spec.pdst;
1280		fltr->ip_data.tos = fsp->h_u.tcp_ip4_spec.tos;
1281		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.tcp_ip4_spec.ip4src;
1282		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.tcp_ip4_spec.ip4dst;
1283		fltr->ip_mask.src_port = fsp->m_u.tcp_ip4_spec.psrc;
1284		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip4_spec.pdst;
1285		fltr->ip_mask.tos = fsp->m_u.tcp_ip4_spec.tos;
1286		break;
1287	case AH_V4_FLOW:
1288	case ESP_V4_FLOW:
1289		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.ah_ip4_spec.ip4src;
1290		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.ah_ip4_spec.ip4dst;
1291		fltr->ip_data.spi = fsp->h_u.ah_ip4_spec.spi;
1292		fltr->ip_data.tos = fsp->h_u.ah_ip4_spec.tos;
1293		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.ah_ip4_spec.ip4src;
1294		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.ah_ip4_spec.ip4dst;
1295		fltr->ip_mask.spi = fsp->m_u.ah_ip4_spec.spi;
1296		fltr->ip_mask.tos = fsp->m_u.ah_ip4_spec.tos;
1297		break;
1298	case IPV4_USER_FLOW:
1299		fltr->ip_data.v4_addrs.src_ip = fsp->h_u.usr_ip4_spec.ip4src;
1300		fltr->ip_data.v4_addrs.dst_ip = fsp->h_u.usr_ip4_spec.ip4dst;
1301		fltr->ip_data.l4_header = fsp->h_u.usr_ip4_spec.l4_4_bytes;
1302		fltr->ip_data.tos = fsp->h_u.usr_ip4_spec.tos;
1303		fltr->ip_data.proto = fsp->h_u.usr_ip4_spec.proto;
1304		fltr->ip_mask.v4_addrs.src_ip = fsp->m_u.usr_ip4_spec.ip4src;
1305		fltr->ip_mask.v4_addrs.dst_ip = fsp->m_u.usr_ip4_spec.ip4dst;
1306		fltr->ip_mask.l4_header = fsp->m_u.usr_ip4_spec.l4_4_bytes;
1307		fltr->ip_mask.tos = fsp->m_u.usr_ip4_spec.tos;
1308		fltr->ip_mask.proto = fsp->m_u.usr_ip4_spec.proto;
1309		break;
1310	case TCP_V6_FLOW:
1311	case UDP_V6_FLOW:
1312	case SCTP_V6_FLOW:
1313		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1314		       sizeof(struct in6_addr));
1315		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1316		       sizeof(struct in6_addr));
1317		fltr->ip_data.src_port = fsp->h_u.tcp_ip6_spec.psrc;
1318		fltr->ip_data.dst_port = fsp->h_u.tcp_ip6_spec.pdst;
1319		fltr->ip_data.tclass = fsp->h_u.tcp_ip6_spec.tclass;
1320		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1321		       sizeof(struct in6_addr));
1322		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1323		       sizeof(struct in6_addr));
1324		fltr->ip_mask.src_port = fsp->m_u.tcp_ip6_spec.psrc;
1325		fltr->ip_mask.dst_port = fsp->m_u.tcp_ip6_spec.pdst;
1326		fltr->ip_mask.tclass = fsp->m_u.tcp_ip6_spec.tclass;
1327		break;
1328	case AH_V6_FLOW:
1329	case ESP_V6_FLOW:
1330		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.ah_ip6_spec.ip6src,
1331		       sizeof(struct in6_addr));
1332		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.ah_ip6_spec.ip6dst,
1333		       sizeof(struct in6_addr));
1334		fltr->ip_data.spi = fsp->h_u.ah_ip6_spec.spi;
1335		fltr->ip_data.tclass = fsp->h_u.ah_ip6_spec.tclass;
1336		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.ah_ip6_spec.ip6src,
1337		       sizeof(struct in6_addr));
1338		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.ah_ip6_spec.ip6dst,
1339		       sizeof(struct in6_addr));
1340		fltr->ip_mask.spi = fsp->m_u.ah_ip6_spec.spi;
1341		fltr->ip_mask.tclass = fsp->m_u.ah_ip6_spec.tclass;
1342		break;
1343	case IPV6_USER_FLOW:
1344		memcpy(&fltr->ip_data.v6_addrs.src_ip, fsp->h_u.usr_ip6_spec.ip6src,
1345		       sizeof(struct in6_addr));
1346		memcpy(&fltr->ip_data.v6_addrs.dst_ip, fsp->h_u.usr_ip6_spec.ip6dst,
1347		       sizeof(struct in6_addr));
1348		fltr->ip_data.l4_header = fsp->h_u.usr_ip6_spec.l4_4_bytes;
1349		fltr->ip_data.tclass = fsp->h_u.usr_ip6_spec.tclass;
1350		fltr->ip_data.proto = fsp->h_u.usr_ip6_spec.l4_proto;
1351		memcpy(&fltr->ip_mask.v6_addrs.src_ip, fsp->m_u.usr_ip6_spec.ip6src,
1352		       sizeof(struct in6_addr));
1353		memcpy(&fltr->ip_mask.v6_addrs.dst_ip, fsp->m_u.usr_ip6_spec.ip6dst,
1354		       sizeof(struct in6_addr));
1355		fltr->ip_mask.l4_header = fsp->m_u.usr_ip6_spec.l4_4_bytes;
1356		fltr->ip_mask.tclass = fsp->m_u.usr_ip6_spec.tclass;
1357		fltr->ip_mask.proto = fsp->m_u.usr_ip6_spec.l4_proto;
1358		break;
1359	case ETHER_FLOW:
1360		fltr->eth_data.etype = fsp->h_u.ether_spec.h_proto;
1361		fltr->eth_mask.etype = fsp->m_u.ether_spec.h_proto;
1362		break;
1363	default:
1364		/* not doing un-parsed flow types */
1365		return -EINVAL;
1366	}
1367
1368	if (iavf_fdir_is_dup_fltr(adapter, fltr))
1369		return -EEXIST;
1370
1371	err = iavf_parse_rx_flow_user_data(fsp, fltr);
1372	if (err)
1373		return err;
1374
1375	return iavf_fill_fdir_add_msg(adapter, fltr);
1376}
1377
1378/**
1379 * iavf_add_fdir_ethtool - add Flow Director filter
1380 * @adapter: pointer to the VF adapter structure
1381 * @cmd: command to add Flow Director filter
1382 *
1383 * Returns 0 on success and negative values for failure
1384 */
1385static int iavf_add_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1386{
1387	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
1388	struct iavf_fdir_fltr *fltr;
1389	int count = 50;
1390	int err;
1391
1392	if (!FDIR_FLTR_SUPPORT(adapter))
1393		return -EOPNOTSUPP;
1394
1395	if (fsp->flow_type & FLOW_MAC_EXT)
1396		return -EINVAL;
1397
1398	if (adapter->fdir_active_fltr >= IAVF_MAX_FDIR_FILTERS) {
1399		dev_err(&adapter->pdev->dev,
1400			"Unable to add Flow Director filter because VF reached the limit of max allowed filters (%u)\n",
1401			IAVF_MAX_FDIR_FILTERS);
1402		return -ENOSPC;
1403	}
1404
1405	spin_lock_bh(&adapter->fdir_fltr_lock);
1406	if (iavf_find_fdir_fltr_by_loc(adapter, fsp->location)) {
1407		dev_err(&adapter->pdev->dev, "Failed to add Flow Director filter, it already exists\n");
1408		spin_unlock_bh(&adapter->fdir_fltr_lock);
1409		return -EEXIST;
1410	}
1411	spin_unlock_bh(&adapter->fdir_fltr_lock);
1412
1413	fltr = kzalloc(sizeof(*fltr), GFP_KERNEL);
1414	if (!fltr)
1415		return -ENOMEM;
1416
1417	while (!mutex_trylock(&adapter->crit_lock)) {
1418		if (--count == 0) {
1419			kfree(fltr);
1420			return -EINVAL;
1421		}
1422		udelay(1);
1423	}
1424
1425	err = iavf_add_fdir_fltr_info(adapter, fsp, fltr);
1426	if (err)
1427		goto ret;
1428
1429	spin_lock_bh(&adapter->fdir_fltr_lock);
1430	iavf_fdir_list_add_fltr(adapter, fltr);
1431	adapter->fdir_active_fltr++;
1432	fltr->state = IAVF_FDIR_FLTR_ADD_REQUEST;
1433	adapter->aq_required |= IAVF_FLAG_AQ_ADD_FDIR_FILTER;
1434	spin_unlock_bh(&adapter->fdir_fltr_lock);
1435
1436	mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1437
1438ret:
1439	if (err && fltr)
1440		kfree(fltr);
1441
1442	mutex_unlock(&adapter->crit_lock);
1443	return err;
1444}
1445
1446/**
1447 * iavf_del_fdir_ethtool - delete Flow Director filter
1448 * @adapter: pointer to the VF adapter structure
1449 * @cmd: command to delete Flow Director filter
1450 *
1451 * Returns 0 on success and negative values for failure
1452 */
1453static int iavf_del_fdir_ethtool(struct iavf_adapter *adapter, struct ethtool_rxnfc *cmd)
1454{
1455	struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs;
1456	struct iavf_fdir_fltr *fltr = NULL;
1457	int err = 0;
1458
1459	if (!FDIR_FLTR_SUPPORT(adapter))
1460		return -EOPNOTSUPP;
1461
1462	spin_lock_bh(&adapter->fdir_fltr_lock);
1463	fltr = iavf_find_fdir_fltr_by_loc(adapter, fsp->location);
1464	if (fltr) {
1465		if (fltr->state == IAVF_FDIR_FLTR_ACTIVE) {
1466			fltr->state = IAVF_FDIR_FLTR_DEL_REQUEST;
1467			adapter->aq_required |= IAVF_FLAG_AQ_DEL_FDIR_FILTER;
1468		} else {
1469			err = -EBUSY;
1470		}
1471	} else if (adapter->fdir_active_fltr) {
1472		err = -EINVAL;
1473	}
1474	spin_unlock_bh(&adapter->fdir_fltr_lock);
1475
1476	if (fltr && fltr->state == IAVF_FDIR_FLTR_DEL_REQUEST)
1477		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1478
1479	return err;
1480}
1481
1482/**
1483 * iavf_adv_rss_parse_hdrs - parses headers from RSS hash input
1484 * @cmd: ethtool rxnfc command
1485 *
1486 * This function parses the rxnfc command and returns intended
1487 * header types for RSS configuration
1488 */
1489static u32 iavf_adv_rss_parse_hdrs(struct ethtool_rxnfc *cmd)
1490{
1491	u32 hdrs = IAVF_ADV_RSS_FLOW_SEG_HDR_NONE;
1492
1493	switch (cmd->flow_type) {
1494	case TCP_V4_FLOW:
1495		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1496			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1497		break;
1498	case UDP_V4_FLOW:
1499		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1500			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1501		break;
1502	case SCTP_V4_FLOW:
1503		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1504			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV4;
1505		break;
1506	case TCP_V6_FLOW:
1507		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_TCP |
1508			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1509		break;
1510	case UDP_V6_FLOW:
1511		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_UDP |
1512			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1513		break;
1514	case SCTP_V6_FLOW:
1515		hdrs |= IAVF_ADV_RSS_FLOW_SEG_HDR_SCTP |
1516			IAVF_ADV_RSS_FLOW_SEG_HDR_IPV6;
1517		break;
1518	default:
1519		break;
1520	}
1521
1522	return hdrs;
1523}
1524
1525/**
1526 * iavf_adv_rss_parse_hash_flds - parses hash fields from RSS hash input
1527 * @cmd: ethtool rxnfc command
1528 *
1529 * This function parses the rxnfc command and returns intended hash fields for
1530 * RSS configuration
1531 */
1532static u64 iavf_adv_rss_parse_hash_flds(struct ethtool_rxnfc *cmd)
1533{
1534	u64 hfld = IAVF_ADV_RSS_HASH_INVALID;
1535
1536	if (cmd->data & RXH_IP_SRC || cmd->data & RXH_IP_DST) {
1537		switch (cmd->flow_type) {
1538		case TCP_V4_FLOW:
1539		case UDP_V4_FLOW:
1540		case SCTP_V4_FLOW:
1541			if (cmd->data & RXH_IP_SRC)
1542				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_SA;
1543			if (cmd->data & RXH_IP_DST)
1544				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV4_DA;
1545			break;
1546		case TCP_V6_FLOW:
1547		case UDP_V6_FLOW:
1548		case SCTP_V6_FLOW:
1549			if (cmd->data & RXH_IP_SRC)
1550				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_SA;
1551			if (cmd->data & RXH_IP_DST)
1552				hfld |= IAVF_ADV_RSS_HASH_FLD_IPV6_DA;
1553			break;
1554		default:
1555			break;
1556		}
1557	}
1558
1559	if (cmd->data & RXH_L4_B_0_1 || cmd->data & RXH_L4_B_2_3) {
1560		switch (cmd->flow_type) {
1561		case TCP_V4_FLOW:
1562		case TCP_V6_FLOW:
1563			if (cmd->data & RXH_L4_B_0_1)
1564				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT;
1565			if (cmd->data & RXH_L4_B_2_3)
1566				hfld |= IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT;
1567			break;
1568		case UDP_V4_FLOW:
1569		case UDP_V6_FLOW:
1570			if (cmd->data & RXH_L4_B_0_1)
1571				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT;
1572			if (cmd->data & RXH_L4_B_2_3)
1573				hfld |= IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT;
1574			break;
1575		case SCTP_V4_FLOW:
1576		case SCTP_V6_FLOW:
1577			if (cmd->data & RXH_L4_B_0_1)
1578				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT;
1579			if (cmd->data & RXH_L4_B_2_3)
1580				hfld |= IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT;
1581			break;
1582		default:
1583			break;
1584		}
1585	}
1586
1587	return hfld;
1588}
1589
1590/**
1591 * iavf_set_adv_rss_hash_opt - Enable/Disable flow types for RSS hash
1592 * @adapter: pointer to the VF adapter structure
1593 * @cmd: ethtool rxnfc command
1594 *
1595 * Returns Success if the flow input set is supported.
1596 */
1597static int
1598iavf_set_adv_rss_hash_opt(struct iavf_adapter *adapter,
1599			  struct ethtool_rxnfc *cmd)
1600{
1601	struct iavf_adv_rss *rss_old, *rss_new;
1602	bool rss_new_add = false;
1603	int count = 50, err = 0;
1604	u64 hash_flds;
1605	u32 hdrs;
1606
1607	if (!ADV_RSS_SUPPORT(adapter))
1608		return -EOPNOTSUPP;
1609
1610	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1611	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1612		return -EINVAL;
1613
1614	hash_flds = iavf_adv_rss_parse_hash_flds(cmd);
1615	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1616		return -EINVAL;
1617
1618	rss_new = kzalloc(sizeof(*rss_new), GFP_KERNEL);
1619	if (!rss_new)
1620		return -ENOMEM;
1621
1622	if (iavf_fill_adv_rss_cfg_msg(&rss_new->cfg_msg, hdrs, hash_flds)) {
1623		kfree(rss_new);
1624		return -EINVAL;
1625	}
1626
1627	while (!mutex_trylock(&adapter->crit_lock)) {
1628		if (--count == 0) {
1629			kfree(rss_new);
1630			return -EINVAL;
1631		}
1632
1633		udelay(1);
1634	}
1635
1636	spin_lock_bh(&adapter->adv_rss_lock);
1637	rss_old = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1638	if (rss_old) {
1639		if (rss_old->state != IAVF_ADV_RSS_ACTIVE) {
1640			err = -EBUSY;
1641		} else if (rss_old->hash_flds != hash_flds) {
1642			rss_old->state = IAVF_ADV_RSS_ADD_REQUEST;
1643			rss_old->hash_flds = hash_flds;
1644			memcpy(&rss_old->cfg_msg, &rss_new->cfg_msg,
1645			       sizeof(rss_new->cfg_msg));
1646			adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1647		} else {
1648			err = -EEXIST;
1649		}
1650	} else {
1651		rss_new_add = true;
1652		rss_new->state = IAVF_ADV_RSS_ADD_REQUEST;
1653		rss_new->packet_hdrs = hdrs;
1654		rss_new->hash_flds = hash_flds;
1655		list_add_tail(&rss_new->list, &adapter->adv_rss_list_head);
1656		adapter->aq_required |= IAVF_FLAG_AQ_ADD_ADV_RSS_CFG;
1657	}
1658	spin_unlock_bh(&adapter->adv_rss_lock);
1659
1660	if (!err)
1661		mod_delayed_work(adapter->wq, &adapter->watchdog_task, 0);
1662
1663	mutex_unlock(&adapter->crit_lock);
1664
1665	if (!rss_new_add)
1666		kfree(rss_new);
1667
1668	return err;
1669}
1670
1671/**
1672 * iavf_get_adv_rss_hash_opt - Retrieve hash fields for a given flow-type
1673 * @adapter: pointer to the VF adapter structure
1674 * @cmd: ethtool rxnfc command
1675 *
1676 * Returns Success if the flow input set is supported.
1677 */
1678static int
1679iavf_get_adv_rss_hash_opt(struct iavf_adapter *adapter,
1680			  struct ethtool_rxnfc *cmd)
1681{
1682	struct iavf_adv_rss *rss;
1683	u64 hash_flds;
1684	u32 hdrs;
1685
1686	if (!ADV_RSS_SUPPORT(adapter))
1687		return -EOPNOTSUPP;
1688
1689	cmd->data = 0;
1690
1691	hdrs = iavf_adv_rss_parse_hdrs(cmd);
1692	if (hdrs == IAVF_ADV_RSS_FLOW_SEG_HDR_NONE)
1693		return -EINVAL;
1694
1695	spin_lock_bh(&adapter->adv_rss_lock);
1696	rss = iavf_find_adv_rss_cfg_by_hdrs(adapter, hdrs);
1697	if (rss)
1698		hash_flds = rss->hash_flds;
1699	else
1700		hash_flds = IAVF_ADV_RSS_HASH_INVALID;
1701	spin_unlock_bh(&adapter->adv_rss_lock);
1702
1703	if (hash_flds == IAVF_ADV_RSS_HASH_INVALID)
1704		return -EINVAL;
1705
1706	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_SA |
1707			 IAVF_ADV_RSS_HASH_FLD_IPV6_SA))
1708		cmd->data |= (u64)RXH_IP_SRC;
1709
1710	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_IPV4_DA |
1711			 IAVF_ADV_RSS_HASH_FLD_IPV6_DA))
1712		cmd->data |= (u64)RXH_IP_DST;
1713
1714	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_SRC_PORT |
1715			 IAVF_ADV_RSS_HASH_FLD_UDP_SRC_PORT |
1716			 IAVF_ADV_RSS_HASH_FLD_SCTP_SRC_PORT))
1717		cmd->data |= (u64)RXH_L4_B_0_1;
1718
1719	if (hash_flds & (IAVF_ADV_RSS_HASH_FLD_TCP_DST_PORT |
1720			 IAVF_ADV_RSS_HASH_FLD_UDP_DST_PORT |
1721			 IAVF_ADV_RSS_HASH_FLD_SCTP_DST_PORT))
1722		cmd->data |= (u64)RXH_L4_B_2_3;
1723
1724	return 0;
1725}
1726
1727/**
1728 * iavf_set_rxnfc - command to set Rx flow rules.
1729 * @netdev: network interface device structure
1730 * @cmd: ethtool rxnfc command
1731 *
1732 * Returns 0 for success and negative values for errors
1733 */
1734static int iavf_set_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd)
1735{
1736	struct iavf_adapter *adapter = netdev_priv(netdev);
1737	int ret = -EOPNOTSUPP;
1738
1739	switch (cmd->cmd) {
1740	case ETHTOOL_SRXCLSRLINS:
1741		ret = iavf_add_fdir_ethtool(adapter, cmd);
1742		break;
1743	case ETHTOOL_SRXCLSRLDEL:
1744		ret = iavf_del_fdir_ethtool(adapter, cmd);
1745		break;
1746	case ETHTOOL_SRXFH:
1747		ret = iavf_set_adv_rss_hash_opt(adapter, cmd);
1748		break;
1749	default:
1750		break;
1751	}
1752
1753	return ret;
1754}
1755
1756/**
1757 * iavf_get_rxnfc - command to get RX flow classification rules
1758 * @netdev: network interface device structure
1759 * @cmd: ethtool rxnfc command
1760 * @rule_locs: pointer to store rule locations
1761 *
1762 * Returns Success if the command is supported.
1763 **/
1764static int iavf_get_rxnfc(struct net_device *netdev, struct ethtool_rxnfc *cmd,
1765			  u32 *rule_locs)
1766{
1767	struct iavf_adapter *adapter = netdev_priv(netdev);
1768	int ret = -EOPNOTSUPP;
1769
1770	switch (cmd->cmd) {
1771	case ETHTOOL_GRXRINGS:
1772		cmd->data = adapter->num_active_queues;
1773		ret = 0;
1774		break;
1775	case ETHTOOL_GRXCLSRLCNT:
1776		if (!FDIR_FLTR_SUPPORT(adapter))
1777			break;
1778		cmd->rule_cnt = adapter->fdir_active_fltr;
1779		cmd->data = IAVF_MAX_FDIR_FILTERS;
1780		ret = 0;
1781		break;
1782	case ETHTOOL_GRXCLSRULE:
1783		ret = iavf_get_ethtool_fdir_entry(adapter, cmd);
1784		break;
1785	case ETHTOOL_GRXCLSRLALL:
1786		ret = iavf_get_fdir_fltr_ids(adapter, cmd, (u32 *)rule_locs);
1787		break;
1788	case ETHTOOL_GRXFH:
1789		ret = iavf_get_adv_rss_hash_opt(adapter, cmd);
1790		break;
1791	default:
1792		break;
1793	}
1794
1795	return ret;
1796}
1797/**
1798 * iavf_get_channels: get the number of channels supported by the device
1799 * @netdev: network interface device structure
1800 * @ch: channel information structure
1801 *
1802 * For the purposes of our device, we only use combined channels, i.e. a tx/rx
1803 * queue pair. Report one extra channel to match our "other" MSI-X vector.
1804 **/
1805static void iavf_get_channels(struct net_device *netdev,
1806			      struct ethtool_channels *ch)
1807{
1808	struct iavf_adapter *adapter = netdev_priv(netdev);
1809
1810	/* Report maximum channels */
1811	ch->max_combined = adapter->vsi_res->num_queue_pairs;
1812
1813	ch->max_other = NONQ_VECS;
1814	ch->other_count = NONQ_VECS;
1815
1816	ch->combined_count = adapter->num_active_queues;
1817}
1818
1819/**
1820 * iavf_set_channels: set the new channel count
1821 * @netdev: network interface device structure
1822 * @ch: channel information structure
1823 *
1824 * Negotiate a new number of channels with the PF then do a reset.  During
1825 * reset we'll realloc queues and fix the RSS table.  Returns 0 on success,
1826 * negative on failure.
1827 **/
1828static int iavf_set_channels(struct net_device *netdev,
1829			     struct ethtool_channels *ch)
1830{
1831	struct iavf_adapter *adapter = netdev_priv(netdev);
1832	u32 num_req = ch->combined_count;
1833	int i;
1834
1835	if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1836	    adapter->num_tc) {
1837		dev_info(&adapter->pdev->dev, "Cannot set channels since ADq is enabled.\n");
1838		return -EINVAL;
1839	}
1840
1841	/* All of these should have already been checked by ethtool before this
1842	 * even gets to us, but just to be sure.
1843	 */
1844	if (num_req == 0 || num_req > adapter->vsi_res->num_queue_pairs)
1845		return -EINVAL;
1846
1847	if (num_req == adapter->num_active_queues)
1848		return 0;
1849
1850	if (ch->rx_count || ch->tx_count || ch->other_count != NONQ_VECS)
1851		return -EINVAL;
1852
1853	adapter->num_req_queues = num_req;
1854	adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
1855	iavf_schedule_reset(adapter);
1856
1857	/* wait for the reset is done */
1858	for (i = 0; i < IAVF_RESET_WAIT_COMPLETE_COUNT; i++) {
1859		msleep(IAVF_RESET_WAIT_MS);
1860		if (adapter->flags & IAVF_FLAG_RESET_PENDING)
1861			continue;
1862		break;
1863	}
1864	if (i == IAVF_RESET_WAIT_COMPLETE_COUNT) {
1865		adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
1866		adapter->num_active_queues = num_req;
1867		return -EOPNOTSUPP;
1868	}
1869
1870	return 0;
1871}
1872
1873/**
1874 * iavf_get_rxfh_key_size - get the RSS hash key size
1875 * @netdev: network interface device structure
1876 *
1877 * Returns the table size.
1878 **/
1879static u32 iavf_get_rxfh_key_size(struct net_device *netdev)
1880{
1881	struct iavf_adapter *adapter = netdev_priv(netdev);
1882
1883	return adapter->rss_key_size;
1884}
1885
1886/**
1887 * iavf_get_rxfh_indir_size - get the rx flow hash indirection table size
1888 * @netdev: network interface device structure
1889 *
1890 * Returns the table size.
1891 **/
1892static u32 iavf_get_rxfh_indir_size(struct net_device *netdev)
1893{
1894	struct iavf_adapter *adapter = netdev_priv(netdev);
1895
1896	return adapter->rss_lut_size;
1897}
1898
1899/**
1900 * iavf_get_rxfh - get the rx flow hash indirection table
1901 * @netdev: network interface device structure
1902 * @indir: indirection table
1903 * @key: hash key
1904 * @hfunc: hash function in use
1905 *
1906 * Reads the indirection table directly from the hardware. Always returns 0.
1907 **/
1908static int iavf_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
1909			 u8 *hfunc)
1910{
1911	struct iavf_adapter *adapter = netdev_priv(netdev);
1912	u16 i;
1913
1914	if (hfunc)
1915		*hfunc = ETH_RSS_HASH_TOP;
1916	if (key)
1917		memcpy(key, adapter->rss_key, adapter->rss_key_size);
1918
1919	if (indir)
1920		/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1921		for (i = 0; i < adapter->rss_lut_size; i++)
1922			indir[i] = (u32)adapter->rss_lut[i];
1923
1924	return 0;
1925}
1926
1927/**
1928 * iavf_set_rxfh - set the rx flow hash indirection table
1929 * @netdev: network interface device structure
1930 * @indir: indirection table
1931 * @key: hash key
1932 * @hfunc: hash function to use
1933 *
1934 * Returns -EINVAL if the table specifies an invalid queue id, otherwise
1935 * returns 0 after programming the table.
1936 **/
1937static int iavf_set_rxfh(struct net_device *netdev, const u32 *indir,
1938			 const u8 *key, const u8 hfunc)
1939{
1940	struct iavf_adapter *adapter = netdev_priv(netdev);
1941	u16 i;
1942
1943	/* Only support toeplitz hash function */
1944	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1945		return -EOPNOTSUPP;
1946
1947	if (!key && !indir)
1948		return 0;
1949
1950	if (key)
1951		memcpy(adapter->rss_key, key, adapter->rss_key_size);
1952
1953	if (indir) {
1954		/* Each 32 bits pointed by 'indir' is stored with a lut entry */
1955		for (i = 0; i < adapter->rss_lut_size; i++)
1956			adapter->rss_lut[i] = (u8)(indir[i]);
1957	}
1958
1959	return iavf_config_rss(adapter);
1960}
1961
1962static const struct ethtool_ops iavf_ethtool_ops = {
1963	.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
1964				     ETHTOOL_COALESCE_USE_ADAPTIVE,
1965	.get_drvinfo		= iavf_get_drvinfo,
1966	.get_link		= ethtool_op_get_link,
1967	.get_ringparam		= iavf_get_ringparam,
1968	.set_ringparam		= iavf_set_ringparam,
1969	.get_strings		= iavf_get_strings,
1970	.get_ethtool_stats	= iavf_get_ethtool_stats,
1971	.get_sset_count		= iavf_get_sset_count,
1972	.get_priv_flags		= iavf_get_priv_flags,
1973	.set_priv_flags		= iavf_set_priv_flags,
1974	.get_msglevel		= iavf_get_msglevel,
1975	.set_msglevel		= iavf_set_msglevel,
1976	.get_coalesce		= iavf_get_coalesce,
1977	.set_coalesce		= iavf_set_coalesce,
1978	.get_per_queue_coalesce = iavf_get_per_queue_coalesce,
1979	.set_per_queue_coalesce = iavf_set_per_queue_coalesce,
1980	.set_rxnfc		= iavf_set_rxnfc,
1981	.get_rxnfc		= iavf_get_rxnfc,
1982	.get_rxfh_indir_size	= iavf_get_rxfh_indir_size,
1983	.get_rxfh		= iavf_get_rxfh,
1984	.set_rxfh		= iavf_set_rxfh,
1985	.get_channels		= iavf_get_channels,
1986	.set_channels		= iavf_set_channels,
1987	.get_rxfh_key_size	= iavf_get_rxfh_key_size,
1988	.get_link_ksettings	= iavf_get_link_ksettings,
1989};
1990
1991/**
1992 * iavf_set_ethtool_ops - Initialize ethtool ops struct
1993 * @netdev: network interface device structure
1994 *
1995 * Sets ethtool ops struct in our netdev so that ethtool can call
1996 * our functions.
1997 **/
1998void iavf_set_ethtool_ops(struct net_device *netdev)
1999{
2000	netdev->ethtool_ops = &iavf_ethtool_ops;
2001}