Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
   1/*
   2 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *          monitoring
   4 * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
   5 *
   6 * Based on the lm83 driver. The LM90 is a sensor chip made by National
   7 * Semiconductor. It reports up to two temperatures (its own plus up to
   8 * one external one) with a 0.125 deg resolution (1 deg for local
   9 * temperature) and a 3-4 deg accuracy.
  10 *
  11 * This driver also supports the LM89 and LM99, two other sensor chips
  12 * made by National Semiconductor. Both have an increased remote
  13 * temperature measurement accuracy (1 degree), and the LM99
  14 * additionally shifts remote temperatures (measured and limits) by 16
  15 * degrees, which allows for higher temperatures measurement.
  16 * Note that there is no way to differentiate between both chips.
  17 * When device is auto-detected, the driver will assume an LM99.
  18 *
  19 * This driver also supports the LM86, another sensor chip made by
  20 * National Semiconductor. It is exactly similar to the LM90 except it
  21 * has a higher accuracy.
  22 *
  23 * This driver also supports the ADM1032, a sensor chip made by Analog
  24 * Devices. That chip is similar to the LM90, with a few differences
  25 * that are not handled by this driver. Among others, it has a higher
  26 * accuracy than the LM90, much like the LM86 does.
  27 *
  28 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
  29 * chips made by Maxim. These chips are similar to the LM86.
  30 * Note that there is no easy way to differentiate between the three
  31 * variants. We use the device address to detect MAX6659, which will result
  32 * in a detection as max6657 if it is on address 0x4c. The extra address
  33 * and features of the MAX6659 are only supported if the chip is configured
  34 * explicitly as max6659, or if its address is not 0x4c.
  35 * These chips lack the remote temperature offset feature.
  36 *
  37 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
  38 * MAX6692 chips made by Maxim.  These are again similar to the LM86,
  39 * but they use unsigned temperature values and can report temperatures
  40 * from 0 to 145 degrees.
  41 *
  42 * This driver also supports the MAX6680 and MAX6681, two other sensor
  43 * chips made by Maxim. These are quite similar to the other Maxim
  44 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
  45 * be treated identically.
  46 *
  47 * This driver also supports the MAX6695 and MAX6696, two other sensor
  48 * chips made by Maxim. These are also quite similar to other Maxim
  49 * chips, but support three temperature sensors instead of two. MAX6695
  50 * and MAX6696 only differ in the pinout so they can be treated identically.
  51 *
  52 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
  53 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
  54 * and extended mode. They are mostly compatible with LM90 except for a data
  55 * format difference for the temperature value registers.
  56 *
  57 * This driver also supports the SA56004 from Philips. This device is
  58 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
  59 *
  60 * This driver also supports the G781 from GMT. This device is compatible
  61 * with the ADM1032.
  62 *
  63 * This driver also supports TMP451 from Texas Instruments. This device is
  64 * supported in both compatibility and extended mode. It's mostly compatible
  65 * with ADT7461 except for local temperature low byte register and max
  66 * conversion rate.
  67 *
  68 * Since the LM90 was the first chipset supported by this driver, most
  69 * comments will refer to this chipset, but are actually general and
  70 * concern all supported chipsets, unless mentioned otherwise.
  71 *
  72 * This program is free software; you can redistribute it and/or modify
  73 * it under the terms of the GNU General Public License as published by
  74 * the Free Software Foundation; either version 2 of the License, or
  75 * (at your option) any later version.
  76 *
  77 * This program is distributed in the hope that it will be useful,
  78 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  79 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  80 * GNU General Public License for more details.
  81 *
  82 * You should have received a copy of the GNU General Public License
  83 * along with this program; if not, write to the Free Software
  84 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  85 */
  86
  87#include <linux/module.h>
  88#include <linux/init.h>
  89#include <linux/slab.h>
  90#include <linux/jiffies.h>
  91#include <linux/i2c.h>
  92#include <linux/hwmon-sysfs.h>
  93#include <linux/hwmon.h>
  94#include <linux/err.h>
  95#include <linux/mutex.h>
  96#include <linux/sysfs.h>
  97#include <linux/interrupt.h>
  98#include <linux/regulator/consumer.h>
  99
 100/*
 101 * Addresses to scan
 102 * Address is fully defined internally and cannot be changed except for
 103 * MAX6659, MAX6680 and MAX6681.
 104 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
 105 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
 106 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
 107 * have address 0x4d.
 108 * MAX6647 has address 0x4e.
 109 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
 110 * MAX6680 and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
 111 * 0x4c, 0x4d or 0x4e.
 112 * SA56004 can have address 0x48 through 0x4F.
 113 */
 114
 115static const unsigned short normal_i2c[] = {
 116	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
 117	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
 118
 119enum chips { lm90, adm1032, lm99, lm86, max6657, max6659, adt7461, max6680,
 120	max6646, w83l771, max6696, sa56004, g781, tmp451 };
 121
 122/*
 123 * The LM90 registers
 124 */
 125
 126#define LM90_REG_R_MAN_ID		0xFE
 127#define LM90_REG_R_CHIP_ID		0xFF
 128#define LM90_REG_R_CONFIG1		0x03
 129#define LM90_REG_W_CONFIG1		0x09
 130#define LM90_REG_R_CONFIG2		0xBF
 131#define LM90_REG_W_CONFIG2		0xBF
 132#define LM90_REG_R_CONVRATE		0x04
 133#define LM90_REG_W_CONVRATE		0x0A
 134#define LM90_REG_R_STATUS		0x02
 135#define LM90_REG_R_LOCAL_TEMP		0x00
 136#define LM90_REG_R_LOCAL_HIGH		0x05
 137#define LM90_REG_W_LOCAL_HIGH		0x0B
 138#define LM90_REG_R_LOCAL_LOW		0x06
 139#define LM90_REG_W_LOCAL_LOW		0x0C
 140#define LM90_REG_R_LOCAL_CRIT		0x20
 141#define LM90_REG_W_LOCAL_CRIT		0x20
 142#define LM90_REG_R_REMOTE_TEMPH		0x01
 143#define LM90_REG_R_REMOTE_TEMPL		0x10
 144#define LM90_REG_R_REMOTE_OFFSH		0x11
 145#define LM90_REG_W_REMOTE_OFFSH		0x11
 146#define LM90_REG_R_REMOTE_OFFSL		0x12
 147#define LM90_REG_W_REMOTE_OFFSL		0x12
 148#define LM90_REG_R_REMOTE_HIGHH		0x07
 149#define LM90_REG_W_REMOTE_HIGHH		0x0D
 150#define LM90_REG_R_REMOTE_HIGHL		0x13
 151#define LM90_REG_W_REMOTE_HIGHL		0x13
 152#define LM90_REG_R_REMOTE_LOWH		0x08
 153#define LM90_REG_W_REMOTE_LOWH		0x0E
 154#define LM90_REG_R_REMOTE_LOWL		0x14
 155#define LM90_REG_W_REMOTE_LOWL		0x14
 156#define LM90_REG_R_REMOTE_CRIT		0x19
 157#define LM90_REG_W_REMOTE_CRIT		0x19
 158#define LM90_REG_R_TCRIT_HYST		0x21
 159#define LM90_REG_W_TCRIT_HYST		0x21
 160
 161/* MAX6646/6647/6649/6657/6658/6659/6695/6696 registers */
 162
 163#define MAX6657_REG_R_LOCAL_TEMPL	0x11
 164#define MAX6696_REG_R_STATUS2		0x12
 165#define MAX6659_REG_R_REMOTE_EMERG	0x16
 166#define MAX6659_REG_W_REMOTE_EMERG	0x16
 167#define MAX6659_REG_R_LOCAL_EMERG	0x17
 168#define MAX6659_REG_W_LOCAL_EMERG	0x17
 169
 170/*  SA56004 registers */
 171
 172#define SA56004_REG_R_LOCAL_TEMPL 0x22
 173
 174#define LM90_DEF_CONVRATE_RVAL	6	/* Def conversion rate register value */
 175#define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
 176
 177/* TMP451 registers */
 178#define TMP451_REG_R_LOCAL_TEMPL	0x15
 179
 180/*
 181 * Device flags
 182 */
 183#define LM90_FLAG_ADT7461_EXT	(1 << 0) /* ADT7461 extended mode	*/
 184/* Device features */
 185#define LM90_HAVE_OFFSET	(1 << 1) /* temperature offset register	*/
 186#define LM90_HAVE_REM_LIMIT_EXT	(1 << 3) /* extended remote limit	*/
 187#define LM90_HAVE_EMERGENCY	(1 << 4) /* 3rd upper (emergency) limit	*/
 188#define LM90_HAVE_EMERGENCY_ALARM (1 << 5)/* emergency alarm		*/
 189#define LM90_HAVE_TEMP3		(1 << 6) /* 3rd temperature sensor	*/
 190#define LM90_HAVE_BROKEN_ALERT	(1 << 7) /* Broken alert		*/
 191
 192/* LM90 status */
 193#define LM90_STATUS_LTHRM	(1 << 0) /* local THERM limit tripped */
 194#define LM90_STATUS_RTHRM	(1 << 1) /* remote THERM limit tripped */
 195#define LM90_STATUS_ROPEN	(1 << 2) /* remote is an open circuit */
 196#define LM90_STATUS_RLOW	(1 << 3) /* remote low temp limit tripped */
 197#define LM90_STATUS_RHIGH	(1 << 4) /* remote high temp limit tripped */
 198#define LM90_STATUS_LLOW	(1 << 5) /* local low temp limit tripped */
 199#define LM90_STATUS_LHIGH	(1 << 6) /* local high temp limit tripped */
 200
 201#define MAX6696_STATUS2_R2THRM	(1 << 1) /* remote2 THERM limit tripped */
 202#define MAX6696_STATUS2_R2OPEN	(1 << 2) /* remote2 is an open circuit */
 203#define MAX6696_STATUS2_R2LOW	(1 << 3) /* remote2 low temp limit tripped */
 204#define MAX6696_STATUS2_R2HIGH	(1 << 4) /* remote2 high temp limit tripped */
 205#define MAX6696_STATUS2_ROT2	(1 << 5) /* remote emergency limit tripped */
 206#define MAX6696_STATUS2_R2OT2	(1 << 6) /* remote2 emergency limit tripped */
 207#define MAX6696_STATUS2_LOT2	(1 << 7) /* local emergency limit tripped */
 208
 209/*
 210 * Driver data (common to all clients)
 211 */
 212
 213static const struct i2c_device_id lm90_id[] = {
 214	{ "adm1032", adm1032 },
 215	{ "adt7461", adt7461 },
 216	{ "adt7461a", adt7461 },
 217	{ "g781", g781 },
 218	{ "lm90", lm90 },
 219	{ "lm86", lm86 },
 220	{ "lm89", lm86 },
 221	{ "lm99", lm99 },
 222	{ "max6646", max6646 },
 223	{ "max6647", max6646 },
 224	{ "max6649", max6646 },
 225	{ "max6657", max6657 },
 226	{ "max6658", max6657 },
 227	{ "max6659", max6659 },
 228	{ "max6680", max6680 },
 229	{ "max6681", max6680 },
 230	{ "max6695", max6696 },
 231	{ "max6696", max6696 },
 232	{ "nct1008", adt7461 },
 233	{ "w83l771", w83l771 },
 234	{ "sa56004", sa56004 },
 235	{ "tmp451", tmp451 },
 236	{ }
 237};
 238MODULE_DEVICE_TABLE(i2c, lm90_id);
 239
 240/*
 241 * chip type specific parameters
 242 */
 243struct lm90_params {
 244	u32 flags;		/* Capabilities */
 245	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
 246				/* Upper 8 bits for max6695/96 */
 247	u8 max_convrate;	/* Maximum conversion rate register value */
 248	u8 reg_local_ext;	/* Extended local temp register (optional) */
 249};
 250
 251static const struct lm90_params lm90_params[] = {
 252	[adm1032] = {
 253		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 254		  | LM90_HAVE_BROKEN_ALERT,
 255		.alert_alarms = 0x7c,
 256		.max_convrate = 10,
 257	},
 258	[adt7461] = {
 259		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 260		  | LM90_HAVE_BROKEN_ALERT,
 261		.alert_alarms = 0x7c,
 262		.max_convrate = 10,
 263	},
 264	[g781] = {
 265		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 266		  | LM90_HAVE_BROKEN_ALERT,
 267		.alert_alarms = 0x7c,
 268		.max_convrate = 8,
 269	},
 270	[lm86] = {
 271		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
 272		.alert_alarms = 0x7b,
 273		.max_convrate = 9,
 274	},
 275	[lm90] = {
 276		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
 277		.alert_alarms = 0x7b,
 278		.max_convrate = 9,
 279	},
 280	[lm99] = {
 281		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
 282		.alert_alarms = 0x7b,
 283		.max_convrate = 9,
 284	},
 285	[max6646] = {
 286		.alert_alarms = 0x7c,
 287		.max_convrate = 6,
 288		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
 289	},
 290	[max6657] = {
 291		.alert_alarms = 0x7c,
 292		.max_convrate = 8,
 293		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
 294	},
 295	[max6659] = {
 296		.flags = LM90_HAVE_EMERGENCY,
 297		.alert_alarms = 0x7c,
 298		.max_convrate = 8,
 299		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
 300	},
 301	[max6680] = {
 302		.flags = LM90_HAVE_OFFSET,
 303		.alert_alarms = 0x7c,
 304		.max_convrate = 7,
 305	},
 306	[max6696] = {
 307		.flags = LM90_HAVE_EMERGENCY
 308		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3,
 309		.alert_alarms = 0x1c7c,
 310		.max_convrate = 6,
 311		.reg_local_ext = MAX6657_REG_R_LOCAL_TEMPL,
 312	},
 313	[w83l771] = {
 314		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
 315		.alert_alarms = 0x7c,
 316		.max_convrate = 8,
 317	},
 318	[sa56004] = {
 319		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT,
 320		.alert_alarms = 0x7b,
 321		.max_convrate = 9,
 322		.reg_local_ext = SA56004_REG_R_LOCAL_TEMPL,
 323	},
 324	[tmp451] = {
 325		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 326		  | LM90_HAVE_BROKEN_ALERT,
 327		.alert_alarms = 0x7c,
 328		.max_convrate = 9,
 329		.reg_local_ext = TMP451_REG_R_LOCAL_TEMPL,
 330	}
 331};
 332
 333/*
 334 * TEMP8 register index
 335 */
 336enum lm90_temp8_reg_index {
 337	LOCAL_LOW = 0,
 338	LOCAL_HIGH,
 339	LOCAL_CRIT,
 340	REMOTE_CRIT,
 341	LOCAL_EMERG,	/* max6659 and max6695/96 */
 342	REMOTE_EMERG,	/* max6659 and max6695/96 */
 343	REMOTE2_CRIT,	/* max6695/96 only */
 344	REMOTE2_EMERG,	/* max6695/96 only */
 345	TEMP8_REG_NUM
 346};
 347
 348/*
 349 * TEMP11 register index
 350 */
 351enum lm90_temp11_reg_index {
 352	REMOTE_TEMP = 0,
 353	REMOTE_LOW,
 354	REMOTE_HIGH,
 355	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
 356	LOCAL_TEMP,
 357	REMOTE2_TEMP,	/* max6695/96 only */
 358	REMOTE2_LOW,	/* max6695/96 only */
 359	REMOTE2_HIGH,	/* max6695/96 only */
 360	TEMP11_REG_NUM
 361};
 362
 363/*
 364 * Client data (each client gets its own)
 365 */
 366
 367struct lm90_data {
 368	struct i2c_client *client;
 369	struct device *hwmon_dev;
 370	const struct attribute_group *groups[6];
 371	struct mutex update_lock;
 372	struct regulator *regulator;
 373	char valid; /* zero until following fields are valid */
 374	unsigned long last_updated; /* in jiffies */
 375	int kind;
 376	u32 flags;
 377
 378	int update_interval;	/* in milliseconds */
 379
 380	u8 config_orig;		/* Original configuration register value */
 381	u8 convrate_orig;	/* Original conversion rate register value */
 382	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
 383				/* Upper 8 bits for max6695/96 */
 384	u8 max_convrate;	/* Maximum conversion rate */
 385	u8 reg_local_ext;	/* local extension register offset */
 386
 387	/* registers values */
 388	s8 temp8[TEMP8_REG_NUM];
 389	s16 temp11[TEMP11_REG_NUM];
 390	u8 temp_hyst;
 391	u16 alarms; /* bitvector (upper 8 bits for max6695/96) */
 392};
 393
 394/*
 395 * Support functions
 396 */
 397
 398/*
 399 * The ADM1032 supports PEC but not on write byte transactions, so we need
 400 * to explicitly ask for a transaction without PEC.
 401 */
 402static inline s32 adm1032_write_byte(struct i2c_client *client, u8 value)
 403{
 404	return i2c_smbus_xfer(client->adapter, client->addr,
 405			      client->flags & ~I2C_CLIENT_PEC,
 406			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
 407}
 408
 409/*
 410 * It is assumed that client->update_lock is held (unless we are in
 411 * detection or initialization steps). This matters when PEC is enabled,
 412 * because we don't want the address pointer to change between the write
 413 * byte and the read byte transactions.
 414 */
 415static int lm90_read_reg(struct i2c_client *client, u8 reg, u8 *value)
 416{
 417	int err;
 418
 419	if (client->flags & I2C_CLIENT_PEC) {
 420		err = adm1032_write_byte(client, reg);
 421		if (err >= 0)
 422			err = i2c_smbus_read_byte(client);
 423	} else
 424		err = i2c_smbus_read_byte_data(client, reg);
 425
 426	if (err < 0) {
 427		dev_warn(&client->dev, "Register %#02x read failed (%d)\n",
 428			 reg, err);
 429		return err;
 430	}
 431	*value = err;
 432
 433	return 0;
 434}
 435
 436static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl, u16 *value)
 437{
 438	int err;
 439	u8 oldh, newh, l;
 440
 441	/*
 442	 * There is a trick here. We have to read two registers to have the
 443	 * sensor temperature, but we have to beware a conversion could occur
 444	 * between the readings. The datasheet says we should either use
 445	 * the one-shot conversion register, which we don't want to do
 446	 * (disables hardware monitoring) or monitor the busy bit, which is
 447	 * impossible (we can't read the values and monitor that bit at the
 448	 * exact same time). So the solution used here is to read the high
 449	 * byte once, then the low byte, then the high byte again. If the new
 450	 * high byte matches the old one, then we have a valid reading. Else
 451	 * we have to read the low byte again, and now we believe we have a
 452	 * correct reading.
 453	 */
 454	if ((err = lm90_read_reg(client, regh, &oldh))
 455	 || (err = lm90_read_reg(client, regl, &l))
 456	 || (err = lm90_read_reg(client, regh, &newh)))
 457		return err;
 458	if (oldh != newh) {
 459		err = lm90_read_reg(client, regl, &l);
 460		if (err)
 461			return err;
 462	}
 463	*value = (newh << 8) | l;
 464
 465	return 0;
 466}
 467
 468/*
 469 * client->update_lock must be held when calling this function (unless we are
 470 * in detection or initialization steps), and while a remote channel other
 471 * than channel 0 is selected. Also, calling code must make sure to re-select
 472 * external channel 0 before releasing the lock. This is necessary because
 473 * various registers have different meanings as a result of selecting a
 474 * non-default remote channel.
 475 */
 476static inline void lm90_select_remote_channel(struct i2c_client *client,
 477					      struct lm90_data *data,
 478					      int channel)
 479{
 480	u8 config;
 481
 482	if (data->kind == max6696) {
 483		lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
 484		config &= ~0x08;
 485		if (channel)
 486			config |= 0x08;
 487		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
 488					  config);
 489	}
 490}
 491
 492/*
 493 * Set conversion rate.
 494 * client->update_lock must be held when calling this function (unless we are
 495 * in detection or initialization steps).
 496 */
 497static void lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
 498			      unsigned int interval)
 499{
 500	int i;
 501	unsigned int update_interval;
 502
 503	/* Shift calculations to avoid rounding errors */
 504	interval <<= 6;
 505
 506	/* find the nearest update rate */
 507	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
 508	     i < data->max_convrate; i++, update_interval >>= 1)
 509		if (interval >= update_interval * 3 / 4)
 510			break;
 511
 512	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE, i);
 513	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
 514}
 515
 516static struct lm90_data *lm90_update_device(struct device *dev)
 517{
 518	struct lm90_data *data = dev_get_drvdata(dev);
 519	struct i2c_client *client = data->client;
 520	unsigned long next_update;
 521
 522	mutex_lock(&data->update_lock);
 523
 524	next_update = data->last_updated +
 525		      msecs_to_jiffies(data->update_interval);
 526	if (time_after(jiffies, next_update) || !data->valid) {
 527		u8 h, l;
 528		u8 alarms;
 529
 530		dev_dbg(&client->dev, "Updating lm90 data.\n");
 531		lm90_read_reg(client, LM90_REG_R_LOCAL_LOW,
 532			      &data->temp8[LOCAL_LOW]);
 533		lm90_read_reg(client, LM90_REG_R_LOCAL_HIGH,
 534			      &data->temp8[LOCAL_HIGH]);
 535		lm90_read_reg(client, LM90_REG_R_LOCAL_CRIT,
 536			      &data->temp8[LOCAL_CRIT]);
 537		lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
 538			      &data->temp8[REMOTE_CRIT]);
 539		lm90_read_reg(client, LM90_REG_R_TCRIT_HYST, &data->temp_hyst);
 540
 541		if (data->reg_local_ext) {
 542			lm90_read16(client, LM90_REG_R_LOCAL_TEMP,
 543				    data->reg_local_ext,
 544				    &data->temp11[LOCAL_TEMP]);
 545		} else {
 546			if (lm90_read_reg(client, LM90_REG_R_LOCAL_TEMP,
 547					  &h) == 0)
 548				data->temp11[LOCAL_TEMP] = h << 8;
 549		}
 550		lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
 551			    LM90_REG_R_REMOTE_TEMPL,
 552			    &data->temp11[REMOTE_TEMP]);
 553
 554		if (lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h) == 0) {
 555			data->temp11[REMOTE_LOW] = h << 8;
 556			if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
 557			 && lm90_read_reg(client, LM90_REG_R_REMOTE_LOWL,
 558					  &l) == 0)
 559				data->temp11[REMOTE_LOW] |= l;
 560		}
 561		if (lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h) == 0) {
 562			data->temp11[REMOTE_HIGH] = h << 8;
 563			if ((data->flags & LM90_HAVE_REM_LIMIT_EXT)
 564			 && lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHL,
 565					  &l) == 0)
 566				data->temp11[REMOTE_HIGH] |= l;
 567		}
 568
 569		if (data->flags & LM90_HAVE_OFFSET) {
 570			if (lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSH,
 571					  &h) == 0
 572			 && lm90_read_reg(client, LM90_REG_R_REMOTE_OFFSL,
 573					  &l) == 0)
 574				data->temp11[REMOTE_OFFSET] = (h << 8) | l;
 575		}
 576		if (data->flags & LM90_HAVE_EMERGENCY) {
 577			lm90_read_reg(client, MAX6659_REG_R_LOCAL_EMERG,
 578				      &data->temp8[LOCAL_EMERG]);
 579			lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
 580				      &data->temp8[REMOTE_EMERG]);
 581		}
 582		lm90_read_reg(client, LM90_REG_R_STATUS, &alarms);
 583		data->alarms = alarms;	/* save as 16 bit value */
 584
 585		if (data->kind == max6696) {
 586			lm90_select_remote_channel(client, data, 1);
 587			lm90_read_reg(client, LM90_REG_R_REMOTE_CRIT,
 588				      &data->temp8[REMOTE2_CRIT]);
 589			lm90_read_reg(client, MAX6659_REG_R_REMOTE_EMERG,
 590				      &data->temp8[REMOTE2_EMERG]);
 591			lm90_read16(client, LM90_REG_R_REMOTE_TEMPH,
 592				    LM90_REG_R_REMOTE_TEMPL,
 593				    &data->temp11[REMOTE2_TEMP]);
 594			if (!lm90_read_reg(client, LM90_REG_R_REMOTE_LOWH, &h))
 595				data->temp11[REMOTE2_LOW] = h << 8;
 596			if (!lm90_read_reg(client, LM90_REG_R_REMOTE_HIGHH, &h))
 597				data->temp11[REMOTE2_HIGH] = h << 8;
 598			lm90_select_remote_channel(client, data, 0);
 599
 600			if (!lm90_read_reg(client, MAX6696_REG_R_STATUS2,
 601					   &alarms))
 602				data->alarms |= alarms << 8;
 603		}
 604
 605		/*
 606		 * Re-enable ALERT# output if it was originally enabled and
 607		 * relevant alarms are all clear
 608		 */
 609		if ((data->config_orig & 0x80) == 0
 610		 && (data->alarms & data->alert_alarms) == 0) {
 611			u8 config;
 612
 613			lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
 614			if (config & 0x80) {
 615				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
 616				i2c_smbus_write_byte_data(client,
 617							  LM90_REG_W_CONFIG1,
 618							  config & ~0x80);
 619			}
 620		}
 621
 622		data->last_updated = jiffies;
 623		data->valid = 1;
 624	}
 625
 626	mutex_unlock(&data->update_lock);
 627
 628	return data;
 629}
 630
 631/*
 632 * Conversions
 633 * For local temperatures and limits, critical limits and the hysteresis
 634 * value, the LM90 uses signed 8-bit values with LSB = 1 degree Celsius.
 635 * For remote temperatures and limits, it uses signed 11-bit values with
 636 * LSB = 0.125 degree Celsius, left-justified in 16-bit registers.  Some
 637 * Maxim chips use unsigned values.
 638 */
 639
 640static inline int temp_from_s8(s8 val)
 641{
 642	return val * 1000;
 643}
 644
 645static inline int temp_from_u8(u8 val)
 646{
 647	return val * 1000;
 648}
 649
 650static inline int temp_from_s16(s16 val)
 651{
 652	return val / 32 * 125;
 653}
 654
 655static inline int temp_from_u16(u16 val)
 656{
 657	return val / 32 * 125;
 658}
 659
 660static s8 temp_to_s8(long val)
 661{
 662	if (val <= -128000)
 663		return -128;
 664	if (val >= 127000)
 665		return 127;
 666	if (val < 0)
 667		return (val - 500) / 1000;
 668	return (val + 500) / 1000;
 669}
 670
 671static u8 temp_to_u8(long val)
 672{
 673	if (val <= 0)
 674		return 0;
 675	if (val >= 255000)
 676		return 255;
 677	return (val + 500) / 1000;
 678}
 679
 680static s16 temp_to_s16(long val)
 681{
 682	if (val <= -128000)
 683		return 0x8000;
 684	if (val >= 127875)
 685		return 0x7FE0;
 686	if (val < 0)
 687		return (val - 62) / 125 * 32;
 688	return (val + 62) / 125 * 32;
 689}
 690
 691static u8 hyst_to_reg(long val)
 692{
 693	if (val <= 0)
 694		return 0;
 695	if (val >= 30500)
 696		return 31;
 697	return (val + 500) / 1000;
 698}
 699
 700/*
 701 * ADT7461 in compatibility mode is almost identical to LM90 except that
 702 * attempts to write values that are outside the range 0 < temp < 127 are
 703 * treated as the boundary value.
 704 *
 705 * ADT7461 in "extended mode" operation uses unsigned integers offset by
 706 * 64 (e.g., 0 -> -64 degC).  The range is restricted to -64..191 degC.
 707 */
 708static inline int temp_from_u8_adt7461(struct lm90_data *data, u8 val)
 709{
 710	if (data->flags & LM90_FLAG_ADT7461_EXT)
 711		return (val - 64) * 1000;
 712	else
 713		return temp_from_s8(val);
 714}
 715
 716static inline int temp_from_u16_adt7461(struct lm90_data *data, u16 val)
 717{
 718	if (data->flags & LM90_FLAG_ADT7461_EXT)
 719		return (val - 0x4000) / 64 * 250;
 720	else
 721		return temp_from_s16(val);
 722}
 723
 724static u8 temp_to_u8_adt7461(struct lm90_data *data, long val)
 725{
 726	if (data->flags & LM90_FLAG_ADT7461_EXT) {
 727		if (val <= -64000)
 728			return 0;
 729		if (val >= 191000)
 730			return 0xFF;
 731		return (val + 500 + 64000) / 1000;
 732	} else {
 733		if (val <= 0)
 734			return 0;
 735		if (val >= 127000)
 736			return 127;
 737		return (val + 500) / 1000;
 738	}
 739}
 740
 741static u16 temp_to_u16_adt7461(struct lm90_data *data, long val)
 742{
 743	if (data->flags & LM90_FLAG_ADT7461_EXT) {
 744		if (val <= -64000)
 745			return 0;
 746		if (val >= 191750)
 747			return 0xFFC0;
 748		return (val + 64000 + 125) / 250 * 64;
 749	} else {
 750		if (val <= 0)
 751			return 0;
 752		if (val >= 127750)
 753			return 0x7FC0;
 754		return (val + 125) / 250 * 64;
 755	}
 756}
 757
 758/*
 759 * Sysfs stuff
 760 */
 761
 762static ssize_t show_temp8(struct device *dev, struct device_attribute *devattr,
 763			  char *buf)
 764{
 765	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 766	struct lm90_data *data = lm90_update_device(dev);
 767	int temp;
 768
 769	if (data->kind == adt7461 || data->kind == tmp451)
 770		temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
 771	else if (data->kind == max6646)
 772		temp = temp_from_u8(data->temp8[attr->index]);
 773	else
 774		temp = temp_from_s8(data->temp8[attr->index]);
 775
 776	/* +16 degrees offset for temp2 for the LM99 */
 777	if (data->kind == lm99 && attr->index == 3)
 778		temp += 16000;
 779
 780	return sprintf(buf, "%d\n", temp);
 781}
 782
 783static ssize_t set_temp8(struct device *dev, struct device_attribute *devattr,
 784			 const char *buf, size_t count)
 785{
 786	static const u8 reg[TEMP8_REG_NUM] = {
 787		LM90_REG_W_LOCAL_LOW,
 788		LM90_REG_W_LOCAL_HIGH,
 789		LM90_REG_W_LOCAL_CRIT,
 790		LM90_REG_W_REMOTE_CRIT,
 791		MAX6659_REG_W_LOCAL_EMERG,
 792		MAX6659_REG_W_REMOTE_EMERG,
 793		LM90_REG_W_REMOTE_CRIT,
 794		MAX6659_REG_W_REMOTE_EMERG,
 795	};
 796
 797	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 798	struct lm90_data *data = dev_get_drvdata(dev);
 799	struct i2c_client *client = data->client;
 800	int nr = attr->index;
 801	long val;
 802	int err;
 803
 804	err = kstrtol(buf, 10, &val);
 805	if (err < 0)
 806		return err;
 807
 808	/* +16 degrees offset for temp2 for the LM99 */
 809	if (data->kind == lm99 && attr->index == 3)
 810		val -= 16000;
 811
 812	mutex_lock(&data->update_lock);
 813	if (data->kind == adt7461 || data->kind == tmp451)
 814		data->temp8[nr] = temp_to_u8_adt7461(data, val);
 815	else if (data->kind == max6646)
 816		data->temp8[nr] = temp_to_u8(val);
 817	else
 818		data->temp8[nr] = temp_to_s8(val);
 819
 820	lm90_select_remote_channel(client, data, nr >= 6);
 821	i2c_smbus_write_byte_data(client, reg[nr], data->temp8[nr]);
 822	lm90_select_remote_channel(client, data, 0);
 823
 824	mutex_unlock(&data->update_lock);
 825	return count;
 826}
 827
 828static ssize_t show_temp11(struct device *dev, struct device_attribute *devattr,
 829			   char *buf)
 830{
 831	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 832	struct lm90_data *data = lm90_update_device(dev);
 833	int temp;
 834
 835	if (data->kind == adt7461 || data->kind == tmp451)
 836		temp = temp_from_u16_adt7461(data, data->temp11[attr->index]);
 837	else if (data->kind == max6646)
 838		temp = temp_from_u16(data->temp11[attr->index]);
 839	else
 840		temp = temp_from_s16(data->temp11[attr->index]);
 841
 842	/* +16 degrees offset for temp2 for the LM99 */
 843	if (data->kind == lm99 &&  attr->index <= 2)
 844		temp += 16000;
 845
 846	return sprintf(buf, "%d\n", temp);
 847}
 848
 849static ssize_t set_temp11(struct device *dev, struct device_attribute *devattr,
 850			  const char *buf, size_t count)
 851{
 852	struct {
 853		u8 high;
 854		u8 low;
 855		int channel;
 856	} reg[5] = {
 857		{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 0 },
 858		{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 0 },
 859		{ LM90_REG_W_REMOTE_OFFSH, LM90_REG_W_REMOTE_OFFSL, 0 },
 860		{ LM90_REG_W_REMOTE_LOWH, LM90_REG_W_REMOTE_LOWL, 1 },
 861		{ LM90_REG_W_REMOTE_HIGHH, LM90_REG_W_REMOTE_HIGHL, 1 }
 862	};
 863
 864	struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
 865	struct lm90_data *data = dev_get_drvdata(dev);
 866	struct i2c_client *client = data->client;
 867	int nr = attr->nr;
 868	int index = attr->index;
 869	long val;
 870	int err;
 871
 872	err = kstrtol(buf, 10, &val);
 873	if (err < 0)
 874		return err;
 875
 876	/* +16 degrees offset for temp2 for the LM99 */
 877	if (data->kind == lm99 && index <= 2)
 878		val -= 16000;
 879
 880	mutex_lock(&data->update_lock);
 881	if (data->kind == adt7461 || data->kind == tmp451)
 882		data->temp11[index] = temp_to_u16_adt7461(data, val);
 883	else if (data->kind == max6646)
 884		data->temp11[index] = temp_to_u8(val) << 8;
 885	else if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
 886		data->temp11[index] = temp_to_s16(val);
 887	else
 888		data->temp11[index] = temp_to_s8(val) << 8;
 889
 890	lm90_select_remote_channel(client, data, reg[nr].channel);
 891	i2c_smbus_write_byte_data(client, reg[nr].high,
 892				  data->temp11[index] >> 8);
 893	if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
 894		i2c_smbus_write_byte_data(client, reg[nr].low,
 895					  data->temp11[index] & 0xff);
 896	lm90_select_remote_channel(client, data, 0);
 897
 898	mutex_unlock(&data->update_lock);
 899	return count;
 900}
 901
 902static ssize_t show_temphyst(struct device *dev,
 903			     struct device_attribute *devattr,
 904			     char *buf)
 905{
 906	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 907	struct lm90_data *data = lm90_update_device(dev);
 908	int temp;
 909
 910	if (data->kind == adt7461 || data->kind == tmp451)
 911		temp = temp_from_u8_adt7461(data, data->temp8[attr->index]);
 912	else if (data->kind == max6646)
 913		temp = temp_from_u8(data->temp8[attr->index]);
 914	else
 915		temp = temp_from_s8(data->temp8[attr->index]);
 916
 917	/* +16 degrees offset for temp2 for the LM99 */
 918	if (data->kind == lm99 && attr->index == 3)
 919		temp += 16000;
 920
 921	return sprintf(buf, "%d\n", temp - temp_from_s8(data->temp_hyst));
 922}
 923
 924static ssize_t set_temphyst(struct device *dev, struct device_attribute *dummy,
 925			    const char *buf, size_t count)
 926{
 927	struct lm90_data *data = dev_get_drvdata(dev);
 928	struct i2c_client *client = data->client;
 929	long val;
 930	int err;
 931	int temp;
 932
 933	err = kstrtol(buf, 10, &val);
 934	if (err < 0)
 935		return err;
 936
 937	mutex_lock(&data->update_lock);
 938	if (data->kind == adt7461 || data->kind == tmp451)
 939		temp = temp_from_u8_adt7461(data, data->temp8[LOCAL_CRIT]);
 940	else if (data->kind == max6646)
 941		temp = temp_from_u8(data->temp8[LOCAL_CRIT]);
 942	else
 943		temp = temp_from_s8(data->temp8[LOCAL_CRIT]);
 944
 945	data->temp_hyst = hyst_to_reg(temp - val);
 946	i2c_smbus_write_byte_data(client, LM90_REG_W_TCRIT_HYST,
 947				  data->temp_hyst);
 948	mutex_unlock(&data->update_lock);
 949	return count;
 950}
 951
 952static ssize_t show_alarms(struct device *dev, struct device_attribute *dummy,
 953			   char *buf)
 954{
 955	struct lm90_data *data = lm90_update_device(dev);
 956	return sprintf(buf, "%d\n", data->alarms);
 957}
 958
 959static ssize_t show_alarm(struct device *dev, struct device_attribute
 960			  *devattr, char *buf)
 961{
 962	struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
 963	struct lm90_data *data = lm90_update_device(dev);
 964	int bitnr = attr->index;
 965
 966	return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
 967}
 968
 969static ssize_t show_update_interval(struct device *dev,
 970				    struct device_attribute *attr, char *buf)
 971{
 972	struct lm90_data *data = dev_get_drvdata(dev);
 973
 974	return sprintf(buf, "%u\n", data->update_interval);
 975}
 976
 977static ssize_t set_update_interval(struct device *dev,
 978				   struct device_attribute *attr,
 979				   const char *buf, size_t count)
 980{
 981	struct lm90_data *data = dev_get_drvdata(dev);
 982	struct i2c_client *client = data->client;
 983	unsigned long val;
 984	int err;
 985
 986	err = kstrtoul(buf, 10, &val);
 987	if (err)
 988		return err;
 989
 990	mutex_lock(&data->update_lock);
 991	lm90_set_convrate(client, data, clamp_val(val, 0, 100000));
 992	mutex_unlock(&data->update_lock);
 993
 994	return count;
 995}
 996
 997static SENSOR_DEVICE_ATTR_2(temp1_input, S_IRUGO, show_temp11, NULL,
 998	0, LOCAL_TEMP);
 999static SENSOR_DEVICE_ATTR_2(temp2_input, S_IRUGO, show_temp11, NULL,
1000	0, REMOTE_TEMP);
1001static SENSOR_DEVICE_ATTR(temp1_min, S_IWUSR | S_IRUGO, show_temp8,
1002	set_temp8, LOCAL_LOW);
1003static SENSOR_DEVICE_ATTR_2(temp2_min, S_IWUSR | S_IRUGO, show_temp11,
1004	set_temp11, 0, REMOTE_LOW);
1005static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO, show_temp8,
1006	set_temp8, LOCAL_HIGH);
1007static SENSOR_DEVICE_ATTR_2(temp2_max, S_IWUSR | S_IRUGO, show_temp11,
1008	set_temp11, 1, REMOTE_HIGH);
1009static SENSOR_DEVICE_ATTR(temp1_crit, S_IWUSR | S_IRUGO, show_temp8,
1010	set_temp8, LOCAL_CRIT);
1011static SENSOR_DEVICE_ATTR(temp2_crit, S_IWUSR | S_IRUGO, show_temp8,
1012	set_temp8, REMOTE_CRIT);
1013static SENSOR_DEVICE_ATTR(temp1_crit_hyst, S_IWUSR | S_IRUGO, show_temphyst,
1014	set_temphyst, LOCAL_CRIT);
1015static SENSOR_DEVICE_ATTR(temp2_crit_hyst, S_IRUGO, show_temphyst, NULL,
1016	REMOTE_CRIT);
1017static SENSOR_DEVICE_ATTR_2(temp2_offset, S_IWUSR | S_IRUGO, show_temp11,
1018	set_temp11, 2, REMOTE_OFFSET);
1019
1020/* Individual alarm files */
1021static SENSOR_DEVICE_ATTR(temp1_crit_alarm, S_IRUGO, show_alarm, NULL, 0);
1022static SENSOR_DEVICE_ATTR(temp2_crit_alarm, S_IRUGO, show_alarm, NULL, 1);
1023static SENSOR_DEVICE_ATTR(temp2_fault, S_IRUGO, show_alarm, NULL, 2);
1024static SENSOR_DEVICE_ATTR(temp2_min_alarm, S_IRUGO, show_alarm, NULL, 3);
1025static SENSOR_DEVICE_ATTR(temp2_max_alarm, S_IRUGO, show_alarm, NULL, 4);
1026static SENSOR_DEVICE_ATTR(temp1_min_alarm, S_IRUGO, show_alarm, NULL, 5);
1027static SENSOR_DEVICE_ATTR(temp1_max_alarm, S_IRUGO, show_alarm, NULL, 6);
1028/* Raw alarm file for compatibility */
1029static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
1030
1031static DEVICE_ATTR(update_interval, S_IRUGO | S_IWUSR, show_update_interval,
1032		   set_update_interval);
1033
1034static struct attribute *lm90_attributes[] = {
1035	&sensor_dev_attr_temp1_input.dev_attr.attr,
1036	&sensor_dev_attr_temp2_input.dev_attr.attr,
1037	&sensor_dev_attr_temp1_min.dev_attr.attr,
1038	&sensor_dev_attr_temp2_min.dev_attr.attr,
1039	&sensor_dev_attr_temp1_max.dev_attr.attr,
1040	&sensor_dev_attr_temp2_max.dev_attr.attr,
1041	&sensor_dev_attr_temp1_crit.dev_attr.attr,
1042	&sensor_dev_attr_temp2_crit.dev_attr.attr,
1043	&sensor_dev_attr_temp1_crit_hyst.dev_attr.attr,
1044	&sensor_dev_attr_temp2_crit_hyst.dev_attr.attr,
1045
1046	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
1047	&sensor_dev_attr_temp2_crit_alarm.dev_attr.attr,
1048	&sensor_dev_attr_temp2_fault.dev_attr.attr,
1049	&sensor_dev_attr_temp2_min_alarm.dev_attr.attr,
1050	&sensor_dev_attr_temp2_max_alarm.dev_attr.attr,
1051	&sensor_dev_attr_temp1_min_alarm.dev_attr.attr,
1052	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
1053	&dev_attr_alarms.attr,
1054	&dev_attr_update_interval.attr,
1055	NULL
1056};
1057
1058static const struct attribute_group lm90_group = {
1059	.attrs = lm90_attributes,
1060};
1061
1062static struct attribute *lm90_temp2_offset_attributes[] = {
1063	&sensor_dev_attr_temp2_offset.dev_attr.attr,
1064	NULL
1065};
1066
1067static const struct attribute_group lm90_temp2_offset_group = {
1068	.attrs = lm90_temp2_offset_attributes,
1069};
1070
1071/*
1072 * Additional attributes for devices with emergency sensors
1073 */
1074static SENSOR_DEVICE_ATTR(temp1_emergency, S_IWUSR | S_IRUGO, show_temp8,
1075	set_temp8, LOCAL_EMERG);
1076static SENSOR_DEVICE_ATTR(temp2_emergency, S_IWUSR | S_IRUGO, show_temp8,
1077	set_temp8, REMOTE_EMERG);
1078static SENSOR_DEVICE_ATTR(temp1_emergency_hyst, S_IRUGO, show_temphyst,
1079			  NULL, LOCAL_EMERG);
1080static SENSOR_DEVICE_ATTR(temp2_emergency_hyst, S_IRUGO, show_temphyst,
1081			  NULL, REMOTE_EMERG);
1082
1083static struct attribute *lm90_emergency_attributes[] = {
1084	&sensor_dev_attr_temp1_emergency.dev_attr.attr,
1085	&sensor_dev_attr_temp2_emergency.dev_attr.attr,
1086	&sensor_dev_attr_temp1_emergency_hyst.dev_attr.attr,
1087	&sensor_dev_attr_temp2_emergency_hyst.dev_attr.attr,
1088	NULL
1089};
1090
1091static const struct attribute_group lm90_emergency_group = {
1092	.attrs = lm90_emergency_attributes,
1093};
1094
1095static SENSOR_DEVICE_ATTR(temp1_emergency_alarm, S_IRUGO, show_alarm, NULL, 15);
1096static SENSOR_DEVICE_ATTR(temp2_emergency_alarm, S_IRUGO, show_alarm, NULL, 13);
1097
1098static struct attribute *lm90_emergency_alarm_attributes[] = {
1099	&sensor_dev_attr_temp1_emergency_alarm.dev_attr.attr,
1100	&sensor_dev_attr_temp2_emergency_alarm.dev_attr.attr,
1101	NULL
1102};
1103
1104static const struct attribute_group lm90_emergency_alarm_group = {
1105	.attrs = lm90_emergency_alarm_attributes,
1106};
1107
1108/*
1109 * Additional attributes for devices with 3 temperature sensors
1110 */
1111static SENSOR_DEVICE_ATTR_2(temp3_input, S_IRUGO, show_temp11, NULL,
1112	0, REMOTE2_TEMP);
1113static SENSOR_DEVICE_ATTR_2(temp3_min, S_IWUSR | S_IRUGO, show_temp11,
1114	set_temp11, 3, REMOTE2_LOW);
1115static SENSOR_DEVICE_ATTR_2(temp3_max, S_IWUSR | S_IRUGO, show_temp11,
1116	set_temp11, 4, REMOTE2_HIGH);
1117static SENSOR_DEVICE_ATTR(temp3_crit, S_IWUSR | S_IRUGO, show_temp8,
1118	set_temp8, REMOTE2_CRIT);
1119static SENSOR_DEVICE_ATTR(temp3_crit_hyst, S_IRUGO, show_temphyst, NULL,
1120	REMOTE2_CRIT);
1121static SENSOR_DEVICE_ATTR(temp3_emergency, S_IWUSR | S_IRUGO, show_temp8,
1122	set_temp8, REMOTE2_EMERG);
1123static SENSOR_DEVICE_ATTR(temp3_emergency_hyst, S_IRUGO, show_temphyst,
1124			  NULL, REMOTE2_EMERG);
1125
1126static SENSOR_DEVICE_ATTR(temp3_crit_alarm, S_IRUGO, show_alarm, NULL, 9);
1127static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 10);
1128static SENSOR_DEVICE_ATTR(temp3_min_alarm, S_IRUGO, show_alarm, NULL, 11);
1129static SENSOR_DEVICE_ATTR(temp3_max_alarm, S_IRUGO, show_alarm, NULL, 12);
1130static SENSOR_DEVICE_ATTR(temp3_emergency_alarm, S_IRUGO, show_alarm, NULL, 14);
1131
1132static struct attribute *lm90_temp3_attributes[] = {
1133	&sensor_dev_attr_temp3_input.dev_attr.attr,
1134	&sensor_dev_attr_temp3_min.dev_attr.attr,
1135	&sensor_dev_attr_temp3_max.dev_attr.attr,
1136	&sensor_dev_attr_temp3_crit.dev_attr.attr,
1137	&sensor_dev_attr_temp3_crit_hyst.dev_attr.attr,
1138	&sensor_dev_attr_temp3_emergency.dev_attr.attr,
1139	&sensor_dev_attr_temp3_emergency_hyst.dev_attr.attr,
1140
1141	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1142	&sensor_dev_attr_temp3_min_alarm.dev_attr.attr,
1143	&sensor_dev_attr_temp3_max_alarm.dev_attr.attr,
1144	&sensor_dev_attr_temp3_crit_alarm.dev_attr.attr,
1145	&sensor_dev_attr_temp3_emergency_alarm.dev_attr.attr,
1146	NULL
1147};
1148
1149static const struct attribute_group lm90_temp3_group = {
1150	.attrs = lm90_temp3_attributes,
1151};
1152
1153/* pec used for ADM1032 only */
1154static ssize_t show_pec(struct device *dev, struct device_attribute *dummy,
1155			char *buf)
1156{
1157	struct i2c_client *client = to_i2c_client(dev);
1158	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1159}
1160
1161static ssize_t set_pec(struct device *dev, struct device_attribute *dummy,
1162		       const char *buf, size_t count)
1163{
1164	struct i2c_client *client = to_i2c_client(dev);
1165	long val;
1166	int err;
1167
1168	err = kstrtol(buf, 10, &val);
1169	if (err < 0)
1170		return err;
1171
1172	switch (val) {
1173	case 0:
1174		client->flags &= ~I2C_CLIENT_PEC;
1175		break;
1176	case 1:
1177		client->flags |= I2C_CLIENT_PEC;
1178		break;
1179	default:
1180		return -EINVAL;
1181	}
1182
1183	return count;
1184}
1185
1186static DEVICE_ATTR(pec, S_IWUSR | S_IRUGO, show_pec, set_pec);
1187
1188/*
1189 * Real code
1190 */
1191
1192/* Return 0 if detection is successful, -ENODEV otherwise */
1193static int lm90_detect(struct i2c_client *client,
1194		       struct i2c_board_info *info)
1195{
1196	struct i2c_adapter *adapter = client->adapter;
1197	int address = client->addr;
1198	const char *name = NULL;
1199	int man_id, chip_id, config1, config2, convrate;
1200
1201	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1202		return -ENODEV;
1203
1204	/* detection and identification */
1205	man_id = i2c_smbus_read_byte_data(client, LM90_REG_R_MAN_ID);
1206	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_R_CHIP_ID);
1207	config1 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG1);
1208	convrate = i2c_smbus_read_byte_data(client, LM90_REG_R_CONVRATE);
1209	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0)
1210		return -ENODEV;
1211
1212	if (man_id == 0x01 || man_id == 0x5C || man_id == 0x41) {
1213		config2 = i2c_smbus_read_byte_data(client, LM90_REG_R_CONFIG2);
1214		if (config2 < 0)
1215			return -ENODEV;
1216	} else
1217		config2 = 0;		/* Make compiler happy */
1218
1219	if ((address == 0x4C || address == 0x4D)
1220	 && man_id == 0x01) { /* National Semiconductor */
1221		if ((config1 & 0x2A) == 0x00
1222		 && (config2 & 0xF8) == 0x00
1223		 && convrate <= 0x09) {
1224			if (address == 0x4C
1225			 && (chip_id & 0xF0) == 0x20) { /* LM90 */
1226				name = "lm90";
1227			} else
1228			if ((chip_id & 0xF0) == 0x30) { /* LM89/LM99 */
1229				name = "lm99";
1230				dev_info(&adapter->dev,
1231					 "Assuming LM99 chip at 0x%02x\n",
1232					 address);
1233				dev_info(&adapter->dev,
1234					 "If it is an LM89, instantiate it "
1235					 "with the new_device sysfs "
1236					 "interface\n");
1237			} else
1238			if (address == 0x4C
1239			 && (chip_id & 0xF0) == 0x10) { /* LM86 */
1240				name = "lm86";
1241			}
1242		}
1243	} else
1244	if ((address == 0x4C || address == 0x4D)
1245	 && man_id == 0x41) { /* Analog Devices */
1246		if ((chip_id & 0xF0) == 0x40 /* ADM1032 */
1247		 && (config1 & 0x3F) == 0x00
1248		 && convrate <= 0x0A) {
1249			name = "adm1032";
1250			/*
1251			 * The ADM1032 supports PEC, but only if combined
1252			 * transactions are not used.
1253			 */
1254			if (i2c_check_functionality(adapter,
1255						    I2C_FUNC_SMBUS_BYTE))
1256				info->flags |= I2C_CLIENT_PEC;
1257		} else
1258		if (chip_id == 0x51 /* ADT7461 */
1259		 && (config1 & 0x1B) == 0x00
1260		 && convrate <= 0x0A) {
1261			name = "adt7461";
1262		} else
1263		if (chip_id == 0x57 /* ADT7461A, NCT1008 */
1264		 && (config1 & 0x1B) == 0x00
1265		 && convrate <= 0x0A) {
1266			name = "adt7461a";
1267		}
1268	} else
1269	if (man_id == 0x4D) { /* Maxim */
1270		int emerg, emerg2, status2;
1271
1272		/*
1273		 * We read MAX6659_REG_R_REMOTE_EMERG twice, and re-read
1274		 * LM90_REG_R_MAN_ID in between. If MAX6659_REG_R_REMOTE_EMERG
1275		 * exists, both readings will reflect the same value. Otherwise,
1276		 * the readings will be different.
1277		 */
1278		emerg = i2c_smbus_read_byte_data(client,
1279						 MAX6659_REG_R_REMOTE_EMERG);
1280		man_id = i2c_smbus_read_byte_data(client,
1281						  LM90_REG_R_MAN_ID);
1282		emerg2 = i2c_smbus_read_byte_data(client,
1283						  MAX6659_REG_R_REMOTE_EMERG);
1284		status2 = i2c_smbus_read_byte_data(client,
1285						   MAX6696_REG_R_STATUS2);
1286		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
1287			return -ENODEV;
1288
1289		/*
1290		 * The MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
1291		 * register. Reading from that address will return the last
1292		 * read value, which in our case is those of the man_id
1293		 * register. Likewise, the config1 register seems to lack a
1294		 * low nibble, so the value will be those of the previous
1295		 * read, so in our case those of the man_id register.
1296		 * MAX6659 has a third set of upper temperature limit registers.
1297		 * Those registers also return values on MAX6657 and MAX6658,
1298		 * thus the only way to detect MAX6659 is by its address.
1299		 * For this reason it will be mis-detected as MAX6657 if its
1300		 * address is 0x4C.
1301		 */
1302		if (chip_id == man_id
1303		 && (address == 0x4C || address == 0x4D || address == 0x4E)
1304		 && (config1 & 0x1F) == (man_id & 0x0F)
1305		 && convrate <= 0x09) {
1306			if (address == 0x4C)
1307				name = "max6657";
1308			else
1309				name = "max6659";
1310		} else
1311		/*
1312		 * Even though MAX6695 and MAX6696 do not have a chip ID
1313		 * register, reading it returns 0x01. Bit 4 of the config1
1314		 * register is unused and should return zero when read. Bit 0 of
1315		 * the status2 register is unused and should return zero when
1316		 * read.
1317		 *
1318		 * MAX6695 and MAX6696 have an additional set of temperature
1319		 * limit registers. We can detect those chips by checking if
1320		 * one of those registers exists.
1321		 */
1322		if (chip_id == 0x01
1323		 && (config1 & 0x10) == 0x00
1324		 && (status2 & 0x01) == 0x00
1325		 && emerg == emerg2
1326		 && convrate <= 0x07) {
1327			name = "max6696";
1328		} else
1329		/*
1330		 * The chip_id register of the MAX6680 and MAX6681 holds the
1331		 * revision of the chip. The lowest bit of the config1 register
1332		 * is unused and should return zero when read, so should the
1333		 * second to last bit of config1 (software reset).
1334		 */
1335		if (chip_id == 0x01
1336		 && (config1 & 0x03) == 0x00
1337		 && convrate <= 0x07) {
1338			name = "max6680";
1339		} else
1340		/*
1341		 * The chip_id register of the MAX6646/6647/6649 holds the
1342		 * revision of the chip. The lowest 6 bits of the config1
1343		 * register are unused and should return zero when read.
1344		 */
1345		if (chip_id == 0x59
1346		 && (config1 & 0x3f) == 0x00
1347		 && convrate <= 0x07) {
1348			name = "max6646";
1349		}
1350	} else
1351	if (address == 0x4C
1352	 && man_id == 0x5C) { /* Winbond/Nuvoton */
1353		if ((config1 & 0x2A) == 0x00
1354		 && (config2 & 0xF8) == 0x00) {
1355			if (chip_id == 0x01 /* W83L771W/G */
1356			 && convrate <= 0x09) {
1357				name = "w83l771";
1358			} else
1359			if ((chip_id & 0xFE) == 0x10 /* W83L771AWG/ASG */
1360			 && convrate <= 0x08) {
1361				name = "w83l771";
1362			}
1363		}
1364	} else
1365	if (address >= 0x48 && address <= 0x4F
1366	 && man_id == 0xA1) { /*  NXP Semiconductor/Philips */
1367		if (chip_id == 0x00
1368		 && (config1 & 0x2A) == 0x00
1369		 && (config2 & 0xFE) == 0x00
1370		 && convrate <= 0x09) {
1371			name = "sa56004";
1372		}
1373	} else
1374	if ((address == 0x4C || address == 0x4D)
1375	 && man_id == 0x47) { /* GMT */
1376		if (chip_id == 0x01 /* G781 */
1377		 && (config1 & 0x3F) == 0x00
1378		 && convrate <= 0x08)
1379			name = "g781";
1380	} else
1381	if (address == 0x4C
1382	 && man_id == 0x55) { /* Texas Instruments */
1383		int local_ext;
1384
1385		local_ext = i2c_smbus_read_byte_data(client,
1386						     TMP451_REG_R_LOCAL_TEMPL);
1387
1388		if (chip_id == 0x00 /* TMP451 */
1389		 && (config1 & 0x1B) == 0x00
1390		 && convrate <= 0x09
1391		 && (local_ext & 0x0F) == 0x00)
1392			name = "tmp451";
1393	}
1394
1395	if (!name) { /* identification failed */
1396		dev_dbg(&adapter->dev,
1397			"Unsupported chip at 0x%02x (man_id=0x%02X, "
1398			"chip_id=0x%02X)\n", address, man_id, chip_id);
1399		return -ENODEV;
1400	}
1401
1402	strlcpy(info->type, name, I2C_NAME_SIZE);
1403
1404	return 0;
1405}
1406
1407static void lm90_restore_conf(struct i2c_client *client, struct lm90_data *data)
1408{
1409	/* Restore initial configuration */
1410	i2c_smbus_write_byte_data(client, LM90_REG_W_CONVRATE,
1411				  data->convrate_orig);
1412	i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1413				  data->config_orig);
1414}
1415
1416static void lm90_init_client(struct i2c_client *client, struct lm90_data *data)
1417{
1418	u8 config, convrate;
1419
1420	if (lm90_read_reg(client, LM90_REG_R_CONVRATE, &convrate) < 0) {
1421		dev_warn(&client->dev, "Failed to read convrate register!\n");
1422		convrate = LM90_DEF_CONVRATE_RVAL;
1423	}
1424	data->convrate_orig = convrate;
1425
1426	/*
1427	 * Start the conversions.
1428	 */
1429	lm90_set_convrate(client, data, 500);	/* 500ms; 2Hz conversion rate */
1430	if (lm90_read_reg(client, LM90_REG_R_CONFIG1, &config) < 0) {
1431		dev_warn(&client->dev, "Initialization failed!\n");
1432		return;
1433	}
1434	data->config_orig = config;
1435
1436	/* Check Temperature Range Select */
1437	if (data->kind == adt7461 || data->kind == tmp451) {
1438		if (config & 0x04)
1439			data->flags |= LM90_FLAG_ADT7461_EXT;
1440	}
1441
1442	/*
1443	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
1444	 * 0.125 degree resolution) and range (0x08, extend range
1445	 * to -64 degree) mode for the remote temperature sensor.
1446	 */
1447	if (data->kind == max6680)
1448		config |= 0x18;
1449
1450	/*
1451	 * Select external channel 0 for max6695/96
1452	 */
1453	if (data->kind == max6696)
1454		config &= ~0x08;
1455
1456	config &= 0xBF;	/* run */
1457	if (config != data->config_orig) /* Only write if changed */
1458		i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1, config);
1459}
1460
1461static bool lm90_is_tripped(struct i2c_client *client, u16 *status)
1462{
1463	struct lm90_data *data = i2c_get_clientdata(client);
1464	u8 st, st2 = 0;
1465
1466	lm90_read_reg(client, LM90_REG_R_STATUS, &st);
1467
1468	if (data->kind == max6696)
1469		lm90_read_reg(client, MAX6696_REG_R_STATUS2, &st2);
1470
1471	*status = st | (st2 << 8);
1472
1473	if ((st & 0x7f) == 0 && (st2 & 0xfe) == 0)
1474		return false;
1475
1476	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1477	    (st2 & MAX6696_STATUS2_LOT2))
1478		dev_warn(&client->dev,
1479			 "temp%d out of range, please check!\n", 1);
1480	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1481	    (st2 & MAX6696_STATUS2_ROT2))
1482		dev_warn(&client->dev,
1483			 "temp%d out of range, please check!\n", 2);
1484	if (st & LM90_STATUS_ROPEN)
1485		dev_warn(&client->dev,
1486			 "temp%d diode open, please check!\n", 2);
1487	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1488		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1489		dev_warn(&client->dev,
1490			 "temp%d out of range, please check!\n", 3);
1491	if (st2 & MAX6696_STATUS2_R2OPEN)
1492		dev_warn(&client->dev,
1493			 "temp%d diode open, please check!\n", 3);
1494
1495	return true;
1496}
1497
1498static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
1499{
1500	struct i2c_client *client = dev_id;
1501	u16 status;
1502
1503	if (lm90_is_tripped(client, &status))
1504		return IRQ_HANDLED;
1505	else
1506		return IRQ_NONE;
1507}
1508
1509static int lm90_probe(struct i2c_client *client,
1510		      const struct i2c_device_id *id)
1511{
1512	struct device *dev = &client->dev;
1513	struct i2c_adapter *adapter = to_i2c_adapter(dev->parent);
1514	struct lm90_data *data;
1515	struct regulator *regulator;
1516	int groups = 0;
1517	int err;
1518
1519	regulator = devm_regulator_get(dev, "vcc");
1520	if (IS_ERR(regulator))
1521		return PTR_ERR(regulator);
1522
1523	err = regulator_enable(regulator);
1524	if (err < 0) {
1525		dev_err(dev, "Failed to enable regulator: %d\n", err);
1526		return err;
1527	}
1528
1529	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
1530	if (!data)
1531		return -ENOMEM;
1532
1533	data->client = client;
1534	i2c_set_clientdata(client, data);
1535	mutex_init(&data->update_lock);
1536
1537	data->regulator = regulator;
1538
1539	/* Set the device type */
1540	data->kind = id->driver_data;
1541	if (data->kind == adm1032) {
1542		if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
1543			client->flags &= ~I2C_CLIENT_PEC;
1544	}
1545
1546	/*
1547	 * Different devices have different alarm bits triggering the
1548	 * ALERT# output
1549	 */
1550	data->alert_alarms = lm90_params[data->kind].alert_alarms;
1551
1552	/* Set chip capabilities */
1553	data->flags = lm90_params[data->kind].flags;
1554	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
1555
1556	/* Set maximum conversion rate */
1557	data->max_convrate = lm90_params[data->kind].max_convrate;
1558
1559	/* Initialize the LM90 chip */
1560	lm90_init_client(client, data);
1561
1562	/* Register sysfs hooks */
1563	data->groups[groups++] = &lm90_group;
1564
1565	if (data->flags & LM90_HAVE_OFFSET)
1566		data->groups[groups++] = &lm90_temp2_offset_group;
1567
1568	if (data->flags & LM90_HAVE_EMERGENCY)
1569		data->groups[groups++] = &lm90_emergency_group;
1570
1571	if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
1572		data->groups[groups++] = &lm90_emergency_alarm_group;
1573
1574	if (data->flags & LM90_HAVE_TEMP3)
1575		data->groups[groups++] = &lm90_temp3_group;
1576
1577	if (client->flags & I2C_CLIENT_PEC) {
1578		err = device_create_file(dev, &dev_attr_pec);
1579		if (err)
1580			goto exit_restore;
1581	}
1582
1583	data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1584							    data, data->groups);
1585	if (IS_ERR(data->hwmon_dev)) {
1586		err = PTR_ERR(data->hwmon_dev);
1587		goto exit_remove_pec;
1588	}
1589
1590	if (client->irq) {
1591		dev_dbg(dev, "IRQ: %d\n", client->irq);
1592		err = devm_request_threaded_irq(dev, client->irq,
1593						NULL, lm90_irq_thread,
1594						IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1595						"lm90", client);
1596		if (err < 0) {
1597			dev_err(dev, "cannot request IRQ %d\n", client->irq);
1598			goto exit_unregister;
1599		}
1600	}
1601
1602	return 0;
1603
1604exit_unregister:
1605	hwmon_device_unregister(data->hwmon_dev);
1606exit_remove_pec:
1607	device_remove_file(dev, &dev_attr_pec);
1608exit_restore:
1609	lm90_restore_conf(client, data);
1610	regulator_disable(data->regulator);
1611
1612	return err;
1613}
1614
1615static int lm90_remove(struct i2c_client *client)
1616{
1617	struct lm90_data *data = i2c_get_clientdata(client);
1618
1619	hwmon_device_unregister(data->hwmon_dev);
1620	device_remove_file(&client->dev, &dev_attr_pec);
1621	lm90_restore_conf(client, data);
1622	regulator_disable(data->regulator);
1623
1624	return 0;
1625}
1626
1627static void lm90_alert(struct i2c_client *client, unsigned int flag)
1628{
1629	u16 alarms;
1630
1631	if (lm90_is_tripped(client, &alarms)) {
1632		/*
1633		 * Disable ALERT# output, because these chips don't implement
1634		 * SMBus alert correctly; they should only hold the alert line
1635		 * low briefly.
1636		 */
1637		struct lm90_data *data = i2c_get_clientdata(client);
1638
1639		if ((data->flags & LM90_HAVE_BROKEN_ALERT)
1640		 && (alarms & data->alert_alarms)) {
1641			u8 config;
1642			dev_dbg(&client->dev, "Disabling ALERT#\n");
1643			lm90_read_reg(client, LM90_REG_R_CONFIG1, &config);
1644			i2c_smbus_write_byte_data(client, LM90_REG_W_CONFIG1,
1645						  config | 0x80);
1646		}
1647	} else {
1648		dev_info(&client->dev, "Everything OK\n");
1649	}
1650}
1651
1652static struct i2c_driver lm90_driver = {
1653	.class		= I2C_CLASS_HWMON,
1654	.driver = {
1655		.name	= "lm90",
1656	},
1657	.probe		= lm90_probe,
1658	.remove		= lm90_remove,
1659	.alert		= lm90_alert,
1660	.id_table	= lm90_id,
1661	.detect		= lm90_detect,
1662	.address_list	= normal_i2c,
1663};
1664
1665module_i2c_driver(lm90_driver);
1666
1667MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
1668MODULE_DESCRIPTION("LM90/ADM1032 driver");
1669MODULE_LICENSE("GPL");
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * lm90.c - Part of lm_sensors, Linux kernel modules for hardware
   4 *          monitoring
   5 * Copyright (C) 2003-2010  Jean Delvare <jdelvare@suse.de>
   6 *
   7 * Based on the lm83 driver. The LM90 is a sensor chip made by National
   8 * Semiconductor. It reports up to two temperatures (its own plus up to
   9 * one external one) with a 0.125 deg resolution (1 deg for local
  10 * temperature) and a 3-4 deg accuracy.
  11 *
  12 * This driver also supports the LM89 and LM99, two other sensor chips
  13 * made by National Semiconductor. Both have an increased remote
  14 * temperature measurement accuracy (1 degree), and the LM99
  15 * additionally shifts remote temperatures (measured and limits) by 16
  16 * degrees, which allows for higher temperatures measurement.
  17 * Note that there is no way to differentiate between both chips.
  18 * When device is auto-detected, the driver will assume an LM99.
  19 *
  20 * This driver also supports the LM86, another sensor chip made by
  21 * National Semiconductor. It is exactly similar to the LM90 except it
  22 * has a higher accuracy.
  23 *
  24 * This driver also supports the ADM1032, a sensor chip made by Analog
  25 * Devices. That chip is similar to the LM90, with a few differences
  26 * that are not handled by this driver. Among others, it has a higher
  27 * accuracy than the LM90, much like the LM86 does.
  28 *
  29 * This driver also supports the MAX6657, MAX6658 and MAX6659 sensor
  30 * chips made by Maxim. These chips are similar to the LM86.
  31 * Note that there is no easy way to differentiate between the three
  32 * variants. We use the device address to detect MAX6659, which will result
  33 * in a detection as max6657 if it is on address 0x4c. The extra address
  34 * and features of the MAX6659 are only supported if the chip is configured
  35 * explicitly as max6659, or if its address is not 0x4c.
  36 * These chips lack the remote temperature offset feature.
  37 *
  38 * This driver also supports the MAX6654 chip made by Maxim. This chip can be
  39 * at 9 different addresses, similar to MAX6680/MAX6681. The MAX6654 is similar
  40 * to MAX6657/MAX6658/MAX6659, but does not support critical temperature
  41 * limits. Extended range is available by setting the configuration register
  42 * accordingly, and is done during initialization. Extended precision is only
  43 * available at conversion rates of 1 Hz and slower. Note that extended
  44 * precision is not enabled by default, as this driver initializes all chips
  45 * to 2 Hz by design. The driver also supports MAX6690, which is practically
  46 * identical to MAX6654.
  47 *
  48 * This driver also supports the MAX6646, MAX6647, MAX6648, MAX6649 and
  49 * MAX6692 chips made by Maxim.  These are again similar to the LM86,
  50 * but they use unsigned temperature values and can report temperatures
  51 * from 0 to 145 degrees.
  52 *
  53 * This driver also supports the MAX6680 and MAX6681, two other sensor
  54 * chips made by Maxim. These are quite similar to the other Maxim
  55 * chips. The MAX6680 and MAX6681 only differ in the pinout so they can
  56 * be treated identically.
  57 *
  58 * This driver also supports the MAX6695 and MAX6696, two other sensor
  59 * chips made by Maxim. These are also quite similar to other Maxim
  60 * chips, but support three temperature sensors instead of two. MAX6695
  61 * and MAX6696 only differ in the pinout so they can be treated identically.
  62 *
  63 * This driver also supports ADT7461 and ADT7461A from Analog Devices as well as
  64 * NCT1008 from ON Semiconductor. The chips are supported in both compatibility
  65 * and extended mode. They are mostly compatible with LM90 except for a data
  66 * format difference for the temperature value registers.
  67 *
  68 * This driver also supports ADT7481, ADT7482, and ADT7483 from Analog Devices
  69 * / ON Semiconductor. The chips are similar to ADT7461 but support two external
  70 * temperature sensors.
  71 *
  72 * This driver also supports NCT72, NCT214, and NCT218 from ON Semiconductor.
  73 * The chips are similar to ADT7461/ADT7461A but have full PEC support
  74 * (undocumented).
  75 *
  76 * This driver also supports the SA56004 from Philips. This device is
  77 * pin-compatible with the LM86, the ED/EDP parts are also address-compatible.
  78 *
  79 * This driver also supports the G781 from GMT. This device is compatible
  80 * with the ADM1032.
  81 *
  82 * This driver also supports TMP451 and TMP461 from Texas Instruments.
  83 * Those devices are supported in both compatibility and extended mode.
  84 * They are mostly compatible with ADT7461 except for local temperature
  85 * low byte register and max conversion rate.
  86 *
  87 * This driver also supports MAX1617 and various clones such as G767
  88 * and NE1617. Such clones will be detected as MAX1617.
  89 *
  90 * This driver also supports NE1618 from Philips. It is similar to NE1617
  91 * but supports 11 bit external temperature values.
  92 *
  93 * Since the LM90 was the first chipset supported by this driver, most
  94 * comments will refer to this chipset, but are actually general and
  95 * concern all supported chipsets, unless mentioned otherwise.
  96 */
  97
  98#include <linux/bits.h>
  99#include <linux/device.h>
 100#include <linux/err.h>
 101#include <linux/i2c.h>
 102#include <linux/init.h>
 103#include <linux/interrupt.h>
 104#include <linux/jiffies.h>
 105#include <linux/hwmon.h>
 106#include <linux/kstrtox.h>
 107#include <linux/module.h>
 108#include <linux/mutex.h>
 109#include <linux/of_device.h>
 110#include <linux/regulator/consumer.h>
 111#include <linux/slab.h>
 112#include <linux/workqueue.h>
 113
 114/* The maximum number of channels currently supported */
 115#define MAX_CHANNELS	3
 116
 117/*
 118 * Addresses to scan
 119 * Address is fully defined internally and cannot be changed except for
 120 * MAX6659, MAX6680 and MAX6681.
 121 * LM86, LM89, LM90, LM99, ADM1032, ADM1032-1, ADT7461, ADT7461A, MAX6649,
 122 * MAX6657, MAX6658, NCT1008 and W83L771 have address 0x4c.
 123 * ADM1032-2, ADT7461-2, ADT7461A-2, LM89-1, LM99-1, MAX6646, and NCT1008D
 124 * have address 0x4d.
 125 * MAX6647 has address 0x4e.
 126 * MAX6659 can have address 0x4c, 0x4d or 0x4e.
 127 * MAX6654, MAX6680, and MAX6681 can have address 0x18, 0x19, 0x1a, 0x29,
 128 * 0x2a, 0x2b, 0x4c, 0x4d or 0x4e.
 129 * SA56004 can have address 0x48 through 0x4F.
 130 */
 131
 132static const unsigned short normal_i2c[] = {
 133	0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x48, 0x49, 0x4a, 0x4b, 0x4c,
 134	0x4d, 0x4e, 0x4f, I2C_CLIENT_END };
 135
 136enum chips { adm1023, adm1032, adt7461, adt7461a, adt7481,
 137	g781, lm84, lm90, lm99,
 138	max1617, max6642, max6646, max6648, max6654, max6657, max6659, max6680, max6696,
 139	nct210, nct72, ne1618, sa56004, tmp451, tmp461, w83l771,
 140};
 141
 142/*
 143 * The LM90 registers
 144 */
 145
 146#define LM90_REG_MAN_ID			0xFE
 147#define LM90_REG_CHIP_ID		0xFF
 148#define LM90_REG_CONFIG1		0x03
 149#define LM90_REG_CONFIG2		0xBF
 150#define LM90_REG_CONVRATE		0x04
 151#define LM90_REG_STATUS			0x02
 152#define LM90_REG_LOCAL_TEMP		0x00
 153#define LM90_REG_LOCAL_HIGH		0x05
 154#define LM90_REG_LOCAL_LOW		0x06
 155#define LM90_REG_LOCAL_CRIT		0x20
 156#define LM90_REG_REMOTE_TEMPH		0x01
 157#define LM90_REG_REMOTE_TEMPL		0x10
 158#define LM90_REG_REMOTE_OFFSH		0x11
 159#define LM90_REG_REMOTE_OFFSL		0x12
 160#define LM90_REG_REMOTE_HIGHH		0x07
 161#define LM90_REG_REMOTE_HIGHL		0x13
 162#define LM90_REG_REMOTE_LOWH		0x08
 163#define LM90_REG_REMOTE_LOWL		0x14
 164#define LM90_REG_REMOTE_CRIT		0x19
 165#define LM90_REG_TCRIT_HYST		0x21
 166
 167/* MAX6646/6647/6649/6654/6657/6658/6659/6695/6696 registers */
 168
 169#define MAX6657_REG_LOCAL_TEMPL		0x11
 170#define MAX6696_REG_STATUS2		0x12
 171#define MAX6659_REG_REMOTE_EMERG	0x16
 172#define MAX6659_REG_LOCAL_EMERG		0x17
 173
 174/*  SA56004 registers */
 175
 176#define SA56004_REG_LOCAL_TEMPL		0x22
 177
 178#define LM90_MAX_CONVRATE_MS	16000	/* Maximum conversion rate in ms */
 179
 180/* TMP451/TMP461 registers */
 181#define TMP451_REG_LOCAL_TEMPL		0x15
 182#define TMP451_REG_CONALERT		0x22
 183
 184#define TMP461_REG_CHEN			0x16
 185#define TMP461_REG_DFC			0x24
 186
 187/* ADT7481 registers */
 188#define ADT7481_REG_STATUS2		0x23
 189#define ADT7481_REG_CONFIG2		0x24
 190
 191#define ADT7481_REG_MAN_ID		0x3e
 192#define ADT7481_REG_CHIP_ID		0x3d
 193
 194/* Device features */
 195#define LM90_HAVE_EXTENDED_TEMP	BIT(0)	/* extended temperature support	*/
 196#define LM90_HAVE_OFFSET	BIT(1)	/* temperature offset register	*/
 197#define LM90_HAVE_UNSIGNED_TEMP	BIT(2)	/* temperatures are unsigned	*/
 198#define LM90_HAVE_REM_LIMIT_EXT	BIT(3)	/* extended remote limit	*/
 199#define LM90_HAVE_EMERGENCY	BIT(4)	/* 3rd upper (emergency) limit	*/
 200#define LM90_HAVE_EMERGENCY_ALARM BIT(5)/* emergency alarm		*/
 201#define LM90_HAVE_TEMP3		BIT(6)	/* 3rd temperature sensor	*/
 202#define LM90_HAVE_BROKEN_ALERT	BIT(7)	/* Broken alert			*/
 203#define LM90_PAUSE_FOR_CONFIG	BIT(8)	/* Pause conversion for config	*/
 204#define LM90_HAVE_CRIT		BIT(9)	/* Chip supports CRIT/OVERT register	*/
 205#define LM90_HAVE_CRIT_ALRM_SWP	BIT(10)	/* critical alarm bits swapped	*/
 206#define LM90_HAVE_PEC		BIT(11)	/* Chip supports PEC		*/
 207#define LM90_HAVE_PARTIAL_PEC	BIT(12)	/* Partial PEC support (adm1032)*/
 208#define LM90_HAVE_ALARMS	BIT(13)	/* Create 'alarms' attribute	*/
 209#define LM90_HAVE_EXT_UNSIGNED	BIT(14)	/* extended unsigned temperature*/
 210#define LM90_HAVE_LOW		BIT(15)	/* low limits			*/
 211#define LM90_HAVE_CONVRATE	BIT(16)	/* conversion rate		*/
 212#define LM90_HAVE_REMOTE_EXT	BIT(17)	/* extended remote temperature	*/
 213#define LM90_HAVE_FAULTQUEUE	BIT(18)	/* configurable samples count	*/
 214
 215/* LM90 status */
 216#define LM90_STATUS_LTHRM	BIT(0)	/* local THERM limit tripped */
 217#define LM90_STATUS_RTHRM	BIT(1)	/* remote THERM limit tripped */
 218#define LM90_STATUS_ROPEN	BIT(2)	/* remote is an open circuit */
 219#define LM90_STATUS_RLOW	BIT(3)	/* remote low temp limit tripped */
 220#define LM90_STATUS_RHIGH	BIT(4)	/* remote high temp limit tripped */
 221#define LM90_STATUS_LLOW	BIT(5)	/* local low temp limit tripped */
 222#define LM90_STATUS_LHIGH	BIT(6)	/* local high temp limit tripped */
 223#define LM90_STATUS_BUSY	BIT(7)	/* conversion is ongoing */
 224
 225/* MAX6695/6696 and ADT7481 2nd status register */
 226#define MAX6696_STATUS2_R2THRM	BIT(1)	/* remote2 THERM limit tripped */
 227#define MAX6696_STATUS2_R2OPEN	BIT(2)	/* remote2 is an open circuit */
 228#define MAX6696_STATUS2_R2LOW	BIT(3)	/* remote2 low temp limit tripped */
 229#define MAX6696_STATUS2_R2HIGH	BIT(4)	/* remote2 high temp limit tripped */
 230#define MAX6696_STATUS2_ROT2	BIT(5)	/* remote emergency limit tripped */
 231#define MAX6696_STATUS2_R2OT2	BIT(6)	/* remote2 emergency limit tripped */
 232#define MAX6696_STATUS2_LOT2	BIT(7)	/* local emergency limit tripped */
 233
 234/*
 235 * Driver data (common to all clients)
 236 */
 237
 238static const struct i2c_device_id lm90_id[] = {
 239	{ "adm1020", max1617 },
 240	{ "adm1021", max1617 },
 241	{ "adm1023", adm1023 },
 242	{ "adm1032", adm1032 },
 243	{ "adt7421", adt7461a },
 244	{ "adt7461", adt7461 },
 245	{ "adt7461a", adt7461a },
 246	{ "adt7481", adt7481 },
 247	{ "adt7482", adt7481 },
 248	{ "adt7483a", adt7481 },
 249	{ "g781", g781 },
 250	{ "gl523sm", max1617 },
 251	{ "lm84", lm84 },
 252	{ "lm86", lm90 },
 253	{ "lm89", lm90 },
 254	{ "lm90", lm90 },
 255	{ "lm99", lm99 },
 256	{ "max1617", max1617 },
 257	{ "max6642", max6642 },
 258	{ "max6646", max6646 },
 259	{ "max6647", max6646 },
 260	{ "max6648", max6648 },
 261	{ "max6649", max6646 },
 262	{ "max6654", max6654 },
 263	{ "max6657", max6657 },
 264	{ "max6658", max6657 },
 265	{ "max6659", max6659 },
 266	{ "max6680", max6680 },
 267	{ "max6681", max6680 },
 268	{ "max6690", max6654 },
 269	{ "max6692", max6648 },
 270	{ "max6695", max6696 },
 271	{ "max6696", max6696 },
 272	{ "mc1066", max1617 },
 273	{ "nct1008", adt7461a },
 274	{ "nct210", nct210 },
 275	{ "nct214", nct72 },
 276	{ "nct218", nct72 },
 277	{ "nct72", nct72 },
 278	{ "ne1618", ne1618 },
 279	{ "w83l771", w83l771 },
 280	{ "sa56004", sa56004 },
 281	{ "thmc10", max1617 },
 282	{ "tmp451", tmp451 },
 283	{ "tmp461", tmp461 },
 284	{ }
 285};
 286MODULE_DEVICE_TABLE(i2c, lm90_id);
 287
 288static const struct of_device_id __maybe_unused lm90_of_match[] = {
 289	{
 290		.compatible = "adi,adm1032",
 291		.data = (void *)adm1032
 292	},
 293	{
 294		.compatible = "adi,adt7461",
 295		.data = (void *)adt7461
 296	},
 297	{
 298		.compatible = "adi,adt7461a",
 299		.data = (void *)adt7461a
 300	},
 301	{
 302		.compatible = "adi,adt7481",
 303		.data = (void *)adt7481
 304	},
 305	{
 306		.compatible = "gmt,g781",
 307		.data = (void *)g781
 308	},
 309	{
 310		.compatible = "national,lm90",
 311		.data = (void *)lm90
 312	},
 313	{
 314		.compatible = "national,lm86",
 315		.data = (void *)lm90
 316	},
 317	{
 318		.compatible = "national,lm89",
 319		.data = (void *)lm90
 320	},
 321	{
 322		.compatible = "national,lm99",
 323		.data = (void *)lm99
 324	},
 325	{
 326		.compatible = "dallas,max6646",
 327		.data = (void *)max6646
 328	},
 329	{
 330		.compatible = "dallas,max6647",
 331		.data = (void *)max6646
 332	},
 333	{
 334		.compatible = "dallas,max6649",
 335		.data = (void *)max6646
 336	},
 337	{
 338		.compatible = "dallas,max6654",
 339		.data = (void *)max6654
 340	},
 341	{
 342		.compatible = "dallas,max6657",
 343		.data = (void *)max6657
 344	},
 345	{
 346		.compatible = "dallas,max6658",
 347		.data = (void *)max6657
 348	},
 349	{
 350		.compatible = "dallas,max6659",
 351		.data = (void *)max6659
 352	},
 353	{
 354		.compatible = "dallas,max6680",
 355		.data = (void *)max6680
 356	},
 357	{
 358		.compatible = "dallas,max6681",
 359		.data = (void *)max6680
 360	},
 361	{
 362		.compatible = "dallas,max6695",
 363		.data = (void *)max6696
 364	},
 365	{
 366		.compatible = "dallas,max6696",
 367		.data = (void *)max6696
 368	},
 369	{
 370		.compatible = "onnn,nct1008",
 371		.data = (void *)adt7461a
 372	},
 373	{
 374		.compatible = "onnn,nct214",
 375		.data = (void *)nct72
 376	},
 377	{
 378		.compatible = "onnn,nct218",
 379		.data = (void *)nct72
 380	},
 381	{
 382		.compatible = "onnn,nct72",
 383		.data = (void *)nct72
 384	},
 385	{
 386		.compatible = "winbond,w83l771",
 387		.data = (void *)w83l771
 388	},
 389	{
 390		.compatible = "nxp,sa56004",
 391		.data = (void *)sa56004
 392	},
 393	{
 394		.compatible = "ti,tmp451",
 395		.data = (void *)tmp451
 396	},
 397	{
 398		.compatible = "ti,tmp461",
 399		.data = (void *)tmp461
 400	},
 401	{ },
 402};
 403MODULE_DEVICE_TABLE(of, lm90_of_match);
 404
 405/*
 406 * chip type specific parameters
 407 */
 408struct lm90_params {
 409	u32 flags;		/* Capabilities */
 410	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
 411				/* Upper 8 bits for max6695/96 */
 412	u8 max_convrate;	/* Maximum conversion rate register value */
 413	u8 resolution;		/* 16-bit resolution (default 11 bit) */
 414	u8 reg_status2;		/* 2nd status register (optional) */
 415	u8 reg_local_ext;	/* Extended local temp register (optional) */
 416	u8 faultqueue_mask;	/* fault queue bit mask */
 417	u8 faultqueue_depth;	/* fault queue depth if mask is used */
 418};
 419
 420static const struct lm90_params lm90_params[] = {
 421	[adm1023] = {
 422		.flags = LM90_HAVE_ALARMS | LM90_HAVE_OFFSET | LM90_HAVE_BROKEN_ALERT
 423		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 424		  | LM90_HAVE_REMOTE_EXT,
 425		.alert_alarms = 0x7c,
 426		.resolution = 8,
 427		.max_convrate = 7,
 428	},
 429	[adm1032] = {
 430		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 431		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
 432		  | LM90_HAVE_PARTIAL_PEC | LM90_HAVE_ALARMS
 433		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
 434		  | LM90_HAVE_FAULTQUEUE,
 435		.alert_alarms = 0x7c,
 436		.max_convrate = 10,
 437	},
 438	[adt7461] = {
 439		/*
 440		 * Standard temperature range is supposed to be unsigned,
 441		 * but that does not match reality. Negative temperatures
 442		 * are always reported.
 443		 */
 444		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 445		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
 446		  | LM90_HAVE_CRIT | LM90_HAVE_PARTIAL_PEC
 447		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 448		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 449		.alert_alarms = 0x7c,
 450		.max_convrate = 10,
 451		.resolution = 10,
 452	},
 453	[adt7461a] = {
 454		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 455		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
 456		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_ALARMS
 457		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
 458		  | LM90_HAVE_FAULTQUEUE,
 459		.alert_alarms = 0x7c,
 460		.max_convrate = 10,
 461	},
 462	[adt7481] = {
 463		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 464		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
 465		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_PEC
 466		  | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT | LM90_HAVE_LOW
 467		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
 468		  | LM90_HAVE_FAULTQUEUE,
 469		.alert_alarms = 0x1c7c,
 470		.max_convrate = 11,
 471		.resolution = 10,
 472		.reg_status2 = ADT7481_REG_STATUS2,
 473	},
 474	[g781] = {
 475		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 476		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_CRIT
 477		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 478		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 479		.alert_alarms = 0x7c,
 480		.max_convrate = 7,
 481	},
 482	[lm84] = {
 483		.flags = LM90_HAVE_ALARMS,
 484		.resolution = 8,
 485	},
 486	[lm90] = {
 487		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 488		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
 489		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
 490		  | LM90_HAVE_FAULTQUEUE,
 491		.alert_alarms = 0x7b,
 492		.max_convrate = 9,
 493		.faultqueue_mask = BIT(0),
 494		.faultqueue_depth = 3,
 495	},
 496	[lm99] = {
 497		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 498		  | LM90_HAVE_CRIT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
 499		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
 500		  | LM90_HAVE_FAULTQUEUE,
 501		.alert_alarms = 0x7b,
 502		.max_convrate = 9,
 503		.faultqueue_mask = BIT(0),
 504		.faultqueue_depth = 3,
 505	},
 506	[max1617] = {
 507		.flags = LM90_HAVE_CONVRATE | LM90_HAVE_BROKEN_ALERT |
 508		  LM90_HAVE_LOW | LM90_HAVE_ALARMS,
 509		.alert_alarms = 0x78,
 510		.resolution = 8,
 511		.max_convrate = 7,
 512	},
 513	[max6642] = {
 514		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXT_UNSIGNED
 515		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 516		.alert_alarms = 0x50,
 517		.resolution = 10,
 518		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 519		.faultqueue_mask = BIT(4),
 520		.faultqueue_depth = 2,
 521	},
 522	[max6646] = {
 523		.flags = LM90_HAVE_CRIT | LM90_HAVE_BROKEN_ALERT
 524		  | LM90_HAVE_EXT_UNSIGNED | LM90_HAVE_ALARMS | LM90_HAVE_LOW
 525		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
 526		.alert_alarms = 0x7c,
 527		.max_convrate = 6,
 528		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 529	},
 530	[max6648] = {
 531		.flags = LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_CRIT
 532		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_LOW
 533		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
 534		.alert_alarms = 0x7c,
 535		.max_convrate = 6,
 536		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 537	},
 538	[max6654] = {
 539		.flags = LM90_HAVE_BROKEN_ALERT | LM90_HAVE_ALARMS | LM90_HAVE_LOW
 540		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
 541		.alert_alarms = 0x7c,
 542		.max_convrate = 7,
 543		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 544	},
 545	[max6657] = {
 546		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_CRIT
 547		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 548		  | LM90_HAVE_REMOTE_EXT,
 549		.alert_alarms = 0x7c,
 550		.max_convrate = 8,
 551		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 552	},
 553	[max6659] = {
 554		.flags = LM90_HAVE_EMERGENCY | LM90_HAVE_CRIT
 555		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 556		  | LM90_HAVE_REMOTE_EXT,
 557		.alert_alarms = 0x7c,
 558		.max_convrate = 8,
 559		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 560	},
 561	[max6680] = {
 562		/*
 563		 * Apparent temperatures of 128 degrees C or higher are reported
 564		 * and treated as negative temperatures (meaning min_alarm will
 565		 * be set).
 566		 */
 567		.flags = LM90_HAVE_OFFSET | LM90_HAVE_CRIT
 568		  | LM90_HAVE_CRIT_ALRM_SWP | LM90_HAVE_BROKEN_ALERT
 569		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 570		  | LM90_HAVE_REMOTE_EXT,
 571		.alert_alarms = 0x7c,
 572		.max_convrate = 7,
 573	},
 574	[max6696] = {
 575		.flags = LM90_HAVE_EMERGENCY
 576		  | LM90_HAVE_EMERGENCY_ALARM | LM90_HAVE_TEMP3 | LM90_HAVE_CRIT
 577		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 578		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 579		.alert_alarms = 0x1c7c,
 580		.max_convrate = 6,
 581		.reg_status2 = MAX6696_REG_STATUS2,
 582		.reg_local_ext = MAX6657_REG_LOCAL_TEMPL,
 583		.faultqueue_mask = BIT(5),
 584		.faultqueue_depth = 4,
 585	},
 586	[nct72] = {
 587		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 588		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP
 589		  | LM90_HAVE_CRIT | LM90_HAVE_PEC | LM90_HAVE_UNSIGNED_TEMP
 590		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT
 591		  | LM90_HAVE_FAULTQUEUE,
 592		.alert_alarms = 0x7c,
 593		.max_convrate = 10,
 594		.resolution = 10,
 595	},
 596	[nct210] = {
 597		.flags = LM90_HAVE_ALARMS | LM90_HAVE_BROKEN_ALERT
 598		  | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 599		  | LM90_HAVE_REMOTE_EXT,
 600		.alert_alarms = 0x7c,
 601		.resolution = 11,
 602		.max_convrate = 7,
 603	},
 604	[ne1618] = {
 605		.flags = LM90_PAUSE_FOR_CONFIG | LM90_HAVE_BROKEN_ALERT
 606		  | LM90_HAVE_LOW | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT,
 607		.alert_alarms = 0x7c,
 608		.resolution = 11,
 609		.max_convrate = 7,
 610	},
 611	[w83l771] = {
 612		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
 613		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 614		  | LM90_HAVE_REMOTE_EXT,
 615		.alert_alarms = 0x7c,
 616		.max_convrate = 8,
 617	},
 618	[sa56004] = {
 619		/*
 620		 * Apparent temperatures of 128 degrees C or higher are reported
 621		 * and treated as negative temperatures (meaning min_alarm will
 622		 * be set).
 623		 */
 624		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT | LM90_HAVE_CRIT
 625		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 626		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 627		.alert_alarms = 0x7b,
 628		.max_convrate = 9,
 629		.reg_local_ext = SA56004_REG_LOCAL_TEMPL,
 630		.faultqueue_mask = BIT(0),
 631		.faultqueue_depth = 3,
 632	},
 633	[tmp451] = {
 634		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 635		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
 636		  | LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_ALARMS | LM90_HAVE_LOW
 637		  | LM90_HAVE_CONVRATE | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 638		.alert_alarms = 0x7c,
 639		.max_convrate = 9,
 640		.resolution = 12,
 641		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
 642	},
 643	[tmp461] = {
 644		.flags = LM90_HAVE_OFFSET | LM90_HAVE_REM_LIMIT_EXT
 645		  | LM90_HAVE_BROKEN_ALERT | LM90_HAVE_EXTENDED_TEMP | LM90_HAVE_CRIT
 646		  | LM90_HAVE_ALARMS | LM90_HAVE_LOW | LM90_HAVE_CONVRATE
 647		  | LM90_HAVE_REMOTE_EXT | LM90_HAVE_FAULTQUEUE,
 648		.alert_alarms = 0x7c,
 649		.max_convrate = 9,
 650		.resolution = 12,
 651		.reg_local_ext = TMP451_REG_LOCAL_TEMPL,
 652	},
 653};
 654
 655/*
 656 * temperature register index
 657 */
 658enum lm90_temp_reg_index {
 659	LOCAL_LOW = 0,
 660	LOCAL_HIGH,
 661	LOCAL_CRIT,
 662	REMOTE_CRIT,
 663	LOCAL_EMERG,	/* max6659 and max6695/96 */
 664	REMOTE_EMERG,	/* max6659 and max6695/96 */
 665	REMOTE2_CRIT,	/* max6695/96 only */
 666	REMOTE2_EMERG,	/* max6695/96 only */
 667
 668	REMOTE_TEMP,
 669	REMOTE_LOW,
 670	REMOTE_HIGH,
 671	REMOTE_OFFSET,	/* except max6646, max6657/58/59, and max6695/96 */
 672	LOCAL_TEMP,
 673	REMOTE2_TEMP,	/* max6695/96 only */
 674	REMOTE2_LOW,	/* max6695/96 only */
 675	REMOTE2_HIGH,	/* max6695/96 only */
 676	REMOTE2_OFFSET,
 677
 678	TEMP_REG_NUM
 679};
 680
 681/*
 682 * Client data (each client gets its own)
 683 */
 684
 685struct lm90_data {
 686	struct i2c_client *client;
 687	struct device *hwmon_dev;
 688	u32 chip_config[2];
 689	u32 channel_config[MAX_CHANNELS + 1];
 690	const char *channel_label[MAX_CHANNELS];
 691	struct hwmon_channel_info chip_info;
 692	struct hwmon_channel_info temp_info;
 693	const struct hwmon_channel_info *info[3];
 694	struct hwmon_chip_info chip;
 695	struct mutex update_lock;
 696	struct delayed_work alert_work;
 697	struct work_struct report_work;
 698	bool valid;		/* true if register values are valid */
 699	bool alarms_valid;	/* true if status register values are valid */
 700	unsigned long last_updated; /* in jiffies */
 701	unsigned long alarms_updated; /* in jiffies */
 702	int kind;
 703	u32 flags;
 704
 705	unsigned int update_interval; /* in milliseconds */
 706
 707	u8 config;		/* Current configuration register value */
 708	u8 config_orig;		/* Original configuration register value */
 709	u8 convrate_orig;	/* Original conversion rate register value */
 710	u8 resolution;		/* temperature resolution in bit */
 711	u16 alert_alarms;	/* Which alarm bits trigger ALERT# */
 712				/* Upper 8 bits for max6695/96 */
 713	u8 max_convrate;	/* Maximum conversion rate */
 714	u8 reg_status2;		/* 2nd status register (optional) */
 715	u8 reg_local_ext;	/* local extension register offset */
 716	u8 reg_remote_ext;	/* remote temperature low byte */
 717	u8 faultqueue_mask;	/* fault queue mask */
 718	u8 faultqueue_depth;	/* fault queue mask */
 719
 720	/* registers values */
 721	u16 temp[TEMP_REG_NUM];
 722	u8 temp_hyst;
 723	u8 conalert;
 724	u16 reported_alarms;	/* alarms reported as sysfs/udev events */
 725	u16 current_alarms;	/* current alarms, reported by chip */
 726	u16 alarms;		/* alarms not yet reported to user */
 727};
 728
 729/*
 730 * Support functions
 731 */
 732
 733/*
 734 * If the chip supports PEC but not on write byte transactions, we need
 735 * to explicitly ask for a transaction without PEC.
 736 */
 737static inline s32 lm90_write_no_pec(struct i2c_client *client, u8 value)
 738{
 739	return i2c_smbus_xfer(client->adapter, client->addr,
 740			      client->flags & ~I2C_CLIENT_PEC,
 741			      I2C_SMBUS_WRITE, value, I2C_SMBUS_BYTE, NULL);
 742}
 743
 744/*
 745 * It is assumed that client->update_lock is held (unless we are in
 746 * detection or initialization steps). This matters when PEC is enabled
 747 * for chips with partial PEC support, because we don't want the address
 748 * pointer to change between the write byte and the read byte transactions.
 749 */
 750static int lm90_read_reg(struct i2c_client *client, u8 reg)
 751{
 752	struct lm90_data *data = i2c_get_clientdata(client);
 753	bool partial_pec = (client->flags & I2C_CLIENT_PEC) &&
 754			(data->flags & LM90_HAVE_PARTIAL_PEC);
 755	int err;
 756
 757	if (partial_pec) {
 758		err = lm90_write_no_pec(client, reg);
 759		if (err)
 760			return err;
 761		return i2c_smbus_read_byte(client);
 762	}
 763	return i2c_smbus_read_byte_data(client, reg);
 764}
 765
 766/*
 767 * Return register write address
 768 *
 769 * The write address for registers 0x03 .. 0x08 is the read address plus 6.
 770 * For other registers the write address matches the read address.
 771 */
 772static u8 lm90_write_reg_addr(u8 reg)
 773{
 774	if (reg >= LM90_REG_CONFIG1 && reg <= LM90_REG_REMOTE_LOWH)
 775		return reg + 6;
 776	return reg;
 777}
 778
 779/*
 780 * Write into LM90 register.
 781 * Convert register address to write address if needed, then execute the
 782 * operation.
 783 */
 784static int lm90_write_reg(struct i2c_client *client, u8 reg, u8 val)
 785{
 786	return i2c_smbus_write_byte_data(client, lm90_write_reg_addr(reg), val);
 787}
 788
 789/*
 790 * Write into 16-bit LM90 register.
 791 * Convert register addresses to write address if needed, then execute the
 792 * operation.
 793 */
 794static int lm90_write16(struct i2c_client *client, u8 regh, u8 regl, u16 val)
 795{
 796	int ret;
 797
 798	ret = lm90_write_reg(client, regh, val >> 8);
 799	if (ret < 0 || !regl)
 800		return ret;
 801	return lm90_write_reg(client, regl, val & 0xff);
 802}
 803
 804static int lm90_read16(struct i2c_client *client, u8 regh, u8 regl,
 805		       bool is_volatile)
 806{
 807	int oldh, newh, l;
 808
 809	oldh = lm90_read_reg(client, regh);
 810	if (oldh < 0)
 811		return oldh;
 812
 813	if (!regl)
 814		return oldh << 8;
 815
 816	l = lm90_read_reg(client, regl);
 817	if (l < 0)
 818		return l;
 819
 820	if (!is_volatile)
 821		return (oldh << 8) | l;
 822
 823	/*
 824	 * For volatile registers we have to use a trick.
 825	 * We have to read two registers to have the sensor temperature,
 826	 * but we have to beware a conversion could occur between the
 827	 * readings. The datasheet says we should either use
 828	 * the one-shot conversion register, which we don't want to do
 829	 * (disables hardware monitoring) or monitor the busy bit, which is
 830	 * impossible (we can't read the values and monitor that bit at the
 831	 * exact same time). So the solution used here is to read the high
 832	 * the high byte again. If the new high byte matches the old one,
 833	 * then we have a valid reading. Otherwise we have to read the low
 834	 * byte again, and now we believe we have a correct reading.
 835	 */
 836	newh = lm90_read_reg(client, regh);
 837	if (newh < 0)
 838		return newh;
 839	if (oldh != newh) {
 840		l = lm90_read_reg(client, regl);
 841		if (l < 0)
 842			return l;
 843	}
 844	return (newh << 8) | l;
 845}
 846
 847static int lm90_update_confreg(struct lm90_data *data, u8 config)
 848{
 849	if (data->config != config) {
 850		int err;
 851
 852		err = lm90_write_reg(data->client, LM90_REG_CONFIG1, config);
 853		if (err)
 854			return err;
 855		data->config = config;
 856	}
 857	return 0;
 858}
 859
 860/*
 861 * client->update_lock must be held when calling this function (unless we are
 862 * in detection or initialization steps), and while a remote channel other
 863 * than channel 0 is selected. Also, calling code must make sure to re-select
 864 * external channel 0 before releasing the lock. This is necessary because
 865 * various registers have different meanings as a result of selecting a
 866 * non-default remote channel.
 867 */
 868static int lm90_select_remote_channel(struct lm90_data *data, bool second)
 869{
 870	u8 config = data->config & ~0x08;
 871
 872	if (second)
 873		config |= 0x08;
 874
 875	return lm90_update_confreg(data, config);
 876}
 877
 878static int lm90_write_convrate(struct lm90_data *data, int val)
 879{
 880	u8 config = data->config;
 881	int err;
 882
 883	/* Save config and pause conversion */
 884	if (data->flags & LM90_PAUSE_FOR_CONFIG) {
 885		err = lm90_update_confreg(data, config | 0x40);
 886		if (err < 0)
 887			return err;
 888	}
 889
 890	/* Set conv rate */
 891	err = lm90_write_reg(data->client, LM90_REG_CONVRATE, val);
 892
 893	/* Revert change to config */
 894	lm90_update_confreg(data, config);
 895
 896	return err;
 897}
 898
 899/*
 900 * Set conversion rate.
 901 * client->update_lock must be held when calling this function (unless we are
 902 * in detection or initialization steps).
 903 */
 904static int lm90_set_convrate(struct i2c_client *client, struct lm90_data *data,
 905			     unsigned int interval)
 906{
 907	unsigned int update_interval;
 908	int i, err;
 909
 910	/* Shift calculations to avoid rounding errors */
 911	interval <<= 6;
 912
 913	/* find the nearest update rate */
 914	for (i = 0, update_interval = LM90_MAX_CONVRATE_MS << 6;
 915	     i < data->max_convrate; i++, update_interval >>= 1)
 916		if (interval >= update_interval * 3 / 4)
 917			break;
 918
 919	err = lm90_write_convrate(data, i);
 920	data->update_interval = DIV_ROUND_CLOSEST(update_interval, 64);
 921	return err;
 922}
 923
 924static int lm90_set_faultqueue(struct i2c_client *client,
 925			       struct lm90_data *data, int val)
 926{
 927	int err;
 928
 929	if (data->faultqueue_mask) {
 930		err = lm90_update_confreg(data, val <= data->faultqueue_depth / 2 ?
 931					  data->config & ~data->faultqueue_mask :
 932					  data->config | data->faultqueue_mask);
 933	} else {
 934		static const u8 values[4] = {0, 2, 6, 0x0e};
 935
 936		data->conalert = (data->conalert & 0xf1) | values[val - 1];
 937		err = lm90_write_reg(data->client, TMP451_REG_CONALERT,
 938				     data->conalert);
 939	}
 940
 941	return err;
 942}
 943
 944static int lm90_update_limits(struct device *dev)
 945{
 946	struct lm90_data *data = dev_get_drvdata(dev);
 947	struct i2c_client *client = data->client;
 948	int val;
 949
 950	if (data->flags & LM90_HAVE_CRIT) {
 951		val = lm90_read_reg(client, LM90_REG_LOCAL_CRIT);
 952		if (val < 0)
 953			return val;
 954		data->temp[LOCAL_CRIT] = val << 8;
 955
 956		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
 957		if (val < 0)
 958			return val;
 959		data->temp[REMOTE_CRIT] = val << 8;
 960
 961		val = lm90_read_reg(client, LM90_REG_TCRIT_HYST);
 962		if (val < 0)
 963			return val;
 964		data->temp_hyst = val;
 965	}
 966	if ((data->flags & LM90_HAVE_FAULTQUEUE) && !data->faultqueue_mask) {
 967		val = lm90_read_reg(client, TMP451_REG_CONALERT);
 968		if (val < 0)
 969			return val;
 970		data->conalert = val;
 971	}
 972
 973	val = lm90_read16(client, LM90_REG_REMOTE_LOWH,
 974			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_LOWL : 0,
 975			  false);
 976	if (val < 0)
 977		return val;
 978	data->temp[REMOTE_LOW] = val;
 979
 980	val = lm90_read16(client, LM90_REG_REMOTE_HIGHH,
 981			  (data->flags & LM90_HAVE_REM_LIMIT_EXT) ? LM90_REG_REMOTE_HIGHL : 0,
 982			  false);
 983	if (val < 0)
 984		return val;
 985	data->temp[REMOTE_HIGH] = val;
 986
 987	if (data->flags & LM90_HAVE_OFFSET) {
 988		val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
 989				  LM90_REG_REMOTE_OFFSL, false);
 990		if (val < 0)
 991			return val;
 992		data->temp[REMOTE_OFFSET] = val;
 993	}
 994
 995	if (data->flags & LM90_HAVE_EMERGENCY) {
 996		val = lm90_read_reg(client, MAX6659_REG_LOCAL_EMERG);
 997		if (val < 0)
 998			return val;
 999		data->temp[LOCAL_EMERG] = val << 8;
1000
1001		val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1002		if (val < 0)
1003			return val;
1004		data->temp[REMOTE_EMERG] = val << 8;
1005	}
1006
1007	if (data->flags & LM90_HAVE_TEMP3) {
1008		val = lm90_select_remote_channel(data, true);
1009		if (val < 0)
1010			return val;
1011
1012		val = lm90_read_reg(client, LM90_REG_REMOTE_CRIT);
1013		if (val < 0)
1014			return val;
1015		data->temp[REMOTE2_CRIT] = val << 8;
1016
1017		if (data->flags & LM90_HAVE_EMERGENCY) {
1018			val = lm90_read_reg(client, MAX6659_REG_REMOTE_EMERG);
1019			if (val < 0)
1020				return val;
1021			data->temp[REMOTE2_EMERG] = val << 8;
1022		}
1023
1024		val = lm90_read_reg(client, LM90_REG_REMOTE_LOWH);
1025		if (val < 0)
1026			return val;
1027		data->temp[REMOTE2_LOW] = val << 8;
1028
1029		val = lm90_read_reg(client, LM90_REG_REMOTE_HIGHH);
1030		if (val < 0)
1031			return val;
1032		data->temp[REMOTE2_HIGH] = val << 8;
1033
1034		if (data->flags & LM90_HAVE_OFFSET) {
1035			val = lm90_read16(client, LM90_REG_REMOTE_OFFSH,
1036					  LM90_REG_REMOTE_OFFSL, false);
1037			if (val < 0)
1038				return val;
1039			data->temp[REMOTE2_OFFSET] = val;
1040		}
1041
1042		lm90_select_remote_channel(data, false);
1043	}
1044
1045	return 0;
1046}
1047
1048static void lm90_report_alarms(struct work_struct *work)
1049{
1050	struct lm90_data *data = container_of(work, struct lm90_data, report_work);
1051	u16 cleared_alarms, new_alarms, current_alarms;
1052	struct device *hwmon_dev = data->hwmon_dev;
1053	struct device *dev = &data->client->dev;
1054	int st, st2;
1055
1056	current_alarms = data->current_alarms;
1057	cleared_alarms = data->reported_alarms & ~current_alarms;
1058	new_alarms = current_alarms & ~data->reported_alarms;
1059
1060	if (!cleared_alarms && !new_alarms)
1061		return;
1062
1063	st = new_alarms & 0xff;
1064	st2 = new_alarms >> 8;
1065
1066	if ((st & (LM90_STATUS_LLOW | LM90_STATUS_LHIGH | LM90_STATUS_LTHRM)) ||
1067	    (st2 & MAX6696_STATUS2_LOT2))
1068		dev_dbg(dev, "temp%d out of range, please check!\n", 1);
1069	if ((st & (LM90_STATUS_RLOW | LM90_STATUS_RHIGH | LM90_STATUS_RTHRM)) ||
1070	    (st2 & MAX6696_STATUS2_ROT2))
1071		dev_dbg(dev, "temp%d out of range, please check!\n", 2);
1072	if (st & LM90_STATUS_ROPEN)
1073		dev_dbg(dev, "temp%d diode open, please check!\n", 2);
1074	if (st2 & (MAX6696_STATUS2_R2LOW | MAX6696_STATUS2_R2HIGH |
1075		   MAX6696_STATUS2_R2THRM | MAX6696_STATUS2_R2OT2))
1076		dev_dbg(dev, "temp%d out of range, please check!\n", 3);
1077	if (st2 & MAX6696_STATUS2_R2OPEN)
1078		dev_dbg(dev, "temp%d diode open, please check!\n", 3);
1079
1080	st |= cleared_alarms & 0xff;
1081	st2 |= cleared_alarms >> 8;
1082
1083	if (st & LM90_STATUS_LLOW)
1084		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 0);
1085	if (st & LM90_STATUS_RLOW)
1086		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 1);
1087	if (st2 & MAX6696_STATUS2_R2LOW)
1088		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_min_alarm, 2);
1089
1090	if (st & LM90_STATUS_LHIGH)
1091		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 0);
1092	if (st & LM90_STATUS_RHIGH)
1093		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 1);
1094	if (st2 & MAX6696_STATUS2_R2HIGH)
1095		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_max_alarm, 2);
1096
1097	if (st & LM90_STATUS_LTHRM)
1098		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 0);
1099	if (st & LM90_STATUS_RTHRM)
1100		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 1);
1101	if (st2 & MAX6696_STATUS2_R2THRM)
1102		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_crit_alarm, 2);
1103
1104	if (st2 & MAX6696_STATUS2_LOT2)
1105		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 0);
1106	if (st2 & MAX6696_STATUS2_ROT2)
1107		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 1);
1108	if (st2 & MAX6696_STATUS2_R2OT2)
1109		hwmon_notify_event(hwmon_dev, hwmon_temp, hwmon_temp_emergency_alarm, 2);
1110
1111	data->reported_alarms = current_alarms;
1112}
1113
1114static int lm90_update_alarms_locked(struct lm90_data *data, bool force)
1115{
1116	if (force || !data->alarms_valid ||
1117	    time_after(jiffies, data->alarms_updated + msecs_to_jiffies(data->update_interval))) {
1118		struct i2c_client *client = data->client;
1119		bool check_enable;
1120		u16 alarms;
1121		int val;
1122
1123		data->alarms_valid = false;
1124
1125		val = lm90_read_reg(client, LM90_REG_STATUS);
1126		if (val < 0)
1127			return val;
1128		alarms = val & ~LM90_STATUS_BUSY;
1129
1130		if (data->reg_status2) {
1131			val = lm90_read_reg(client, data->reg_status2);
1132			if (val < 0)
1133				return val;
1134			alarms |= val << 8;
1135		}
1136		/*
1137		 * If the update is forced (called from interrupt or alert
1138		 * handler) and alarm data is valid, the alarms may have been
1139		 * updated after the last update interval, and the status
1140		 * register may still be cleared. Only add additional alarms
1141		 * in this case. Alarms will be cleared later if appropriate.
1142		 */
1143		if (force && data->alarms_valid)
1144			data->current_alarms |= alarms;
1145		else
1146			data->current_alarms = alarms;
1147		data->alarms |= alarms;
1148
1149		check_enable = (client->irq || !(data->config_orig & 0x80)) &&
1150			(data->config & 0x80);
1151
1152		if (force || check_enable)
1153			schedule_work(&data->report_work);
1154
1155		/*
1156		 * Re-enable ALERT# output if it was originally enabled, relevant
1157		 * alarms are all clear, and alerts are currently disabled.
1158		 * Otherwise (re)schedule worker if needed.
1159		 */
1160		if (check_enable) {
1161			if (!(data->current_alarms & data->alert_alarms)) {
1162				dev_dbg(&client->dev, "Re-enabling ALERT#\n");
1163				lm90_update_confreg(data, data->config & ~0x80);
1164				/*
1165				 * We may have been called from the update handler.
1166				 * If so, the worker, if scheduled, is no longer
1167				 * needed. Cancel it. Don't synchronize because
1168				 * it may already be running.
1169				 */
1170				cancel_delayed_work(&data->alert_work);
1171			} else {
1172				schedule_delayed_work(&data->alert_work,
1173					max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
1174			}
1175		}
1176		data->alarms_updated = jiffies;
1177		data->alarms_valid = true;
1178	}
1179	return 0;
1180}
1181
1182static int lm90_update_alarms(struct lm90_data *data, bool force)
1183{
1184	int err;
1185
1186	mutex_lock(&data->update_lock);
1187	err = lm90_update_alarms_locked(data, force);
1188	mutex_unlock(&data->update_lock);
1189
1190	return err;
1191}
1192
1193static void lm90_alert_work(struct work_struct *__work)
1194{
1195	struct delayed_work *delayed_work = container_of(__work, struct delayed_work, work);
1196	struct lm90_data *data = container_of(delayed_work, struct lm90_data, alert_work);
1197
1198	/* Nothing to do if alerts are enabled */
1199	if (!(data->config & 0x80))
1200		return;
1201
1202	lm90_update_alarms(data, true);
1203}
1204
1205static int lm90_update_device(struct device *dev)
1206{
1207	struct lm90_data *data = dev_get_drvdata(dev);
1208	struct i2c_client *client = data->client;
1209	unsigned long next_update;
1210	int val;
1211
1212	if (!data->valid) {
1213		val = lm90_update_limits(dev);
1214		if (val < 0)
1215			return val;
1216	}
1217
1218	next_update = data->last_updated +
1219		      msecs_to_jiffies(data->update_interval);
1220	if (time_after(jiffies, next_update) || !data->valid) {
1221		dev_dbg(&client->dev, "Updating lm90 data.\n");
1222
1223		data->valid = false;
1224
1225		val = lm90_read_reg(client, LM90_REG_LOCAL_LOW);
1226		if (val < 0)
1227			return val;
1228		data->temp[LOCAL_LOW] = val << 8;
1229
1230		val = lm90_read_reg(client, LM90_REG_LOCAL_HIGH);
1231		if (val < 0)
1232			return val;
1233		data->temp[LOCAL_HIGH] = val << 8;
1234
1235		val = lm90_read16(client, LM90_REG_LOCAL_TEMP,
1236				  data->reg_local_ext, true);
1237		if (val < 0)
1238			return val;
1239		data->temp[LOCAL_TEMP] = val;
1240		val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1241				  data->reg_remote_ext, true);
1242		if (val < 0)
1243			return val;
1244		data->temp[REMOTE_TEMP] = val;
1245
1246		if (data->flags & LM90_HAVE_TEMP3) {
1247			val = lm90_select_remote_channel(data, true);
1248			if (val < 0)
1249				return val;
1250
1251			val = lm90_read16(client, LM90_REG_REMOTE_TEMPH,
1252					  data->reg_remote_ext, true);
1253			if (val < 0) {
1254				lm90_select_remote_channel(data, false);
1255				return val;
1256			}
1257			data->temp[REMOTE2_TEMP] = val;
1258
1259			lm90_select_remote_channel(data, false);
1260		}
1261
1262		val = lm90_update_alarms_locked(data, false);
1263		if (val < 0)
1264			return val;
1265
1266		data->last_updated = jiffies;
1267		data->valid = true;
1268	}
1269
1270	return 0;
1271}
1272
1273/* pec used for devices with PEC support */
1274static ssize_t pec_show(struct device *dev, struct device_attribute *dummy,
1275			char *buf)
1276{
1277	struct i2c_client *client = to_i2c_client(dev);
1278
1279	return sprintf(buf, "%d\n", !!(client->flags & I2C_CLIENT_PEC));
1280}
1281
1282static ssize_t pec_store(struct device *dev, struct device_attribute *dummy,
1283			 const char *buf, size_t count)
1284{
1285	struct i2c_client *client = to_i2c_client(dev);
1286	long val;
1287	int err;
1288
1289	err = kstrtol(buf, 10, &val);
1290	if (err < 0)
1291		return err;
1292
1293	switch (val) {
1294	case 0:
1295		client->flags &= ~I2C_CLIENT_PEC;
1296		break;
1297	case 1:
1298		client->flags |= I2C_CLIENT_PEC;
1299		break;
1300	default:
1301		return -EINVAL;
1302	}
1303
1304	return count;
1305}
1306
1307static DEVICE_ATTR_RW(pec);
1308
1309static int lm90_temp_get_resolution(struct lm90_data *data, int index)
1310{
1311	switch (index) {
1312	case REMOTE_TEMP:
1313		if (data->reg_remote_ext)
1314			return data->resolution;
1315		return 8;
1316	case REMOTE_OFFSET:
1317	case REMOTE2_OFFSET:
1318	case REMOTE2_TEMP:
1319		return data->resolution;
1320	case LOCAL_TEMP:
1321		if (data->reg_local_ext)
1322			return data->resolution;
1323		return 8;
1324	case REMOTE_LOW:
1325	case REMOTE_HIGH:
1326	case REMOTE2_LOW:
1327	case REMOTE2_HIGH:
1328		if (data->flags & LM90_HAVE_REM_LIMIT_EXT)
1329			return data->resolution;
1330		return 8;
1331	default:
1332		return 8;
1333	}
1334}
1335
1336static int lm90_temp_from_reg(u32 flags, u16 regval, u8 resolution)
1337{
1338	int val;
1339
1340	if (flags & LM90_HAVE_EXTENDED_TEMP)
1341		val = regval - 0x4000;
1342	else if (flags & (LM90_HAVE_UNSIGNED_TEMP | LM90_HAVE_EXT_UNSIGNED))
1343		val = regval;
1344	else
1345		val = (s16)regval;
1346
1347	return ((val >> (16 - resolution)) * 1000) >> (resolution - 8);
1348}
1349
1350static int lm90_get_temp(struct lm90_data *data, int index, int channel)
1351{
1352	int temp = lm90_temp_from_reg(data->flags, data->temp[index],
1353				      lm90_temp_get_resolution(data, index));
1354
1355	/* +16 degrees offset for remote temperature on LM99 */
1356	if (data->kind == lm99 && channel)
1357		temp += 16000;
1358
1359	return temp;
1360}
1361
1362static u16 lm90_temp_to_reg(u32 flags, long val, u8 resolution)
1363{
1364	int fraction = resolution > 8 ?
1365			1000 - DIV_ROUND_CLOSEST(1000, BIT(resolution - 8)) : 0;
1366
1367	if (flags & LM90_HAVE_EXTENDED_TEMP) {
1368		val = clamp_val(val, -64000, 191000 + fraction);
1369		val += 64000;
1370	} else if (flags & LM90_HAVE_EXT_UNSIGNED) {
1371		val = clamp_val(val, 0, 255000 + fraction);
1372	} else if (flags & LM90_HAVE_UNSIGNED_TEMP) {
1373		val = clamp_val(val, 0, 127000 + fraction);
1374	} else {
1375		val = clamp_val(val, -128000, 127000 + fraction);
1376	}
1377
1378	return DIV_ROUND_CLOSEST(val << (resolution - 8), 1000) << (16 - resolution);
1379}
1380
1381static int lm90_set_temp(struct lm90_data *data, int index, int channel, long val)
1382{
1383	static const u8 regs[] = {
1384		[LOCAL_LOW] = LM90_REG_LOCAL_LOW,
1385		[LOCAL_HIGH] = LM90_REG_LOCAL_HIGH,
1386		[LOCAL_CRIT] = LM90_REG_LOCAL_CRIT,
1387		[REMOTE_CRIT] = LM90_REG_REMOTE_CRIT,
1388		[LOCAL_EMERG] = MAX6659_REG_LOCAL_EMERG,
1389		[REMOTE_EMERG] = MAX6659_REG_REMOTE_EMERG,
1390		[REMOTE2_CRIT] = LM90_REG_REMOTE_CRIT,
1391		[REMOTE2_EMERG] = MAX6659_REG_REMOTE_EMERG,
1392		[REMOTE_LOW] = LM90_REG_REMOTE_LOWH,
1393		[REMOTE_HIGH] = LM90_REG_REMOTE_HIGHH,
1394		[REMOTE2_LOW] = LM90_REG_REMOTE_LOWH,
1395		[REMOTE2_HIGH] = LM90_REG_REMOTE_HIGHH,
1396	};
1397	struct i2c_client *client = data->client;
1398	u8 regh = regs[index];
1399	u8 regl = 0;
1400	int err;
1401
1402	if (channel && (data->flags & LM90_HAVE_REM_LIMIT_EXT)) {
1403		if (index == REMOTE_LOW || index == REMOTE2_LOW)
1404			regl = LM90_REG_REMOTE_LOWL;
1405		else if (index == REMOTE_HIGH || index == REMOTE2_HIGH)
1406			regl = LM90_REG_REMOTE_HIGHL;
1407	}
1408
1409	/* +16 degrees offset for remote temperature on LM99 */
1410	if (data->kind == lm99 && channel) {
1411		/* prevent integer underflow */
1412		val = max(val, -128000l);
1413		val -= 16000;
1414	}
1415
1416	data->temp[index] = lm90_temp_to_reg(data->flags, val,
1417					     lm90_temp_get_resolution(data, index));
1418
1419	if (channel > 1)
1420		lm90_select_remote_channel(data, true);
1421
1422	err = lm90_write16(client, regh, regl, data->temp[index]);
1423
1424	if (channel > 1)
1425		lm90_select_remote_channel(data, false);
1426
1427	return err;
1428}
1429
1430static int lm90_get_temphyst(struct lm90_data *data, int index, int channel)
1431{
1432	int temp = lm90_get_temp(data, index, channel);
1433
1434	return temp - data->temp_hyst * 1000;
1435}
1436
1437static int lm90_set_temphyst(struct lm90_data *data, long val)
1438{
1439	int temp = lm90_get_temp(data, LOCAL_CRIT, 0);
1440
1441	/* prevent integer overflow/underflow */
1442	val = clamp_val(val, -128000l, 255000l);
1443	data->temp_hyst = clamp_val(DIV_ROUND_CLOSEST(temp - val, 1000), 0, 31);
1444
1445	return lm90_write_reg(data->client, LM90_REG_TCRIT_HYST, data->temp_hyst);
1446}
1447
1448static int lm90_get_temp_offset(struct lm90_data *data, int index)
1449{
1450	int res = lm90_temp_get_resolution(data, index);
1451
1452	return lm90_temp_from_reg(0, data->temp[index], res);
1453}
1454
1455static int lm90_set_temp_offset(struct lm90_data *data, int index, int channel, long val)
1456{
1457	int err;
1458
1459	val = lm90_temp_to_reg(0, val, lm90_temp_get_resolution(data, index));
1460
1461	/* For ADT7481 we can use the same registers for remote channel 1 and 2 */
1462	if (channel > 1)
1463		lm90_select_remote_channel(data, true);
1464
1465	err = lm90_write16(data->client, LM90_REG_REMOTE_OFFSH, LM90_REG_REMOTE_OFFSL, val);
1466
1467	if (channel > 1)
1468		lm90_select_remote_channel(data, false);
1469
1470	if (err)
1471		return err;
1472
1473	data->temp[index] = val;
1474
1475	return 0;
1476}
1477
1478static const u8 lm90_temp_index[MAX_CHANNELS] = {
1479	LOCAL_TEMP, REMOTE_TEMP, REMOTE2_TEMP
1480};
1481
1482static const u8 lm90_temp_min_index[MAX_CHANNELS] = {
1483	LOCAL_LOW, REMOTE_LOW, REMOTE2_LOW
1484};
1485
1486static const u8 lm90_temp_max_index[MAX_CHANNELS] = {
1487	LOCAL_HIGH, REMOTE_HIGH, REMOTE2_HIGH
1488};
1489
1490static const u8 lm90_temp_crit_index[MAX_CHANNELS] = {
1491	LOCAL_CRIT, REMOTE_CRIT, REMOTE2_CRIT
1492};
1493
1494static const u8 lm90_temp_emerg_index[MAX_CHANNELS] = {
1495	LOCAL_EMERG, REMOTE_EMERG, REMOTE2_EMERG
1496};
1497
1498static const s8 lm90_temp_offset_index[MAX_CHANNELS] = {
1499	-1, REMOTE_OFFSET, REMOTE2_OFFSET
1500};
1501
1502static const u16 lm90_min_alarm_bits[MAX_CHANNELS] = { BIT(5), BIT(3), BIT(11) };
1503static const u16 lm90_max_alarm_bits[MAX_CHANNELS] = { BIT(6), BIT(4), BIT(12) };
1504static const u16 lm90_crit_alarm_bits[MAX_CHANNELS] = { BIT(0), BIT(1), BIT(9) };
1505static const u16 lm90_crit_alarm_bits_swapped[MAX_CHANNELS] = { BIT(1), BIT(0), BIT(9) };
1506static const u16 lm90_emergency_alarm_bits[MAX_CHANNELS] = { BIT(15), BIT(13), BIT(14) };
1507static const u16 lm90_fault_bits[MAX_CHANNELS] = { BIT(0), BIT(2), BIT(10) };
1508
1509static int lm90_temp_read(struct device *dev, u32 attr, int channel, long *val)
1510{
1511	struct lm90_data *data = dev_get_drvdata(dev);
1512	int err;
1513	u16 bit;
1514
1515	mutex_lock(&data->update_lock);
1516	err = lm90_update_device(dev);
1517	mutex_unlock(&data->update_lock);
1518	if (err)
1519		return err;
1520
1521	switch (attr) {
1522	case hwmon_temp_input:
1523		*val = lm90_get_temp(data, lm90_temp_index[channel], channel);
1524		break;
1525	case hwmon_temp_min_alarm:
1526	case hwmon_temp_max_alarm:
1527	case hwmon_temp_crit_alarm:
1528	case hwmon_temp_emergency_alarm:
1529	case hwmon_temp_fault:
1530		switch (attr) {
1531		case hwmon_temp_min_alarm:
1532			bit = lm90_min_alarm_bits[channel];
1533			break;
1534		case hwmon_temp_max_alarm:
1535			bit = lm90_max_alarm_bits[channel];
1536			break;
1537		case hwmon_temp_crit_alarm:
1538			if (data->flags & LM90_HAVE_CRIT_ALRM_SWP)
1539				bit = lm90_crit_alarm_bits_swapped[channel];
1540			else
1541				bit = lm90_crit_alarm_bits[channel];
1542			break;
1543		case hwmon_temp_emergency_alarm:
1544			bit = lm90_emergency_alarm_bits[channel];
1545			break;
1546		case hwmon_temp_fault:
1547			bit = lm90_fault_bits[channel];
1548			break;
1549		}
1550		*val = !!(data->alarms & bit);
1551		data->alarms &= ~bit;
1552		data->alarms |= data->current_alarms;
1553		break;
1554	case hwmon_temp_min:
1555		*val = lm90_get_temp(data, lm90_temp_min_index[channel], channel);
1556		break;
1557	case hwmon_temp_max:
1558		*val = lm90_get_temp(data, lm90_temp_max_index[channel], channel);
1559		break;
1560	case hwmon_temp_crit:
1561		*val = lm90_get_temp(data, lm90_temp_crit_index[channel], channel);
1562		break;
1563	case hwmon_temp_crit_hyst:
1564		*val = lm90_get_temphyst(data, lm90_temp_crit_index[channel], channel);
1565		break;
1566	case hwmon_temp_emergency:
1567		*val = lm90_get_temp(data, lm90_temp_emerg_index[channel], channel);
1568		break;
1569	case hwmon_temp_emergency_hyst:
1570		*val = lm90_get_temphyst(data, lm90_temp_emerg_index[channel], channel);
1571		break;
1572	case hwmon_temp_offset:
1573		*val = lm90_get_temp_offset(data, lm90_temp_offset_index[channel]);
1574		break;
1575	default:
1576		return -EOPNOTSUPP;
1577	}
1578	return 0;
1579}
1580
1581static int lm90_temp_write(struct device *dev, u32 attr, int channel, long val)
1582{
1583	struct lm90_data *data = dev_get_drvdata(dev);
1584	int err;
1585
1586	mutex_lock(&data->update_lock);
1587
1588	err = lm90_update_device(dev);
1589	if (err)
1590		goto error;
1591
1592	switch (attr) {
1593	case hwmon_temp_min:
1594		err = lm90_set_temp(data, lm90_temp_min_index[channel],
1595				    channel, val);
1596		break;
1597	case hwmon_temp_max:
1598		err = lm90_set_temp(data, lm90_temp_max_index[channel],
1599				    channel, val);
1600		break;
1601	case hwmon_temp_crit:
1602		err = lm90_set_temp(data, lm90_temp_crit_index[channel],
1603				    channel, val);
1604		break;
1605	case hwmon_temp_crit_hyst:
1606		err = lm90_set_temphyst(data, val);
1607		break;
1608	case hwmon_temp_emergency:
1609		err = lm90_set_temp(data, lm90_temp_emerg_index[channel],
1610				    channel, val);
1611		break;
1612	case hwmon_temp_offset:
1613		err = lm90_set_temp_offset(data, lm90_temp_offset_index[channel],
1614					   channel, val);
1615		break;
1616	default:
1617		err = -EOPNOTSUPP;
1618		break;
1619	}
1620error:
1621	mutex_unlock(&data->update_lock);
1622
1623	return err;
1624}
1625
1626static umode_t lm90_temp_is_visible(const void *data, u32 attr, int channel)
1627{
1628	switch (attr) {
1629	case hwmon_temp_input:
1630	case hwmon_temp_min_alarm:
1631	case hwmon_temp_max_alarm:
1632	case hwmon_temp_crit_alarm:
1633	case hwmon_temp_emergency_alarm:
1634	case hwmon_temp_emergency_hyst:
1635	case hwmon_temp_fault:
1636	case hwmon_temp_label:
1637		return 0444;
1638	case hwmon_temp_min:
1639	case hwmon_temp_max:
1640	case hwmon_temp_crit:
1641	case hwmon_temp_emergency:
1642	case hwmon_temp_offset:
1643		return 0644;
1644	case hwmon_temp_crit_hyst:
1645		if (channel == 0)
1646			return 0644;
1647		return 0444;
1648	default:
1649		return 0;
1650	}
1651}
1652
1653static int lm90_chip_read(struct device *dev, u32 attr, int channel, long *val)
1654{
1655	struct lm90_data *data = dev_get_drvdata(dev);
1656	int err;
1657
1658	mutex_lock(&data->update_lock);
1659	err = lm90_update_device(dev);
1660	mutex_unlock(&data->update_lock);
1661	if (err)
1662		return err;
1663
1664	switch (attr) {
1665	case hwmon_chip_update_interval:
1666		*val = data->update_interval;
1667		break;
1668	case hwmon_chip_alarms:
1669		*val = data->alarms;
1670		break;
1671	case hwmon_chip_temp_samples:
1672		if (data->faultqueue_mask) {
1673			*val = (data->config & data->faultqueue_mask) ?
1674				data->faultqueue_depth : 1;
1675		} else {
1676			switch (data->conalert & 0x0e) {
1677			case 0x0:
1678			default:
1679				*val = 1;
1680				break;
1681			case 0x2:
1682				*val = 2;
1683				break;
1684			case 0x6:
1685				*val = 3;
1686				break;
1687			case 0xe:
1688				*val = 4;
1689				break;
1690			}
1691		}
1692		break;
1693	default:
1694		return -EOPNOTSUPP;
1695	}
1696
1697	return 0;
1698}
1699
1700static int lm90_chip_write(struct device *dev, u32 attr, int channel, long val)
1701{
1702	struct lm90_data *data = dev_get_drvdata(dev);
1703	struct i2c_client *client = data->client;
1704	int err;
1705
1706	mutex_lock(&data->update_lock);
1707
1708	err = lm90_update_device(dev);
1709	if (err)
1710		goto error;
1711
1712	switch (attr) {
1713	case hwmon_chip_update_interval:
1714		err = lm90_set_convrate(client, data,
1715					clamp_val(val, 0, 100000));
1716		break;
1717	case hwmon_chip_temp_samples:
1718		err = lm90_set_faultqueue(client, data, clamp_val(val, 1, 4));
1719		break;
1720	default:
1721		err = -EOPNOTSUPP;
1722		break;
1723	}
1724error:
1725	mutex_unlock(&data->update_lock);
1726
1727	return err;
1728}
1729
1730static umode_t lm90_chip_is_visible(const void *data, u32 attr, int channel)
1731{
1732	switch (attr) {
1733	case hwmon_chip_update_interval:
1734	case hwmon_chip_temp_samples:
1735		return 0644;
1736	case hwmon_chip_alarms:
1737		return 0444;
1738	default:
1739		return 0;
1740	}
1741}
1742
1743static int lm90_read(struct device *dev, enum hwmon_sensor_types type,
1744		     u32 attr, int channel, long *val)
1745{
1746	switch (type) {
1747	case hwmon_chip:
1748		return lm90_chip_read(dev, attr, channel, val);
1749	case hwmon_temp:
1750		return lm90_temp_read(dev, attr, channel, val);
1751	default:
1752		return -EOPNOTSUPP;
1753	}
1754}
1755
1756static int lm90_read_string(struct device *dev, enum hwmon_sensor_types type,
1757			    u32 attr, int channel, const char **str)
1758{
1759	struct lm90_data *data = dev_get_drvdata(dev);
1760
1761	*str = data->channel_label[channel];
1762
1763	return 0;
1764}
1765
1766static int lm90_write(struct device *dev, enum hwmon_sensor_types type,
1767		      u32 attr, int channel, long val)
1768{
1769	switch (type) {
1770	case hwmon_chip:
1771		return lm90_chip_write(dev, attr, channel, val);
1772	case hwmon_temp:
1773		return lm90_temp_write(dev, attr, channel, val);
1774	default:
1775		return -EOPNOTSUPP;
1776	}
1777}
1778
1779static umode_t lm90_is_visible(const void *data, enum hwmon_sensor_types type,
1780			       u32 attr, int channel)
1781{
1782	switch (type) {
1783	case hwmon_chip:
1784		return lm90_chip_is_visible(data, attr, channel);
1785	case hwmon_temp:
1786		return lm90_temp_is_visible(data, attr, channel);
1787	default:
1788		return 0;
1789	}
1790}
1791
1792static const char *lm90_detect_lm84(struct i2c_client *client)
1793{
1794	static const u8 regs[] = {
1795		LM90_REG_STATUS, LM90_REG_LOCAL_TEMP, LM90_REG_LOCAL_HIGH,
1796		LM90_REG_REMOTE_TEMPH, LM90_REG_REMOTE_HIGHH
1797	};
1798	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1799	int reg1, reg2, reg3, reg4;
1800	bool nonzero = false;
1801	u8 ff = 0xff;
1802	int i;
1803
1804	if (status < 0 || (status & 0xab))
1805		return NULL;
1806
1807	/*
1808	 * For LM84, undefined registers return the most recent value.
1809	 * Repeat several times, each time checking against a different
1810	 * (presumably) existing register.
1811	 */
1812	for (i = 0; i < ARRAY_SIZE(regs); i++) {
1813		reg1 = i2c_smbus_read_byte_data(client, regs[i]);
1814		reg2 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL);
1815		reg3 = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1816		reg4 = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1817
1818		if (reg1 < 0)
1819			return NULL;
1820
1821		/* If any register has a different value, this is not an LM84 */
1822		if (reg2 != reg1 || reg3 != reg1 || reg4 != reg1)
1823			return NULL;
1824
1825		nonzero |= reg1 || reg2 || reg3 || reg4;
1826		ff &= reg1;
1827	}
1828	/*
1829	 * If all registers always returned 0 or 0xff, all bets are off,
1830	 * and we can not make any predictions about the chip type.
1831	 */
1832	return nonzero && ff != 0xff ? "lm84" : NULL;
1833}
1834
1835static const char *lm90_detect_max1617(struct i2c_client *client, int config1)
1836{
1837	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1838	int llo, rlo, lhi, rhi;
1839
1840	if (status < 0 || (status & 0x03))
1841		return NULL;
1842
1843	if (config1 & 0x3f)
1844		return NULL;
1845
1846	/*
1847	 * Fail if unsupported registers return anything but 0xff.
1848	 * The calling code already checked man_id and chip_id.
1849	 * A byte read operation repeats the most recent read operation
1850	 * and should also return 0xff.
1851	 */
1852	if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) != 0xff ||
1853	    i2c_smbus_read_byte_data(client, MAX6657_REG_LOCAL_TEMPL) != 0xff ||
1854	    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWL) != 0xff ||
1855	    i2c_smbus_read_byte(client) != 0xff)
1856		return NULL;
1857
1858	llo = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW);
1859	rlo = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH);
1860
1861	lhi = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
1862	rhi = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_HIGHH);
1863
1864	if (llo < 0 || rlo < 0)
1865		return NULL;
1866
1867	/*
1868	 * A byte read operation repeats the most recent read and should
1869	 * return the same value.
1870	 */
1871	if (i2c_smbus_read_byte(client) != rhi)
1872		return NULL;
1873
1874	/*
1875	 * The following two checks are marginal since the checked values
1876	 * are strictly speaking valid.
1877	 */
1878
1879	/* fail for negative high limits; this also catches read errors */
1880	if ((s8)lhi < 0 || (s8)rhi < 0)
1881		return NULL;
1882
1883	/* fail if low limits are larger than or equal to high limits */
1884	if ((s8)llo >= lhi || (s8)rlo >= rhi)
1885		return NULL;
1886
1887	if (i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) {
1888		/*
1889		 * Word read operations return 0xff in second byte
1890		 */
1891		if (i2c_smbus_read_word_data(client, LM90_REG_REMOTE_TEMPL) !=
1892						0xffff)
1893			return NULL;
1894		if (i2c_smbus_read_word_data(client, LM90_REG_CONFIG1) !=
1895						(config1 | 0xff00))
1896			return NULL;
1897		if (i2c_smbus_read_word_data(client, LM90_REG_LOCAL_HIGH) !=
1898						(lhi | 0xff00))
1899			return NULL;
1900	}
1901
1902	return "max1617";
1903}
1904
1905static const char *lm90_detect_national(struct i2c_client *client, int chip_id,
1906					int config1, int convrate)
1907{
1908	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
1909	int address = client->addr;
1910	const char *name = NULL;
1911
1912	if (config2 < 0)
1913		return NULL;
1914
1915	if ((config1 & 0x2a) || (config2 & 0xf8) || convrate > 0x09)
1916		return NULL;
1917
1918	if (address != 0x4c && address != 0x4d)
1919		return NULL;
1920
1921	switch (chip_id & 0xf0) {
1922	case 0x10:	/* LM86 */
1923		if (address == 0x4c)
1924			name = "lm86";
1925		break;
1926	case 0x20:	/* LM90 */
1927		if (address == 0x4c)
1928			name = "lm90";
1929		break;
1930	case 0x30:	/* LM89/LM99 */
1931		name = "lm99";	/* detect LM89 as LM99 */
1932		break;
1933	default:
1934		break;
1935	}
1936
1937	return name;
1938}
1939
1940static const char *lm90_detect_on(struct i2c_client *client, int chip_id, int config1,
1941				  int convrate)
1942{
1943	int address = client->addr;
1944	const char *name = NULL;
1945
1946	switch (chip_id) {
1947	case 0xca:		/* NCT218 */
1948		if ((address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
1949		    convrate <= 0x0a)
1950			name = "nct218";
1951		break;
1952	default:
1953		break;
1954	}
1955	return name;
1956}
1957
1958static const char *lm90_detect_analog(struct i2c_client *client, bool common_address,
1959				      int chip_id, int config1, int convrate)
1960{
1961	int status = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
1962	int config2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CONFIG2);
1963	int man_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_MAN_ID);
1964	int chip_id2 = i2c_smbus_read_byte_data(client, ADT7481_REG_CHIP_ID);
1965	int address = client->addr;
1966	const char *name = NULL;
1967
1968	if (status < 0 || config2 < 0 || man_id2 < 0 || chip_id2 < 0)
1969		return NULL;
1970
1971	/*
1972	 * The following chips should be detected by this function. Known
1973	 * register values are listed. Registers 0x3d .. 0x3e are undocumented
1974	 * for most of the chips, yet appear to return a well defined value.
1975	 * Register 0xff is undocumented for some of the chips. Register 0x3f
1976	 * is undocumented for all chips, but also returns a well defined value.
1977	 * Values are as reported from real chips unless mentioned otherwise.
1978	 * The code below checks values for registers 0x3d, 0x3e, and 0xff,
1979	 * but not for register 0x3f.
1980	 *
1981	 * Chip			Register
1982	 *		3d	3e	3f	fe	ff	Notes
1983	 * ----------------------------------------------------------
1984	 * adm1020	00	00	00	41	39
1985	 * adm1021	00	00	00	41	03
1986	 * adm1021a	00	00	00	41	3c
1987	 * adm1023	00	00	00	41	3c	same as adm1021a
1988	 * adm1032	00	00	00	41	42
1989	 *
1990	 * adt7421	21	41	04	41	04
1991	 * adt7461	00	00	00	41	51
1992	 * adt7461a	61	41	05	41	57
1993	 * adt7481	81	41	02	41	62
1994	 * adt7482	-	-	-	41	65	datasheet
1995	 *		82	41	05	41	75	real chip
1996	 * adt7483	83	41	04	41	94
1997	 *
1998	 * nct72	61	41	07	41	55
1999	 * nct210	00	00	00	41	3f
2000	 * nct214	61	41	08	41	5a
2001	 * nct1008	-	-	-	41	57	datasheet rev. 3
2002	 *		61	41	06	41	54	real chip
2003	 *
2004	 * nvt210	-	-	-	41	-	datasheet
2005	 * nvt211	-	-	-	41	-	datasheet
2006	 */
2007	switch (chip_id) {
2008	case 0x00 ... 0x03:	/* ADM1021 */
2009	case 0x05 ... 0x0f:
2010		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2011		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2012			name = "adm1021";
2013		break;
2014	case 0x04:		/* ADT7421 (undocumented) */
2015		if (man_id2 == 0x41 && chip_id2 == 0x21 &&
2016		    (address == 0x4c || address == 0x4d) &&
2017		    (config1 & 0x0b) == 0x08 && convrate <= 0x0a)
2018			name = "adt7421";
2019		break;
2020	case 0x30 ... 0x38:	/* ADM1021A, ADM1023 */
2021	case 0x3a ... 0x3e:
2022		/*
2023		 * ADM1021A and compatible chips will be mis-detected as
2024		 * ADM1023. Chips labeled 'ADM1021A' and 'ADM1023' were both
2025		 * found to have a Chip ID of 0x3c.
2026		 * ADM1021A does not officially support low byte registers
2027		 * (0x12 .. 0x14), but a chip labeled ADM1021A does support it.
2028		 * Official support for the temperature offset high byte
2029		 * register (0x11) was added to revision F of the ADM1021A
2030		 * datasheet.
2031		 * It is currently unknown if there is a means to distinguish
2032		 * ADM1021A from ADM1023, and/or if revisions of ADM1021A exist
2033		 * which differ in functionality from ADM1023.
2034		 */
2035		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2036		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2037			name = "adm1023";
2038		break;
2039	case 0x39:		/* ADM1020 (undocumented) */
2040		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2041		    (address == 0x4c || address == 0x4d || address == 0x4e) &&
2042		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2043			name = "adm1020";
2044		break;
2045	case 0x3f:		/* NCT210 */
2046		if (man_id2 == 0x00 && chip_id2 == 0x00 && common_address &&
2047		    !(status & 0x03) && !(config1 & 0x3f) && !(convrate & 0xf8))
2048			name = "nct210";
2049		break;
2050	case 0x40 ... 0x4f:	/* ADM1032 */
2051		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2052		    (address == 0x4c || address == 0x4d) && !(config1 & 0x3f) &&
2053		    convrate <= 0x0a)
2054			name = "adm1032";
2055		break;
2056	case 0x51:	/* ADT7461 */
2057		if (man_id2 == 0x00 && chip_id2 == 0x00 &&
2058		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2059		    convrate <= 0x0a)
2060			name = "adt7461";
2061		break;
2062	case 0x54:	/* NCT1008 */
2063		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2064		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2065		    convrate <= 0x0a)
2066			name = "nct1008";
2067		break;
2068	case 0x55:	/* NCT72 */
2069		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2070		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2071		    convrate <= 0x0a)
2072			name = "nct72";
2073		break;
2074	case 0x57:	/* ADT7461A, NCT1008 (datasheet rev. 3) */
2075		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2076		    (address == 0x4c || address == 0x4d) && !(config1 & 0x1b) &&
2077		    convrate <= 0x0a)
2078			name = "adt7461a";
2079		break;
2080	case 0x5a:	/* NCT214 */
2081		if (man_id2 == 0x41 && chip_id2 == 0x61 &&
2082		    common_address && !(config1 & 0x1b) && convrate <= 0x0a)
2083			name = "nct214";
2084		break;
2085	case 0x62:	/* ADT7481, undocumented */
2086		if (man_id2 == 0x41 && chip_id2 == 0x81 &&
2087		    (address == 0x4b || address == 0x4c) && !(config1 & 0x10) &&
2088		    !(config2 & 0x7f) && (convrate & 0x0f) <= 0x0b) {
2089			name = "adt7481";
2090		}
2091		break;
2092	case 0x65:	/* ADT7482, datasheet */
2093	case 0x75:	/* ADT7482, real chip */
2094		if (man_id2 == 0x41 && chip_id2 == 0x82 &&
2095		    address == 0x4c && !(config1 & 0x10) && !(config2 & 0x7f) &&
2096		    convrate <= 0x0a)
2097			name = "adt7482";
2098		break;
2099	case 0x94:	/* ADT7483 */
2100		if (man_id2 == 0x41 && chip_id2 == 0x83 &&
2101		    common_address &&
2102		    ((address >= 0x18 && address <= 0x1a) ||
2103		     (address >= 0x29 && address <= 0x2b) ||
2104		     (address >= 0x4c && address <= 0x4e)) &&
2105		    !(config1 & 0x10) && !(config2 & 0x7f) && convrate <= 0x0a)
2106			name = "adt7483a";
2107		break;
2108	default:
2109		break;
2110	}
2111
2112	return name;
2113}
2114
2115static const char *lm90_detect_maxim(struct i2c_client *client, bool common_address,
2116				     int chip_id, int config1, int convrate)
2117{
2118	int man_id, emerg, emerg2, status2;
2119	int address = client->addr;
2120	const char *name = NULL;
2121
2122	switch (chip_id) {
2123	case 0x01:
2124		if (!common_address)
2125			break;
2126
2127		/*
2128		 * We read MAX6659_REG_REMOTE_EMERG twice, and re-read
2129		 * LM90_REG_MAN_ID in between. If MAX6659_REG_REMOTE_EMERG
2130		 * exists, both readings will reflect the same value. Otherwise,
2131		 * the readings will be different.
2132		 */
2133		emerg = i2c_smbus_read_byte_data(client,
2134						 MAX6659_REG_REMOTE_EMERG);
2135		man_id = i2c_smbus_read_byte_data(client,
2136						  LM90_REG_MAN_ID);
2137		emerg2 = i2c_smbus_read_byte_data(client,
2138						  MAX6659_REG_REMOTE_EMERG);
2139		status2 = i2c_smbus_read_byte_data(client,
2140						   MAX6696_REG_STATUS2);
2141		if (emerg < 0 || man_id < 0 || emerg2 < 0 || status2 < 0)
2142			return NULL;
2143
2144		/*
2145		 * Even though MAX6695 and MAX6696 do not have a chip ID
2146		 * register, reading it returns 0x01. Bit 4 of the config1
2147		 * register is unused and should return zero when read. Bit 0 of
2148		 * the status2 register is unused and should return zero when
2149		 * read.
2150		 *
2151		 * MAX6695 and MAX6696 have an additional set of temperature
2152		 * limit registers. We can detect those chips by checking if
2153		 * one of those registers exists.
2154		 */
2155		if (!(config1 & 0x10) && !(status2 & 0x01) && emerg == emerg2 &&
2156		    convrate <= 0x07)
2157			name = "max6696";
2158		/*
2159		 * The chip_id register of the MAX6680 and MAX6681 holds the
2160		 * revision of the chip. The lowest bit of the config1 register
2161		 * is unused and should return zero when read, so should the
2162		 * second to last bit of config1 (software reset). Register
2163		 * address 0x12 (LM90_REG_REMOTE_OFFSL) exists for this chip and
2164		 * should differ from emerg2, and emerg2 should match man_id
2165		 * since it does not exist.
2166		 */
2167		else if (!(config1 & 0x03) && convrate <= 0x07 &&
2168			 emerg2 == man_id && emerg2 != status2)
2169			name = "max6680";
2170		/*
2171		 * MAX1617A does not have any extended registers (register
2172		 * address 0x10 or higher) except for manufacturer and
2173		 * device ID registers. Unlike other chips of this series,
2174		 * unsupported registers were observed to return a fixed value
2175		 * of 0x01.
2176		 * Note: Multiple chips with different markings labeled as
2177		 * "MAX1617" (no "A") were observed to report manufacturer ID
2178		 * 0x4d and device ID 0x01. It is unknown if other variants of
2179		 * MAX1617/MAX617A with different behavior exist. The detection
2180		 * code below works for those chips.
2181		 */
2182		else if (!(config1 & 0x03f) && convrate <= 0x07 &&
2183			 emerg == 0x01 && emerg2 == 0x01 && status2 == 0x01)
2184			name = "max1617";
2185		break;
2186	case 0x08:
2187		/*
2188		 * The chip_id of the MAX6654 holds the revision of the chip.
2189		 * The lowest 3 bits of the config1 register are unused and
2190		 * should return zero when read.
2191		 */
2192		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2193			name = "max6654";
2194		break;
2195	case 0x09:
2196		/*
2197		 * The chip_id of the MAX6690 holds the revision of the chip.
2198		 * The lowest 3 bits of the config1 register are unused and
2199		 * should return zero when read.
2200		 * Note that MAX6654 and MAX6690 are practically the same chips.
2201		 * The only diference is the rated accuracy. Rev. 1 of the
2202		 * MAX6690 datasheet lists a chip ID of 0x08, and a chip labeled
2203		 * MAX6654 was observed to have a chip ID of 0x09.
2204		 */
2205		if (common_address && !(config1 & 0x07) && convrate <= 0x07)
2206			name = "max6690";
2207		break;
2208	case 0x4d:
2209		/*
2210		 * MAX6642, MAX6657, MAX6658 and MAX6659 do NOT have a chip_id
2211		 * register. Reading from that address will return the last
2212		 * read value, which in our case is those of the man_id
2213		 * register, or 0x4d.
2214		 * MAX6642 does not have a conversion rate register, nor low
2215		 * limit registers. Reading from those registers returns the
2216		 * last read value.
2217		 *
2218		 * For MAX6657, MAX6658 and MAX6659, the config1 register lacks
2219		 * a low nibble, so the value will be those of the previous
2220		 * read, so in our case again those of the man_id register.
2221		 * MAX6659 has a third set of upper temperature limit registers.
2222		 * Those registers also return values on MAX6657 and MAX6658,
2223		 * thus the only way to detect MAX6659 is by its address.
2224		 * For this reason it will be mis-detected as MAX6657 if its
2225		 * address is 0x4c.
2226		 */
2227		if (address >= 0x48 && address <= 0x4f && config1 == convrate &&
2228		    !(config1 & 0x0f)) {
2229			int regval;
2230
2231			/*
2232			 * We know that this is not a MAX6657/58/59 because its
2233			 * configuration register has the wrong value and it does
2234			 * not appear to have a conversion rate register.
2235			 */
2236
2237			/* re-read manufacturer ID to have a good baseline */
2238			if (i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID) != 0x4d)
2239				break;
2240
2241			/* check various non-existing registers */
2242			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != 0x4d ||
2243			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != 0x4d ||
2244			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != 0x4d)
2245				break;
2246
2247			/* check for unused status register bits */
2248			regval = i2c_smbus_read_byte_data(client, LM90_REG_STATUS);
2249			if (regval < 0 || (regval & 0x2b))
2250				break;
2251
2252			/* re-check unsupported registers */
2253			if (i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE) != regval ||
2254			    i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_LOW) != regval ||
2255			    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_LOWH) != regval)
2256				break;
2257
2258			name = "max6642";
2259		} else if ((address == 0x4c || address == 0x4d || address == 0x4e) &&
2260			   (config1 & 0x1f) == 0x0d && convrate <= 0x09) {
2261			if (address == 0x4c)
2262				name = "max6657";
2263			else
2264				name = "max6659";
2265		}
2266		break;
2267	case 0x59:
2268		/*
2269		 * The chip_id register of the MAX6646/6647/6649 holds the
2270		 * revision of the chip. The lowest 6 bits of the config1
2271		 * register are unused and should return zero when read.
2272		 * The I2C address of MAX6648/6692 is fixed at 0x4c.
2273		 * MAX6646 is at address 0x4d, MAX6647 is at address 0x4e,
2274		 * and MAX6649 is at address 0x4c. A slight difference between
2275		 * the two sets of chips is that the remote temperature register
2276		 * reports different values if the DXP pin is open or shorted.
2277		 * We can use that information to help distinguish between the
2278		 * chips. MAX6648 will be mis-detected as MAX6649 if the remote
2279		 * diode is connected, but there isn't really anything we can
2280		 * do about that.
2281		 */
2282		if (!(config1 & 0x3f) && convrate <= 0x07) {
2283			int temp;
2284
2285			switch (address) {
2286			case 0x4c:
2287				/*
2288				 * MAX6649 reports an external temperature
2289				 * value of 0xff if DXP is open or shorted.
2290				 * MAX6648 reports 0x80 in that case.
2291				 */
2292				temp = i2c_smbus_read_byte_data(client,
2293								LM90_REG_REMOTE_TEMPH);
2294				if (temp == 0x80)
2295					name = "max6648";
2296				else
2297					name = "max6649";
2298				break;
2299			case 0x4d:
2300				name = "max6646";
2301				break;
2302			case 0x4e:
2303				name = "max6647";
2304				break;
2305			default:
2306				break;
2307			}
2308		}
2309		break;
2310	default:
2311		break;
2312	}
2313
2314	return name;
2315}
2316
2317static const char *lm90_detect_nuvoton(struct i2c_client *client, int chip_id,
2318				       int config1, int convrate)
2319{
2320	int config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2321	int address = client->addr;
2322	const char *name = NULL;
2323
2324	if (config2 < 0)
2325		return NULL;
2326
2327	if (address == 0x4c && !(config1 & 0x2a) && !(config2 & 0xf8)) {
2328		if (chip_id == 0x01 && convrate <= 0x09) {
2329			/* W83L771W/G */
2330			name = "w83l771";
2331		} else if ((chip_id & 0xfe) == 0x10 && convrate <= 0x08) {
2332			/* W83L771AWG/ASG */
2333			name = "w83l771";
2334		}
2335	}
2336	return name;
2337}
2338
2339static const char *lm90_detect_nxp(struct i2c_client *client, bool common_address,
2340				   int chip_id, int config1, int convrate)
2341{
2342	int address = client->addr;
2343	const char *name = NULL;
2344	int config2;
2345
2346	switch (chip_id) {
2347	case 0x00:
2348		config2 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG2);
2349		if (config2 < 0)
2350			return NULL;
2351		if (address >= 0x48 && address <= 0x4f &&
2352		    !(config1 & 0x2a) && !(config2 & 0xfe) && convrate <= 0x09)
2353			name = "sa56004";
2354		break;
2355	case 0x80:
2356		if (common_address && !(config1 & 0x3f) && convrate <= 0x07)
2357			name = "ne1618";
2358		break;
2359	default:
2360		break;
2361	}
2362	return name;
2363}
2364
2365static const char *lm90_detect_gmt(struct i2c_client *client, int chip_id,
2366				   int config1, int convrate)
2367{
2368	int address = client->addr;
2369
2370	/*
2371	 * According to the datasheet, G781 is supposed to be at I2C Address
2372	 * 0x4c and have a chip ID of 0x01. G781-1 is supposed to be at I2C
2373	 * address 0x4d and have a chip ID of 0x03. However, when support
2374	 * for G781 was added, chips at 0x4c and 0x4d were found to have a
2375	 * chip ID of 0x01. A G781-1 at I2C address 0x4d was now found with
2376	 * chip ID 0x03.
2377	 * To avoid detection failures, accept chip ID 0x01 and 0x03 at both
2378	 * addresses.
2379	 * G784 reports manufacturer ID 0x47 and chip ID 0x01. A public
2380	 * datasheet is not available. Extensive testing suggests that
2381	 * the chip appears to be fully compatible with G781.
2382	 * Available register dumps show that G751 also reports manufacturer
2383	 * ID 0x47 and chip ID 0x01 even though that chip does not officially
2384	 * support those registers. This makes chip detection somewhat
2385	 * vulnerable. To improve detection quality, read the offset low byte
2386	 * and alert fault queue registers and verify that only expected bits
2387	 * are set.
2388	 */
2389	if ((chip_id == 0x01 || chip_id == 0x03) &&
2390	    (address == 0x4c || address == 0x4d) &&
2391	    !(config1 & 0x3f) && convrate <= 0x08) {
2392		int reg;
2393
2394		reg = i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_OFFSL);
2395		if (reg < 0 || reg & 0x1f)
2396			return NULL;
2397		reg = i2c_smbus_read_byte_data(client, TMP451_REG_CONALERT);
2398		if (reg < 0 || reg & 0xf1)
2399			return NULL;
2400
2401		return "g781";
2402	}
2403
2404	return NULL;
2405}
2406
2407static const char *lm90_detect_ti49(struct i2c_client *client, bool common_address,
2408				    int chip_id, int config1, int convrate)
2409{
2410	if (common_address && chip_id == 0x00 && !(config1 & 0x3f) && !(convrate & 0xf8)) {
2411		/* THMC10: Unsupported registers return 0xff */
2412		if (i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_TEMPL) == 0xff &&
2413		    i2c_smbus_read_byte_data(client, LM90_REG_REMOTE_CRIT) == 0xff)
2414			return "thmc10";
2415	}
2416	return NULL;
2417}
2418
2419static const char *lm90_detect_ti(struct i2c_client *client, int chip_id,
2420				  int config1, int convrate)
2421{
2422	int address = client->addr;
2423	const char *name = NULL;
2424
2425	if (chip_id == 0x00 && !(config1 & 0x1b) && convrate <= 0x09) {
2426		int local_ext, conalert, chen, dfc;
2427
2428		local_ext = i2c_smbus_read_byte_data(client,
2429						     TMP451_REG_LOCAL_TEMPL);
2430		conalert = i2c_smbus_read_byte_data(client,
2431						    TMP451_REG_CONALERT);
2432		chen = i2c_smbus_read_byte_data(client, TMP461_REG_CHEN);
2433		dfc = i2c_smbus_read_byte_data(client, TMP461_REG_DFC);
2434
2435		if (!(local_ext & 0x0f) && (conalert & 0xf1) == 0x01 &&
2436		    (chen & 0xfc) == 0x00 && (dfc & 0xfc) == 0x00) {
2437			if (address == 0x4c && !(chen & 0x03))
2438				name = "tmp451";
2439			else if (address >= 0x48 && address <= 0x4f)
2440				name = "tmp461";
2441		}
2442	}
2443
2444	return name;
2445}
2446
2447/* Return 0 if detection is successful, -ENODEV otherwise */
2448static int lm90_detect(struct i2c_client *client, struct i2c_board_info *info)
2449{
2450	struct i2c_adapter *adapter = client->adapter;
2451	int man_id, chip_id, config1, convrate, lhigh;
2452	const char *name = NULL;
2453	int address = client->addr;
2454	bool common_address =
2455			(address >= 0x18 && address <= 0x1a) ||
2456			(address >= 0x29 && address <= 0x2b) ||
2457			(address >= 0x4c && address <= 0x4e);
2458
2459	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2460		return -ENODEV;
2461
2462	/*
2463	 * Get well defined register value for chips with neither man_id nor
2464	 * chip_id registers.
2465	 */
2466	lhigh = i2c_smbus_read_byte_data(client, LM90_REG_LOCAL_HIGH);
2467
2468	/* detection and identification */
2469	man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2470	chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2471	config1 = i2c_smbus_read_byte_data(client, LM90_REG_CONFIG1);
2472	convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2473	if (man_id < 0 || chip_id < 0 || config1 < 0 || convrate < 0 || lhigh < 0)
2474		return -ENODEV;
2475
2476	/* Bail out immediately if all register report the same value */
2477	if (lhigh == man_id && lhigh == chip_id && lhigh == config1 && lhigh == convrate)
2478		return -ENODEV;
2479
2480	/*
2481	 * If reading man_id and chip_id both return the same value as lhigh,
2482	 * the chip may not support those registers and return the most recent read
2483	 * value. Check again with a different register and handle accordingly.
2484	 */
2485	if (man_id == lhigh && chip_id == lhigh) {
2486		convrate = i2c_smbus_read_byte_data(client, LM90_REG_CONVRATE);
2487		man_id = i2c_smbus_read_byte_data(client, LM90_REG_MAN_ID);
2488		chip_id = i2c_smbus_read_byte_data(client, LM90_REG_CHIP_ID);
2489		if (convrate < 0 || man_id < 0 || chip_id < 0)
2490			return -ENODEV;
2491		if (man_id == convrate && chip_id == convrate)
2492			man_id = -1;
2493	}
2494	switch (man_id) {
2495	case -1:	/* Chip does not support man_id / chip_id */
2496		if (common_address && !convrate && !(config1 & 0x7f))
2497			name = lm90_detect_lm84(client);
2498		break;
2499	case 0x01:	/* National Semiconductor */
2500		name = lm90_detect_national(client, chip_id, config1, convrate);
2501		break;
2502	case 0x1a:	/* ON */
2503		name = lm90_detect_on(client, chip_id, config1, convrate);
2504		break;
2505	case 0x23:	/* Genesys Logic */
2506		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2507			name = "gl523sm";
2508		break;
2509	case 0x41:	/* Analog Devices */
2510		name = lm90_detect_analog(client, common_address, chip_id, config1,
2511					  convrate);
2512		break;
2513	case 0x47:	/* GMT */
2514		name = lm90_detect_gmt(client, chip_id, config1, convrate);
2515		break;
2516	case 0x49:	/* TI */
2517		name = lm90_detect_ti49(client, common_address, chip_id, config1, convrate);
2518		break;
2519	case 0x4d:	/* Maxim Integrated */
2520		name = lm90_detect_maxim(client, common_address, chip_id,
2521					 config1, convrate);
2522		break;
2523	case 0x54:	/* ON MC1066, Microchip TC1068, TCM1617 (originally TelCom) */
2524		if (common_address && !(config1 & 0x3f) && !(convrate & 0xf8))
2525			name = "mc1066";
2526		break;
2527	case 0x55:	/* TI */
2528		name = lm90_detect_ti(client, chip_id, config1, convrate);
2529		break;
2530	case 0x5c:	/* Winbond/Nuvoton */
2531		name = lm90_detect_nuvoton(client, chip_id, config1, convrate);
2532		break;
2533	case 0xa1:	/*  NXP Semiconductor/Philips */
2534		name = lm90_detect_nxp(client, common_address, chip_id, config1, convrate);
2535		break;
2536	case 0xff:	/* MAX1617, G767, NE1617 */
2537		if (common_address && chip_id == 0xff && convrate < 8)
2538			name = lm90_detect_max1617(client, config1);
2539		break;
2540	default:
2541		break;
2542	}
2543
2544	if (!name) {	/* identification failed */
2545		dev_dbg(&adapter->dev,
2546			"Unsupported chip at 0x%02x (man_id=0x%02X, chip_id=0x%02X)\n",
2547			client->addr, man_id, chip_id);
2548		return -ENODEV;
2549	}
2550
2551	strscpy(info->type, name, I2C_NAME_SIZE);
2552
2553	return 0;
2554}
2555
2556static void lm90_restore_conf(void *_data)
2557{
2558	struct lm90_data *data = _data;
2559	struct i2c_client *client = data->client;
2560
2561	cancel_delayed_work_sync(&data->alert_work);
2562	cancel_work_sync(&data->report_work);
2563
2564	/* Restore initial configuration */
2565	if (data->flags & LM90_HAVE_CONVRATE)
2566		lm90_write_convrate(data, data->convrate_orig);
2567	lm90_write_reg(client, LM90_REG_CONFIG1, data->config_orig);
2568}
2569
2570static int lm90_init_client(struct i2c_client *client, struct lm90_data *data)
2571{
2572	struct device_node *np = client->dev.of_node;
2573	int config, convrate;
2574
2575	if (data->flags & LM90_HAVE_CONVRATE) {
2576		convrate = lm90_read_reg(client, LM90_REG_CONVRATE);
2577		if (convrate < 0)
2578			return convrate;
2579		data->convrate_orig = convrate;
2580		lm90_set_convrate(client, data, 500); /* 500ms; 2Hz conversion rate */
2581	} else {
2582		data->update_interval = 500;
2583	}
2584
2585	/*
2586	 * Start the conversions.
2587	 */
2588	config = lm90_read_reg(client, LM90_REG_CONFIG1);
2589	if (config < 0)
2590		return config;
2591	data->config_orig = config;
2592	data->config = config;
2593
2594	/* Check Temperature Range Select */
2595	if (data->flags & LM90_HAVE_EXTENDED_TEMP) {
2596		if (of_property_read_bool(np, "ti,extended-range-enable"))
2597			config |= 0x04;
2598		if (!(config & 0x04))
2599			data->flags &= ~LM90_HAVE_EXTENDED_TEMP;
2600	}
2601
2602	/*
2603	 * Put MAX6680/MAX8881 into extended resolution (bit 0x10,
2604	 * 0.125 degree resolution) and range (0x08, extend range
2605	 * to -64 degree) mode for the remote temperature sensor.
2606	 * Note that expeciments with an actual chip do not show a difference
2607	 * if bit 3 is set or not.
2608	 */
2609	if (data->kind == max6680)
2610		config |= 0x18;
2611
2612	/*
2613	 * Put MAX6654 into extended range (0x20, extend minimum range from
2614	 * 0 degrees to -64 degrees). Note that extended resolution is not
2615	 * possible on the MAX6654 unless conversion rate is set to 1 Hz or
2616	 * slower, which is intentionally not done by default.
2617	 */
2618	if (data->kind == max6654)
2619		config |= 0x20;
2620
2621	/*
2622	 * Select external channel 0 for devices with three sensors
2623	 */
2624	if (data->flags & LM90_HAVE_TEMP3)
2625		config &= ~0x08;
2626
2627	/*
2628	 * Interrupt is enabled by default on reset, but it may be disabled
2629	 * by bootloader, unmask it.
2630	 */
2631	if (client->irq)
2632		config &= ~0x80;
2633
2634	config &= 0xBF;	/* run */
2635	lm90_update_confreg(data, config);
2636
2637	return devm_add_action_or_reset(&client->dev, lm90_restore_conf, data);
2638}
2639
2640static bool lm90_is_tripped(struct i2c_client *client)
2641{
2642	struct lm90_data *data = i2c_get_clientdata(client);
2643	int ret;
2644
2645	ret = lm90_update_alarms(data, true);
2646	if (ret < 0)
2647		return false;
2648
2649	return !!data->current_alarms;
2650}
2651
2652static irqreturn_t lm90_irq_thread(int irq, void *dev_id)
2653{
2654	struct i2c_client *client = dev_id;
2655
2656	if (lm90_is_tripped(client))
2657		return IRQ_HANDLED;
2658	else
2659		return IRQ_NONE;
2660}
2661
2662static void lm90_remove_pec(void *dev)
2663{
2664	device_remove_file(dev, &dev_attr_pec);
2665}
2666
2667static int lm90_probe_channel_from_dt(struct i2c_client *client,
2668				      struct device_node *child,
2669				      struct lm90_data *data)
2670{
2671	u32 id;
2672	s32 val;
2673	int err;
2674	struct device *dev = &client->dev;
2675
2676	err = of_property_read_u32(child, "reg", &id);
2677	if (err) {
2678		dev_err(dev, "missing reg property of %pOFn\n", child);
2679		return err;
2680	}
2681
2682	if (id >= MAX_CHANNELS) {
2683		dev_err(dev, "invalid reg property value %d in %pOFn\n", id, child);
2684		return -EINVAL;
2685	}
2686
2687	err = of_property_read_string(child, "label", &data->channel_label[id]);
2688	if (err == -ENODATA || err == -EILSEQ) {
2689		dev_err(dev, "invalid label property in %pOFn\n", child);
2690		return err;
2691	}
2692
2693	if (data->channel_label[id])
2694		data->channel_config[id] |= HWMON_T_LABEL;
2695
2696	err = of_property_read_s32(child, "temperature-offset-millicelsius", &val);
2697	if (!err) {
2698		if (id == 0) {
2699			dev_err(dev, "temperature-offset-millicelsius can't be set for internal channel\n");
2700			return -EINVAL;
2701		}
2702
2703		err = lm90_set_temp_offset(data, lm90_temp_offset_index[id], id, val);
2704		if (err) {
2705			dev_err(dev, "can't set temperature offset %d for channel %d (%d)\n",
2706				val, id, err);
2707			return err;
2708		}
2709	}
2710
2711	return 0;
2712}
2713
2714static int lm90_parse_dt_channel_info(struct i2c_client *client,
2715				      struct lm90_data *data)
2716{
2717	int err;
2718	struct device_node *child;
2719	struct device *dev = &client->dev;
2720	const struct device_node *np = dev->of_node;
2721
2722	for_each_child_of_node(np, child) {
2723		if (strcmp(child->name, "channel"))
2724			continue;
2725
2726		err = lm90_probe_channel_from_dt(client, child, data);
2727		if (err) {
2728			of_node_put(child);
2729			return err;
2730		}
2731	}
2732
2733	return 0;
2734}
2735
2736static const struct hwmon_ops lm90_ops = {
2737	.is_visible = lm90_is_visible,
2738	.read = lm90_read,
2739	.read_string = lm90_read_string,
2740	.write = lm90_write,
2741};
2742
2743static int lm90_probe(struct i2c_client *client)
2744{
2745	struct device *dev = &client->dev;
2746	struct i2c_adapter *adapter = client->adapter;
2747	struct hwmon_channel_info *info;
2748	struct device *hwmon_dev;
2749	struct lm90_data *data;
2750	int err;
2751
2752	err = devm_regulator_get_enable(dev, "vcc");
2753	if (err)
2754		return dev_err_probe(dev, err, "Failed to enable regulator\n");
2755
2756	data = devm_kzalloc(dev, sizeof(struct lm90_data), GFP_KERNEL);
2757	if (!data)
2758		return -ENOMEM;
2759
2760	data->client = client;
2761	i2c_set_clientdata(client, data);
2762	mutex_init(&data->update_lock);
2763	INIT_DELAYED_WORK(&data->alert_work, lm90_alert_work);
2764	INIT_WORK(&data->report_work, lm90_report_alarms);
2765
2766	/* Set the device type */
2767	if (client->dev.of_node)
2768		data->kind = (enum chips)of_device_get_match_data(&client->dev);
2769	else
2770		data->kind = i2c_match_id(lm90_id, client)->driver_data;
2771
2772	/*
2773	 * Different devices have different alarm bits triggering the
2774	 * ALERT# output
2775	 */
2776	data->alert_alarms = lm90_params[data->kind].alert_alarms;
2777	data->resolution = lm90_params[data->kind].resolution ? : 11;
2778
2779	/* Set chip capabilities */
2780	data->flags = lm90_params[data->kind].flags;
2781
2782	if ((data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) &&
2783	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_PEC))
2784		data->flags &= ~(LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC);
2785
2786	if ((data->flags & LM90_HAVE_PARTIAL_PEC) &&
2787	    !i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE))
2788		data->flags &= ~LM90_HAVE_PARTIAL_PEC;
2789
2790	data->chip.ops = &lm90_ops;
2791	data->chip.info = data->info;
2792
2793	data->info[0] = &data->chip_info;
2794	info = &data->chip_info;
2795	info->type = hwmon_chip;
2796	info->config = data->chip_config;
2797
2798	data->chip_config[0] = HWMON_C_REGISTER_TZ;
2799	if (data->flags & LM90_HAVE_ALARMS)
2800		data->chip_config[0] |= HWMON_C_ALARMS;
2801	if (data->flags & LM90_HAVE_CONVRATE)
2802		data->chip_config[0] |= HWMON_C_UPDATE_INTERVAL;
2803	if (data->flags & LM90_HAVE_FAULTQUEUE)
2804		data->chip_config[0] |= HWMON_C_TEMP_SAMPLES;
2805	data->info[1] = &data->temp_info;
2806
2807	info = &data->temp_info;
2808	info->type = hwmon_temp;
2809	info->config = data->channel_config;
2810
2811	data->channel_config[0] = HWMON_T_INPUT | HWMON_T_MAX |
2812		HWMON_T_MAX_ALARM;
2813	data->channel_config[1] = HWMON_T_INPUT | HWMON_T_MAX |
2814		HWMON_T_MAX_ALARM | HWMON_T_FAULT;
2815
2816	if (data->flags & LM90_HAVE_LOW) {
2817		data->channel_config[0] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2818		data->channel_config[1] |= HWMON_T_MIN | HWMON_T_MIN_ALARM;
2819	}
2820
2821	if (data->flags & LM90_HAVE_CRIT) {
2822		data->channel_config[0] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2823		data->channel_config[1] |= HWMON_T_CRIT | HWMON_T_CRIT_ALARM | HWMON_T_CRIT_HYST;
2824	}
2825
2826	if (data->flags & LM90_HAVE_OFFSET)
2827		data->channel_config[1] |= HWMON_T_OFFSET;
2828
2829	if (data->flags & LM90_HAVE_EMERGENCY) {
2830		data->channel_config[0] |= HWMON_T_EMERGENCY |
2831			HWMON_T_EMERGENCY_HYST;
2832		data->channel_config[1] |= HWMON_T_EMERGENCY |
2833			HWMON_T_EMERGENCY_HYST;
2834	}
2835
2836	if (data->flags & LM90_HAVE_EMERGENCY_ALARM) {
2837		data->channel_config[0] |= HWMON_T_EMERGENCY_ALARM;
2838		data->channel_config[1] |= HWMON_T_EMERGENCY_ALARM;
2839	}
2840
2841	if (data->flags & LM90_HAVE_TEMP3) {
2842		data->channel_config[2] = HWMON_T_INPUT |
2843			HWMON_T_MIN | HWMON_T_MAX |
2844			HWMON_T_CRIT | HWMON_T_CRIT_HYST |
2845			HWMON_T_MIN_ALARM | HWMON_T_MAX_ALARM |
2846			HWMON_T_CRIT_ALARM | HWMON_T_FAULT;
2847		if (data->flags & LM90_HAVE_EMERGENCY) {
2848			data->channel_config[2] |= HWMON_T_EMERGENCY |
2849				HWMON_T_EMERGENCY_HYST;
2850		}
2851		if (data->flags & LM90_HAVE_EMERGENCY_ALARM)
2852			data->channel_config[2] |= HWMON_T_EMERGENCY_ALARM;
2853		if (data->flags & LM90_HAVE_OFFSET)
2854			data->channel_config[2] |= HWMON_T_OFFSET;
2855	}
2856
2857	data->faultqueue_mask = lm90_params[data->kind].faultqueue_mask;
2858	data->faultqueue_depth = lm90_params[data->kind].faultqueue_depth;
2859	data->reg_local_ext = lm90_params[data->kind].reg_local_ext;
2860	if (data->flags & LM90_HAVE_REMOTE_EXT)
2861		data->reg_remote_ext = LM90_REG_REMOTE_TEMPL;
2862	data->reg_status2 = lm90_params[data->kind].reg_status2;
2863
2864	/* Set maximum conversion rate */
2865	data->max_convrate = lm90_params[data->kind].max_convrate;
2866
2867	/* Parse device-tree channel information */
2868	if (client->dev.of_node) {
2869		err = lm90_parse_dt_channel_info(client, data);
2870		if (err)
2871			return err;
2872	}
2873
2874	/* Initialize the LM90 chip */
2875	err = lm90_init_client(client, data);
2876	if (err < 0) {
2877		dev_err(dev, "Failed to initialize device\n");
2878		return err;
2879	}
2880
2881	/*
2882	 * The 'pec' attribute is attached to the i2c device and thus created
2883	 * separately.
2884	 */
2885	if (data->flags & (LM90_HAVE_PEC | LM90_HAVE_PARTIAL_PEC)) {
2886		err = device_create_file(dev, &dev_attr_pec);
2887		if (err)
2888			return err;
2889		err = devm_add_action_or_reset(dev, lm90_remove_pec, dev);
2890		if (err)
2891			return err;
2892	}
2893
2894	hwmon_dev = devm_hwmon_device_register_with_info(dev, client->name,
2895							 data, &data->chip,
2896							 NULL);
2897	if (IS_ERR(hwmon_dev))
2898		return PTR_ERR(hwmon_dev);
2899
2900	data->hwmon_dev = hwmon_dev;
2901
2902	if (client->irq) {
2903		dev_dbg(dev, "IRQ: %d\n", client->irq);
2904		err = devm_request_threaded_irq(dev, client->irq,
2905						NULL, lm90_irq_thread,
2906						IRQF_ONESHOT, "lm90", client);
2907		if (err < 0) {
2908			dev_err(dev, "cannot request IRQ %d\n", client->irq);
2909			return err;
2910		}
2911	}
2912
2913	return 0;
2914}
2915
2916static void lm90_alert(struct i2c_client *client, enum i2c_alert_protocol type,
2917		       unsigned int flag)
2918{
2919	if (type != I2C_PROTOCOL_SMBUS_ALERT)
2920		return;
2921
2922	if (lm90_is_tripped(client)) {
2923		/*
2924		 * Disable ALERT# output, because these chips don't implement
2925		 * SMBus alert correctly; they should only hold the alert line
2926		 * low briefly.
2927		 */
2928		struct lm90_data *data = i2c_get_clientdata(client);
2929
2930		if ((data->flags & LM90_HAVE_BROKEN_ALERT) &&
2931		    (data->current_alarms & data->alert_alarms)) {
2932			if (!(data->config & 0x80)) {
2933				dev_dbg(&client->dev, "Disabling ALERT#\n");
2934				lm90_update_confreg(data, data->config | 0x80);
2935			}
2936			schedule_delayed_work(&data->alert_work,
2937				max_t(int, HZ, msecs_to_jiffies(data->update_interval)));
2938		}
2939	} else {
2940		dev_dbg(&client->dev, "Everything OK\n");
2941	}
2942}
2943
2944static int lm90_suspend(struct device *dev)
2945{
2946	struct lm90_data *data = dev_get_drvdata(dev);
2947	struct i2c_client *client = data->client;
2948
2949	if (client->irq)
2950		disable_irq(client->irq);
2951
2952	return 0;
2953}
2954
2955static int lm90_resume(struct device *dev)
2956{
2957	struct lm90_data *data = dev_get_drvdata(dev);
2958	struct i2c_client *client = data->client;
2959
2960	if (client->irq)
2961		enable_irq(client->irq);
2962
2963	return 0;
2964}
2965
2966static DEFINE_SIMPLE_DEV_PM_OPS(lm90_pm_ops, lm90_suspend, lm90_resume);
2967
2968static struct i2c_driver lm90_driver = {
2969	.class		= I2C_CLASS_HWMON,
2970	.driver = {
2971		.name	= "lm90",
2972		.of_match_table = of_match_ptr(lm90_of_match),
2973		.pm	= pm_sleep_ptr(&lm90_pm_ops),
2974	},
2975	.probe_new	= lm90_probe,
2976	.alert		= lm90_alert,
2977	.id_table	= lm90_id,
2978	.detect		= lm90_detect,
2979	.address_list	= normal_i2c,
2980};
2981
2982module_i2c_driver(lm90_driver);
2983
2984MODULE_AUTHOR("Jean Delvare <jdelvare@suse.de>");
2985MODULE_DESCRIPTION("LM90/ADM1032 driver");
2986MODULE_LICENSE("GPL");