Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (c) 2009, Microsoft Corporation.
  3 *
  4 * This program is free software; you can redistribute it and/or modify it
  5 * under the terms and conditions of the GNU General Public License,
  6 * version 2, as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope it will be useful, but WITHOUT
  9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 11 * more details.
 12 *
 13 * You should have received a copy of the GNU General Public License along with
 14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 15 * Place - Suite 330, Boston, MA 02111-1307 USA.
 16 *
 17 * Authors:
 18 *   Haiyang Zhang <haiyangz@microsoft.com>
 19 *   Hank Janssen  <hjanssen@microsoft.com>
 20 *
 21 */
 22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 23
 
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/slab.h>
 27#include <linux/vmalloc.h>
 28#include <linux/hyperv.h>
 29#include <linux/version.h>
 30#include <linux/interrupt.h>
 31#include <linux/clockchips.h>
 32#include <asm/hyperv.h>
 
 
 33#include <asm/mshyperv.h>
 34#include "hyperv_vmbus.h"
 35
 36/* The one and only */
 37struct hv_context hv_context = {
 38	.synic_initialized	= false,
 39	.hypercall_page		= NULL,
 40};
 41
 42#define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
 43#define HV_MAX_MAX_DELTA_TICKS 0xffffffff
 44#define HV_MIN_DELTA_TICKS 1
 45
 46/*
 47 * query_hypervisor_info - Get version info of the windows hypervisor
 48 */
 49unsigned int host_info_eax;
 50unsigned int host_info_ebx;
 51unsigned int host_info_ecx;
 52unsigned int host_info_edx;
 53
 54static int query_hypervisor_info(void)
 55{
 56	unsigned int eax;
 57	unsigned int ebx;
 58	unsigned int ecx;
 59	unsigned int edx;
 60	unsigned int max_leaf;
 61	unsigned int op;
 62
 63	/*
 64	* Its assumed that this is called after confirming that Viridian
 65	* is present. Query id and revision.
 66	*/
 67	eax = 0;
 68	ebx = 0;
 69	ecx = 0;
 70	edx = 0;
 71	op = HVCPUID_VENDOR_MAXFUNCTION;
 72	cpuid(op, &eax, &ebx, &ecx, &edx);
 73
 74	max_leaf = eax;
 75
 76	if (max_leaf >= HVCPUID_VERSION) {
 77		eax = 0;
 78		ebx = 0;
 79		ecx = 0;
 80		edx = 0;
 81		op = HVCPUID_VERSION;
 82		cpuid(op, &eax, &ebx, &ecx, &edx);
 83		host_info_eax = eax;
 84		host_info_ebx = ebx;
 85		host_info_ecx = ecx;
 86		host_info_edx = edx;
 87	}
 88	return max_leaf;
 89}
 90
 91/*
 92 * hv_do_hypercall- Invoke the specified hypercall
 93 */
 94u64 hv_do_hypercall(u64 control, void *input, void *output)
 95{
 96	u64 input_address = (input) ? virt_to_phys(input) : 0;
 97	u64 output_address = (output) ? virt_to_phys(output) : 0;
 98	void *hypercall_page = hv_context.hypercall_page;
 99#ifdef CONFIG_X86_64
100	u64 hv_status = 0;
101
102	if (!hypercall_page)
103		return (u64)ULLONG_MAX;
104
105	__asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
106	__asm__ __volatile__("call *%3" : "=a" (hv_status) :
107			     "c" (control), "d" (input_address),
108			     "m" (hypercall_page));
109
110	return hv_status;
111
112#else
113
114	u32 control_hi = control >> 32;
115	u32 control_lo = control & 0xFFFFFFFF;
116	u32 hv_status_hi = 1;
117	u32 hv_status_lo = 1;
118	u32 input_address_hi = input_address >> 32;
119	u32 input_address_lo = input_address & 0xFFFFFFFF;
120	u32 output_address_hi = output_address >> 32;
121	u32 output_address_lo = output_address & 0xFFFFFFFF;
122
123	if (!hypercall_page)
124		return (u64)ULLONG_MAX;
125
126	__asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
127			      "=a"(hv_status_lo) : "d" (control_hi),
128			      "a" (control_lo), "b" (input_address_hi),
129			      "c" (input_address_lo), "D"(output_address_hi),
130			      "S"(output_address_lo), "m" (hypercall_page));
131
132	return hv_status_lo | ((u64)hv_status_hi << 32);
133#endif /* !x86_64 */
134}
135EXPORT_SYMBOL_GPL(hv_do_hypercall);
136
137#ifdef CONFIG_X86_64
138static cycle_t read_hv_clock_tsc(struct clocksource *arg)
139{
140	cycle_t current_tick;
141	struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
142
143	if (tsc_pg->tsc_sequence != 0) {
144		/*
145		 * Use the tsc page to compute the value.
146		 */
147
148		while (1) {
149			cycle_t tmp;
150			u32 sequence = tsc_pg->tsc_sequence;
151			u64 cur_tsc;
152			u64 scale = tsc_pg->tsc_scale;
153			s64 offset = tsc_pg->tsc_offset;
154
155			rdtscll(cur_tsc);
156			/* current_tick = ((cur_tsc *scale) >> 64) + offset */
157			asm("mulq %3"
158				: "=d" (current_tick), "=a" (tmp)
159				: "a" (cur_tsc), "r" (scale));
160
161			current_tick += offset;
162			if (tsc_pg->tsc_sequence == sequence)
163				return current_tick;
164
165			if (tsc_pg->tsc_sequence != 0)
166				continue;
167			/*
168			 * Fallback using MSR method.
169			 */
170			break;
171		}
172	}
173	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
174	return current_tick;
175}
176
177static struct clocksource hyperv_cs_tsc = {
178		.name           = "hyperv_clocksource_tsc_page",
179		.rating         = 425,
180		.read           = read_hv_clock_tsc,
181		.mask           = CLOCKSOURCE_MASK(64),
182		.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
183};
184#endif
185
186
187/*
188 * hv_init - Main initialization routine.
189 *
190 * This routine must be called before any other routines in here are called
191 */
192int hv_init(void)
193{
194	int max_leaf;
195	union hv_x64_msr_hypercall_contents hypercall_msr;
196	void *virtaddr = NULL;
197
198	memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
199	memset(hv_context.synic_message_page, 0,
200	       sizeof(void *) * NR_CPUS);
201	memset(hv_context.post_msg_page, 0,
202	       sizeof(void *) * NR_CPUS);
203	memset(hv_context.vp_index, 0,
204	       sizeof(int) * NR_CPUS);
205	memset(hv_context.event_dpc, 0,
206	       sizeof(void *) * NR_CPUS);
207	memset(hv_context.msg_dpc, 0,
208	       sizeof(void *) * NR_CPUS);
209	memset(hv_context.clk_evt, 0,
210	       sizeof(void *) * NR_CPUS);
211
212	max_leaf = query_hypervisor_info();
213
214	/*
215	 * Write our OS ID.
216	 */
217	hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
218	wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
219
220	/* See if the hypercall page is already set */
221	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
222
223	virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
224
225	if (!virtaddr)
226		goto cleanup;
227
228	hypercall_msr.enable = 1;
229
230	hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
231	wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
232
233	/* Confirm that hypercall page did get setup. */
234	hypercall_msr.as_uint64 = 0;
235	rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
236
237	if (!hypercall_msr.enable)
238		goto cleanup;
239
240	hv_context.hypercall_page = virtaddr;
241
242#ifdef CONFIG_X86_64
243	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
244		union hv_x64_msr_hypercall_contents tsc_msr;
245		void *va_tsc;
246
247		va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
248		if (!va_tsc)
249			goto cleanup;
250		hv_context.tsc_page = va_tsc;
251
252		rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
253
254		tsc_msr.enable = 1;
255		tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
256
257		wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
258		clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
259	}
260#endif
261	return 0;
262
263cleanup:
264	if (virtaddr) {
265		if (hypercall_msr.enable) {
266			hypercall_msr.as_uint64 = 0;
267			wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
268		}
269
270		vfree(virtaddr);
271	}
272
273	return -ENOTSUPP;
274}
275
276/*
277 * hv_cleanup - Cleanup routine.
278 *
279 * This routine is called normally during driver unloading or exiting.
 
 
 
 
280 */
281void hv_cleanup(void)
282{
283	union hv_x64_msr_hypercall_contents hypercall_msr;
284
285	/* Reset our OS id */
286	wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
 
287
288	if (hv_context.hypercall_page) {
289		hypercall_msr.as_uint64 = 0;
290		wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
291		vfree(hv_context.hypercall_page);
292		hv_context.hypercall_page = NULL;
293	}
294
295#ifdef CONFIG_X86_64
296	/*
297	 * Cleanup the TSC page based CS.
298	 */
299	if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
300		/*
301		 * Crash can happen in an interrupt context and unregistering
302		 * a clocksource is impossible and redundant in this case.
303		 */
304		if (!oops_in_progress) {
305			clocksource_change_rating(&hyperv_cs_tsc, 10);
306			clocksource_unregister(&hyperv_cs_tsc);
307		}
308
309		hypercall_msr.as_uint64 = 0;
310		wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
311		vfree(hv_context.tsc_page);
312		hv_context.tsc_page = NULL;
313	}
314#endif
315}
316
317/*
318 * hv_post_message - Post a message using the hypervisor message IPC.
319 *
320 * This involves a hypercall.
321 */
322int hv_post_message(union hv_connection_id connection_id,
323		  enum hv_message_type message_type,
324		  void *payload, size_t payload_size)
325{
326
327	struct hv_input_post_message *aligned_msg;
 
328	u64 status;
329
330	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
331		return -EMSGSIZE;
332
333	aligned_msg = (struct hv_input_post_message *)
334			hv_context.post_msg_page[get_cpu()];
335
336	aligned_msg->connectionid = connection_id;
337	aligned_msg->reserved = 0;
338	aligned_msg->message_type = message_type;
339	aligned_msg->payload_size = payload_size;
340	memcpy((void *)aligned_msg->payload, payload, payload_size);
341
342	status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
343
344	put_cpu();
345	return status & 0xFFFF;
346}
347
348static int hv_ce_set_next_event(unsigned long delta,
349				struct clock_event_device *evt)
350{
351	cycle_t current_tick;
352
353	WARN_ON(!clockevent_state_oneshot(evt));
354
355	rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
356	current_tick += delta;
357	wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
358	return 0;
359}
360
361static int hv_ce_shutdown(struct clock_event_device *evt)
362{
363	wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
364	wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
365
366	return 0;
367}
368
369static int hv_ce_set_oneshot(struct clock_event_device *evt)
370{
371	union hv_timer_config timer_cfg;
372
373	timer_cfg.enable = 1;
374	timer_cfg.auto_enable = 1;
375	timer_cfg.sintx = VMBUS_MESSAGE_SINT;
376	wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
377
378	return 0;
379}
380
381static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
382{
383	dev->name = "Hyper-V clockevent";
384	dev->features = CLOCK_EVT_FEAT_ONESHOT;
385	dev->cpumask = cpumask_of(cpu);
386	dev->rating = 1000;
387	/*
388	 * Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
389	 * result in clockevents_config_and_register() taking additional
390	 * references to the hv_vmbus module making it impossible to unload.
391	 */
 
392
393	dev->set_state_shutdown = hv_ce_shutdown;
394	dev->set_state_oneshot = hv_ce_set_oneshot;
395	dev->set_next_event = hv_ce_set_next_event;
396}
397
398
399int hv_synic_alloc(void)
400{
401	size_t size = sizeof(struct tasklet_struct);
402	size_t ced_size = sizeof(struct clock_event_device);
403	int cpu;
 
 
 
 
 
 
 
 
 
 
 
404
405	hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
406					 GFP_ATOMIC);
407	if (hv_context.hv_numa_map == NULL) {
408		pr_err("Unable to allocate NUMA map\n");
409		goto err;
410	}
411
412	for_each_online_cpu(cpu) {
413		hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
414		if (hv_context.event_dpc[cpu] == NULL) {
415			pr_err("Unable to allocate event dpc\n");
416			goto err;
417		}
418		tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
419
420		hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
421		if (hv_context.msg_dpc[cpu] == NULL) {
422			pr_err("Unable to allocate event dpc\n");
423			goto err;
424		}
425		tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu);
426
427		hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
428		if (hv_context.clk_evt[cpu] == NULL) {
429			pr_err("Unable to allocate clock event device\n");
430			goto err;
431		}
432
433		hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
434
435		hv_context.synic_message_page[cpu] =
436			(void *)get_zeroed_page(GFP_ATOMIC);
437
438		if (hv_context.synic_message_page[cpu] == NULL) {
439			pr_err("Unable to allocate SYNIC message page\n");
440			goto err;
441		}
442
443		hv_context.synic_event_page[cpu] =
444			(void *)get_zeroed_page(GFP_ATOMIC);
445
446		if (hv_context.synic_event_page[cpu] == NULL) {
447			pr_err("Unable to allocate SYNIC event page\n");
448			goto err;
 
 
 
 
 
 
 
449		}
450
451		hv_context.post_msg_page[cpu] =
452			(void *)get_zeroed_page(GFP_ATOMIC);
453
454		if (hv_context.post_msg_page[cpu] == NULL) {
455			pr_err("Unable to allocate post msg page\n");
456			goto err;
457		}
458	}
459
460	return 0;
461err:
 
 
 
 
462	return -ENOMEM;
463}
464
465static void hv_synic_free_cpu(int cpu)
466{
467	kfree(hv_context.event_dpc[cpu]);
468	kfree(hv_context.msg_dpc[cpu]);
469	kfree(hv_context.clk_evt[cpu]);
470	if (hv_context.synic_event_page[cpu])
471		free_page((unsigned long)hv_context.synic_event_page[cpu]);
472	if (hv_context.synic_message_page[cpu])
473		free_page((unsigned long)hv_context.synic_message_page[cpu]);
474	if (hv_context.post_msg_page[cpu])
475		free_page((unsigned long)hv_context.post_msg_page[cpu]);
476}
477
478void hv_synic_free(void)
479{
480	int cpu;
481
 
 
 
 
 
 
 
 
 
482	kfree(hv_context.hv_numa_map);
483	for_each_online_cpu(cpu)
484		hv_synic_free_cpu(cpu);
485}
486
487/*
488 * hv_synic_init - Initialize the Synthethic Interrupt Controller.
489 *
490 * If it is already initialized by another entity (ie x2v shim), we need to
491 * retrieve the initialized message and event pages.  Otherwise, we create and
492 * initialize the message and event pages.
493 */
494void hv_synic_init(void *arg)
495{
496	u64 version;
 
497	union hv_synic_simp simp;
498	union hv_synic_siefp siefp;
499	union hv_synic_sint shared_sint;
500	union hv_synic_scontrol sctrl;
501	u64 vp_index;
502
503	int cpu = smp_processor_id();
504
505	if (!hv_context.hypercall_page)
506		return;
507
508	/* Check the version */
509	rdmsrl(HV_X64_MSR_SVERSION, version);
510
511	/* Setup the Synic's message page */
512	rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
513	simp.simp_enabled = 1;
514	simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
515		>> PAGE_SHIFT;
516
517	wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
 
 
 
 
 
 
 
 
 
 
 
518
519	/* Setup the Synic's event page */
520	rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
521	siefp.siefp_enabled = 1;
522	siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
523		>> PAGE_SHIFT;
524
525	wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
 
 
 
 
 
 
 
 
 
 
 
 
526
527	/* Setup the shared SINT. */
528	rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
 
 
 
529
530	shared_sint.as_uint64 = 0;
531	shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
532	shared_sint.masked = false;
533	shared_sint.auto_eoi = true;
534
535	wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
536
537	/* Enable the global synic bit */
538	rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
539	sctrl.enable = 1;
540
541	wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
542
543	hv_context.synic_initialized = true;
544
545	/*
546	 * Setup the mapping between Hyper-V's notion
547	 * of cpuid and Linux' notion of cpuid.
548	 * This array will be indexed using Linux cpuid.
549	 */
550	rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
551	hv_context.vp_index[cpu] = (u32)vp_index;
 
 
 
 
 
 
552
553	INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
 
 
554
555	/*
556	 * Register the per-cpu clockevent source.
557	 */
558	if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
559		clockevents_config_and_register(hv_context.clk_evt[cpu],
560						HV_TIMER_FREQUENCY,
561						HV_MIN_DELTA_TICKS,
562						HV_MAX_MAX_DELTA_TICKS);
563	return;
564}
565
566/*
567 * hv_synic_clockevents_cleanup - Cleanup clockevent devices
568 */
569void hv_synic_clockevents_cleanup(void)
570{
571	int cpu;
572
573	if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
574		return;
575
576	for_each_online_cpu(cpu)
577		clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
578}
579
580/*
581 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
582 */
583void hv_synic_cleanup(void *arg)
584{
 
 
585	union hv_synic_sint shared_sint;
586	union hv_synic_simp simp;
587	union hv_synic_siefp siefp;
588	union hv_synic_scontrol sctrl;
589	int cpu = smp_processor_id();
590
591	if (!hv_context.synic_initialized)
592		return;
593
594	/* Turn off clockevent device */
595	if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
596		hv_ce_shutdown(hv_context.clk_evt[cpu]);
597
598	rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
599
600	shared_sint.masked = 1;
601
602	/* Need to correctly cleanup in the case of SMP!!! */
603	/* Disable the interrupt */
604	wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
 
605
606	rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
 
 
 
 
 
 
607	simp.simp_enabled = 0;
608	simp.base_simp_gpa = 0;
 
 
 
609
610	wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
611
612	rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
613	siefp.siefp_enabled = 0;
614	siefp.base_siefp_gpa = 0;
615
616	wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
 
 
 
 
 
617
618	/* Disable the global synic bit */
619	rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
620	sctrl.enable = 0;
621	wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (c) 2009, Microsoft Corporation.
  4 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 * Authors:
  6 *   Haiyang Zhang <haiyangz@microsoft.com>
  7 *   Hank Janssen  <hjanssen@microsoft.com>
 
  8 */
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/io.h>
 12#include <linux/kernel.h>
 13#include <linux/mm.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/hyperv.h>
 17#include <linux/random.h>
 
 18#include <linux/clockchips.h>
 19#include <linux/delay.h>
 20#include <linux/interrupt.h>
 21#include <clocksource/hyperv_timer.h>
 22#include <asm/mshyperv.h>
 23#include "hyperv_vmbus.h"
 24
 25/* The one and only */
 26struct hv_context hv_context;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 27
 28/*
 29 * hv_init - Main initialization routine.
 30 *
 31 * This routine must be called before any other routines in here are called
 32 */
 33int hv_init(void)
 34{
 35	hv_context.cpu_context = alloc_percpu(struct hv_per_cpu_context);
 36	if (!hv_context.cpu_context)
 37		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 38	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 39}
 40
 41/*
 42 * Functions for allocating and freeing memory with size and
 43 * alignment HV_HYP_PAGE_SIZE. These functions are needed because
 44 * the guest page size may not be the same as the Hyper-V page
 45 * size. We depend upon kmalloc() aligning power-of-two size
 46 * allocations to the allocation size boundary, so that the
 47 * allocated memory appears to Hyper-V as a page of the size
 48 * it expects.
 49 */
 
 
 
 50
 51void *hv_alloc_hyperv_page(void)
 52{
 53	BUILD_BUG_ON(PAGE_SIZE <  HV_HYP_PAGE_SIZE);
 54
 55	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
 56		return (void *)__get_free_page(GFP_KERNEL);
 57	else
 58		return kmalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
 59}
 
 60
 61void *hv_alloc_hyperv_zeroed_page(void)
 62{
 63	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
 64		return (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
 65	else
 66		return kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
 67}
 
 
 
 
 
 
 68
 69void hv_free_hyperv_page(unsigned long addr)
 70{
 71	if (PAGE_SIZE == HV_HYP_PAGE_SIZE)
 72		free_page(addr);
 73	else
 74		kfree((void *)addr);
 75}
 76
 77/*
 78 * hv_post_message - Post a message using the hypervisor message IPC.
 79 *
 80 * This involves a hypercall.
 81 */
 82int hv_post_message(union hv_connection_id connection_id,
 83		  enum hv_message_type message_type,
 84		  void *payload, size_t payload_size)
 85{
 
 86	struct hv_input_post_message *aligned_msg;
 87	struct hv_per_cpu_context *hv_cpu;
 88	u64 status;
 89
 90	if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
 91		return -EMSGSIZE;
 92
 93	hv_cpu = get_cpu_ptr(hv_context.cpu_context);
 94	aligned_msg = hv_cpu->post_msg_page;
 
 95	aligned_msg->connectionid = connection_id;
 96	aligned_msg->reserved = 0;
 97	aligned_msg->message_type = message_type;
 98	aligned_msg->payload_size = payload_size;
 99	memcpy((void *)aligned_msg->payload, payload, payload_size);
100
101	if (hv_isolation_type_snp())
102		status = hv_ghcb_hypercall(HVCALL_POST_MESSAGE,
103				(void *)aligned_msg, NULL,
104				sizeof(*aligned_msg));
105	else
106		status = hv_do_hypercall(HVCALL_POST_MESSAGE,
107				aligned_msg, NULL);
108
109	/* Preemption must remain disabled until after the hypercall
110	 * so some other thread can't get scheduled onto this cpu and
111	 * corrupt the per-cpu post_msg_page
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112	 */
113	put_cpu_ptr(hv_cpu);
114
115	return hv_result(status);
 
 
116}
117
 
118int hv_synic_alloc(void)
119{
 
 
120	int cpu;
121	struct hv_per_cpu_context *hv_cpu;
122
123	/*
124	 * First, zero all per-cpu memory areas so hv_synic_free() can
125	 * detect what memory has been allocated and cleanup properly
126	 * after any failures.
127	 */
128	for_each_present_cpu(cpu) {
129		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
130		memset(hv_cpu, 0, sizeof(*hv_cpu));
131	}
132
133	hv_context.hv_numa_map = kcalloc(nr_node_ids, sizeof(struct cpumask),
134					 GFP_KERNEL);
135	if (hv_context.hv_numa_map == NULL) {
136		pr_err("Unable to allocate NUMA map\n");
137		goto err;
138	}
139
140	for_each_present_cpu(cpu) {
141		hv_cpu = per_cpu_ptr(hv_context.cpu_context, cpu);
 
 
 
 
 
142
143		tasklet_init(&hv_cpu->msg_dpc,
144			     vmbus_on_msg_dpc, (unsigned long) hv_cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
146		/*
147		 * Synic message and event pages are allocated by paravisor.
148		 * Skip these pages allocation here.
149		 */
150		if (!hv_isolation_type_snp()) {
151			hv_cpu->synic_message_page =
152				(void *)get_zeroed_page(GFP_ATOMIC);
153			if (hv_cpu->synic_message_page == NULL) {
154				pr_err("Unable to allocate SYNIC message page\n");
155				goto err;
156			}
157
158			hv_cpu->synic_event_page =
159				(void *)get_zeroed_page(GFP_ATOMIC);
160			if (hv_cpu->synic_event_page == NULL) {
161				pr_err("Unable to allocate SYNIC event page\n");
162				goto err;
163			}
164		}
165
166		hv_cpu->post_msg_page = (void *)get_zeroed_page(GFP_ATOMIC);
167		if (hv_cpu->post_msg_page == NULL) {
 
 
168			pr_err("Unable to allocate post msg page\n");
169			goto err;
170		}
171	}
172
173	return 0;
174err:
175	/*
176	 * Any memory allocations that succeeded will be freed when
177	 * the caller cleans up by calling hv_synic_free()
178	 */
179	return -ENOMEM;
180}
181
 
 
 
 
 
 
 
 
 
 
 
 
182
183void hv_synic_free(void)
184{
185	int cpu;
186
187	for_each_present_cpu(cpu) {
188		struct hv_per_cpu_context *hv_cpu
189			= per_cpu_ptr(hv_context.cpu_context, cpu);
190
191		free_page((unsigned long)hv_cpu->synic_event_page);
192		free_page((unsigned long)hv_cpu->synic_message_page);
193		free_page((unsigned long)hv_cpu->post_msg_page);
194	}
195
196	kfree(hv_context.hv_numa_map);
 
 
197}
198
199/*
200 * hv_synic_init - Initialize the Synthetic Interrupt Controller.
201 *
202 * If it is already initialized by another entity (ie x2v shim), we need to
203 * retrieve the initialized message and event pages.  Otherwise, we create and
204 * initialize the message and event pages.
205 */
206void hv_synic_enable_regs(unsigned int cpu)
207{
208	struct hv_per_cpu_context *hv_cpu
209		= per_cpu_ptr(hv_context.cpu_context, cpu);
210	union hv_synic_simp simp;
211	union hv_synic_siefp siefp;
212	union hv_synic_sint shared_sint;
213	union hv_synic_scontrol sctrl;
 
 
 
 
 
 
 
 
 
214
215	/* Setup the Synic's message page */
216	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
217	simp.simp_enabled = 1;
 
 
218
219	if (hv_isolation_type_snp()) {
220		hv_cpu->synic_message_page
221			= memremap(simp.base_simp_gpa << HV_HYP_PAGE_SHIFT,
222				   HV_HYP_PAGE_SIZE, MEMREMAP_WB);
223		if (!hv_cpu->synic_message_page)
224			pr_err("Fail to map syinc message page.\n");
225	} else {
226		simp.base_simp_gpa = virt_to_phys(hv_cpu->synic_message_page)
227			>> HV_HYP_PAGE_SHIFT;
228	}
229
230	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
231
232	/* Setup the Synic's event page */
233	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
234	siefp.siefp_enabled = 1;
 
 
235
236	if (hv_isolation_type_snp()) {
237		hv_cpu->synic_event_page =
238			memremap(siefp.base_siefp_gpa << HV_HYP_PAGE_SHIFT,
239				 HV_HYP_PAGE_SIZE, MEMREMAP_WB);
240
241		if (!hv_cpu->synic_event_page)
242			pr_err("Fail to map syinc event page.\n");
243	} else {
244		siefp.base_siefp_gpa = virt_to_phys(hv_cpu->synic_event_page)
245			>> HV_HYP_PAGE_SHIFT;
246	}
247
248	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
249
250	/* Setup the shared SINT. */
251	if (vmbus_irq != -1)
252		enable_percpu_irq(vmbus_irq, 0);
253	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
254					VMBUS_MESSAGE_SINT);
255
256	shared_sint.vector = vmbus_interrupt;
 
257	shared_sint.masked = false;
 
 
 
 
 
 
 
 
 
 
 
258
259	/*
260	 * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
261	 * it doesn't provide a recommendation flag and AEOI must be disabled.
 
262	 */
263#ifdef HV_DEPRECATING_AEOI_RECOMMENDED
264	shared_sint.auto_eoi =
265			!(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
266#else
267	shared_sint.auto_eoi = 0;
268#endif
269	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
270				shared_sint.as_uint64);
271
272	/* Enable the global synic bit */
273	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
274	sctrl.enable = 1;
275
276	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
 
 
 
 
 
 
 
 
277}
278
279int hv_synic_init(unsigned int cpu)
 
 
 
280{
281	hv_synic_enable_regs(cpu);
282
283	hv_stimer_legacy_init(cpu, VMBUS_MESSAGE_SINT);
 
284
285	return 0;
 
286}
287
288/*
289 * hv_synic_cleanup - Cleanup routine for hv_synic_init().
290 */
291void hv_synic_disable_regs(unsigned int cpu)
292{
293	struct hv_per_cpu_context *hv_cpu
294		= per_cpu_ptr(hv_context.cpu_context, cpu);
295	union hv_synic_sint shared_sint;
296	union hv_synic_simp simp;
297	union hv_synic_siefp siefp;
298	union hv_synic_scontrol sctrl;
 
299
300	shared_sint.as_uint64 = hv_get_register(HV_REGISTER_SINT0 +
301					VMBUS_MESSAGE_SINT);
 
 
 
 
 
 
302
303	shared_sint.masked = 1;
304
305	/* Need to correctly cleanup in the case of SMP!!! */
306	/* Disable the interrupt */
307	hv_set_register(HV_REGISTER_SINT0 + VMBUS_MESSAGE_SINT,
308				shared_sint.as_uint64);
309
310	simp.as_uint64 = hv_get_register(HV_REGISTER_SIMP);
311	/*
312	 * In Isolation VM, sim and sief pages are allocated by
313	 * paravisor. These pages also will be used by kdump
314	 * kernel. So just reset enable bit here and keep page
315	 * addresses.
316	 */
317	simp.simp_enabled = 0;
318	if (hv_isolation_type_snp())
319		memunmap(hv_cpu->synic_message_page);
320	else
321		simp.base_simp_gpa = 0;
322
323	hv_set_register(HV_REGISTER_SIMP, simp.as_uint64);
324
325	siefp.as_uint64 = hv_get_register(HV_REGISTER_SIEFP);
326	siefp.siefp_enabled = 0;
 
327
328	if (hv_isolation_type_snp())
329		memunmap(hv_cpu->synic_event_page);
330	else
331		siefp.base_siefp_gpa = 0;
332
333	hv_set_register(HV_REGISTER_SIEFP, siefp.as_uint64);
334
335	/* Disable the global synic bit */
336	sctrl.as_uint64 = hv_get_register(HV_REGISTER_SCONTROL);
337	sctrl.enable = 0;
338	hv_set_register(HV_REGISTER_SCONTROL, sctrl.as_uint64);
339
340	if (vmbus_irq != -1)
341		disable_percpu_irq(vmbus_irq);
342}
343
344#define HV_MAX_TRIES 3
345/*
346 * Scan the event flags page of 'this' CPU looking for any bit that is set.  If we find one
347 * bit set, then wait for a few milliseconds.  Repeat these steps for a maximum of 3 times.
348 * Return 'true', if there is still any set bit after this operation; 'false', otherwise.
349 *
350 * If a bit is set, that means there is a pending channel interrupt.  The expectation is
351 * that the normal interrupt handling mechanism will find and process the channel interrupt
352 * "very soon", and in the process clear the bit.
353 */
354static bool hv_synic_event_pending(void)
355{
356	struct hv_per_cpu_context *hv_cpu = this_cpu_ptr(hv_context.cpu_context);
357	union hv_synic_event_flags *event =
358		(union hv_synic_event_flags *)hv_cpu->synic_event_page + VMBUS_MESSAGE_SINT;
359	unsigned long *recv_int_page = event->flags; /* assumes VMBus version >= VERSION_WIN8 */
360	bool pending;
361	u32 relid;
362	int tries = 0;
363
364retry:
365	pending = false;
366	for_each_set_bit(relid, recv_int_page, HV_EVENT_FLAGS_COUNT) {
367		/* Special case - VMBus channel protocol messages */
368		if (relid == 0)
369			continue;
370		pending = true;
371		break;
372	}
373	if (pending && tries++ < HV_MAX_TRIES) {
374		usleep_range(10000, 20000);
375		goto retry;
376	}
377	return pending;
378}
379
380int hv_synic_cleanup(unsigned int cpu)
381{
382	struct vmbus_channel *channel, *sc;
383	bool channel_found = false;
384
385	if (vmbus_connection.conn_state != CONNECTED)
386		goto always_cleanup;
387
388	/*
389	 * Hyper-V does not provide a way to change the connect CPU once
390	 * it is set; we must prevent the connect CPU from going offline
391	 * while the VM is running normally. But in the panic or kexec()
392	 * path where the vmbus is already disconnected, the CPU must be
393	 * allowed to shut down.
394	 */
395	if (cpu == VMBUS_CONNECT_CPU)
396		return -EBUSY;
397
398	/*
399	 * Search for channels which are bound to the CPU we're about to
400	 * cleanup.  In case we find one and vmbus is still connected, we
401	 * fail; this will effectively prevent CPU offlining.
402	 *
403	 * TODO: Re-bind the channels to different CPUs.
404	 */
405	mutex_lock(&vmbus_connection.channel_mutex);
406	list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
407		if (channel->target_cpu == cpu) {
408			channel_found = true;
409			break;
410		}
411		list_for_each_entry(sc, &channel->sc_list, sc_list) {
412			if (sc->target_cpu == cpu) {
413				channel_found = true;
414				break;
415			}
416		}
417		if (channel_found)
418			break;
419	}
420	mutex_unlock(&vmbus_connection.channel_mutex);
421
422	if (channel_found)
423		return -EBUSY;
424
425	/*
426	 * channel_found == false means that any channels that were previously
427	 * assigned to the CPU have been reassigned elsewhere with a call of
428	 * vmbus_send_modifychannel().  Scan the event flags page looking for
429	 * bits that are set and waiting with a timeout for vmbus_chan_sched()
430	 * to process such bits.  If bits are still set after this operation
431	 * and VMBus is connected, fail the CPU offlining operation.
432	 */
433	if (vmbus_proto_version >= VERSION_WIN10_V4_1 && hv_synic_event_pending())
434		return -EBUSY;
435
436always_cleanup:
437	hv_stimer_legacy_cleanup(cpu);
438
439	hv_synic_disable_regs(cpu);
440
441	return 0;
442}