Loading...
1/*
2 * Copyright (C) 2015 Broadcom
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9/**
10 * DOC: VC4 KMS
11 *
12 * This is the general code for implementing KMS mode setting that
13 * doesn't clearly associate with any of the other objects (plane,
14 * crtc, HDMI encoder).
15 */
16
17#include "drm_crtc.h"
18#include "drm_atomic.h"
19#include "drm_atomic_helper.h"
20#include "drm_crtc_helper.h"
21#include "drm_plane_helper.h"
22#include "drm_fb_cma_helper.h"
23#include "vc4_drv.h"
24
25static void vc4_output_poll_changed(struct drm_device *dev)
26{
27 struct vc4_dev *vc4 = to_vc4_dev(dev);
28
29 if (vc4->fbdev)
30 drm_fbdev_cma_hotplug_event(vc4->fbdev);
31}
32
33struct vc4_commit {
34 struct drm_device *dev;
35 struct drm_atomic_state *state;
36 struct vc4_seqno_cb cb;
37};
38
39static void
40vc4_atomic_complete_commit(struct vc4_commit *c)
41{
42 struct drm_atomic_state *state = c->state;
43 struct drm_device *dev = state->dev;
44 struct vc4_dev *vc4 = to_vc4_dev(dev);
45
46 drm_atomic_helper_commit_modeset_disables(dev, state);
47
48 drm_atomic_helper_commit_planes(dev, state, false);
49
50 drm_atomic_helper_commit_modeset_enables(dev, state);
51
52 /* Make sure that drm_atomic_helper_wait_for_vblanks()
53 * actually waits for vblank. If we're doing a full atomic
54 * modeset (as opposed to a vc4_update_plane() short circuit),
55 * then we need to wait for scanout to be done with our
56 * display lists before we free it and potentially reallocate
57 * and overwrite the dlist memory with a new modeset.
58 */
59 state->legacy_cursor_update = false;
60
61 drm_atomic_helper_wait_for_vblanks(dev, state);
62
63 drm_atomic_helper_cleanup_planes(dev, state);
64
65 drm_atomic_state_free(state);
66
67 up(&vc4->async_modeset);
68
69 kfree(c);
70}
71
72static void
73vc4_atomic_complete_commit_seqno_cb(struct vc4_seqno_cb *cb)
74{
75 struct vc4_commit *c = container_of(cb, struct vc4_commit, cb);
76
77 vc4_atomic_complete_commit(c);
78}
79
80static struct vc4_commit *commit_init(struct drm_atomic_state *state)
81{
82 struct vc4_commit *c = kzalloc(sizeof(*c), GFP_KERNEL);
83
84 if (!c)
85 return NULL;
86 c->dev = state->dev;
87 c->state = state;
88
89 return c;
90}
91
92/**
93 * vc4_atomic_commit - commit validated state object
94 * @dev: DRM device
95 * @state: the driver state object
96 * @async: asynchronous commit
97 *
98 * This function commits a with drm_atomic_helper_check() pre-validated state
99 * object. This can still fail when e.g. the framebuffer reservation fails. For
100 * now this doesn't implement asynchronous commits.
101 *
102 * RETURNS
103 * Zero for success or -errno.
104 */
105static int vc4_atomic_commit(struct drm_device *dev,
106 struct drm_atomic_state *state,
107 bool async)
108{
109 struct vc4_dev *vc4 = to_vc4_dev(dev);
110 int ret;
111 int i;
112 uint64_t wait_seqno = 0;
113 struct vc4_commit *c;
114
115 c = commit_init(state);
116 if (!c)
117 return -ENOMEM;
118
119 /* Make sure that any outstanding modesets have finished. */
120 ret = down_interruptible(&vc4->async_modeset);
121 if (ret) {
122 kfree(c);
123 return ret;
124 }
125
126 ret = drm_atomic_helper_prepare_planes(dev, state);
127 if (ret) {
128 kfree(c);
129 up(&vc4->async_modeset);
130 return ret;
131 }
132
133 for (i = 0; i < dev->mode_config.num_total_plane; i++) {
134 struct drm_plane *plane = state->planes[i];
135 struct drm_plane_state *new_state = state->plane_states[i];
136
137 if (!plane)
138 continue;
139
140 if ((plane->state->fb != new_state->fb) && new_state->fb) {
141 struct drm_gem_cma_object *cma_bo =
142 drm_fb_cma_get_gem_obj(new_state->fb, 0);
143 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
144
145 wait_seqno = max(bo->seqno, wait_seqno);
146 }
147 }
148
149 /*
150 * This is the point of no return - everything below never fails except
151 * when the hw goes bonghits. Which means we can commit the new state on
152 * the software side now.
153 */
154
155 drm_atomic_helper_swap_state(dev, state);
156
157 /*
158 * Everything below can be run asynchronously without the need to grab
159 * any modeset locks at all under one condition: It must be guaranteed
160 * that the asynchronous work has either been cancelled (if the driver
161 * supports it, which at least requires that the framebuffers get
162 * cleaned up with drm_atomic_helper_cleanup_planes()) or completed
163 * before the new state gets committed on the software side with
164 * drm_atomic_helper_swap_state().
165 *
166 * This scheme allows new atomic state updates to be prepared and
167 * checked in parallel to the asynchronous completion of the previous
168 * update. Which is important since compositors need to figure out the
169 * composition of the next frame right after having submitted the
170 * current layout.
171 */
172
173 if (async) {
174 vc4_queue_seqno_cb(dev, &c->cb, wait_seqno,
175 vc4_atomic_complete_commit_seqno_cb);
176 } else {
177 vc4_wait_for_seqno(dev, wait_seqno, ~0ull, false);
178 vc4_atomic_complete_commit(c);
179 }
180
181 return 0;
182}
183
184static const struct drm_mode_config_funcs vc4_mode_funcs = {
185 .output_poll_changed = vc4_output_poll_changed,
186 .atomic_check = drm_atomic_helper_check,
187 .atomic_commit = vc4_atomic_commit,
188 .fb_create = drm_fb_cma_create,
189};
190
191int vc4_kms_load(struct drm_device *dev)
192{
193 struct vc4_dev *vc4 = to_vc4_dev(dev);
194 int ret;
195
196 sema_init(&vc4->async_modeset, 1);
197
198 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
199 if (ret < 0) {
200 dev_err(dev->dev, "failed to initialize vblank\n");
201 return ret;
202 }
203
204 dev->mode_config.max_width = 2048;
205 dev->mode_config.max_height = 2048;
206 dev->mode_config.funcs = &vc4_mode_funcs;
207 dev->mode_config.preferred_depth = 24;
208 dev->mode_config.async_page_flip = true;
209
210 dev->vblank_disable_allowed = true;
211
212 drm_mode_config_reset(dev);
213
214 vc4->fbdev = drm_fbdev_cma_init(dev, 32,
215 dev->mode_config.num_crtc,
216 dev->mode_config.num_connector);
217 if (IS_ERR(vc4->fbdev))
218 vc4->fbdev = NULL;
219
220 drm_kms_helper_poll_init(dev);
221
222 return 0;
223}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Broadcom
4 */
5
6/**
7 * DOC: VC4 KMS
8 *
9 * This is the general code for implementing KMS mode setting that
10 * doesn't clearly associate with any of the other objects (plane,
11 * crtc, HDMI encoder).
12 */
13
14#include <linux/clk.h>
15
16#include <drm/drm_atomic.h>
17#include <drm/drm_atomic_helper.h>
18#include <drm/drm_crtc.h>
19#include <drm/drm_fourcc.h>
20#include <drm/drm_gem_framebuffer_helper.h>
21#include <drm/drm_probe_helper.h>
22#include <drm/drm_vblank.h>
23
24#include "vc4_drv.h"
25#include "vc4_regs.h"
26
27#define HVS_NUM_CHANNELS 3
28
29struct vc4_ctm_state {
30 struct drm_private_state base;
31 struct drm_color_ctm *ctm;
32 int fifo;
33};
34
35static struct vc4_ctm_state *
36to_vc4_ctm_state(const struct drm_private_state *priv)
37{
38 return container_of(priv, struct vc4_ctm_state, base);
39}
40
41struct vc4_hvs_state {
42 struct drm_private_state base;
43 unsigned long core_clock_rate;
44
45 struct {
46 unsigned in_use: 1;
47 unsigned long fifo_load;
48 struct drm_crtc_commit *pending_commit;
49 } fifo_state[HVS_NUM_CHANNELS];
50};
51
52static struct vc4_hvs_state *
53to_vc4_hvs_state(const struct drm_private_state *priv)
54{
55 return container_of(priv, struct vc4_hvs_state, base);
56}
57
58struct vc4_load_tracker_state {
59 struct drm_private_state base;
60 u64 hvs_load;
61 u64 membus_load;
62};
63
64static struct vc4_load_tracker_state *
65to_vc4_load_tracker_state(const struct drm_private_state *priv)
66{
67 return container_of(priv, struct vc4_load_tracker_state, base);
68}
69
70static struct vc4_ctm_state *vc4_get_ctm_state(struct drm_atomic_state *state,
71 struct drm_private_obj *manager)
72{
73 struct drm_device *dev = state->dev;
74 struct vc4_dev *vc4 = to_vc4_dev(dev);
75 struct drm_private_state *priv_state;
76 int ret;
77
78 ret = drm_modeset_lock(&vc4->ctm_state_lock, state->acquire_ctx);
79 if (ret)
80 return ERR_PTR(ret);
81
82 priv_state = drm_atomic_get_private_obj_state(state, manager);
83 if (IS_ERR(priv_state))
84 return ERR_CAST(priv_state);
85
86 return to_vc4_ctm_state(priv_state);
87}
88
89static struct drm_private_state *
90vc4_ctm_duplicate_state(struct drm_private_obj *obj)
91{
92 struct vc4_ctm_state *state;
93
94 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
95 if (!state)
96 return NULL;
97
98 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
99
100 return &state->base;
101}
102
103static void vc4_ctm_destroy_state(struct drm_private_obj *obj,
104 struct drm_private_state *state)
105{
106 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(state);
107
108 kfree(ctm_state);
109}
110
111static const struct drm_private_state_funcs vc4_ctm_state_funcs = {
112 .atomic_duplicate_state = vc4_ctm_duplicate_state,
113 .atomic_destroy_state = vc4_ctm_destroy_state,
114};
115
116static void vc4_ctm_obj_fini(struct drm_device *dev, void *unused)
117{
118 struct vc4_dev *vc4 = to_vc4_dev(dev);
119
120 drm_atomic_private_obj_fini(&vc4->ctm_manager);
121}
122
123static int vc4_ctm_obj_init(struct vc4_dev *vc4)
124{
125 struct vc4_ctm_state *ctm_state;
126
127 drm_modeset_lock_init(&vc4->ctm_state_lock);
128
129 ctm_state = kzalloc(sizeof(*ctm_state), GFP_KERNEL);
130 if (!ctm_state)
131 return -ENOMEM;
132
133 drm_atomic_private_obj_init(&vc4->base, &vc4->ctm_manager, &ctm_state->base,
134 &vc4_ctm_state_funcs);
135
136 return drmm_add_action_or_reset(&vc4->base, vc4_ctm_obj_fini, NULL);
137}
138
139/* Converts a DRM S31.32 value to the HW S0.9 format. */
140static u16 vc4_ctm_s31_32_to_s0_9(u64 in)
141{
142 u16 r;
143
144 /* Sign bit. */
145 r = in & BIT_ULL(63) ? BIT(9) : 0;
146
147 if ((in & GENMASK_ULL(62, 32)) > 0) {
148 /* We have zero integer bits so we can only saturate here. */
149 r |= GENMASK(8, 0);
150 } else {
151 /* Otherwise take the 9 most important fractional bits. */
152 r |= (in >> 23) & GENMASK(8, 0);
153 }
154
155 return r;
156}
157
158static void
159vc4_ctm_commit(struct vc4_dev *vc4, struct drm_atomic_state *state)
160{
161 struct vc4_hvs *hvs = vc4->hvs;
162 struct vc4_ctm_state *ctm_state = to_vc4_ctm_state(vc4->ctm_manager.state);
163 struct drm_color_ctm *ctm = ctm_state->ctm;
164
165 if (ctm_state->fifo) {
166 HVS_WRITE(SCALER_OLEDCOEF2,
167 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[0]),
168 SCALER_OLEDCOEF2_R_TO_R) |
169 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[3]),
170 SCALER_OLEDCOEF2_R_TO_G) |
171 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[6]),
172 SCALER_OLEDCOEF2_R_TO_B));
173 HVS_WRITE(SCALER_OLEDCOEF1,
174 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[1]),
175 SCALER_OLEDCOEF1_G_TO_R) |
176 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[4]),
177 SCALER_OLEDCOEF1_G_TO_G) |
178 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[7]),
179 SCALER_OLEDCOEF1_G_TO_B));
180 HVS_WRITE(SCALER_OLEDCOEF0,
181 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[2]),
182 SCALER_OLEDCOEF0_B_TO_R) |
183 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[5]),
184 SCALER_OLEDCOEF0_B_TO_G) |
185 VC4_SET_FIELD(vc4_ctm_s31_32_to_s0_9(ctm->matrix[8]),
186 SCALER_OLEDCOEF0_B_TO_B));
187 }
188
189 HVS_WRITE(SCALER_OLEDOFFS,
190 VC4_SET_FIELD(ctm_state->fifo, SCALER_OLEDOFFS_DISPFIFO));
191}
192
193static struct vc4_hvs_state *
194vc4_hvs_get_new_global_state(struct drm_atomic_state *state)
195{
196 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
197 struct drm_private_state *priv_state;
198
199 priv_state = drm_atomic_get_new_private_obj_state(state, &vc4->hvs_channels);
200 if (!priv_state)
201 return ERR_PTR(-EINVAL);
202
203 return to_vc4_hvs_state(priv_state);
204}
205
206static struct vc4_hvs_state *
207vc4_hvs_get_old_global_state(struct drm_atomic_state *state)
208{
209 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
210 struct drm_private_state *priv_state;
211
212 priv_state = drm_atomic_get_old_private_obj_state(state, &vc4->hvs_channels);
213 if (!priv_state)
214 return ERR_PTR(-EINVAL);
215
216 return to_vc4_hvs_state(priv_state);
217}
218
219static struct vc4_hvs_state *
220vc4_hvs_get_global_state(struct drm_atomic_state *state)
221{
222 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
223 struct drm_private_state *priv_state;
224
225 priv_state = drm_atomic_get_private_obj_state(state, &vc4->hvs_channels);
226 if (IS_ERR(priv_state))
227 return ERR_CAST(priv_state);
228
229 return to_vc4_hvs_state(priv_state);
230}
231
232static void vc4_hvs_pv_muxing_commit(struct vc4_dev *vc4,
233 struct drm_atomic_state *state)
234{
235 struct vc4_hvs *hvs = vc4->hvs;
236 struct drm_crtc_state *crtc_state;
237 struct drm_crtc *crtc;
238 unsigned int i;
239
240 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
241 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
242 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
243 u32 dispctrl;
244 u32 dsp3_mux;
245
246 if (!crtc_state->active)
247 continue;
248
249 if (vc4_state->assigned_channel != 2)
250 continue;
251
252 /*
253 * SCALER_DISPCTRL_DSP3 = X, where X < 2 means 'connect DSP3 to
254 * FIFO X'.
255 * SCALER_DISPCTRL_DSP3 = 3 means 'disable DSP 3'.
256 *
257 * DSP3 is connected to FIFO2 unless the transposer is
258 * enabled. In this case, FIFO 2 is directly accessed by the
259 * TXP IP, and we need to disable the FIFO2 -> pixelvalve1
260 * route.
261 */
262 if (vc4_crtc->feeds_txp)
263 dsp3_mux = VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX);
264 else
265 dsp3_mux = VC4_SET_FIELD(2, SCALER_DISPCTRL_DSP3_MUX);
266
267 dispctrl = HVS_READ(SCALER_DISPCTRL) &
268 ~SCALER_DISPCTRL_DSP3_MUX_MASK;
269 HVS_WRITE(SCALER_DISPCTRL, dispctrl | dsp3_mux);
270 }
271}
272
273static void vc5_hvs_pv_muxing_commit(struct vc4_dev *vc4,
274 struct drm_atomic_state *state)
275{
276 struct vc4_hvs *hvs = vc4->hvs;
277 struct drm_crtc_state *crtc_state;
278 struct drm_crtc *crtc;
279 unsigned char mux;
280 unsigned int i;
281 u32 reg;
282
283 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
284 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
285 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
286 unsigned int channel = vc4_state->assigned_channel;
287
288 if (!vc4_state->update_muxing)
289 continue;
290
291 switch (vc4_crtc->data->hvs_output) {
292 case 2:
293 drm_WARN_ON(&vc4->base,
294 VC4_GET_FIELD(HVS_READ(SCALER_DISPCTRL),
295 SCALER_DISPCTRL_DSP3_MUX) == channel);
296
297 mux = (channel == 2) ? 0 : 1;
298 reg = HVS_READ(SCALER_DISPECTRL);
299 HVS_WRITE(SCALER_DISPECTRL,
300 (reg & ~SCALER_DISPECTRL_DSP2_MUX_MASK) |
301 VC4_SET_FIELD(mux, SCALER_DISPECTRL_DSP2_MUX));
302 break;
303
304 case 3:
305 if (channel == VC4_HVS_CHANNEL_DISABLED)
306 mux = 3;
307 else
308 mux = channel;
309
310 reg = HVS_READ(SCALER_DISPCTRL);
311 HVS_WRITE(SCALER_DISPCTRL,
312 (reg & ~SCALER_DISPCTRL_DSP3_MUX_MASK) |
313 VC4_SET_FIELD(mux, SCALER_DISPCTRL_DSP3_MUX));
314 break;
315
316 case 4:
317 if (channel == VC4_HVS_CHANNEL_DISABLED)
318 mux = 3;
319 else
320 mux = channel;
321
322 reg = HVS_READ(SCALER_DISPEOLN);
323 HVS_WRITE(SCALER_DISPEOLN,
324 (reg & ~SCALER_DISPEOLN_DSP4_MUX_MASK) |
325 VC4_SET_FIELD(mux, SCALER_DISPEOLN_DSP4_MUX));
326
327 break;
328
329 case 5:
330 if (channel == VC4_HVS_CHANNEL_DISABLED)
331 mux = 3;
332 else
333 mux = channel;
334
335 reg = HVS_READ(SCALER_DISPDITHER);
336 HVS_WRITE(SCALER_DISPDITHER,
337 (reg & ~SCALER_DISPDITHER_DSP5_MUX_MASK) |
338 VC4_SET_FIELD(mux, SCALER_DISPDITHER_DSP5_MUX));
339 break;
340
341 default:
342 break;
343 }
344 }
345}
346
347static void vc4_atomic_commit_tail(struct drm_atomic_state *state)
348{
349 struct drm_device *dev = state->dev;
350 struct vc4_dev *vc4 = to_vc4_dev(dev);
351 struct vc4_hvs *hvs = vc4->hvs;
352 struct drm_crtc_state *new_crtc_state;
353 struct vc4_hvs_state *new_hvs_state;
354 struct drm_crtc *crtc;
355 struct vc4_hvs_state *old_hvs_state;
356 unsigned int channel;
357 int i;
358
359 old_hvs_state = vc4_hvs_get_old_global_state(state);
360 if (WARN_ON(IS_ERR(old_hvs_state)))
361 return;
362
363 new_hvs_state = vc4_hvs_get_new_global_state(state);
364 if (WARN_ON(IS_ERR(new_hvs_state)))
365 return;
366
367 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
368 struct vc4_crtc_state *vc4_crtc_state;
369
370 if (!new_crtc_state->commit)
371 continue;
372
373 vc4_crtc_state = to_vc4_crtc_state(new_crtc_state);
374 vc4_hvs_mask_underrun(hvs, vc4_crtc_state->assigned_channel);
375 }
376
377 for (channel = 0; channel < HVS_NUM_CHANNELS; channel++) {
378 struct drm_crtc_commit *commit;
379 int ret;
380
381 if (!old_hvs_state->fifo_state[channel].in_use)
382 continue;
383
384 commit = old_hvs_state->fifo_state[channel].pending_commit;
385 if (!commit)
386 continue;
387
388 ret = drm_crtc_commit_wait(commit);
389 if (ret)
390 drm_err(dev, "Timed out waiting for commit\n");
391
392 drm_crtc_commit_put(commit);
393 old_hvs_state->fifo_state[channel].pending_commit = NULL;
394 }
395
396 if (vc4->is_vc5) {
397 unsigned long state_rate = max(old_hvs_state->core_clock_rate,
398 new_hvs_state->core_clock_rate);
399 unsigned long core_rate = clamp_t(unsigned long, state_rate,
400 500000000, hvs->max_core_rate);
401
402 drm_dbg(dev, "Raising the core clock at %lu Hz\n", core_rate);
403
404 /*
405 * Do a temporary request on the core clock during the
406 * modeset.
407 */
408 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
409 }
410
411 drm_atomic_helper_commit_modeset_disables(dev, state);
412
413 vc4_ctm_commit(vc4, state);
414
415 if (vc4->is_vc5)
416 vc5_hvs_pv_muxing_commit(vc4, state);
417 else
418 vc4_hvs_pv_muxing_commit(vc4, state);
419
420 drm_atomic_helper_commit_planes(dev, state,
421 DRM_PLANE_COMMIT_ACTIVE_ONLY);
422
423 drm_atomic_helper_commit_modeset_enables(dev, state);
424
425 drm_atomic_helper_fake_vblank(state);
426
427 drm_atomic_helper_commit_hw_done(state);
428
429 drm_atomic_helper_wait_for_flip_done(dev, state);
430
431 drm_atomic_helper_cleanup_planes(dev, state);
432
433 if (vc4->is_vc5) {
434 unsigned long core_rate = min_t(unsigned long,
435 hvs->max_core_rate,
436 new_hvs_state->core_clock_rate);
437
438 drm_dbg(dev, "Running the core clock at %lu Hz\n", core_rate);
439
440 /*
441 * Request a clock rate based on the current HVS
442 * requirements.
443 */
444 WARN_ON(clk_set_min_rate(hvs->core_clk, core_rate));
445
446 drm_dbg(dev, "Core clock actual rate: %lu Hz\n",
447 clk_get_rate(hvs->core_clk));
448 }
449}
450
451static int vc4_atomic_commit_setup(struct drm_atomic_state *state)
452{
453 struct drm_crtc_state *crtc_state;
454 struct vc4_hvs_state *hvs_state;
455 struct drm_crtc *crtc;
456 unsigned int i;
457
458 hvs_state = vc4_hvs_get_new_global_state(state);
459 if (WARN_ON(IS_ERR(hvs_state)))
460 return PTR_ERR(hvs_state);
461
462 for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
463 struct vc4_crtc_state *vc4_crtc_state =
464 to_vc4_crtc_state(crtc_state);
465 unsigned int channel =
466 vc4_crtc_state->assigned_channel;
467
468 if (channel == VC4_HVS_CHANNEL_DISABLED)
469 continue;
470
471 if (!hvs_state->fifo_state[channel].in_use)
472 continue;
473
474 hvs_state->fifo_state[channel].pending_commit =
475 drm_crtc_commit_get(crtc_state->commit);
476 }
477
478 return 0;
479}
480
481static struct drm_framebuffer *vc4_fb_create(struct drm_device *dev,
482 struct drm_file *file_priv,
483 const struct drm_mode_fb_cmd2 *mode_cmd)
484{
485 struct vc4_dev *vc4 = to_vc4_dev(dev);
486 struct drm_mode_fb_cmd2 mode_cmd_local;
487
488 if (WARN_ON_ONCE(vc4->is_vc5))
489 return ERR_PTR(-ENODEV);
490
491 /* If the user didn't specify a modifier, use the
492 * vc4_set_tiling_ioctl() state for the BO.
493 */
494 if (!(mode_cmd->flags & DRM_MODE_FB_MODIFIERS)) {
495 struct drm_gem_object *gem_obj;
496 struct vc4_bo *bo;
497
498 gem_obj = drm_gem_object_lookup(file_priv,
499 mode_cmd->handles[0]);
500 if (!gem_obj) {
501 DRM_DEBUG("Failed to look up GEM BO %d\n",
502 mode_cmd->handles[0]);
503 return ERR_PTR(-ENOENT);
504 }
505 bo = to_vc4_bo(gem_obj);
506
507 mode_cmd_local = *mode_cmd;
508
509 if (bo->t_format) {
510 mode_cmd_local.modifier[0] =
511 DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED;
512 } else {
513 mode_cmd_local.modifier[0] = DRM_FORMAT_MOD_NONE;
514 }
515
516 drm_gem_object_put(gem_obj);
517
518 mode_cmd = &mode_cmd_local;
519 }
520
521 return drm_gem_fb_create(dev, file_priv, mode_cmd);
522}
523
524/* Our CTM has some peculiar limitations: we can only enable it for one CRTC
525 * at a time and the HW only supports S0.9 scalars. To account for the latter,
526 * we don't allow userland to set a CTM that we have no hope of approximating.
527 */
528static int
529vc4_ctm_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
530{
531 struct vc4_dev *vc4 = to_vc4_dev(dev);
532 struct vc4_ctm_state *ctm_state = NULL;
533 struct drm_crtc *crtc;
534 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
535 struct drm_color_ctm *ctm;
536 int i;
537
538 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
539 /* CTM is being disabled. */
540 if (!new_crtc_state->ctm && old_crtc_state->ctm) {
541 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
542 if (IS_ERR(ctm_state))
543 return PTR_ERR(ctm_state);
544 ctm_state->fifo = 0;
545 }
546 }
547
548 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
549 if (new_crtc_state->ctm == old_crtc_state->ctm)
550 continue;
551
552 if (!ctm_state) {
553 ctm_state = vc4_get_ctm_state(state, &vc4->ctm_manager);
554 if (IS_ERR(ctm_state))
555 return PTR_ERR(ctm_state);
556 }
557
558 /* CTM is being enabled or the matrix changed. */
559 if (new_crtc_state->ctm) {
560 struct vc4_crtc_state *vc4_crtc_state =
561 to_vc4_crtc_state(new_crtc_state);
562
563 /* fifo is 1-based since 0 disables CTM. */
564 int fifo = vc4_crtc_state->assigned_channel + 1;
565
566 /* Check userland isn't trying to turn on CTM for more
567 * than one CRTC at a time.
568 */
569 if (ctm_state->fifo && ctm_state->fifo != fifo) {
570 DRM_DEBUG_DRIVER("Too many CTM configured\n");
571 return -EINVAL;
572 }
573
574 /* Check we can approximate the specified CTM.
575 * We disallow scalars |c| > 1.0 since the HW has
576 * no integer bits.
577 */
578 ctm = new_crtc_state->ctm->data;
579 for (i = 0; i < ARRAY_SIZE(ctm->matrix); i++) {
580 u64 val = ctm->matrix[i];
581
582 val &= ~BIT_ULL(63);
583 if (val > BIT_ULL(32))
584 return -EINVAL;
585 }
586
587 ctm_state->fifo = fifo;
588 ctm_state->ctm = ctm;
589 }
590 }
591
592 return 0;
593}
594
595static int vc4_load_tracker_atomic_check(struct drm_atomic_state *state)
596{
597 struct drm_plane_state *old_plane_state, *new_plane_state;
598 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
599 struct vc4_load_tracker_state *load_state;
600 struct drm_private_state *priv_state;
601 struct drm_plane *plane;
602 int i;
603
604 priv_state = drm_atomic_get_private_obj_state(state,
605 &vc4->load_tracker);
606 if (IS_ERR(priv_state))
607 return PTR_ERR(priv_state);
608
609 load_state = to_vc4_load_tracker_state(priv_state);
610 for_each_oldnew_plane_in_state(state, plane, old_plane_state,
611 new_plane_state, i) {
612 struct vc4_plane_state *vc4_plane_state;
613
614 if (old_plane_state->fb && old_plane_state->crtc) {
615 vc4_plane_state = to_vc4_plane_state(old_plane_state);
616 load_state->membus_load -= vc4_plane_state->membus_load;
617 load_state->hvs_load -= vc4_plane_state->hvs_load;
618 }
619
620 if (new_plane_state->fb && new_plane_state->crtc) {
621 vc4_plane_state = to_vc4_plane_state(new_plane_state);
622 load_state->membus_load += vc4_plane_state->membus_load;
623 load_state->hvs_load += vc4_plane_state->hvs_load;
624 }
625 }
626
627 /* Don't check the load when the tracker is disabled. */
628 if (!vc4->load_tracker_enabled)
629 return 0;
630
631 /* The absolute limit is 2Gbyte/sec, but let's take a margin to let
632 * the system work when other blocks are accessing the memory.
633 */
634 if (load_state->membus_load > SZ_1G + SZ_512M)
635 return -ENOSPC;
636
637 /* HVS clock is supposed to run @ 250Mhz, let's take a margin and
638 * consider the maximum number of cycles is 240M.
639 */
640 if (load_state->hvs_load > 240000000ULL)
641 return -ENOSPC;
642
643 return 0;
644}
645
646static struct drm_private_state *
647vc4_load_tracker_duplicate_state(struct drm_private_obj *obj)
648{
649 struct vc4_load_tracker_state *state;
650
651 state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
652 if (!state)
653 return NULL;
654
655 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
656
657 return &state->base;
658}
659
660static void vc4_load_tracker_destroy_state(struct drm_private_obj *obj,
661 struct drm_private_state *state)
662{
663 struct vc4_load_tracker_state *load_state;
664
665 load_state = to_vc4_load_tracker_state(state);
666 kfree(load_state);
667}
668
669static const struct drm_private_state_funcs vc4_load_tracker_state_funcs = {
670 .atomic_duplicate_state = vc4_load_tracker_duplicate_state,
671 .atomic_destroy_state = vc4_load_tracker_destroy_state,
672};
673
674static void vc4_load_tracker_obj_fini(struct drm_device *dev, void *unused)
675{
676 struct vc4_dev *vc4 = to_vc4_dev(dev);
677
678 drm_atomic_private_obj_fini(&vc4->load_tracker);
679}
680
681static int vc4_load_tracker_obj_init(struct vc4_dev *vc4)
682{
683 struct vc4_load_tracker_state *load_state;
684
685 load_state = kzalloc(sizeof(*load_state), GFP_KERNEL);
686 if (!load_state)
687 return -ENOMEM;
688
689 drm_atomic_private_obj_init(&vc4->base, &vc4->load_tracker,
690 &load_state->base,
691 &vc4_load_tracker_state_funcs);
692
693 return drmm_add_action_or_reset(&vc4->base, vc4_load_tracker_obj_fini, NULL);
694}
695
696static struct drm_private_state *
697vc4_hvs_channels_duplicate_state(struct drm_private_obj *obj)
698{
699 struct vc4_hvs_state *old_state = to_vc4_hvs_state(obj->state);
700 struct vc4_hvs_state *state;
701 unsigned int i;
702
703 state = kzalloc(sizeof(*state), GFP_KERNEL);
704 if (!state)
705 return NULL;
706
707 __drm_atomic_helper_private_obj_duplicate_state(obj, &state->base);
708
709 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
710 state->fifo_state[i].in_use = old_state->fifo_state[i].in_use;
711 state->fifo_state[i].fifo_load = old_state->fifo_state[i].fifo_load;
712 }
713
714 state->core_clock_rate = old_state->core_clock_rate;
715
716 return &state->base;
717}
718
719static void vc4_hvs_channels_destroy_state(struct drm_private_obj *obj,
720 struct drm_private_state *state)
721{
722 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
723 unsigned int i;
724
725 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
726 if (!hvs_state->fifo_state[i].pending_commit)
727 continue;
728
729 drm_crtc_commit_put(hvs_state->fifo_state[i].pending_commit);
730 }
731
732 kfree(hvs_state);
733}
734
735static void vc4_hvs_channels_print_state(struct drm_printer *p,
736 const struct drm_private_state *state)
737{
738 struct vc4_hvs_state *hvs_state = to_vc4_hvs_state(state);
739 unsigned int i;
740
741 drm_printf(p, "HVS State\n");
742 drm_printf(p, "\tCore Clock Rate: %lu\n", hvs_state->core_clock_rate);
743
744 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
745 drm_printf(p, "\tChannel %d\n", i);
746 drm_printf(p, "\t\tin use=%d\n", hvs_state->fifo_state[i].in_use);
747 drm_printf(p, "\t\tload=%lu\n", hvs_state->fifo_state[i].fifo_load);
748 }
749}
750
751static const struct drm_private_state_funcs vc4_hvs_state_funcs = {
752 .atomic_duplicate_state = vc4_hvs_channels_duplicate_state,
753 .atomic_destroy_state = vc4_hvs_channels_destroy_state,
754 .atomic_print_state = vc4_hvs_channels_print_state,
755};
756
757static void vc4_hvs_channels_obj_fini(struct drm_device *dev, void *unused)
758{
759 struct vc4_dev *vc4 = to_vc4_dev(dev);
760
761 drm_atomic_private_obj_fini(&vc4->hvs_channels);
762}
763
764static int vc4_hvs_channels_obj_init(struct vc4_dev *vc4)
765{
766 struct vc4_hvs_state *state;
767
768 state = kzalloc(sizeof(*state), GFP_KERNEL);
769 if (!state)
770 return -ENOMEM;
771
772 drm_atomic_private_obj_init(&vc4->base, &vc4->hvs_channels,
773 &state->base,
774 &vc4_hvs_state_funcs);
775
776 return drmm_add_action_or_reset(&vc4->base, vc4_hvs_channels_obj_fini, NULL);
777}
778
779/*
780 * The BCM2711 HVS has up to 7 outputs connected to the pixelvalves and
781 * the TXP (and therefore all the CRTCs found on that platform).
782 *
783 * The naive (and our initial) implementation would just iterate over
784 * all the active CRTCs, try to find a suitable FIFO, and then remove it
785 * from the pool of available FIFOs. However, there are a few corner
786 * cases that need to be considered:
787 *
788 * - When running in a dual-display setup (so with two CRTCs involved),
789 * we can update the state of a single CRTC (for example by changing
790 * its mode using xrandr under X11) without affecting the other. In
791 * this case, the other CRTC wouldn't be in the state at all, so we
792 * need to consider all the running CRTCs in the DRM device to assign
793 * a FIFO, not just the one in the state.
794 *
795 * - To fix the above, we can't use drm_atomic_get_crtc_state on all
796 * enabled CRTCs to pull their CRTC state into the global state, since
797 * a page flip would start considering their vblank to complete. Since
798 * we don't have a guarantee that they are actually active, that
799 * vblank might never happen, and shouldn't even be considered if we
800 * want to do a page flip on a single CRTC. That can be tested by
801 * doing a modetest -v first on HDMI1 and then on HDMI0.
802 *
803 * - Since we need the pixelvalve to be disabled and enabled back when
804 * the FIFO is changed, we should keep the FIFO assigned for as long
805 * as the CRTC is enabled, only considering it free again once that
806 * CRTC has been disabled. This can be tested by booting X11 on a
807 * single display, and changing the resolution down and then back up.
808 */
809static int vc4_pv_muxing_atomic_check(struct drm_device *dev,
810 struct drm_atomic_state *state)
811{
812 struct vc4_hvs_state *hvs_new_state;
813 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
814 struct drm_crtc *crtc;
815 unsigned int unassigned_channels = 0;
816 unsigned int i;
817
818 hvs_new_state = vc4_hvs_get_global_state(state);
819 if (IS_ERR(hvs_new_state))
820 return PTR_ERR(hvs_new_state);
821
822 for (i = 0; i < ARRAY_SIZE(hvs_new_state->fifo_state); i++)
823 if (!hvs_new_state->fifo_state[i].in_use)
824 unassigned_channels |= BIT(i);
825
826 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
827 struct vc4_crtc_state *old_vc4_crtc_state =
828 to_vc4_crtc_state(old_crtc_state);
829 struct vc4_crtc_state *new_vc4_crtc_state =
830 to_vc4_crtc_state(new_crtc_state);
831 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
832 unsigned int matching_channels;
833 unsigned int channel;
834
835 drm_dbg(dev, "%s: Trying to find a channel.\n", crtc->name);
836
837 /* Nothing to do here, let's skip it */
838 if (old_crtc_state->enable == new_crtc_state->enable) {
839 if (new_crtc_state->enable)
840 drm_dbg(dev, "%s: Already enabled, reusing channel %d.\n",
841 crtc->name, new_vc4_crtc_state->assigned_channel);
842 else
843 drm_dbg(dev, "%s: Disabled, ignoring.\n", crtc->name);
844
845 continue;
846 }
847
848 /* Muxing will need to be modified, mark it as such */
849 new_vc4_crtc_state->update_muxing = true;
850
851 /* If we're disabling our CRTC, we put back our channel */
852 if (!new_crtc_state->enable) {
853 channel = old_vc4_crtc_state->assigned_channel;
854
855 drm_dbg(dev, "%s: Disabling, Freeing channel %d\n",
856 crtc->name, channel);
857
858 hvs_new_state->fifo_state[channel].in_use = false;
859 new_vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
860 continue;
861 }
862
863 /*
864 * The problem we have to solve here is that we have
865 * up to 7 encoders, connected to up to 6 CRTCs.
866 *
867 * Those CRTCs, depending on the instance, can be
868 * routed to 1, 2 or 3 HVS FIFOs, and we need to set
869 * the change the muxing between FIFOs and outputs in
870 * the HVS accordingly.
871 *
872 * It would be pretty hard to come up with an
873 * algorithm that would generically solve
874 * this. However, the current routing trees we support
875 * allow us to simplify a bit the problem.
876 *
877 * Indeed, with the current supported layouts, if we
878 * try to assign in the ascending crtc index order the
879 * FIFOs, we can't fall into the situation where an
880 * earlier CRTC that had multiple routes is assigned
881 * one that was the only option for a later CRTC.
882 *
883 * If the layout changes and doesn't give us that in
884 * the future, we will need to have something smarter,
885 * but it works so far.
886 */
887 matching_channels = unassigned_channels & vc4_crtc->data->hvs_available_channels;
888 if (!matching_channels)
889 return -EINVAL;
890
891 channel = ffs(matching_channels) - 1;
892
893 drm_dbg(dev, "Assigned HVS channel %d to CRTC %s\n", channel, crtc->name);
894 new_vc4_crtc_state->assigned_channel = channel;
895 unassigned_channels &= ~BIT(channel);
896 hvs_new_state->fifo_state[channel].in_use = true;
897 }
898
899 return 0;
900}
901
902static int
903vc4_core_clock_atomic_check(struct drm_atomic_state *state)
904{
905 struct vc4_dev *vc4 = to_vc4_dev(state->dev);
906 struct drm_private_state *priv_state;
907 struct vc4_hvs_state *hvs_new_state;
908 struct vc4_load_tracker_state *load_state;
909 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
910 struct drm_crtc *crtc;
911 unsigned int num_outputs;
912 unsigned long pixel_rate;
913 unsigned long cob_rate;
914 unsigned int i;
915
916 priv_state = drm_atomic_get_private_obj_state(state,
917 &vc4->load_tracker);
918 if (IS_ERR(priv_state))
919 return PTR_ERR(priv_state);
920
921 load_state = to_vc4_load_tracker_state(priv_state);
922
923 hvs_new_state = vc4_hvs_get_global_state(state);
924 if (IS_ERR(hvs_new_state))
925 return PTR_ERR(hvs_new_state);
926
927 for_each_oldnew_crtc_in_state(state, crtc,
928 old_crtc_state,
929 new_crtc_state,
930 i) {
931 if (old_crtc_state->active) {
932 struct vc4_crtc_state *old_vc4_state =
933 to_vc4_crtc_state(old_crtc_state);
934 unsigned int channel = old_vc4_state->assigned_channel;
935
936 hvs_new_state->fifo_state[channel].fifo_load = 0;
937 }
938
939 if (new_crtc_state->active) {
940 struct vc4_crtc_state *new_vc4_state =
941 to_vc4_crtc_state(new_crtc_state);
942 unsigned int channel = new_vc4_state->assigned_channel;
943
944 hvs_new_state->fifo_state[channel].fifo_load =
945 new_vc4_state->hvs_load;
946 }
947 }
948
949 cob_rate = 0;
950 num_outputs = 0;
951 for (i = 0; i < HVS_NUM_CHANNELS; i++) {
952 if (!hvs_new_state->fifo_state[i].in_use)
953 continue;
954
955 num_outputs++;
956 cob_rate = max_t(unsigned long,
957 hvs_new_state->fifo_state[i].fifo_load,
958 cob_rate);
959 }
960
961 pixel_rate = load_state->hvs_load;
962 if (num_outputs > 1) {
963 pixel_rate = (pixel_rate * 40) / 100;
964 } else {
965 pixel_rate = (pixel_rate * 60) / 100;
966 }
967
968 hvs_new_state->core_clock_rate = max(cob_rate, pixel_rate);
969
970 return 0;
971}
972
973
974static int
975vc4_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
976{
977 int ret;
978
979 ret = vc4_pv_muxing_atomic_check(dev, state);
980 if (ret)
981 return ret;
982
983 ret = vc4_ctm_atomic_check(dev, state);
984 if (ret < 0)
985 return ret;
986
987 ret = drm_atomic_helper_check(dev, state);
988 if (ret)
989 return ret;
990
991 ret = vc4_load_tracker_atomic_check(state);
992 if (ret)
993 return ret;
994
995 return vc4_core_clock_atomic_check(state);
996}
997
998static struct drm_mode_config_helper_funcs vc4_mode_config_helpers = {
999 .atomic_commit_setup = vc4_atomic_commit_setup,
1000 .atomic_commit_tail = vc4_atomic_commit_tail,
1001};
1002
1003static const struct drm_mode_config_funcs vc4_mode_funcs = {
1004 .atomic_check = vc4_atomic_check,
1005 .atomic_commit = drm_atomic_helper_commit,
1006 .fb_create = vc4_fb_create,
1007};
1008
1009static const struct drm_mode_config_funcs vc5_mode_funcs = {
1010 .atomic_check = vc4_atomic_check,
1011 .atomic_commit = drm_atomic_helper_commit,
1012 .fb_create = drm_gem_fb_create,
1013};
1014
1015int vc4_kms_load(struct drm_device *dev)
1016{
1017 struct vc4_dev *vc4 = to_vc4_dev(dev);
1018 int ret;
1019
1020 /*
1021 * The limits enforced by the load tracker aren't relevant for
1022 * the BCM2711, but the load tracker computations are used for
1023 * the core clock rate calculation.
1024 */
1025 if (!vc4->is_vc5) {
1026 /* Start with the load tracker enabled. Can be
1027 * disabled through the debugfs load_tracker file.
1028 */
1029 vc4->load_tracker_enabled = true;
1030 }
1031
1032 /* Set support for vblank irq fast disable, before drm_vblank_init() */
1033 dev->vblank_disable_immediate = true;
1034
1035 ret = drm_vblank_init(dev, dev->mode_config.num_crtc);
1036 if (ret < 0) {
1037 dev_err(dev->dev, "failed to initialize vblank\n");
1038 return ret;
1039 }
1040
1041 if (vc4->is_vc5) {
1042 dev->mode_config.max_width = 7680;
1043 dev->mode_config.max_height = 7680;
1044 } else {
1045 dev->mode_config.max_width = 2048;
1046 dev->mode_config.max_height = 2048;
1047 }
1048
1049 dev->mode_config.funcs = vc4->is_vc5 ? &vc5_mode_funcs : &vc4_mode_funcs;
1050 dev->mode_config.helper_private = &vc4_mode_config_helpers;
1051 dev->mode_config.preferred_depth = 24;
1052 dev->mode_config.async_page_flip = true;
1053
1054 ret = vc4_ctm_obj_init(vc4);
1055 if (ret)
1056 return ret;
1057
1058 ret = vc4_load_tracker_obj_init(vc4);
1059 if (ret)
1060 return ret;
1061
1062 ret = vc4_hvs_channels_obj_init(vc4);
1063 if (ret)
1064 return ret;
1065
1066 drm_mode_config_reset(dev);
1067
1068 drm_kms_helper_poll_init(dev);
1069
1070 return 0;
1071}