Linux Audio

Check our new training course

Loading...
v4.6
   1#include "util.h"
 
 
 
 
   2#include <sys/types.h>
   3#include <byteswap.h>
   4#include <unistd.h>
 
   5#include <stdio.h>
   6#include <stdlib.h>
 
   7#include <linux/list.h>
   8#include <linux/kernel.h>
   9#include <linux/bitops.h>
 
 
 
 
  10#include <sys/utsname.h>
 
 
 
 
 
 
 
  11
 
  12#include "evlist.h"
  13#include "evsel.h"
 
  14#include "header.h"
  15#include "../perf.h"
  16#include "trace-event.h"
  17#include "session.h"
  18#include "symbol.h"
  19#include "debug.h"
  20#include "cpumap.h"
  21#include "pmu.h"
 
  22#include "vdso.h"
  23#include "strbuf.h"
  24#include "build-id.h"
  25#include "data.h"
  26#include <api/fs/fs.h>
  27#include "asm/bug.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29/*
  30 * magic2 = "PERFILE2"
  31 * must be a numerical value to let the endianness
  32 * determine the memory layout. That way we are able
  33 * to detect endianness when reading the perf.data file
  34 * back.
  35 *
  36 * we check for legacy (PERFFILE) format.
  37 */
  38static const char *__perf_magic1 = "PERFFILE";
  39static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  40static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  41
  42#define PERF_MAGIC	__perf_magic2
  43
 
 
  44struct perf_file_attr {
  45	struct perf_event_attr	attr;
  46	struct perf_file_section	ids;
  47};
  48
  49void perf_header__set_feat(struct perf_header *header, int feat)
  50{
  51	set_bit(feat, header->adds_features);
  52}
  53
  54void perf_header__clear_feat(struct perf_header *header, int feat)
  55{
  56	clear_bit(feat, header->adds_features);
  57}
  58
  59bool perf_header__has_feat(const struct perf_header *header, int feat)
  60{
  61	return test_bit(feat, header->adds_features);
  62}
  63
  64static int do_write(int fd, const void *buf, size_t size)
  65{
  66	while (size) {
  67		int ret = write(fd, buf, size);
  68
  69		if (ret < 0)
  70			return -errno;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  71
  72		size -= ret;
  73		buf += ret;
 
 
 
 
 
 
  74	}
  75
  76	return 0;
  77}
  78
  79int write_padded(int fd, const void *bf, size_t count, size_t count_aligned)
 
 
  80{
  81	static const char zero_buf[NAME_ALIGN];
  82	int err = do_write(fd, bf, count);
  83
  84	if (!err)
  85		err = do_write(fd, zero_buf, count_aligned - count);
  86
  87	return err;
  88}
  89
  90#define string_size(str)						\
  91	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
  92
  93static int do_write_string(int fd, const char *str)
 
  94{
  95	u32 len, olen;
  96	int ret;
  97
  98	olen = strlen(str) + 1;
  99	len = PERF_ALIGN(olen, NAME_ALIGN);
 100
 101	/* write len, incl. \0 */
 102	ret = do_write(fd, &len, sizeof(len));
 103	if (ret < 0)
 104		return ret;
 105
 106	return write_padded(fd, str, olen, len);
 107}
 108
 109static char *do_read_string(int fd, struct perf_header *ph)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110{
 111	ssize_t sz, ret;
 112	u32 len;
 113	char *buf;
 114
 115	sz = readn(fd, &len, sizeof(len));
 116	if (sz < (ssize_t)sizeof(len))
 117		return NULL;
 118
 119	if (ph->needs_swap)
 120		len = bswap_32(len);
 121
 122	buf = malloc(len);
 123	if (!buf)
 124		return NULL;
 125
 126	ret = readn(fd, buf, len);
 127	if (ret == (ssize_t)len) {
 128		/*
 129		 * strings are padded by zeroes
 130		 * thus the actual strlen of buf
 131		 * may be less than len
 132		 */
 133		return buf;
 134	}
 135
 136	free(buf);
 137	return NULL;
 138}
 139
 140static int write_tracing_data(int fd, struct perf_header *h __maybe_unused,
 141			    struct perf_evlist *evlist)
 142{
 143	return read_tracing_data(fd, &evlist->entries);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 144}
 145
 
 
 
 
 
 
 
 
 
 
 146
 147static int write_build_id(int fd, struct perf_header *h,
 148			  struct perf_evlist *evlist __maybe_unused)
 149{
 150	struct perf_session *session;
 151	int err;
 152
 153	session = container_of(h, struct perf_session, header);
 154
 155	if (!perf_session__read_build_ids(session, true))
 156		return -1;
 157
 158	err = perf_session__write_buildid_table(session, fd);
 
 
 
 159	if (err < 0) {
 160		pr_debug("failed to write buildid table\n");
 161		return err;
 162	}
 163	perf_session__cache_build_ids(session);
 164
 165	return 0;
 166}
 167
 168static int write_hostname(int fd, struct perf_header *h __maybe_unused,
 169			  struct perf_evlist *evlist __maybe_unused)
 170{
 171	struct utsname uts;
 172	int ret;
 173
 174	ret = uname(&uts);
 175	if (ret < 0)
 176		return -1;
 177
 178	return do_write_string(fd, uts.nodename);
 179}
 180
 181static int write_osrelease(int fd, struct perf_header *h __maybe_unused,
 182			   struct perf_evlist *evlist __maybe_unused)
 183{
 184	struct utsname uts;
 185	int ret;
 186
 187	ret = uname(&uts);
 188	if (ret < 0)
 189		return -1;
 190
 191	return do_write_string(fd, uts.release);
 192}
 193
 194static int write_arch(int fd, struct perf_header *h __maybe_unused,
 195		      struct perf_evlist *evlist __maybe_unused)
 196{
 197	struct utsname uts;
 198	int ret;
 199
 200	ret = uname(&uts);
 201	if (ret < 0)
 202		return -1;
 203
 204	return do_write_string(fd, uts.machine);
 205}
 206
 207static int write_version(int fd, struct perf_header *h __maybe_unused,
 208			 struct perf_evlist *evlist __maybe_unused)
 209{
 210	return do_write_string(fd, perf_version_string);
 211}
 212
 213static int __write_cpudesc(int fd, const char *cpuinfo_proc)
 214{
 215	FILE *file;
 216	char *buf = NULL;
 217	char *s, *p;
 218	const char *search = cpuinfo_proc;
 219	size_t len = 0;
 220	int ret = -1;
 221
 222	if (!search)
 223		return -1;
 224
 225	file = fopen("/proc/cpuinfo", "r");
 226	if (!file)
 227		return -1;
 228
 229	while (getline(&buf, &len, file) > 0) {
 230		ret = strncmp(buf, search, strlen(search));
 231		if (!ret)
 232			break;
 233	}
 234
 235	if (ret) {
 236		ret = -1;
 237		goto done;
 238	}
 239
 240	s = buf;
 241
 242	p = strchr(buf, ':');
 243	if (p && *(p+1) == ' ' && *(p+2))
 244		s = p + 2;
 245	p = strchr(s, '\n');
 246	if (p)
 247		*p = '\0';
 248
 249	/* squash extra space characters (branding string) */
 250	p = s;
 251	while (*p) {
 252		if (isspace(*p)) {
 253			char *r = p + 1;
 254			char *q = r;
 255			*p = ' ';
 256			while (*q && isspace(*q))
 257				q++;
 258			if (q != (p+1))
 259				while ((*r++ = *q++));
 260		}
 261		p++;
 262	}
 263	ret = do_write_string(fd, s);
 264done:
 265	free(buf);
 266	fclose(file);
 267	return ret;
 268}
 269
 270static int write_cpudesc(int fd, struct perf_header *h __maybe_unused,
 271		       struct perf_evlist *evlist __maybe_unused)
 272{
 273#ifndef CPUINFO_PROC
 274#define CPUINFO_PROC {"model name", }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275#endif
 276	const char *cpuinfo_procs[] = CPUINFO_PROC;
 
 277	unsigned int i;
 278
 279	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 280		int ret;
 281		ret = __write_cpudesc(fd, cpuinfo_procs[i]);
 282		if (ret >= 0)
 283			return ret;
 284	}
 285	return -1;
 286}
 287
 288
 289static int write_nrcpus(int fd, struct perf_header *h __maybe_unused,
 290			struct perf_evlist *evlist __maybe_unused)
 291{
 292	long nr;
 293	u32 nrc, nra;
 294	int ret;
 295
 296	nr = sysconf(_SC_NPROCESSORS_CONF);
 297	if (nr < 0)
 298		return -1;
 299
 300	nrc = (u32)(nr & UINT_MAX);
 301
 302	nr = sysconf(_SC_NPROCESSORS_ONLN);
 303	if (nr < 0)
 304		return -1;
 305
 306	nra = (u32)(nr & UINT_MAX);
 307
 308	ret = do_write(fd, &nrc, sizeof(nrc));
 309	if (ret < 0)
 310		return ret;
 311
 312	return do_write(fd, &nra, sizeof(nra));
 313}
 314
 315static int write_event_desc(int fd, struct perf_header *h __maybe_unused,
 316			    struct perf_evlist *evlist)
 317{
 318	struct perf_evsel *evsel;
 319	u32 nre, nri, sz;
 320	int ret;
 321
 322	nre = evlist->nr_entries;
 323
 324	/*
 325	 * write number of events
 326	 */
 327	ret = do_write(fd, &nre, sizeof(nre));
 328	if (ret < 0)
 329		return ret;
 330
 331	/*
 332	 * size of perf_event_attr struct
 333	 */
 334	sz = (u32)sizeof(evsel->attr);
 335	ret = do_write(fd, &sz, sizeof(sz));
 336	if (ret < 0)
 337		return ret;
 338
 339	evlist__for_each(evlist, evsel) {
 340		ret = do_write(fd, &evsel->attr, sz);
 341		if (ret < 0)
 342			return ret;
 343		/*
 344		 * write number of unique id per event
 345		 * there is one id per instance of an event
 346		 *
 347		 * copy into an nri to be independent of the
 348		 * type of ids,
 349		 */
 350		nri = evsel->ids;
 351		ret = do_write(fd, &nri, sizeof(nri));
 352		if (ret < 0)
 353			return ret;
 354
 355		/*
 356		 * write event string as passed on cmdline
 357		 */
 358		ret = do_write_string(fd, perf_evsel__name(evsel));
 359		if (ret < 0)
 360			return ret;
 361		/*
 362		 * write unique ids for this event
 363		 */
 364		ret = do_write(fd, evsel->id, evsel->ids * sizeof(u64));
 365		if (ret < 0)
 366			return ret;
 367	}
 368	return 0;
 369}
 370
 371static int write_cmdline(int fd, struct perf_header *h __maybe_unused,
 372			 struct perf_evlist *evlist __maybe_unused)
 373{
 374	char buf[MAXPATHLEN];
 375	char proc[32];
 376	u32 n;
 377	int i, ret;
 378
 379	/*
 380	 * actual atual path to perf binary
 381	 */
 382	sprintf(proc, "/proc/%d/exe", getpid());
 383	ret = readlink(proc, buf, sizeof(buf));
 384	if (ret <= 0)
 385		return -1;
 386
 387	/* readlink() does not add null termination */
 388	buf[ret] = '\0';
 389
 390	/* account for binary path */
 391	n = perf_env.nr_cmdline + 1;
 392
 393	ret = do_write(fd, &n, sizeof(n));
 394	if (ret < 0)
 395		return ret;
 396
 397	ret = do_write_string(fd, buf);
 398	if (ret < 0)
 399		return ret;
 400
 401	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 402		ret = do_write_string(fd, perf_env.cmdline_argv[i]);
 403		if (ret < 0)
 404			return ret;
 405	}
 406	return 0;
 407}
 408
 409#define CORE_SIB_FMT \
 410	"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
 411#define THRD_SIB_FMT \
 412	"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
 413
 414struct cpu_topo {
 415	u32 cpu_nr;
 416	u32 core_sib;
 417	u32 thread_sib;
 418	char **core_siblings;
 419	char **thread_siblings;
 420};
 421
 422static int build_cpu_topo(struct cpu_topo *tp, int cpu)
 423{
 424	FILE *fp;
 425	char filename[MAXPATHLEN];
 426	char *buf = NULL, *p;
 427	size_t len = 0;
 428	ssize_t sret;
 429	u32 i = 0;
 430	int ret = -1;
 431
 432	sprintf(filename, CORE_SIB_FMT, cpu);
 433	fp = fopen(filename, "r");
 434	if (!fp)
 435		goto try_threads;
 436
 437	sret = getline(&buf, &len, fp);
 438	fclose(fp);
 439	if (sret <= 0)
 440		goto try_threads;
 441
 442	p = strchr(buf, '\n');
 443	if (p)
 444		*p = '\0';
 445
 446	for (i = 0; i < tp->core_sib; i++) {
 447		if (!strcmp(buf, tp->core_siblings[i]))
 448			break;
 449	}
 450	if (i == tp->core_sib) {
 451		tp->core_siblings[i] = buf;
 452		tp->core_sib++;
 453		buf = NULL;
 454		len = 0;
 455	}
 456	ret = 0;
 457
 458try_threads:
 459	sprintf(filename, THRD_SIB_FMT, cpu);
 460	fp = fopen(filename, "r");
 461	if (!fp)
 462		goto done;
 463
 464	if (getline(&buf, &len, fp) <= 0)
 465		goto done;
 466
 467	p = strchr(buf, '\n');
 468	if (p)
 469		*p = '\0';
 470
 471	for (i = 0; i < tp->thread_sib; i++) {
 472		if (!strcmp(buf, tp->thread_siblings[i]))
 473			break;
 474	}
 475	if (i == tp->thread_sib) {
 476		tp->thread_siblings[i] = buf;
 477		tp->thread_sib++;
 478		buf = NULL;
 479	}
 480	ret = 0;
 481done:
 482	if(fp)
 483		fclose(fp);
 484	free(buf);
 485	return ret;
 486}
 487
 488static void free_cpu_topo(struct cpu_topo *tp)
 
 489{
 490	u32 i;
 491
 492	if (!tp)
 493		return;
 494
 495	for (i = 0 ; i < tp->core_sib; i++)
 496		zfree(&tp->core_siblings[i]);
 497
 498	for (i = 0 ; i < tp->thread_sib; i++)
 499		zfree(&tp->thread_siblings[i]);
 500
 501	free(tp);
 502}
 503
 504static struct cpu_topo *build_cpu_topology(void)
 505{
 506	struct cpu_topo *tp;
 507	void *addr;
 508	u32 nr, i;
 509	size_t sz;
 510	long ncpus;
 511	int ret = -1;
 512
 513	ncpus = sysconf(_SC_NPROCESSORS_CONF);
 514	if (ncpus < 0)
 515		return NULL;
 516
 517	nr = (u32)(ncpus & UINT_MAX);
 518
 519	sz = nr * sizeof(char *);
 520
 521	addr = calloc(1, sizeof(*tp) + 2 * sz);
 522	if (!addr)
 523		return NULL;
 524
 525	tp = addr;
 526	tp->cpu_nr = nr;
 527	addr += sizeof(*tp);
 528	tp->core_siblings = addr;
 529	addr += sz;
 530	tp->thread_siblings = addr;
 531
 532	for (i = 0; i < nr; i++) {
 533		ret = build_cpu_topo(tp, i);
 534		if (ret < 0)
 535			break;
 536	}
 537	if (ret) {
 538		free_cpu_topo(tp);
 539		tp = NULL;
 540	}
 541	return tp;
 542}
 543
 544static int write_cpu_topology(int fd, struct perf_header *h __maybe_unused,
 545			  struct perf_evlist *evlist __maybe_unused)
 546{
 547	struct cpu_topo *tp;
 548	u32 i;
 549	int ret, j;
 550
 551	tp = build_cpu_topology();
 552	if (!tp)
 553		return -1;
 554
 555	ret = do_write(fd, &tp->core_sib, sizeof(tp->core_sib));
 556	if (ret < 0)
 557		goto done;
 558
 559	for (i = 0; i < tp->core_sib; i++) {
 560		ret = do_write_string(fd, tp->core_siblings[i]);
 561		if (ret < 0)
 562			goto done;
 563	}
 564	ret = do_write(fd, &tp->thread_sib, sizeof(tp->thread_sib));
 565	if (ret < 0)
 566		goto done;
 567
 568	for (i = 0; i < tp->thread_sib; i++) {
 569		ret = do_write_string(fd, tp->thread_siblings[i]);
 570		if (ret < 0)
 571			break;
 572	}
 573
 574	ret = perf_env__read_cpu_topology_map(&perf_env);
 575	if (ret < 0)
 576		goto done;
 577
 578	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 579		ret = do_write(fd, &perf_env.cpu[j].core_id,
 580			       sizeof(perf_env.cpu[j].core_id));
 581		if (ret < 0)
 582			return ret;
 583		ret = do_write(fd, &perf_env.cpu[j].socket_id,
 584			       sizeof(perf_env.cpu[j].socket_id));
 585		if (ret < 0)
 586			return ret;
 587	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588done:
 589	free_cpu_topo(tp);
 590	return ret;
 591}
 592
 593
 594
 595static int write_total_mem(int fd, struct perf_header *h __maybe_unused,
 596			  struct perf_evlist *evlist __maybe_unused)
 597{
 598	char *buf = NULL;
 599	FILE *fp;
 600	size_t len = 0;
 601	int ret = -1, n;
 602	uint64_t mem;
 603
 604	fp = fopen("/proc/meminfo", "r");
 605	if (!fp)
 606		return -1;
 607
 608	while (getline(&buf, &len, fp) > 0) {
 609		ret = strncmp(buf, "MemTotal:", 9);
 610		if (!ret)
 611			break;
 612	}
 613	if (!ret) {
 614		n = sscanf(buf, "%*s %"PRIu64, &mem);
 615		if (n == 1)
 616			ret = do_write(fd, &mem, sizeof(mem));
 617	} else
 618		ret = -1;
 619	free(buf);
 620	fclose(fp);
 621	return ret;
 622}
 623
 624static int write_topo_node(int fd, int node)
 625{
 626	char str[MAXPATHLEN];
 627	char field[32];
 628	char *buf = NULL, *p;
 629	size_t len = 0;
 630	FILE *fp;
 631	u64 mem_total, mem_free, mem;
 632	int ret = -1;
 633
 634	sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
 635	fp = fopen(str, "r");
 636	if (!fp)
 637		return -1;
 638
 639	while (getline(&buf, &len, fp) > 0) {
 640		/* skip over invalid lines */
 641		if (!strchr(buf, ':'))
 642			continue;
 643		if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
 644			goto done;
 645		if (!strcmp(field, "MemTotal:"))
 646			mem_total = mem;
 647		if (!strcmp(field, "MemFree:"))
 648			mem_free = mem;
 649	}
 650
 651	fclose(fp);
 652	fp = NULL;
 653
 654	ret = do_write(fd, &mem_total, sizeof(u64));
 655	if (ret)
 656		goto done;
 657
 658	ret = do_write(fd, &mem_free, sizeof(u64));
 659	if (ret)
 660		goto done;
 661
 662	ret = -1;
 663	sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
 664
 665	fp = fopen(str, "r");
 666	if (!fp)
 667		goto done;
 668
 669	if (getline(&buf, &len, fp) <= 0)
 670		goto done;
 671
 672	p = strchr(buf, '\n');
 673	if (p)
 674		*p = '\0';
 675
 676	ret = do_write_string(fd, buf);
 677done:
 678	free(buf);
 679	if (fp)
 680		fclose(fp);
 681	return ret;
 682}
 683
 684static int write_numa_topology(int fd, struct perf_header *h __maybe_unused,
 685			  struct perf_evlist *evlist __maybe_unused)
 686{
 687	char *buf = NULL;
 688	size_t len = 0;
 689	FILE *fp;
 690	struct cpu_map *node_map = NULL;
 691	char *c;
 692	u32 nr, i, j;
 693	int ret = -1;
 
 694
 695	fp = fopen("/sys/devices/system/node/online", "r");
 696	if (!fp)
 697		return -1;
 698
 699	if (getline(&buf, &len, fp) <= 0)
 700		goto done;
 701
 702	c = strchr(buf, '\n');
 703	if (c)
 704		*c = '\0';
 705
 706	node_map = cpu_map__new(buf);
 707	if (!node_map)
 708		goto done;
 709
 710	nr = (u32)node_map->nr;
 
 
 711
 712	ret = do_write(fd, &nr, sizeof(nr));
 713	if (ret < 0)
 714		goto done;
 715
 716	for (i = 0; i < nr; i++) {
 717		j = (u32)node_map->map[i];
 718		ret = do_write(fd, &j, sizeof(j));
 719		if (ret < 0)
 720			break;
 721
 722		ret = write_topo_node(fd, i);
 723		if (ret < 0)
 724			break;
 725	}
 726done:
 727	free(buf);
 728	fclose(fp);
 729	cpu_map__put(node_map);
 
 730	return ret;
 731}
 732
 733/*
 734 * File format:
 735 *
 736 * struct pmu_mappings {
 737 *	u32	pmu_num;
 738 *	struct pmu_map {
 739 *		u32	type;
 740 *		char	name[];
 741 *	}[pmu_num];
 742 * };
 743 */
 744
 745static int write_pmu_mappings(int fd, struct perf_header *h __maybe_unused,
 746			      struct perf_evlist *evlist __maybe_unused)
 747{
 748	struct perf_pmu *pmu = NULL;
 749	off_t offset = lseek(fd, 0, SEEK_CUR);
 750	__u32 pmu_num = 0;
 751	int ret;
 752
 753	/* write real pmu_num later */
 754	ret = do_write(fd, &pmu_num, sizeof(pmu_num));
 
 
 
 
 
 
 755	if (ret < 0)
 756		return ret;
 757
 758	while ((pmu = perf_pmu__scan(pmu))) {
 759		if (!pmu->name)
 760			continue;
 761		pmu_num++;
 762
 763		ret = do_write(fd, &pmu->type, sizeof(pmu->type));
 764		if (ret < 0)
 765			return ret;
 766
 767		ret = do_write_string(fd, pmu->name);
 768		if (ret < 0)
 769			return ret;
 770	}
 771
 772	if (pwrite(fd, &pmu_num, sizeof(pmu_num), offset) != sizeof(pmu_num)) {
 773		/* discard all */
 774		lseek(fd, offset, SEEK_SET);
 775		return -1;
 776	}
 777
 778	return 0;
 779}
 780
 781/*
 782 * File format:
 783 *
 784 * struct group_descs {
 785 *	u32	nr_groups;
 786 *	struct group_desc {
 787 *		char	name[];
 788 *		u32	leader_idx;
 789 *		u32	nr_members;
 790 *	}[nr_groups];
 791 * };
 792 */
 793static int write_group_desc(int fd, struct perf_header *h __maybe_unused,
 794			    struct perf_evlist *evlist)
 795{
 796	u32 nr_groups = evlist->nr_groups;
 797	struct perf_evsel *evsel;
 798	int ret;
 799
 800	ret = do_write(fd, &nr_groups, sizeof(nr_groups));
 801	if (ret < 0)
 802		return ret;
 803
 804	evlist__for_each(evlist, evsel) {
 805		if (perf_evsel__is_group_leader(evsel) &&
 806		    evsel->nr_members > 1) {
 807			const char *name = evsel->group_name ?: "{anon_group}";
 808			u32 leader_idx = evsel->idx;
 809			u32 nr_members = evsel->nr_members;
 810
 811			ret = do_write_string(fd, name);
 812			if (ret < 0)
 813				return ret;
 814
 815			ret = do_write(fd, &leader_idx, sizeof(leader_idx));
 816			if (ret < 0)
 817				return ret;
 818
 819			ret = do_write(fd, &nr_members, sizeof(nr_members));
 820			if (ret < 0)
 821				return ret;
 822		}
 823	}
 824	return 0;
 825}
 826
 827/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828 * default get_cpuid(): nothing gets recorded
 829 * actual implementation must be in arch/$(ARCH)/util/header.c
 830 */
 831int __attribute__ ((weak)) get_cpuid(char *buffer __maybe_unused,
 832				     size_t sz __maybe_unused)
 833{
 834	return -1;
 835}
 836
 837static int write_cpuid(int fd, struct perf_header *h __maybe_unused,
 838		       struct perf_evlist *evlist __maybe_unused)
 839{
 
 840	char buffer[64];
 841	int ret;
 842
 843	ret = get_cpuid(buffer, sizeof(buffer));
 844	if (!ret)
 845		goto write_it;
 846
 847	return -1;
 848write_it:
 849	return do_write_string(fd, buffer);
 850}
 851
 852static int write_branch_stack(int fd __maybe_unused,
 853			      struct perf_header *h __maybe_unused,
 854		       struct perf_evlist *evlist __maybe_unused)
 855{
 856	return 0;
 857}
 858
 859static int write_auxtrace(int fd, struct perf_header *h,
 860			  struct perf_evlist *evlist __maybe_unused)
 861{
 862	struct perf_session *session;
 863	int err;
 864
 865	session = container_of(h, struct perf_session, header);
 
 
 
 866
 867	err = auxtrace_index__write(fd, &session->auxtrace_index);
 868	if (err < 0)
 869		pr_err("Failed to write auxtrace index\n");
 870	return err;
 871}
 872
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873static int cpu_cache_level__sort(const void *a, const void *b)
 874{
 875	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
 876	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
 877
 878	return cache_a->level - cache_b->level;
 879}
 880
 881static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
 882{
 883	if (a->level != b->level)
 884		return false;
 885
 886	if (a->line_size != b->line_size)
 887		return false;
 888
 889	if (a->sets != b->sets)
 890		return false;
 891
 892	if (a->ways != b->ways)
 893		return false;
 894
 895	if (strcmp(a->type, b->type))
 896		return false;
 897
 898	if (strcmp(a->size, b->size))
 899		return false;
 900
 901	if (strcmp(a->map, b->map))
 902		return false;
 903
 904	return true;
 905}
 906
 907static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
 908{
 909	char path[PATH_MAX], file[PATH_MAX];
 910	struct stat st;
 911	size_t len;
 912
 913	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
 914	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
 915
 916	if (stat(file, &st))
 917		return 1;
 918
 919	scnprintf(file, PATH_MAX, "%s/level", path);
 920	if (sysfs__read_int(file, (int *) &cache->level))
 921		return -1;
 922
 923	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
 924	if (sysfs__read_int(file, (int *) &cache->line_size))
 925		return -1;
 926
 927	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
 928	if (sysfs__read_int(file, (int *) &cache->sets))
 929		return -1;
 930
 931	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
 932	if (sysfs__read_int(file, (int *) &cache->ways))
 933		return -1;
 934
 935	scnprintf(file, PATH_MAX, "%s/type", path);
 936	if (sysfs__read_str(file, &cache->type, &len))
 937		return -1;
 938
 939	cache->type[len] = 0;
 940	cache->type = rtrim(cache->type);
 941
 942	scnprintf(file, PATH_MAX, "%s/size", path);
 943	if (sysfs__read_str(file, &cache->size, &len)) {
 944		free(cache->type);
 945		return -1;
 946	}
 947
 948	cache->size[len] = 0;
 949	cache->size = rtrim(cache->size);
 950
 951	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
 952	if (sysfs__read_str(file, &cache->map, &len)) {
 953		free(cache->map);
 954		free(cache->type);
 955		return -1;
 956	}
 957
 958	cache->map[len] = 0;
 959	cache->map = rtrim(cache->map);
 960	return 0;
 961}
 962
 963static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
 964{
 965	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
 966}
 967
 968static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
 
 
 
 
 
 
 969{
 970	u32 i, cnt = 0;
 971	long ncpus;
 972	u32 nr, cpu;
 973	u16 level;
 974
 975	ncpus = sysconf(_SC_NPROCESSORS_CONF);
 976	if (ncpus < 0)
 977		return -1;
 
 978
 979	nr = (u32)(ncpus & UINT_MAX);
 
 
 980
 981	for (cpu = 0; cpu < nr; cpu++) {
 982		for (level = 0; level < 10; level++) {
 983			struct cpu_cache_level c;
 984			int err;
 985
 986			err = cpu_cache_level__read(&c, cpu, level);
 987			if (err < 0)
 988				return err;
 989
 990			if (err == 1)
 
 991				break;
 
 992
 993			for (i = 0; i < cnt; i++) {
 994				if (cpu_cache_level__cmp(&c, &caches[i]))
 995					break;
 996			}
 
 
 997
 998			if (i == cnt)
 999				caches[cnt++] = c;
1000			else
1001				cpu_cache_level__free(&c);
1002
1003			if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1004				goto out;
1005		}
 
 
 
 
 
 
 
 
1006	}
1007 out:
1008	*cntp = cnt;
1009	return 0;
1010}
1011
1012#define MAX_CACHES 2000
1013
1014static int write_cache(int fd, struct perf_header *h __maybe_unused,
1015			  struct perf_evlist *evlist __maybe_unused)
1016{
1017	struct cpu_cache_level caches[MAX_CACHES];
 
1018	u32 cnt = 0, i, version = 1;
1019	int ret;
1020
1021	ret = build_caches(caches, MAX_CACHES, &cnt);
1022	if (ret)
1023		goto out;
1024
1025	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1026
1027	ret = do_write(fd, &version, sizeof(u32));
1028	if (ret < 0)
1029		goto out;
1030
1031	ret = do_write(fd, &cnt, sizeof(u32));
1032	if (ret < 0)
1033		goto out;
1034
1035	for (i = 0; i < cnt; i++) {
1036		struct cpu_cache_level *c = &caches[i];
1037
1038		#define _W(v)					\
1039			ret = do_write(fd, &c->v, sizeof(u32));	\
1040			if (ret < 0)				\
1041				goto out;
1042
1043		_W(level)
1044		_W(line_size)
1045		_W(sets)
1046		_W(ways)
1047		#undef _W
1048
1049		#define _W(v)						\
1050			ret = do_write_string(fd, (const char *) c->v);	\
1051			if (ret < 0)					\
1052				goto out;
1053
1054		_W(type)
1055		_W(size)
1056		_W(map)
1057		#undef _W
1058	}
1059
1060out:
1061	for (i = 0; i < cnt; i++)
1062		cpu_cache_level__free(&caches[i]);
1063	return ret;
1064}
1065
1066static int write_stat(int fd __maybe_unused,
1067		      struct perf_header *h __maybe_unused,
1068		      struct perf_evlist *evlist __maybe_unused)
1069{
1070	return 0;
1071}
1072
1073static void print_hostname(struct perf_header *ph, int fd __maybe_unused,
1074			   FILE *fp)
1075{
1076	fprintf(fp, "# hostname : %s\n", ph->env.hostname);
 
 
 
 
 
 
 
 
1077}
1078
1079static void print_osrelease(struct perf_header *ph, int fd __maybe_unused,
1080			    FILE *fp)
1081{
1082	fprintf(fp, "# os release : %s\n", ph->env.os_release);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083}
1084
1085static void print_arch(struct perf_header *ph, int fd __maybe_unused, FILE *fp)
1086{
1087	fprintf(fp, "# arch : %s\n", ph->env.arch);
 
 
 
1088}
1089
1090static void print_cpudesc(struct perf_header *ph, int fd __maybe_unused,
1091			  FILE *fp)
1092{
1093	fprintf(fp, "# cpudesc : %s\n", ph->env.cpu_desc);
 
 
 
1094}
1095
1096static void print_nrcpus(struct perf_header *ph, int fd __maybe_unused,
1097			 FILE *fp)
1098{
1099	fprintf(fp, "# nrcpus online : %u\n", ph->env.nr_cpus_online);
1100	fprintf(fp, "# nrcpus avail : %u\n", ph->env.nr_cpus_avail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1101}
1102
1103static void print_version(struct perf_header *ph, int fd __maybe_unused,
1104			  FILE *fp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105{
1106	fprintf(fp, "# perf version : %s\n", ph->env.version);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107}
1108
1109static void print_cmdline(struct perf_header *ph, int fd __maybe_unused,
1110			  FILE *fp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1111{
1112	int nr, i;
1113
1114	nr = ph->env.nr_cmdline;
1115
1116	fprintf(fp, "# cmdline : ");
1117
1118	for (i = 0; i < nr; i++)
1119		fprintf(fp, "%s ", ph->env.cmdline_argv[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1120	fputc('\n', fp);
1121}
1122
1123static void print_cpu_topology(struct perf_header *ph, int fd __maybe_unused,
1124			       FILE *fp)
1125{
 
 
1126	int nr, i;
1127	char *str;
1128	int cpu_nr = ph->env.nr_cpus_online;
1129
1130	nr = ph->env.nr_sibling_cores;
1131	str = ph->env.sibling_cores;
1132
1133	for (i = 0; i < nr; i++) {
1134		fprintf(fp, "# sibling cores   : %s\n", str);
1135		str += strlen(str) + 1;
1136	}
1137
 
 
 
 
 
 
 
 
 
 
1138	nr = ph->env.nr_sibling_threads;
1139	str = ph->env.sibling_threads;
1140
1141	for (i = 0; i < nr; i++) {
1142		fprintf(fp, "# sibling threads : %s\n", str);
1143		str += strlen(str) + 1;
1144	}
1145
1146	if (ph->env.cpu != NULL) {
1147		for (i = 0; i < cpu_nr; i++)
1148			fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1149				ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1150	} else
1151		fprintf(fp, "# Core ID and Socket ID information is not available\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152}
 
1153
1154static void free_event_desc(struct perf_evsel *events)
1155{
1156	struct perf_evsel *evsel;
1157
1158	if (!events)
1159		return;
1160
1161	for (evsel = events; evsel->attr.size; evsel++) {
1162		zfree(&evsel->name);
1163		zfree(&evsel->id);
1164	}
1165
1166	free(events);
1167}
1168
1169static struct perf_evsel *
1170read_event_desc(struct perf_header *ph, int fd)
1171{
1172	struct perf_evsel *evsel, *events = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173	u64 *id;
1174	void *buf = NULL;
1175	u32 nre, sz, nr, i, j;
1176	ssize_t ret;
1177	size_t msz;
1178
1179	/* number of events */
1180	ret = readn(fd, &nre, sizeof(nre));
1181	if (ret != (ssize_t)sizeof(nre))
1182		goto error;
1183
1184	if (ph->needs_swap)
1185		nre = bswap_32(nre);
1186
1187	ret = readn(fd, &sz, sizeof(sz));
1188	if (ret != (ssize_t)sizeof(sz))
1189		goto error;
1190
1191	if (ph->needs_swap)
1192		sz = bswap_32(sz);
1193
1194	/* buffer to hold on file attr struct */
1195	buf = malloc(sz);
1196	if (!buf)
1197		goto error;
1198
1199	/* the last event terminates with evsel->attr.size == 0: */
1200	events = calloc(nre + 1, sizeof(*events));
1201	if (!events)
1202		goto error;
1203
1204	msz = sizeof(evsel->attr);
1205	if (sz < msz)
1206		msz = sz;
1207
1208	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1209		evsel->idx = i;
1210
1211		/*
1212		 * must read entire on-file attr struct to
1213		 * sync up with layout.
1214		 */
1215		ret = readn(fd, buf, sz);
1216		if (ret != (ssize_t)sz)
1217			goto error;
1218
1219		if (ph->needs_swap)
1220			perf_event__attr_swap(buf);
1221
1222		memcpy(&evsel->attr, buf, msz);
1223
1224		ret = readn(fd, &nr, sizeof(nr));
1225		if (ret != (ssize_t)sizeof(nr))
1226			goto error;
1227
1228		if (ph->needs_swap) {
1229			nr = bswap_32(nr);
 
 
1230			evsel->needs_swap = true;
1231		}
1232
1233		evsel->name = do_read_string(fd, ph);
 
 
1234
1235		if (!nr)
1236			continue;
1237
1238		id = calloc(nr, sizeof(*id));
1239		if (!id)
1240			goto error;
1241		evsel->ids = nr;
1242		evsel->id = id;
1243
1244		for (j = 0 ; j < nr; j++) {
1245			ret = readn(fd, id, sizeof(*id));
1246			if (ret != (ssize_t)sizeof(*id))
1247				goto error;
1248			if (ph->needs_swap)
1249				*id = bswap_64(*id);
1250			id++;
1251		}
1252	}
1253out:
1254	free(buf);
1255	return events;
1256error:
1257	free_event_desc(events);
1258	events = NULL;
1259	goto out;
1260}
1261
1262static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1263				void *priv __attribute__((unused)))
1264{
1265	return fprintf(fp, ", %s = %s", name, val);
1266}
1267
1268static void print_event_desc(struct perf_header *ph, int fd, FILE *fp)
1269{
1270	struct perf_evsel *evsel, *events = read_event_desc(ph, fd);
1271	u32 j;
1272	u64 *id;
1273
 
 
 
 
 
1274	if (!events) {
1275		fprintf(fp, "# event desc: not available or unable to read\n");
1276		return;
1277	}
1278
1279	for (evsel = events; evsel->attr.size; evsel++) {
1280		fprintf(fp, "# event : name = %s, ", evsel->name);
1281
1282		if (evsel->ids) {
1283			fprintf(fp, ", id = {");
1284			for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1285				if (j)
1286					fputc(',', fp);
1287				fprintf(fp, " %"PRIu64, *id);
1288			}
1289			fprintf(fp, " }");
1290		}
1291
1292		perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1293
1294		fputc('\n', fp);
1295	}
1296
1297	free_event_desc(events);
 
1298}
1299
1300static void print_total_mem(struct perf_header *ph, int fd __maybe_unused,
1301			    FILE *fp)
1302{
1303	fprintf(fp, "# total memory : %Lu kB\n", ph->env.total_mem);
1304}
1305
1306static void print_numa_topology(struct perf_header *ph, int fd __maybe_unused,
1307				FILE *fp)
1308{
1309	u32 nr, c, i;
1310	char *str, *tmp;
1311	uint64_t mem_total, mem_free;
1312
1313	/* nr nodes */
1314	nr = ph->env.nr_numa_nodes;
1315	str = ph->env.numa_nodes;
1316
1317	for (i = 0; i < nr; i++) {
1318		/* node number */
1319		c = strtoul(str, &tmp, 0);
1320		if (*tmp != ':')
1321			goto error;
1322
1323		str = tmp + 1;
1324		mem_total = strtoull(str, &tmp, 0);
1325		if (*tmp != ':')
1326			goto error;
1327
1328		str = tmp + 1;
1329		mem_free = strtoull(str, &tmp, 0);
1330		if (*tmp != ':')
1331			goto error;
1332
1333		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1334			    " free = %"PRIu64" kB\n",
1335			c, mem_total, mem_free);
1336
1337		str = tmp + 1;
1338		fprintf(fp, "# node%u cpu list : %s\n", c, str);
1339
1340		str += strlen(str) + 1;
 
1341	}
1342	return;
1343error:
1344	fprintf(fp, "# numa topology : not available\n");
1345}
1346
1347static void print_cpuid(struct perf_header *ph, int fd __maybe_unused, FILE *fp)
1348{
1349	fprintf(fp, "# cpuid : %s\n", ph->env.cpuid);
1350}
1351
1352static void print_branch_stack(struct perf_header *ph __maybe_unused,
1353			       int fd __maybe_unused, FILE *fp)
1354{
1355	fprintf(fp, "# contains samples with branch stack\n");
1356}
1357
1358static void print_auxtrace(struct perf_header *ph __maybe_unused,
1359			   int fd __maybe_unused, FILE *fp)
1360{
1361	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1362}
1363
1364static void print_stat(struct perf_header *ph __maybe_unused,
1365		       int fd __maybe_unused, FILE *fp)
1366{
1367	fprintf(fp, "# contains stat data\n");
1368}
1369
1370static void print_cache(struct perf_header *ph __maybe_unused,
1371			int fd __maybe_unused, FILE *fp __maybe_unused)
1372{
1373	int i;
1374
1375	fprintf(fp, "# CPU cache info:\n");
1376	for (i = 0; i < ph->env.caches_cnt; i++) {
1377		fprintf(fp, "#  ");
1378		cpu_cache_level__fprintf(fp, &ph->env.caches[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379	}
 
 
 
 
 
 
 
 
1380}
1381
1382static void print_pmu_mappings(struct perf_header *ph, int fd __maybe_unused,
1383			       FILE *fp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1384{
1385	const char *delimiter = "# pmu mappings: ";
1386	char *str, *tmp;
1387	u32 pmu_num;
1388	u32 type;
1389
1390	pmu_num = ph->env.nr_pmu_mappings;
1391	if (!pmu_num) {
1392		fprintf(fp, "# pmu mappings: not available\n");
1393		return;
1394	}
1395
1396	str = ph->env.pmu_mappings;
1397
1398	while (pmu_num) {
1399		type = strtoul(str, &tmp, 0);
1400		if (*tmp != ':')
1401			goto error;
1402
1403		str = tmp + 1;
1404		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1405
1406		delimiter = ", ";
1407		str += strlen(str) + 1;
1408		pmu_num--;
1409	}
1410
1411	fprintf(fp, "\n");
1412
1413	if (!pmu_num)
1414		return;
1415error:
1416	fprintf(fp, "# pmu mappings: unable to read\n");
1417}
1418
1419static void print_group_desc(struct perf_header *ph, int fd __maybe_unused,
1420			     FILE *fp)
1421{
1422	struct perf_session *session;
1423	struct perf_evsel *evsel;
1424	u32 nr = 0;
1425
1426	session = container_of(ph, struct perf_session, header);
1427
1428	evlist__for_each(session->evlist, evsel) {
1429		if (perf_evsel__is_group_leader(evsel) &&
1430		    evsel->nr_members > 1) {
1431			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1432				perf_evsel__name(evsel));
1433
1434			nr = evsel->nr_members - 1;
1435		} else if (nr) {
1436			fprintf(fp, ",%s", perf_evsel__name(evsel));
1437
1438			if (--nr == 0)
1439				fprintf(fp, "}\n");
1440		}
1441	}
1442}
1443
1444static int __event_process_build_id(struct build_id_event *bev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1445				    char *filename,
1446				    struct perf_session *session)
1447{
1448	int err = -1;
1449	struct machine *machine;
1450	u16 cpumode;
1451	struct dso *dso;
1452	enum dso_kernel_type dso_type;
1453
1454	machine = perf_session__findnew_machine(session, bev->pid);
1455	if (!machine)
1456		goto out;
1457
1458	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1459
1460	switch (cpumode) {
1461	case PERF_RECORD_MISC_KERNEL:
1462		dso_type = DSO_TYPE_KERNEL;
1463		break;
1464	case PERF_RECORD_MISC_GUEST_KERNEL:
1465		dso_type = DSO_TYPE_GUEST_KERNEL;
1466		break;
1467	case PERF_RECORD_MISC_USER:
1468	case PERF_RECORD_MISC_GUEST_USER:
1469		dso_type = DSO_TYPE_USER;
1470		break;
1471	default:
1472		goto out;
1473	}
1474
1475	dso = machine__findnew_dso(machine, filename);
1476	if (dso != NULL) {
1477		char sbuild_id[BUILD_ID_SIZE * 2 + 1];
 
 
1478
1479		dso__set_build_id(dso, &bev->build_id);
 
1480
1481		if (!is_kernel_module(filename, cpumode))
1482			dso->kernel = dso_type;
 
1483
1484		build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1485				  sbuild_id);
1486		pr_debug("build id event received for %s: %s\n",
1487			 dso->long_name, sbuild_id);
 
 
 
 
 
 
 
 
 
1488		dso__put(dso);
1489	}
1490
1491	err = 0;
1492out:
1493	return err;
1494}
1495
1496static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1497						 int input, u64 offset, u64 size)
1498{
1499	struct perf_session *session = container_of(header, struct perf_session, header);
1500	struct {
1501		struct perf_event_header   header;
1502		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1503		char			   filename[0];
1504	} old_bev;
1505	struct build_id_event bev;
1506	char filename[PATH_MAX];
1507	u64 limit = offset + size;
1508
1509	while (offset < limit) {
1510		ssize_t len;
1511
1512		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1513			return -1;
1514
1515		if (header->needs_swap)
1516			perf_event_header__bswap(&old_bev.header);
1517
1518		len = old_bev.header.size - sizeof(old_bev);
1519		if (readn(input, filename, len) != len)
1520			return -1;
1521
1522		bev.header = old_bev.header;
1523
1524		/*
1525		 * As the pid is the missing value, we need to fill
1526		 * it properly. The header.misc value give us nice hint.
1527		 */
1528		bev.pid	= HOST_KERNEL_ID;
1529		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1530		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1531			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
1532
1533		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1534		__event_process_build_id(&bev, filename, session);
1535
1536		offset += bev.header.size;
1537	}
1538
1539	return 0;
1540}
1541
1542static int perf_header__read_build_ids(struct perf_header *header,
1543				       int input, u64 offset, u64 size)
1544{
1545	struct perf_session *session = container_of(header, struct perf_session, header);
1546	struct build_id_event bev;
1547	char filename[PATH_MAX];
1548	u64 limit = offset + size, orig_offset = offset;
1549	int err = -1;
1550
1551	while (offset < limit) {
1552		ssize_t len;
1553
1554		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1555			goto out;
1556
1557		if (header->needs_swap)
1558			perf_event_header__bswap(&bev.header);
1559
1560		len = bev.header.size - sizeof(bev);
1561		if (readn(input, filename, len) != len)
1562			goto out;
1563		/*
1564		 * The a1645ce1 changeset:
1565		 *
1566		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
1567		 *
1568		 * Added a field to struct build_id_event that broke the file
1569		 * format.
1570		 *
1571		 * Since the kernel build-id is the first entry, process the
1572		 * table using the old format if the well known
1573		 * '[kernel.kallsyms]' string for the kernel build-id has the
1574		 * first 4 characters chopped off (where the pid_t sits).
1575		 */
1576		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1577			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1578				return -1;
1579			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1580		}
1581
1582		__event_process_build_id(&bev, filename, session);
1583
1584		offset += bev.header.size;
1585	}
1586	err = 0;
1587out:
1588	return err;
1589}
1590
1591static int process_tracing_data(struct perf_file_section *section __maybe_unused,
1592				struct perf_header *ph __maybe_unused,
1593				int fd, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594{
1595	ssize_t ret = trace_report(fd, data, false);
 
1596	return ret < 0 ? -1 : 0;
1597}
 
1598
1599static int process_build_id(struct perf_file_section *section,
1600			    struct perf_header *ph, int fd,
1601			    void *data __maybe_unused)
1602{
1603	if (perf_header__read_build_ids(ph, fd, section->offset, section->size))
1604		pr_debug("Failed to read buildids, continuing...\n");
1605	return 0;
1606}
1607
1608static int process_hostname(struct perf_file_section *section __maybe_unused,
1609			    struct perf_header *ph, int fd,
1610			    void *data __maybe_unused)
1611{
1612	ph->env.hostname = do_read_string(fd, ph);
1613	return ph->env.hostname ? 0 : -ENOMEM;
1614}
1615
1616static int process_osrelease(struct perf_file_section *section __maybe_unused,
1617			     struct perf_header *ph, int fd,
1618			     void *data __maybe_unused)
1619{
1620	ph->env.os_release = do_read_string(fd, ph);
1621	return ph->env.os_release ? 0 : -ENOMEM;
1622}
1623
1624static int process_version(struct perf_file_section *section __maybe_unused,
1625			   struct perf_header *ph, int fd,
1626			   void *data __maybe_unused)
1627{
1628	ph->env.version = do_read_string(fd, ph);
1629	return ph->env.version ? 0 : -ENOMEM;
1630}
1631
1632static int process_arch(struct perf_file_section *section __maybe_unused,
1633			struct perf_header *ph,	int fd,
1634			void *data __maybe_unused)
1635{
1636	ph->env.arch = do_read_string(fd, ph);
1637	return ph->env.arch ? 0 : -ENOMEM;
1638}
1639
1640static int process_nrcpus(struct perf_file_section *section __maybe_unused,
1641			  struct perf_header *ph, int fd,
1642			  void *data __maybe_unused)
1643{
1644	ssize_t ret;
1645	u32 nr;
1646
1647	ret = readn(fd, &nr, sizeof(nr));
1648	if (ret != sizeof(nr))
1649		return -1;
1650
1651	if (ph->needs_swap)
1652		nr = bswap_32(nr);
1653
1654	ph->env.nr_cpus_avail = nr;
1655
1656	ret = readn(fd, &nr, sizeof(nr));
1657	if (ret != sizeof(nr))
1658		return -1;
1659
1660	if (ph->needs_swap)
1661		nr = bswap_32(nr);
 
1662
1663	ph->env.nr_cpus_online = nr;
 
 
 
 
1664	return 0;
1665}
1666
1667static int process_cpudesc(struct perf_file_section *section __maybe_unused,
1668			   struct perf_header *ph, int fd,
1669			   void *data __maybe_unused)
1670{
1671	ph->env.cpu_desc = do_read_string(fd, ph);
1672	return ph->env.cpu_desc ? 0 : -ENOMEM;
1673}
1674
1675static int process_cpuid(struct perf_file_section *section __maybe_unused,
1676			 struct perf_header *ph,  int fd,
1677			 void *data __maybe_unused)
1678{
1679	ph->env.cpuid = do_read_string(fd, ph);
1680	return ph->env.cpuid ? 0 : -ENOMEM;
1681}
1682
1683static int process_total_mem(struct perf_file_section *section __maybe_unused,
1684			     struct perf_header *ph, int fd,
1685			     void *data __maybe_unused)
1686{
1687	uint64_t mem;
1688	ssize_t ret;
1689
1690	ret = readn(fd, &mem, sizeof(mem));
1691	if (ret != sizeof(mem))
1692		return -1;
1693
1694	if (ph->needs_swap)
1695		mem = bswap_64(mem);
1696
1697	ph->env.total_mem = mem;
1698	return 0;
1699}
1700
1701static struct perf_evsel *
1702perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
1703{
1704	struct perf_evsel *evsel;
1705
1706	evlist__for_each(evlist, evsel) {
1707		if (evsel->idx == idx)
1708			return evsel;
1709	}
1710
1711	return NULL;
1712}
1713
1714static void
1715perf_evlist__set_event_name(struct perf_evlist *evlist,
1716			    struct perf_evsel *event)
1717{
1718	struct perf_evsel *evsel;
1719
1720	if (!event->name)
1721		return;
1722
1723	evsel = perf_evlist__find_by_index(evlist, event->idx);
1724	if (!evsel)
1725		return;
1726
1727	if (evsel->name)
1728		return;
1729
1730	evsel->name = strdup(event->name);
1731}
1732
1733static int
1734process_event_desc(struct perf_file_section *section __maybe_unused,
1735		   struct perf_header *header, int fd,
1736		   void *data __maybe_unused)
1737{
1738	struct perf_session *session;
1739	struct perf_evsel *evsel, *events = read_event_desc(header, fd);
1740
1741	if (!events)
1742		return 0;
1743
1744	session = container_of(header, struct perf_session, header);
1745	for (evsel = events; evsel->attr.size; evsel++)
1746		perf_evlist__set_event_name(session->evlist, evsel);
1747
1748	free_event_desc(events);
 
 
 
 
 
 
 
 
 
 
1749
1750	return 0;
1751}
1752
1753static int process_cmdline(struct perf_file_section *section,
1754			   struct perf_header *ph, int fd,
1755			   void *data __maybe_unused)
1756{
1757	ssize_t ret;
1758	char *str, *cmdline = NULL, **argv = NULL;
1759	u32 nr, i, len = 0;
1760
1761	ret = readn(fd, &nr, sizeof(nr));
1762	if (ret != sizeof(nr))
1763		return -1;
1764
1765	if (ph->needs_swap)
1766		nr = bswap_32(nr);
1767
1768	ph->env.nr_cmdline = nr;
1769
1770	cmdline = zalloc(section->size + nr + 1);
1771	if (!cmdline)
1772		return -1;
1773
1774	argv = zalloc(sizeof(char *) * (nr + 1));
1775	if (!argv)
1776		goto error;
1777
1778	for (i = 0; i < nr; i++) {
1779		str = do_read_string(fd, ph);
1780		if (!str)
1781			goto error;
1782
1783		argv[i] = cmdline + len;
1784		memcpy(argv[i], str, strlen(str) + 1);
1785		len += strlen(str) + 1;
1786		free(str);
1787	}
1788	ph->env.cmdline = cmdline;
1789	ph->env.cmdline_argv = (const char **) argv;
1790	return 0;
1791
1792error:
1793	free(argv);
1794	free(cmdline);
1795	return -1;
1796}
1797
1798static int process_cpu_topology(struct perf_file_section *section,
1799				struct perf_header *ph, int fd,
1800				void *data __maybe_unused)
1801{
1802	ssize_t ret;
1803	u32 nr, i;
1804	char *str;
1805	struct strbuf sb;
1806	int cpu_nr = ph->env.nr_cpus_online;
1807	u64 size = 0;
 
 
1808
1809	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
1810	if (!ph->env.cpu)
1811		return -1;
1812
1813	ret = readn(fd, &nr, sizeof(nr));
1814	if (ret != sizeof(nr))
1815		goto free_cpu;
1816
1817	if (ph->needs_swap)
1818		nr = bswap_32(nr);
1819
1820	ph->env.nr_sibling_cores = nr;
1821	size += sizeof(u32);
1822	strbuf_init(&sb, 128);
 
1823
1824	for (i = 0; i < nr; i++) {
1825		str = do_read_string(fd, ph);
1826		if (!str)
1827			goto error;
1828
1829		/* include a NULL character at the end */
1830		strbuf_add(&sb, str, strlen(str) + 1);
 
1831		size += string_size(str);
1832		free(str);
1833	}
1834	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
1835
1836	ret = readn(fd, &nr, sizeof(nr));
1837	if (ret != sizeof(nr))
1838		return -1;
1839
1840	if (ph->needs_swap)
1841		nr = bswap_32(nr);
1842
1843	ph->env.nr_sibling_threads = nr;
1844	size += sizeof(u32);
1845
1846	for (i = 0; i < nr; i++) {
1847		str = do_read_string(fd, ph);
1848		if (!str)
1849			goto error;
1850
1851		/* include a NULL character at the end */
1852		strbuf_add(&sb, str, strlen(str) + 1);
 
1853		size += string_size(str);
1854		free(str);
1855	}
1856	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
1857
1858	/*
1859	 * The header may be from old perf,
1860	 * which doesn't include core id and socket id information.
1861	 */
1862	if (section->size <= size) {
1863		zfree(&ph->env.cpu);
1864		return 0;
1865	}
1866
 
 
 
 
 
 
 
 
 
1867	for (i = 0; i < (u32)cpu_nr; i++) {
1868		ret = readn(fd, &nr, sizeof(nr));
1869		if (ret != sizeof(nr))
1870			goto free_cpu;
1871
1872		if (ph->needs_swap)
1873			nr = bswap_32(nr);
1874
1875		ph->env.cpu[i].core_id = nr;
 
1876
1877		ret = readn(fd, &nr, sizeof(nr));
1878		if (ret != sizeof(nr))
1879			goto free_cpu;
1880
1881		if (ph->needs_swap)
1882			nr = bswap_32(nr);
1883
1884		if (nr > (u32)cpu_nr) {
1885			pr_debug("socket_id number is too big."
1886				 "You may need to upgrade the perf tool.\n");
1887			goto free_cpu;
1888		}
1889
1890		ph->env.cpu[i].socket_id = nr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1891	}
1892
1893	return 0;
1894
1895error:
1896	strbuf_release(&sb);
 
1897free_cpu:
1898	zfree(&ph->env.cpu);
1899	return -1;
1900}
1901
1902static int process_numa_topology(struct perf_file_section *section __maybe_unused,
1903				 struct perf_header *ph, int fd,
1904				 void *data __maybe_unused)
1905{
1906	ssize_t ret;
1907	u32 nr, node, i;
1908	char *str;
1909	uint64_t mem_total, mem_free;
1910	struct strbuf sb;
1911
1912	/* nr nodes */
1913	ret = readn(fd, &nr, sizeof(nr));
1914	if (ret != sizeof(nr))
1915		goto error;
1916
1917	if (ph->needs_swap)
1918		nr = bswap_32(nr);
1919
1920	ph->env.nr_numa_nodes = nr;
1921	strbuf_init(&sb, 256);
 
1922
1923	for (i = 0; i < nr; i++) {
 
 
1924		/* node number */
1925		ret = readn(fd, &node, sizeof(node));
1926		if (ret != sizeof(node))
1927			goto error;
1928
1929		ret = readn(fd, &mem_total, sizeof(u64));
1930		if (ret != sizeof(u64))
1931			goto error;
1932
1933		ret = readn(fd, &mem_free, sizeof(u64));
1934		if (ret != sizeof(u64))
1935			goto error;
1936
1937		if (ph->needs_swap) {
1938			node = bswap_32(node);
1939			mem_total = bswap_64(mem_total);
1940			mem_free = bswap_64(mem_free);
1941		}
1942
1943		strbuf_addf(&sb, "%u:%"PRIu64":%"PRIu64":",
1944			    node, mem_total, mem_free);
1945
1946		str = do_read_string(fd, ph);
1947		if (!str)
1948			goto error;
1949
1950		/* include a NULL character at the end */
1951		strbuf_add(&sb, str, strlen(str) + 1);
1952		free(str);
 
 
1953	}
1954	ph->env.numa_nodes = strbuf_detach(&sb, NULL);
 
1955	return 0;
1956
1957error:
1958	strbuf_release(&sb);
1959	return -1;
1960}
1961
1962static int process_pmu_mappings(struct perf_file_section *section __maybe_unused,
1963				struct perf_header *ph, int fd,
1964				void *data __maybe_unused)
1965{
1966	ssize_t ret;
1967	char *name;
1968	u32 pmu_num;
1969	u32 type;
1970	struct strbuf sb;
1971
1972	ret = readn(fd, &pmu_num, sizeof(pmu_num));
1973	if (ret != sizeof(pmu_num))
1974		return -1;
1975
1976	if (ph->needs_swap)
1977		pmu_num = bswap_32(pmu_num);
1978
1979	if (!pmu_num) {
1980		pr_debug("pmu mappings not available\n");
1981		return 0;
1982	}
1983
1984	ph->env.nr_pmu_mappings = pmu_num;
1985	strbuf_init(&sb, 128);
 
1986
1987	while (pmu_num) {
1988		if (readn(fd, &type, sizeof(type)) != sizeof(type))
1989			goto error;
1990		if (ph->needs_swap)
1991			type = bswap_32(type);
1992
1993		name = do_read_string(fd, ph);
1994		if (!name)
1995			goto error;
1996
1997		strbuf_addf(&sb, "%u:%s", type, name);
 
1998		/* include a NULL character at the end */
1999		strbuf_add(&sb, "", 1);
 
2000
2001		if (!strcmp(name, "msr"))
2002			ph->env.msr_pmu_type = type;
2003
2004		free(name);
2005		pmu_num--;
2006	}
2007	ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2008	return 0;
2009
2010error:
2011	strbuf_release(&sb);
2012	return -1;
2013}
2014
2015static int process_group_desc(struct perf_file_section *section __maybe_unused,
2016			      struct perf_header *ph, int fd,
2017			      void *data __maybe_unused)
2018{
2019	size_t ret = -1;
2020	u32 i, nr, nr_groups;
2021	struct perf_session *session;
2022	struct perf_evsel *evsel, *leader = NULL;
2023	struct group_desc {
2024		char *name;
2025		u32 leader_idx;
2026		u32 nr_members;
2027	} *desc;
2028
2029	if (readn(fd, &nr_groups, sizeof(nr_groups)) != sizeof(nr_groups))
2030		return -1;
2031
2032	if (ph->needs_swap)
2033		nr_groups = bswap_32(nr_groups);
2034
2035	ph->env.nr_groups = nr_groups;
2036	if (!nr_groups) {
2037		pr_debug("group desc not available\n");
2038		return 0;
2039	}
2040
2041	desc = calloc(nr_groups, sizeof(*desc));
2042	if (!desc)
2043		return -1;
2044
2045	for (i = 0; i < nr_groups; i++) {
2046		desc[i].name = do_read_string(fd, ph);
2047		if (!desc[i].name)
2048			goto out_free;
2049
2050		if (readn(fd, &desc[i].leader_idx, sizeof(u32)) != sizeof(u32))
2051			goto out_free;
2052
2053		if (readn(fd, &desc[i].nr_members, sizeof(u32)) != sizeof(u32))
2054			goto out_free;
2055
2056		if (ph->needs_swap) {
2057			desc[i].leader_idx = bswap_32(desc[i].leader_idx);
2058			desc[i].nr_members = bswap_32(desc[i].nr_members);
2059		}
2060	}
2061
2062	/*
2063	 * Rebuild group relationship based on the group_desc
2064	 */
2065	session = container_of(ph, struct perf_session, header);
2066	session->evlist->nr_groups = nr_groups;
2067
2068	i = nr = 0;
2069	evlist__for_each(session->evlist, evsel) {
2070		if (evsel->idx == (int) desc[i].leader_idx) {
2071			evsel->leader = evsel;
2072			/* {anon_group} is a dummy name */
2073			if (strcmp(desc[i].name, "{anon_group}")) {
2074				evsel->group_name = desc[i].name;
2075				desc[i].name = NULL;
2076			}
2077			evsel->nr_members = desc[i].nr_members;
2078
2079			if (i >= nr_groups || nr > 0) {
2080				pr_debug("invalid group desc\n");
2081				goto out_free;
2082			}
2083
2084			leader = evsel;
2085			nr = evsel->nr_members - 1;
2086			i++;
2087		} else if (nr) {
2088			/* This is a group member */
2089			evsel->leader = leader;
2090
2091			nr--;
2092		}
2093	}
2094
2095	if (i != nr_groups || nr != 0) {
2096		pr_debug("invalid group desc\n");
2097		goto out_free;
2098	}
2099
2100	ret = 0;
2101out_free:
2102	for (i = 0; i < nr_groups; i++)
2103		zfree(&desc[i].name);
2104	free(desc);
2105
2106	return ret;
2107}
2108
2109static int process_auxtrace(struct perf_file_section *section,
2110			    struct perf_header *ph, int fd,
2111			    void *data __maybe_unused)
2112{
2113	struct perf_session *session;
2114	int err;
2115
2116	session = container_of(ph, struct perf_session, header);
2117
2118	err = auxtrace_index__process(fd, section->size, session,
2119				      ph->needs_swap);
2120	if (err < 0)
2121		pr_err("Failed to process auxtrace index\n");
2122	return err;
2123}
2124
2125static int process_cache(struct perf_file_section *section __maybe_unused,
2126			 struct perf_header *ph __maybe_unused, int fd __maybe_unused,
2127			 void *data __maybe_unused)
2128{
2129	struct cpu_cache_level *caches;
2130	u32 cnt, i, version;
2131
2132	if (readn(fd, &version, sizeof(version)) != sizeof(version))
2133		return -1;
2134
2135	if (ph->needs_swap)
2136		version = bswap_32(version);
2137
2138	if (version != 1)
2139		return -1;
2140
2141	if (readn(fd, &cnt, sizeof(cnt)) != sizeof(cnt))
2142		return -1;
2143
2144	if (ph->needs_swap)
2145		cnt = bswap_32(cnt);
2146
2147	caches = zalloc(sizeof(*caches) * cnt);
2148	if (!caches)
2149		return -1;
2150
2151	for (i = 0; i < cnt; i++) {
2152		struct cpu_cache_level c;
2153
2154		#define _R(v)						\
2155			if (readn(fd, &c.v, sizeof(u32)) != sizeof(u32))\
2156				goto out_free_caches;			\
2157			if (ph->needs_swap)				\
2158				c.v = bswap_32(c.v);			\
2159
2160		_R(level)
2161		_R(line_size)
2162		_R(sets)
2163		_R(ways)
2164		#undef _R
2165
2166		#define _R(v)				\
2167			c.v = do_read_string(fd, ph);	\
2168			if (!c.v)			\
2169				goto out_free_caches;
2170
2171		_R(type)
2172		_R(size)
2173		_R(map)
2174		#undef _R
2175
2176		caches[i] = c;
2177	}
2178
2179	ph->env.caches = caches;
2180	ph->env.caches_cnt = cnt;
2181	return 0;
2182out_free_caches:
 
 
 
 
 
2183	free(caches);
2184	return -1;
2185}
2186
2187struct feature_ops {
2188	int (*write)(int fd, struct perf_header *h, struct perf_evlist *evlist);
2189	void (*print)(struct perf_header *h, int fd, FILE *fp);
2190	int (*process)(struct perf_file_section *section,
2191		       struct perf_header *h, int fd, void *data);
2192	const char *name;
2193	bool full_only;
2194};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195
2196#define FEAT_OPA(n, func) \
2197	[n] = { .name = #n, .write = write_##func, .print = print_##func }
2198#define FEAT_OPP(n, func) \
2199	[n] = { .name = #n, .write = write_##func, .print = print_##func, \
2200		.process = process_##func }
2201#define FEAT_OPF(n, func) \
2202	[n] = { .name = #n, .write = write_##func, .print = print_##func, \
2203		.process = process_##func, .full_only = true }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2204
2205/* feature_ops not implemented: */
2206#define print_tracing_data	NULL
2207#define print_build_id		NULL
2208
2209static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2210	FEAT_OPP(HEADER_TRACING_DATA,	tracing_data),
2211	FEAT_OPP(HEADER_BUILD_ID,	build_id),
2212	FEAT_OPP(HEADER_HOSTNAME,	hostname),
2213	FEAT_OPP(HEADER_OSRELEASE,	osrelease),
2214	FEAT_OPP(HEADER_VERSION,	version),
2215	FEAT_OPP(HEADER_ARCH,		arch),
2216	FEAT_OPP(HEADER_NRCPUS,		nrcpus),
2217	FEAT_OPP(HEADER_CPUDESC,	cpudesc),
2218	FEAT_OPP(HEADER_CPUID,		cpuid),
2219	FEAT_OPP(HEADER_TOTAL_MEM,	total_mem),
2220	FEAT_OPP(HEADER_EVENT_DESC,	event_desc),
2221	FEAT_OPP(HEADER_CMDLINE,	cmdline),
2222	FEAT_OPF(HEADER_CPU_TOPOLOGY,	cpu_topology),
2223	FEAT_OPF(HEADER_NUMA_TOPOLOGY,	numa_topology),
2224	FEAT_OPA(HEADER_BRANCH_STACK,	branch_stack),
2225	FEAT_OPP(HEADER_PMU_MAPPINGS,	pmu_mappings),
2226	FEAT_OPP(HEADER_GROUP_DESC,	group_desc),
2227	FEAT_OPP(HEADER_AUXTRACE,	auxtrace),
2228	FEAT_OPA(HEADER_STAT,		stat),
2229	FEAT_OPF(HEADER_CACHE,		cache),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2230};
2231
2232struct header_print_data {
2233	FILE *fp;
2234	bool full; /* extended list of headers */
2235};
2236
2237static int perf_file_section__fprintf_info(struct perf_file_section *section,
2238					   struct perf_header *ph,
2239					   int feat, int fd, void *data)
2240{
2241	struct header_print_data *hd = data;
 
2242
2243	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2244		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2245				"%d, continuing...\n", section->offset, feat);
2246		return 0;
2247	}
2248	if (feat >= HEADER_LAST_FEATURE) {
2249		pr_warning("unknown feature %d\n", feat);
2250		return 0;
2251	}
2252	if (!feat_ops[feat].print)
2253		return 0;
2254
 
 
 
 
 
2255	if (!feat_ops[feat].full_only || hd->full)
2256		feat_ops[feat].print(ph, fd, hd->fp);
2257	else
2258		fprintf(hd->fp, "# %s info available, use -I to display\n",
2259			feat_ops[feat].name);
2260
2261	return 0;
2262}
2263
2264int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2265{
2266	struct header_print_data hd;
2267	struct perf_header *header = &session->header;
2268	int fd = perf_data_file__fd(session->file);
 
 
 
 
2269	hd.fp = fp;
2270	hd.full = full;
2271
 
 
 
 
 
 
 
 
 
 
 
 
2272	perf_header__process_sections(header, fd, &hd,
2273				      perf_file_section__fprintf_info);
 
 
 
 
 
 
 
 
 
 
 
2274	return 0;
2275}
2276
2277static int do_write_feat(int fd, struct perf_header *h, int type,
 
 
 
 
 
 
 
 
 
 
 
 
2278			 struct perf_file_section **p,
2279			 struct perf_evlist *evlist)
 
2280{
2281	int err;
2282	int ret = 0;
2283
2284	if (perf_header__has_feat(h, type)) {
2285		if (!feat_ops[type].write)
2286			return -1;
2287
2288		(*p)->offset = lseek(fd, 0, SEEK_CUR);
 
 
 
2289
2290		err = feat_ops[type].write(fd, h, evlist);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291		if (err < 0) {
2292			pr_debug("failed to write feature %d\n", type);
2293
2294			/* undo anything written */
2295			lseek(fd, (*p)->offset, SEEK_SET);
2296
2297			return -1;
2298		}
2299		(*p)->size = lseek(fd, 0, SEEK_CUR) - (*p)->offset;
2300		(*p)++;
2301	}
2302	return ret;
2303}
2304
2305static int perf_header__adds_write(struct perf_header *header,
2306				   struct perf_evlist *evlist, int fd)
 
2307{
2308	int nr_sections;
 
 
 
 
2309	struct perf_file_section *feat_sec, *p;
2310	int sec_size;
2311	u64 sec_start;
2312	int feat;
2313	int err;
2314
2315	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2316	if (!nr_sections)
2317		return 0;
2318
2319	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2320	if (feat_sec == NULL)
2321		return -ENOMEM;
2322
2323	sec_size = sizeof(*feat_sec) * nr_sections;
2324
2325	sec_start = header->feat_offset;
2326	lseek(fd, sec_start + sec_size, SEEK_SET);
2327
2328	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2329		if (do_write_feat(fd, header, feat, &p, evlist))
2330			perf_header__clear_feat(header, feat);
2331	}
2332
2333	lseek(fd, sec_start, SEEK_SET);
2334	/*
2335	 * may write more than needed due to dropped feature, but
2336	 * this is okay, reader will skip the mising entries
2337	 */
2338	err = do_write(fd, feat_sec, sec_size);
2339	if (err < 0)
2340		pr_debug("failed to write feature section\n");
 
2341	free(feat_sec);
2342	return err;
2343}
2344
2345int perf_header__write_pipe(int fd)
2346{
2347	struct perf_pipe_file_header f_header;
 
 
 
2348	int err;
2349
2350	f_header = (struct perf_pipe_file_header){
2351		.magic	   = PERF_MAGIC,
2352		.size	   = sizeof(f_header),
2353	};
2354
2355	err = do_write(fd, &f_header, sizeof(f_header));
2356	if (err < 0) {
2357		pr_debug("failed to write perf pipe header\n");
2358		return err;
2359	}
2360
2361	return 0;
2362}
2363
2364int perf_session__write_header(struct perf_session *session,
2365			       struct perf_evlist *evlist,
2366			       int fd, bool at_exit)
 
 
2367{
2368	struct perf_file_header f_header;
2369	struct perf_file_attr   f_attr;
2370	struct perf_header *header = &session->header;
2371	struct perf_evsel *evsel;
2372	u64 attr_offset;
 
 
 
2373	int err;
2374
2375	lseek(fd, sizeof(f_header), SEEK_SET);
2376
2377	evlist__for_each(session->evlist, evsel) {
2378		evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2379		err = do_write(fd, evsel->id, evsel->ids * sizeof(u64));
2380		if (err < 0) {
2381			pr_debug("failed to write perf header\n");
2382			return err;
 
2383		}
 
 
 
 
 
 
 
2384	}
2385
2386	attr_offset = lseek(fd, 0, SEEK_CUR);
 
 
 
 
 
 
 
 
 
 
 
2387
2388	evlist__for_each(evlist, evsel) {
2389		f_attr = (struct perf_file_attr){
2390			.attr = evsel->attr,
2391			.ids  = {
2392				.offset = evsel->id_offset,
2393				.size   = evsel->ids * sizeof(u64),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394			}
2395		};
2396		err = do_write(fd, &f_attr, sizeof(f_attr));
2397		if (err < 0) {
2398			pr_debug("failed to write perf header attribute\n");
2399			return err;
2400		}
 
2401	}
2402
2403	if (!header->data_offset)
2404		header->data_offset = lseek(fd, 0, SEEK_CUR);
 
 
 
 
2405	header->feat_offset = header->data_offset + header->data_size;
2406
2407	if (at_exit) {
2408		err = perf_header__adds_write(header, evlist, fd);
 
2409		if (err < 0)
2410			return err;
2411	}
2412
2413	f_header = (struct perf_file_header){
2414		.magic	   = PERF_MAGIC,
2415		.size	   = sizeof(f_header),
2416		.attr_size = sizeof(f_attr),
2417		.attrs = {
2418			.offset = attr_offset,
2419			.size   = evlist->nr_entries * sizeof(f_attr),
2420		},
2421		.data = {
2422			.offset = header->data_offset,
2423			.size	= header->data_size,
2424		},
2425		/* event_types is ignored, store zeros */
2426	};
2427
2428	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2429
2430	lseek(fd, 0, SEEK_SET);
2431	err = do_write(fd, &f_header, sizeof(f_header));
2432	if (err < 0) {
2433		pr_debug("failed to write perf header\n");
2434		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2435	}
2436	lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2437
2438	return 0;
 
 
 
 
 
 
 
 
 
 
2439}
2440
2441static int perf_header__getbuffer64(struct perf_header *header,
2442				    int fd, void *buf, size_t size)
2443{
2444	if (readn(fd, buf, size) <= 0)
2445		return -1;
2446
2447	if (header->needs_swap)
2448		mem_bswap_64(buf, size);
2449
2450	return 0;
2451}
2452
2453int perf_header__process_sections(struct perf_header *header, int fd,
2454				  void *data,
2455				  int (*process)(struct perf_file_section *section,
2456						 struct perf_header *ph,
2457						 int feat, int fd, void *data))
2458{
2459	struct perf_file_section *feat_sec, *sec;
2460	int nr_sections;
2461	int sec_size;
2462	int feat;
2463	int err;
2464
2465	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2466	if (!nr_sections)
2467		return 0;
2468
2469	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2470	if (!feat_sec)
2471		return -1;
2472
2473	sec_size = sizeof(*feat_sec) * nr_sections;
2474
2475	lseek(fd, header->feat_offset, SEEK_SET);
2476
2477	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2478	if (err < 0)
2479		goto out_free;
2480
2481	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2482		err = process(sec++, header, feat, fd, data);
2483		if (err < 0)
2484			goto out_free;
2485	}
2486	err = 0;
2487out_free:
2488	free(feat_sec);
2489	return err;
2490}
2491
2492static const int attr_file_abi_sizes[] = {
2493	[0] = PERF_ATTR_SIZE_VER0,
2494	[1] = PERF_ATTR_SIZE_VER1,
2495	[2] = PERF_ATTR_SIZE_VER2,
2496	[3] = PERF_ATTR_SIZE_VER3,
2497	[4] = PERF_ATTR_SIZE_VER4,
2498	0,
2499};
2500
2501/*
2502 * In the legacy file format, the magic number is not used to encode endianness.
2503 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2504 * on ABI revisions, we need to try all combinations for all endianness to
2505 * detect the endianness.
2506 */
2507static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2508{
2509	uint64_t ref_size, attr_size;
2510	int i;
2511
2512	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2513		ref_size = attr_file_abi_sizes[i]
2514			 + sizeof(struct perf_file_section);
2515		if (hdr_sz != ref_size) {
2516			attr_size = bswap_64(hdr_sz);
2517			if (attr_size != ref_size)
2518				continue;
2519
2520			ph->needs_swap = true;
2521		}
2522		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2523			 i,
2524			 ph->needs_swap);
2525		return 0;
2526	}
2527	/* could not determine endianness */
2528	return -1;
2529}
2530
2531#define PERF_PIPE_HDR_VER0	16
2532
2533static const size_t attr_pipe_abi_sizes[] = {
2534	[0] = PERF_PIPE_HDR_VER0,
2535	0,
2536};
2537
2538/*
2539 * In the legacy pipe format, there is an implicit assumption that endiannesss
2540 * between host recording the samples, and host parsing the samples is the
2541 * same. This is not always the case given that the pipe output may always be
2542 * redirected into a file and analyzed on a different machine with possibly a
2543 * different endianness and perf_event ABI revsions in the perf tool itself.
2544 */
2545static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2546{
2547	u64 attr_size;
2548	int i;
2549
2550	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2551		if (hdr_sz != attr_pipe_abi_sizes[i]) {
2552			attr_size = bswap_64(hdr_sz);
2553			if (attr_size != hdr_sz)
2554				continue;
2555
2556			ph->needs_swap = true;
2557		}
2558		pr_debug("Pipe ABI%d perf.data file detected\n", i);
2559		return 0;
2560	}
2561	return -1;
2562}
2563
2564bool is_perf_magic(u64 magic)
2565{
2566	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2567		|| magic == __perf_magic2
2568		|| magic == __perf_magic2_sw)
2569		return true;
2570
2571	return false;
2572}
2573
2574static int check_magic_endian(u64 magic, uint64_t hdr_sz,
2575			      bool is_pipe, struct perf_header *ph)
2576{
2577	int ret;
2578
2579	/* check for legacy format */
2580	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
2581	if (ret == 0) {
2582		ph->version = PERF_HEADER_VERSION_1;
2583		pr_debug("legacy perf.data format\n");
2584		if (is_pipe)
2585			return try_all_pipe_abis(hdr_sz, ph);
2586
2587		return try_all_file_abis(hdr_sz, ph);
2588	}
2589	/*
2590	 * the new magic number serves two purposes:
2591	 * - unique number to identify actual perf.data files
2592	 * - encode endianness of file
2593	 */
2594	ph->version = PERF_HEADER_VERSION_2;
2595
2596	/* check magic number with one endianness */
2597	if (magic == __perf_magic2)
2598		return 0;
2599
2600	/* check magic number with opposite endianness */
2601	if (magic != __perf_magic2_sw)
2602		return -1;
2603
2604	ph->needs_swap = true;
2605
2606	return 0;
2607}
2608
2609int perf_file_header__read(struct perf_file_header *header,
2610			   struct perf_header *ph, int fd)
2611{
2612	ssize_t ret;
2613
2614	lseek(fd, 0, SEEK_SET);
2615
2616	ret = readn(fd, header, sizeof(*header));
2617	if (ret <= 0)
2618		return -1;
2619
2620	if (check_magic_endian(header->magic,
2621			       header->attr_size, false, ph) < 0) {
2622		pr_debug("magic/endian check failed\n");
2623		return -1;
2624	}
2625
2626	if (ph->needs_swap) {
2627		mem_bswap_64(header, offsetof(struct perf_file_header,
2628			     adds_features));
2629	}
2630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2631	if (header->size != sizeof(*header)) {
2632		/* Support the previous format */
2633		if (header->size == offsetof(typeof(*header), adds_features))
2634			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2635		else
2636			return -1;
2637	} else if (ph->needs_swap) {
2638		/*
2639		 * feature bitmap is declared as an array of unsigned longs --
2640		 * not good since its size can differ between the host that
2641		 * generated the data file and the host analyzing the file.
2642		 *
2643		 * We need to handle endianness, but we don't know the size of
2644		 * the unsigned long where the file was generated. Take a best
2645		 * guess at determining it: try 64-bit swap first (ie., file
2646		 * created on a 64-bit host), and check if the hostname feature
2647		 * bit is set (this feature bit is forced on as of fbe96f2).
2648		 * If the bit is not, undo the 64-bit swap and try a 32-bit
2649		 * swap. If the hostname bit is still not set (e.g., older data
2650		 * file), punt and fallback to the original behavior --
2651		 * clearing all feature bits and setting buildid.
2652		 */
2653		mem_bswap_64(&header->adds_features,
2654			    BITS_TO_U64(HEADER_FEAT_BITS));
2655
2656		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2657			/* unswap as u64 */
2658			mem_bswap_64(&header->adds_features,
2659				    BITS_TO_U64(HEADER_FEAT_BITS));
2660
2661			/* unswap as u32 */
2662			mem_bswap_32(&header->adds_features,
2663				    BITS_TO_U32(HEADER_FEAT_BITS));
2664		}
2665
2666		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
2667			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
2668			set_bit(HEADER_BUILD_ID, header->adds_features);
2669		}
2670	}
2671
2672	memcpy(&ph->adds_features, &header->adds_features,
2673	       sizeof(ph->adds_features));
2674
2675	ph->data_offset  = header->data.offset;
2676	ph->data_size	 = header->data.size;
2677	ph->feat_offset  = header->data.offset + header->data.size;
2678	return 0;
2679}
2680
2681static int perf_file_section__process(struct perf_file_section *section,
2682				      struct perf_header *ph,
2683				      int feat, int fd, void *data)
2684{
 
 
 
 
 
 
 
2685	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2686		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2687			  "%d, continuing...\n", section->offset, feat);
2688		return 0;
2689	}
2690
2691	if (feat >= HEADER_LAST_FEATURE) {
2692		pr_debug("unknown feature %d, continuing...\n", feat);
2693		return 0;
2694	}
2695
2696	if (!feat_ops[feat].process)
2697		return 0;
2698
2699	return feat_ops[feat].process(section, ph, fd, data);
2700}
2701
2702static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
2703				       struct perf_header *ph, int fd,
2704				       bool repipe)
2705{
2706	ssize_t ret;
2707
2708	ret = readn(fd, header, sizeof(*header));
2709	if (ret <= 0)
2710		return -1;
2711
2712	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
2713		pr_debug("endian/magic failed\n");
2714		return -1;
2715	}
2716
2717	if (ph->needs_swap)
2718		header->size = bswap_64(header->size);
2719
2720	if (repipe && do_write(STDOUT_FILENO, header, sizeof(*header)) < 0)
2721		return -1;
2722
2723	return 0;
2724}
2725
2726static int perf_header__read_pipe(struct perf_session *session)
2727{
2728	struct perf_header *header = &session->header;
2729	struct perf_pipe_file_header f_header;
2730
2731	if (perf_file_header__read_pipe(&f_header, header,
2732					perf_data_file__fd(session->file),
2733					session->repipe) < 0) {
2734		pr_debug("incompatible file format\n");
2735		return -EINVAL;
2736	}
2737
2738	return 0;
2739}
2740
2741static int read_attr(int fd, struct perf_header *ph,
2742		     struct perf_file_attr *f_attr)
2743{
2744	struct perf_event_attr *attr = &f_attr->attr;
2745	size_t sz, left;
2746	size_t our_sz = sizeof(f_attr->attr);
2747	ssize_t ret;
2748
2749	memset(f_attr, 0, sizeof(*f_attr));
2750
2751	/* read minimal guaranteed structure */
2752	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
2753	if (ret <= 0) {
2754		pr_debug("cannot read %d bytes of header attr\n",
2755			 PERF_ATTR_SIZE_VER0);
2756		return -1;
2757	}
2758
2759	/* on file perf_event_attr size */
2760	sz = attr->size;
2761
2762	if (ph->needs_swap)
2763		sz = bswap_32(sz);
2764
2765	if (sz == 0) {
2766		/* assume ABI0 */
2767		sz =  PERF_ATTR_SIZE_VER0;
2768	} else if (sz > our_sz) {
2769		pr_debug("file uses a more recent and unsupported ABI"
2770			 " (%zu bytes extra)\n", sz - our_sz);
2771		return -1;
2772	}
2773	/* what we have not yet read and that we know about */
2774	left = sz - PERF_ATTR_SIZE_VER0;
2775	if (left) {
2776		void *ptr = attr;
2777		ptr += PERF_ATTR_SIZE_VER0;
2778
2779		ret = readn(fd, ptr, left);
2780	}
2781	/* read perf_file_section, ids are read in caller */
2782	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
2783
2784	return ret <= 0 ? -1 : 0;
2785}
2786
2787static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
2788						struct pevent *pevent)
2789{
2790	struct event_format *event;
2791	char bf[128];
2792
2793	/* already prepared */
2794	if (evsel->tp_format)
2795		return 0;
2796
2797	if (pevent == NULL) {
2798		pr_debug("broken or missing trace data\n");
2799		return -1;
2800	}
2801
2802	event = pevent_find_event(pevent, evsel->attr.config);
2803	if (event == NULL)
 
2804		return -1;
 
2805
2806	if (!evsel->name) {
2807		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
2808		evsel->name = strdup(bf);
2809		if (evsel->name == NULL)
2810			return -1;
2811	}
2812
2813	evsel->tp_format = event;
2814	return 0;
2815}
2816
2817static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
2818						  struct pevent *pevent)
2819{
2820	struct perf_evsel *pos;
2821
2822	evlist__for_each(evlist, pos) {
2823		if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
2824		    perf_evsel__prepare_tracepoint_event(pos, pevent))
2825			return -1;
2826	}
2827
2828	return 0;
2829}
 
2830
2831int perf_session__read_header(struct perf_session *session)
2832{
2833	struct perf_data_file *file = session->file;
2834	struct perf_header *header = &session->header;
2835	struct perf_file_header	f_header;
2836	struct perf_file_attr	f_attr;
2837	u64			f_id;
2838	int nr_attrs, nr_ids, i, j;
2839	int fd = perf_data_file__fd(file);
2840
2841	session->evlist = perf_evlist__new();
2842	if (session->evlist == NULL)
2843		return -ENOMEM;
2844
2845	session->evlist->env = &header->env;
2846	session->machines.host.env = &header->env;
2847	if (perf_data_file__is_pipe(file))
2848		return perf_header__read_pipe(session);
 
 
 
 
 
 
 
 
2849
2850	if (perf_file_header__read(&f_header, header, fd) < 0)
2851		return -EINVAL;
2852
 
 
 
 
 
2853	/*
2854	 * Sanity check that perf.data was written cleanly; data size is
2855	 * initialized to 0 and updated only if the on_exit function is run.
2856	 * If data size is still 0 then the file contains only partial
2857	 * information.  Just warn user and process it as much as it can.
2858	 */
2859	if (f_header.data.size == 0) {
2860		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
2861			   "Was the 'perf record' command properly terminated?\n",
2862			   file->path);
 
 
 
 
 
 
 
2863	}
2864
2865	nr_attrs = f_header.attrs.size / f_header.attr_size;
2866	lseek(fd, f_header.attrs.offset, SEEK_SET);
2867
2868	for (i = 0; i < nr_attrs; i++) {
2869		struct perf_evsel *evsel;
2870		off_t tmp;
2871
2872		if (read_attr(fd, header, &f_attr) < 0)
2873			goto out_errno;
2874
2875		if (header->needs_swap) {
2876			f_attr.ids.size   = bswap_64(f_attr.ids.size);
2877			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
2878			perf_event__attr_swap(&f_attr.attr);
2879		}
2880
2881		tmp = lseek(fd, 0, SEEK_CUR);
2882		evsel = perf_evsel__new(&f_attr.attr);
2883
2884		if (evsel == NULL)
2885			goto out_delete_evlist;
2886
2887		evsel->needs_swap = header->needs_swap;
2888		/*
2889		 * Do it before so that if perf_evsel__alloc_id fails, this
2890		 * entry gets purged too at perf_evlist__delete().
2891		 */
2892		perf_evlist__add(session->evlist, evsel);
2893
2894		nr_ids = f_attr.ids.size / sizeof(u64);
2895		/*
2896		 * We don't have the cpu and thread maps on the header, so
2897		 * for allocating the perf_sample_id table we fake 1 cpu and
2898		 * hattr->ids threads.
2899		 */
2900		if (perf_evsel__alloc_id(evsel, 1, nr_ids))
2901			goto out_delete_evlist;
2902
2903		lseek(fd, f_attr.ids.offset, SEEK_SET);
2904
2905		for (j = 0; j < nr_ids; j++) {
2906			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
2907				goto out_errno;
2908
2909			perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
2910		}
2911
2912		lseek(fd, tmp, SEEK_SET);
2913	}
2914
2915	symbol_conf.nr_events = nr_attrs;
2916
2917	perf_header__process_sections(header, fd, &session->tevent,
2918				      perf_file_section__process);
2919
2920	if (perf_evlist__prepare_tracepoint_events(session->evlist,
2921						   session->tevent.pevent))
2922		goto out_delete_evlist;
 
 
 
2923
2924	return 0;
2925out_errno:
2926	return -errno;
2927
2928out_delete_evlist:
2929	perf_evlist__delete(session->evlist);
2930	session->evlist = NULL;
2931	return -ENOMEM;
2932}
2933
2934int perf_event__synthesize_attr(struct perf_tool *tool,
2935				struct perf_event_attr *attr, u32 ids, u64 *id,
2936				perf_event__handler_t process)
2937{
2938	union perf_event *ev;
2939	size_t size;
2940	int err;
2941
2942	size = sizeof(struct perf_event_attr);
2943	size = PERF_ALIGN(size, sizeof(u64));
2944	size += sizeof(struct perf_event_header);
2945	size += ids * sizeof(u64);
2946
2947	ev = malloc(size);
2948
2949	if (ev == NULL)
2950		return -ENOMEM;
2951
2952	ev->attr.attr = *attr;
2953	memcpy(ev->attr.id, id, ids * sizeof(u64));
2954
2955	ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
2956	ev->attr.header.size = (u16)size;
2957
2958	if (ev->attr.header.size == size)
2959		err = process(tool, ev, NULL, NULL);
2960	else
2961		err = -E2BIG;
2962
2963	free(ev);
2964
2965	return err;
2966}
2967
2968static struct event_update_event *
2969event_update_event__new(size_t size, u64 type, u64 id)
2970{
2971	struct event_update_event *ev;
2972
2973	size += sizeof(*ev);
2974	size  = PERF_ALIGN(size, sizeof(u64));
2975
2976	ev = zalloc(size);
2977	if (ev) {
2978		ev->header.type = PERF_RECORD_EVENT_UPDATE;
2979		ev->header.size = (u16)size;
2980		ev->type = type;
2981		ev->id = id;
 
2982	}
2983	return ev;
2984}
2985
2986int
2987perf_event__synthesize_event_update_unit(struct perf_tool *tool,
2988					 struct perf_evsel *evsel,
2989					 perf_event__handler_t process)
2990{
2991	struct event_update_event *ev;
2992	size_t size = strlen(evsel->unit);
2993	int err;
2994
2995	ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
2996	if (ev == NULL)
2997		return -ENOMEM;
2998
2999	strncpy(ev->data, evsel->unit, size);
3000	err = process(tool, (union perf_event *)ev, NULL, NULL);
3001	free(ev);
3002	return err;
3003}
3004
3005int
3006perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3007					  struct perf_evsel *evsel,
3008					  perf_event__handler_t process)
3009{
3010	struct event_update_event *ev;
3011	struct event_update_event_scale *ev_data;
3012	int err;
3013
3014	ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3015	if (ev == NULL)
3016		return -ENOMEM;
3017
3018	ev_data = (struct event_update_event_scale *) ev->data;
3019	ev_data->scale = evsel->scale;
3020	err = process(tool, (union perf_event*) ev, NULL, NULL);
3021	free(ev);
3022	return err;
3023}
3024
3025int
3026perf_event__synthesize_event_update_name(struct perf_tool *tool,
3027					 struct perf_evsel *evsel,
3028					 perf_event__handler_t process)
3029{
3030	struct event_update_event *ev;
3031	size_t len = strlen(evsel->name);
3032	int err;
3033
3034	ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3035	if (ev == NULL)
3036		return -ENOMEM;
3037
3038	strncpy(ev->data, evsel->name, len);
3039	err = process(tool, (union perf_event*) ev, NULL, NULL);
3040	free(ev);
3041	return err;
3042}
3043
3044int
3045perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3046					struct perf_evsel *evsel,
3047					perf_event__handler_t process)
3048{
3049	size_t size = sizeof(struct event_update_event);
3050	struct event_update_event *ev;
3051	int max, err;
3052	u16 type;
3053
3054	if (!evsel->own_cpus)
3055		return 0;
3056
3057	ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3058	if (!ev)
3059		return -ENOMEM;
 
 
 
 
 
3060
3061	ev->header.type = PERF_RECORD_EVENT_UPDATE;
3062	ev->header.size = (u16)size;
3063	ev->type = PERF_EVENT_UPDATE__CPUS;
3064	ev->id   = evsel->id[0];
3065
3066	cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3067				 evsel->own_cpus,
3068				 type, max);
3069
3070	err = process(tool, (union perf_event*) ev, NULL, NULL);
3071	free(ev);
3072	return err;
 
 
 
 
 
 
 
3073}
3074
3075size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3076{
3077	struct event_update_event *ev = &event->event_update;
3078	struct event_update_event_scale *ev_scale;
3079	struct event_update_event_cpus *ev_cpus;
3080	struct cpu_map *map;
3081	size_t ret;
3082
3083	ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3084
3085	switch (ev->type) {
3086	case PERF_EVENT_UPDATE__SCALE:
3087		ev_scale = (struct event_update_event_scale *) ev->data;
3088		ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3089		break;
3090	case PERF_EVENT_UPDATE__UNIT:
3091		ret += fprintf(fp, "... unit:  %s\n", ev->data);
3092		break;
3093	case PERF_EVENT_UPDATE__NAME:
3094		ret += fprintf(fp, "... name:  %s\n", ev->data);
3095		break;
3096	case PERF_EVENT_UPDATE__CPUS:
3097		ev_cpus = (struct event_update_event_cpus *) ev->data;
3098		ret += fprintf(fp, "... ");
3099
3100		map = cpu_map__new_data(&ev_cpus->cpus);
3101		if (map)
3102			ret += cpu_map__fprintf(map, fp);
3103		else
 
3104			ret += fprintf(fp, "failed to get cpus\n");
3105		break;
3106	default:
3107		ret += fprintf(fp, "... unknown type\n");
3108		break;
3109	}
3110
3111	return ret;
3112}
3113
3114int perf_event__synthesize_attrs(struct perf_tool *tool,
3115				   struct perf_session *session,
3116				   perf_event__handler_t process)
3117{
3118	struct perf_evsel *evsel;
3119	int err = 0;
3120
3121	evlist__for_each(session->evlist, evsel) {
3122		err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3123						  evsel->id, process);
3124		if (err) {
3125			pr_debug("failed to create perf header attribute\n");
3126			return err;
3127		}
3128	}
3129
3130	return err;
3131}
3132
3133int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3134			     union perf_event *event,
3135			     struct perf_evlist **pevlist)
3136{
3137	u32 i, ids, n_ids;
3138	struct perf_evsel *evsel;
3139	struct perf_evlist *evlist = *pevlist;
 
3140
3141	if (evlist == NULL) {
3142		*pevlist = evlist = perf_evlist__new();
3143		if (evlist == NULL)
3144			return -ENOMEM;
3145	}
3146
3147	evsel = perf_evsel__new(&event->attr.attr);
3148	if (evsel == NULL)
3149		return -ENOMEM;
3150
3151	perf_evlist__add(evlist, evsel);
3152
3153	ids = event->header.size;
3154	ids -= (void *)&event->attr.id - (void *)event;
3155	n_ids = ids / sizeof(u64);
3156	/*
3157	 * We don't have the cpu and thread maps on the header, so
3158	 * for allocating the perf_sample_id table we fake 1 cpu and
3159	 * hattr->ids threads.
3160	 */
3161	if (perf_evsel__alloc_id(evsel, 1, n_ids))
3162		return -ENOMEM;
3163
 
3164	for (i = 0; i < n_ids; i++) {
3165		perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3166	}
3167
3168	symbol_conf.nr_events = evlist->nr_entries;
3169
3170	return 0;
3171}
3172
3173int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3174				     union perf_event *event,
3175				     struct perf_evlist **pevlist)
3176{
3177	struct event_update_event *ev = &event->event_update;
3178	struct event_update_event_scale *ev_scale;
3179	struct event_update_event_cpus *ev_cpus;
3180	struct perf_evlist *evlist;
3181	struct perf_evsel *evsel;
3182	struct cpu_map *map;
 
3183
3184	if (!pevlist || *pevlist == NULL)
3185		return -EINVAL;
3186
3187	evlist = *pevlist;
3188
3189	evsel = perf_evlist__id2evsel(evlist, ev->id);
3190	if (evsel == NULL)
3191		return -EINVAL;
3192
3193	switch (ev->type) {
3194	case PERF_EVENT_UPDATE__UNIT:
3195		evsel->unit = strdup(ev->data);
 
3196		break;
3197	case PERF_EVENT_UPDATE__NAME:
3198		evsel->name = strdup(ev->data);
 
3199		break;
3200	case PERF_EVENT_UPDATE__SCALE:
3201		ev_scale = (struct event_update_event_scale *) ev->data;
3202		evsel->scale = ev_scale->scale;
3203	case PERF_EVENT_UPDATE__CPUS:
3204		ev_cpus = (struct event_update_event_cpus *) ev->data;
3205
3206		map = cpu_map__new_data(&ev_cpus->cpus);
3207		if (map)
3208			evsel->own_cpus = map;
3209		else
3210			pr_err("failed to get event_update cpus\n");
3211	default:
3212		break;
3213	}
3214
3215	return 0;
3216}
3217
3218int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3219					struct perf_evlist *evlist,
3220					perf_event__handler_t process)
3221{
3222	union perf_event ev;
3223	struct tracing_data *tdata;
3224	ssize_t size = 0, aligned_size = 0, padding;
3225	int err __maybe_unused = 0;
3226
3227	/*
3228	 * We are going to store the size of the data followed
3229	 * by the data contents. Since the fd descriptor is a pipe,
3230	 * we cannot seek back to store the size of the data once
3231	 * we know it. Instead we:
3232	 *
3233	 * - write the tracing data to the temp file
3234	 * - get/write the data size to pipe
3235	 * - write the tracing data from the temp file
3236	 *   to the pipe
3237	 */
3238	tdata = tracing_data_get(&evlist->entries, fd, true);
3239	if (!tdata)
3240		return -1;
3241
3242	memset(&ev, 0, sizeof(ev));
3243
3244	ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3245	size = tdata->size;
3246	aligned_size = PERF_ALIGN(size, sizeof(u64));
3247	padding = aligned_size - size;
3248	ev.tracing_data.header.size = sizeof(ev.tracing_data);
3249	ev.tracing_data.size = aligned_size;
3250
3251	process(tool, &ev, NULL, NULL);
3252
3253	/*
3254	 * The put function will copy all the tracing data
3255	 * stored in temp file to the pipe.
3256	 */
3257	tracing_data_put(tdata);
3258
3259	write_padded(fd, NULL, 0, padding);
3260
3261	return aligned_size;
3262}
3263
3264int perf_event__process_tracing_data(struct perf_tool *tool __maybe_unused,
3265				     union perf_event *event,
3266				     struct perf_session *session)
3267{
3268	ssize_t size_read, padding, size = event->tracing_data.size;
3269	int fd = perf_data_file__fd(session->file);
3270	off_t offset = lseek(fd, 0, SEEK_CUR);
3271	char buf[BUFSIZ];
3272
3273	/* setup for reading amidst mmap */
3274	lseek(fd, offset + sizeof(struct tracing_data_event),
3275	      SEEK_SET);
 
 
 
 
 
 
 
 
 
 
 
3276
3277	size_read = trace_report(fd, &session->tevent,
3278				 session->repipe);
3279	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3280
3281	if (readn(fd, buf, padding) < 0) {
3282		pr_err("%s: reading input file", __func__);
3283		return -1;
3284	}
3285	if (session->repipe) {
3286		int retw = write(STDOUT_FILENO, buf, padding);
3287		if (retw <= 0 || retw != padding) {
3288			pr_err("%s: repiping tracing data padding", __func__);
3289			return -1;
3290		}
3291	}
3292
3293	if (size_read + padding != size) {
3294		pr_err("%s: tracing data size mismatch", __func__);
3295		return -1;
3296	}
3297
3298	perf_evlist__prepare_tracepoint_events(session->evlist,
3299					       session->tevent.pevent);
3300
3301	return size_read + padding;
3302}
 
3303
3304int perf_event__synthesize_build_id(struct perf_tool *tool,
3305				    struct dso *pos, u16 misc,
3306				    perf_event__handler_t process,
3307				    struct machine *machine)
3308{
3309	union perf_event ev;
3310	size_t len;
3311	int err = 0;
3312
3313	if (!pos->hit)
3314		return err;
3315
3316	memset(&ev, 0, sizeof(ev));
3317
3318	len = pos->long_name_len + 1;
3319	len = PERF_ALIGN(len, NAME_ALIGN);
3320	memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3321	ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3322	ev.build_id.header.misc = misc;
3323	ev.build_id.pid = machine->pid;
3324	ev.build_id.header.size = sizeof(ev.build_id) + len;
3325	memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3326
3327	err = process(tool, &ev, NULL, machine);
3328
3329	return err;
3330}
3331
3332int perf_event__process_build_id(struct perf_tool *tool __maybe_unused,
3333				 union perf_event *event,
3334				 struct perf_session *session)
3335{
3336	__event_process_build_id(&event->build_id,
3337				 event->build_id.filename,
3338				 session);
3339	return 0;
3340}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <regex.h>
  10#include <stdio.h>
  11#include <stdlib.h>
  12#include <linux/compiler.h>
  13#include <linux/list.h>
  14#include <linux/kernel.h>
  15#include <linux/bitops.h>
  16#include <linux/string.h>
  17#include <linux/stringify.h>
  18#include <linux/zalloc.h>
  19#include <sys/stat.h>
  20#include <sys/utsname.h>
  21#include <linux/time64.h>
  22#include <dirent.h>
  23#ifdef HAVE_LIBBPF_SUPPORT
  24#include <bpf/libbpf.h>
  25#endif
  26#include <perf/cpumap.h>
  27#include <tools/libc_compat.h> // reallocarray
  28
  29#include "dso.h"
  30#include "evlist.h"
  31#include "evsel.h"
  32#include "util/evsel_fprintf.h"
  33#include "header.h"
  34#include "memswap.h"
  35#include "trace-event.h"
  36#include "session.h"
  37#include "symbol.h"
  38#include "debug.h"
  39#include "cpumap.h"
  40#include "pmu.h"
  41#include "pmus.h"
  42#include "vdso.h"
  43#include "strbuf.h"
  44#include "build-id.h"
  45#include "data.h"
  46#include <api/fs/fs.h>
  47#include "asm/bug.h"
  48#include "tool.h"
  49#include "time-utils.h"
  50#include "units.h"
  51#include "util/util.h" // perf_exe()
  52#include "cputopo.h"
  53#include "bpf-event.h"
  54#include "bpf-utils.h"
  55#include "clockid.h"
  56
  57#include <linux/ctype.h>
  58#include <internal/lib.h>
  59
  60#ifdef HAVE_LIBTRACEEVENT
  61#include <event-parse.h>
  62#endif
  63
  64/*
  65 * magic2 = "PERFILE2"
  66 * must be a numerical value to let the endianness
  67 * determine the memory layout. That way we are able
  68 * to detect endianness when reading the perf.data file
  69 * back.
  70 *
  71 * we check for legacy (PERFFILE) format.
  72 */
  73static const char *__perf_magic1 = "PERFFILE";
  74static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  75static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  76
  77#define PERF_MAGIC	__perf_magic2
  78
  79const char perf_version_string[] = PERF_VERSION;
  80
  81struct perf_file_attr {
  82	struct perf_event_attr	attr;
  83	struct perf_file_section	ids;
  84};
  85
  86void perf_header__set_feat(struct perf_header *header, int feat)
  87{
  88	__set_bit(feat, header->adds_features);
  89}
  90
  91void perf_header__clear_feat(struct perf_header *header, int feat)
  92{
  93	__clear_bit(feat, header->adds_features);
  94}
  95
  96bool perf_header__has_feat(const struct perf_header *header, int feat)
  97{
  98	return test_bit(feat, header->adds_features);
  99}
 100
 101static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
 102{
 103	ssize_t ret = writen(ff->fd, buf, size);
 
 104
 105	if (ret != (ssize_t)size)
 106		return ret < 0 ? (int)ret : -1;
 107	return 0;
 108}
 109
 110static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 111{
 112	/* struct perf_event_header::size is u16 */
 113	const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 114	size_t new_size = ff->size;
 115	void *addr;
 116
 117	if (size + ff->offset > max_size)
 118		return -E2BIG;
 119
 120	while (size > (new_size - ff->offset))
 121		new_size <<= 1;
 122	new_size = min(max_size, new_size);
 123
 124	if (ff->size < new_size) {
 125		addr = realloc(ff->buf, new_size);
 126		if (!addr)
 127			return -ENOMEM;
 128		ff->buf = addr;
 129		ff->size = new_size;
 130	}
 131
 132	memcpy(ff->buf + ff->offset, buf, size);
 133	ff->offset += size;
 134
 135	return 0;
 136}
 137
 138/* Return: 0 if succeeded, -ERR if failed. */
 139int do_write(struct feat_fd *ff, const void *buf, size_t size)
 140{
 141	if (!ff->buf)
 142		return __do_write_fd(ff, buf, size);
 143	return __do_write_buf(ff, buf, size);
 144}
 145
 146/* Return: 0 if succeeded, -ERR if failed. */
 147static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 148{
 149	u64 *p = (u64 *) set;
 150	int i, ret;
 151
 152	ret = do_write(ff, &size, sizeof(size));
 153	if (ret < 0)
 154		return ret;
 155
 156	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 157		ret = do_write(ff, p + i, sizeof(*p));
 158		if (ret < 0)
 159			return ret;
 160	}
 161
 162	return 0;
 163}
 164
 165/* Return: 0 if succeeded, -ERR if failed. */
 166int write_padded(struct feat_fd *ff, const void *bf,
 167		 size_t count, size_t count_aligned)
 168{
 169	static const char zero_buf[NAME_ALIGN];
 170	int err = do_write(ff, bf, count);
 171
 172	if (!err)
 173		err = do_write(ff, zero_buf, count_aligned - count);
 174
 175	return err;
 176}
 177
 178#define string_size(str)						\
 179	(PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 180
 181/* Return: 0 if succeeded, -ERR if failed. */
 182static int do_write_string(struct feat_fd *ff, const char *str)
 183{
 184	u32 len, olen;
 185	int ret;
 186
 187	olen = strlen(str) + 1;
 188	len = PERF_ALIGN(olen, NAME_ALIGN);
 189
 190	/* write len, incl. \0 */
 191	ret = do_write(ff, &len, sizeof(len));
 192	if (ret < 0)
 193		return ret;
 194
 195	return write_padded(ff, str, olen, len);
 196}
 197
 198static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 199{
 200	ssize_t ret = readn(ff->fd, addr, size);
 201
 202	if (ret != size)
 203		return ret < 0 ? (int)ret : -1;
 204	return 0;
 205}
 206
 207static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 208{
 209	if (size > (ssize_t)ff->size - ff->offset)
 210		return -1;
 211
 212	memcpy(addr, ff->buf + ff->offset, size);
 213	ff->offset += size;
 214
 215	return 0;
 216
 217}
 218
 219static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 220{
 221	if (!ff->buf)
 222		return __do_read_fd(ff, addr, size);
 223	return __do_read_buf(ff, addr, size);
 224}
 225
 226static int do_read_u32(struct feat_fd *ff, u32 *addr)
 227{
 228	int ret;
 229
 230	ret = __do_read(ff, addr, sizeof(*addr));
 231	if (ret)
 232		return ret;
 233
 234	if (ff->ph->needs_swap)
 235		*addr = bswap_32(*addr);
 236	return 0;
 237}
 238
 239static int do_read_u64(struct feat_fd *ff, u64 *addr)
 240{
 241	int ret;
 242
 243	ret = __do_read(ff, addr, sizeof(*addr));
 244	if (ret)
 245		return ret;
 246
 247	if (ff->ph->needs_swap)
 248		*addr = bswap_64(*addr);
 249	return 0;
 250}
 251
 252static char *do_read_string(struct feat_fd *ff)
 253{
 
 254	u32 len;
 255	char *buf;
 256
 257	if (do_read_u32(ff, &len))
 
 258		return NULL;
 259
 
 
 
 260	buf = malloc(len);
 261	if (!buf)
 262		return NULL;
 263
 264	if (!__do_read(ff, buf, len)) {
 
 265		/*
 266		 * strings are padded by zeroes
 267		 * thus the actual strlen of buf
 268		 * may be less than len
 269		 */
 270		return buf;
 271	}
 272
 273	free(buf);
 274	return NULL;
 275}
 276
 277/* Return: 0 if succeeded, -ERR if failed. */
 278static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 279{
 280	unsigned long *set;
 281	u64 size, *p;
 282	int i, ret;
 283
 284	ret = do_read_u64(ff, &size);
 285	if (ret)
 286		return ret;
 287
 288	set = bitmap_zalloc(size);
 289	if (!set)
 290		return -ENOMEM;
 291
 292	p = (u64 *) set;
 293
 294	for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 295		ret = do_read_u64(ff, p + i);
 296		if (ret < 0) {
 297			free(set);
 298			return ret;
 299		}
 300	}
 301
 302	*pset  = set;
 303	*psize = size;
 304	return 0;
 305}
 306
 307#ifdef HAVE_LIBTRACEEVENT
 308static int write_tracing_data(struct feat_fd *ff,
 309			      struct evlist *evlist)
 310{
 311	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 312		return -1;
 313
 314	return read_tracing_data(ff->fd, &evlist->core.entries);
 315}
 316#endif
 317
 318static int write_build_id(struct feat_fd *ff,
 319			  struct evlist *evlist __maybe_unused)
 320{
 321	struct perf_session *session;
 322	int err;
 323
 324	session = container_of(ff->ph, struct perf_session, header);
 325
 326	if (!perf_session__read_build_ids(session, true))
 327		return -1;
 328
 329	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 330		return -1;
 331
 332	err = perf_session__write_buildid_table(session, ff);
 333	if (err < 0) {
 334		pr_debug("failed to write buildid table\n");
 335		return err;
 336	}
 337	perf_session__cache_build_ids(session);
 338
 339	return 0;
 340}
 341
 342static int write_hostname(struct feat_fd *ff,
 343			  struct evlist *evlist __maybe_unused)
 344{
 345	struct utsname uts;
 346	int ret;
 347
 348	ret = uname(&uts);
 349	if (ret < 0)
 350		return -1;
 351
 352	return do_write_string(ff, uts.nodename);
 353}
 354
 355static int write_osrelease(struct feat_fd *ff,
 356			   struct evlist *evlist __maybe_unused)
 357{
 358	struct utsname uts;
 359	int ret;
 360
 361	ret = uname(&uts);
 362	if (ret < 0)
 363		return -1;
 364
 365	return do_write_string(ff, uts.release);
 366}
 367
 368static int write_arch(struct feat_fd *ff,
 369		      struct evlist *evlist __maybe_unused)
 370{
 371	struct utsname uts;
 372	int ret;
 373
 374	ret = uname(&uts);
 375	if (ret < 0)
 376		return -1;
 377
 378	return do_write_string(ff, uts.machine);
 379}
 380
 381static int write_version(struct feat_fd *ff,
 382			 struct evlist *evlist __maybe_unused)
 383{
 384	return do_write_string(ff, perf_version_string);
 385}
 386
 387static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 388{
 389	FILE *file;
 390	char *buf = NULL;
 391	char *s, *p;
 392	const char *search = cpuinfo_proc;
 393	size_t len = 0;
 394	int ret = -1;
 395
 396	if (!search)
 397		return -1;
 398
 399	file = fopen("/proc/cpuinfo", "r");
 400	if (!file)
 401		return -1;
 402
 403	while (getline(&buf, &len, file) > 0) {
 404		ret = strncmp(buf, search, strlen(search));
 405		if (!ret)
 406			break;
 407	}
 408
 409	if (ret) {
 410		ret = -1;
 411		goto done;
 412	}
 413
 414	s = buf;
 415
 416	p = strchr(buf, ':');
 417	if (p && *(p+1) == ' ' && *(p+2))
 418		s = p + 2;
 419	p = strchr(s, '\n');
 420	if (p)
 421		*p = '\0';
 422
 423	/* squash extra space characters (branding string) */
 424	p = s;
 425	while (*p) {
 426		if (isspace(*p)) {
 427			char *r = p + 1;
 428			char *q = skip_spaces(r);
 429			*p = ' ';
 
 
 430			if (q != (p+1))
 431				while ((*r++ = *q++));
 432		}
 433		p++;
 434	}
 435	ret = do_write_string(ff, s);
 436done:
 437	free(buf);
 438	fclose(file);
 439	return ret;
 440}
 441
 442static int write_cpudesc(struct feat_fd *ff,
 443		       struct evlist *evlist __maybe_unused)
 444{
 445#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 446#define CPUINFO_PROC	{ "cpu", }
 447#elif defined(__s390__)
 448#define CPUINFO_PROC	{ "vendor_id", }
 449#elif defined(__sh__)
 450#define CPUINFO_PROC	{ "cpu type", }
 451#elif defined(__alpha__) || defined(__mips__)
 452#define CPUINFO_PROC	{ "cpu model", }
 453#elif defined(__arm__)
 454#define CPUINFO_PROC	{ "model name", "Processor", }
 455#elif defined(__arc__)
 456#define CPUINFO_PROC	{ "Processor", }
 457#elif defined(__xtensa__)
 458#define CPUINFO_PROC	{ "core ID", }
 459#elif defined(__loongarch__)
 460#define CPUINFO_PROC	{ "Model Name", }
 461#else
 462#define CPUINFO_PROC	{ "model name", }
 463#endif
 464	const char *cpuinfo_procs[] = CPUINFO_PROC;
 465#undef CPUINFO_PROC
 466	unsigned int i;
 467
 468	for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 469		int ret;
 470		ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 471		if (ret >= 0)
 472			return ret;
 473	}
 474	return -1;
 475}
 476
 477
 478static int write_nrcpus(struct feat_fd *ff,
 479			struct evlist *evlist __maybe_unused)
 480{
 481	long nr;
 482	u32 nrc, nra;
 483	int ret;
 484
 485	nrc = cpu__max_present_cpu().cpu;
 
 
 
 
 486
 487	nr = sysconf(_SC_NPROCESSORS_ONLN);
 488	if (nr < 0)
 489		return -1;
 490
 491	nra = (u32)(nr & UINT_MAX);
 492
 493	ret = do_write(ff, &nrc, sizeof(nrc));
 494	if (ret < 0)
 495		return ret;
 496
 497	return do_write(ff, &nra, sizeof(nra));
 498}
 499
 500static int write_event_desc(struct feat_fd *ff,
 501			    struct evlist *evlist)
 502{
 503	struct evsel *evsel;
 504	u32 nre, nri, sz;
 505	int ret;
 506
 507	nre = evlist->core.nr_entries;
 508
 509	/*
 510	 * write number of events
 511	 */
 512	ret = do_write(ff, &nre, sizeof(nre));
 513	if (ret < 0)
 514		return ret;
 515
 516	/*
 517	 * size of perf_event_attr struct
 518	 */
 519	sz = (u32)sizeof(evsel->core.attr);
 520	ret = do_write(ff, &sz, sizeof(sz));
 521	if (ret < 0)
 522		return ret;
 523
 524	evlist__for_each_entry(evlist, evsel) {
 525		ret = do_write(ff, &evsel->core.attr, sz);
 526		if (ret < 0)
 527			return ret;
 528		/*
 529		 * write number of unique id per event
 530		 * there is one id per instance of an event
 531		 *
 532		 * copy into an nri to be independent of the
 533		 * type of ids,
 534		 */
 535		nri = evsel->core.ids;
 536		ret = do_write(ff, &nri, sizeof(nri));
 537		if (ret < 0)
 538			return ret;
 539
 540		/*
 541		 * write event string as passed on cmdline
 542		 */
 543		ret = do_write_string(ff, evsel__name(evsel));
 544		if (ret < 0)
 545			return ret;
 546		/*
 547		 * write unique ids for this event
 548		 */
 549		ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 550		if (ret < 0)
 551			return ret;
 552	}
 553	return 0;
 554}
 555
 556static int write_cmdline(struct feat_fd *ff,
 557			 struct evlist *evlist __maybe_unused)
 558{
 559	char pbuf[MAXPATHLEN], *buf;
 560	int i, ret, n;
 
 
 
 
 
 
 
 
 
 
 561
 562	/* actual path to perf binary */
 563	buf = perf_exe(pbuf, MAXPATHLEN);
 564
 565	/* account for binary path */
 566	n = perf_env.nr_cmdline + 1;
 567
 568	ret = do_write(ff, &n, sizeof(n));
 569	if (ret < 0)
 570		return ret;
 571
 572	ret = do_write_string(ff, buf);
 573	if (ret < 0)
 574		return ret;
 575
 576	for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 577		ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 578		if (ret < 0)
 579			return ret;
 580	}
 581	return 0;
 582}
 583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 584
 585static int write_cpu_topology(struct feat_fd *ff,
 586			      struct evlist *evlist __maybe_unused)
 587{
 588	struct cpu_topology *tp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 589	u32 i;
 590	int ret, j;
 591
 592	tp = cpu_topology__new();
 593	if (!tp)
 594		return -1;
 595
 596	ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
 597	if (ret < 0)
 598		goto done;
 599
 600	for (i = 0; i < tp->package_cpus_lists; i++) {
 601		ret = do_write_string(ff, tp->package_cpus_list[i]);
 602		if (ret < 0)
 603			goto done;
 604	}
 605	ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
 606	if (ret < 0)
 607		goto done;
 608
 609	for (i = 0; i < tp->core_cpus_lists; i++) {
 610		ret = do_write_string(ff, tp->core_cpus_list[i]);
 611		if (ret < 0)
 612			break;
 613	}
 614
 615	ret = perf_env__read_cpu_topology_map(&perf_env);
 616	if (ret < 0)
 617		goto done;
 618
 619	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 620		ret = do_write(ff, &perf_env.cpu[j].core_id,
 621			       sizeof(perf_env.cpu[j].core_id));
 622		if (ret < 0)
 623			return ret;
 624		ret = do_write(ff, &perf_env.cpu[j].socket_id,
 625			       sizeof(perf_env.cpu[j].socket_id));
 626		if (ret < 0)
 627			return ret;
 628	}
 629
 630	if (!tp->die_cpus_lists)
 631		goto done;
 632
 633	ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
 634	if (ret < 0)
 635		goto done;
 636
 637	for (i = 0; i < tp->die_cpus_lists; i++) {
 638		ret = do_write_string(ff, tp->die_cpus_list[i]);
 639		if (ret < 0)
 640			goto done;
 641	}
 642
 643	for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 644		ret = do_write(ff, &perf_env.cpu[j].die_id,
 645			       sizeof(perf_env.cpu[j].die_id));
 646		if (ret < 0)
 647			return ret;
 648	}
 649
 650done:
 651	cpu_topology__delete(tp);
 652	return ret;
 653}
 654
 655
 656
 657static int write_total_mem(struct feat_fd *ff,
 658			   struct evlist *evlist __maybe_unused)
 659{
 660	char *buf = NULL;
 661	FILE *fp;
 662	size_t len = 0;
 663	int ret = -1, n;
 664	uint64_t mem;
 665
 666	fp = fopen("/proc/meminfo", "r");
 667	if (!fp)
 668		return -1;
 669
 670	while (getline(&buf, &len, fp) > 0) {
 671		ret = strncmp(buf, "MemTotal:", 9);
 672		if (!ret)
 673			break;
 674	}
 675	if (!ret) {
 676		n = sscanf(buf, "%*s %"PRIu64, &mem);
 677		if (n == 1)
 678			ret = do_write(ff, &mem, sizeof(mem));
 679	} else
 680		ret = -1;
 681	free(buf);
 682	fclose(fp);
 683	return ret;
 684}
 685
 686static int write_numa_topology(struct feat_fd *ff,
 687			       struct evlist *evlist __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 688{
 689	struct numa_topology *tp;
 
 
 
 
 
 690	int ret = -1;
 691	u32 i;
 692
 693	tp = numa_topology__new();
 694	if (!tp)
 695		return -ENOMEM;
 
 
 
 696
 697	ret = do_write(ff, &tp->nr, sizeof(u32));
 698	if (ret < 0)
 699		goto err;
 700
 701	for (i = 0; i < tp->nr; i++) {
 702		struct numa_topology_node *n = &tp->nodes[i];
 
 703
 704		ret = do_write(ff, &n->node, sizeof(u32));
 705		if (ret < 0)
 706			goto err;
 707
 708		ret = do_write(ff, &n->mem_total, sizeof(u64));
 709		if (ret)
 710			goto err;
 711
 712		ret = do_write(ff, &n->mem_free, sizeof(u64));
 713		if (ret)
 714			goto err;
 
 
 715
 716		ret = do_write_string(ff, n->cpus);
 717		if (ret < 0)
 718			goto err;
 719	}
 720
 721	ret = 0;
 722
 723err:
 724	numa_topology__delete(tp);
 725	return ret;
 726}
 727
 728/*
 729 * File format:
 730 *
 731 * struct pmu_mappings {
 732 *	u32	pmu_num;
 733 *	struct pmu_map {
 734 *		u32	type;
 735 *		char	name[];
 736 *	}[pmu_num];
 737 * };
 738 */
 739
 740static int write_pmu_mappings(struct feat_fd *ff,
 741			      struct evlist *evlist __maybe_unused)
 742{
 743	struct perf_pmu *pmu = NULL;
 744	u32 pmu_num = 0;
 
 745	int ret;
 746
 747	/*
 748	 * Do a first pass to count number of pmu to avoid lseek so this
 749	 * works in pipe mode as well.
 750	 */
 751	while ((pmu = perf_pmus__scan(pmu)))
 752		pmu_num++;
 753
 754	ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 755	if (ret < 0)
 756		return ret;
 757
 758	while ((pmu = perf_pmus__scan(pmu))) {
 759		ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 
 
 
 
 760		if (ret < 0)
 761			return ret;
 762
 763		ret = do_write_string(ff, pmu->name);
 764		if (ret < 0)
 765			return ret;
 766	}
 767
 
 
 
 
 
 
 768	return 0;
 769}
 770
 771/*
 772 * File format:
 773 *
 774 * struct group_descs {
 775 *	u32	nr_groups;
 776 *	struct group_desc {
 777 *		char	name[];
 778 *		u32	leader_idx;
 779 *		u32	nr_members;
 780 *	}[nr_groups];
 781 * };
 782 */
 783static int write_group_desc(struct feat_fd *ff,
 784			    struct evlist *evlist)
 785{
 786	u32 nr_groups = evlist__nr_groups(evlist);
 787	struct evsel *evsel;
 788	int ret;
 789
 790	ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 791	if (ret < 0)
 792		return ret;
 793
 794	evlist__for_each_entry(evlist, evsel) {
 795		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 
 796			const char *name = evsel->group_name ?: "{anon_group}";
 797			u32 leader_idx = evsel->core.idx;
 798			u32 nr_members = evsel->core.nr_members;
 799
 800			ret = do_write_string(ff, name);
 801			if (ret < 0)
 802				return ret;
 803
 804			ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 805			if (ret < 0)
 806				return ret;
 807
 808			ret = do_write(ff, &nr_members, sizeof(nr_members));
 809			if (ret < 0)
 810				return ret;
 811		}
 812	}
 813	return 0;
 814}
 815
 816/*
 817 * Return the CPU id as a raw string.
 818 *
 819 * Each architecture should provide a more precise id string that
 820 * can be use to match the architecture's "mapfile".
 821 */
 822char * __weak get_cpuid_str(struct perf_cpu cpu __maybe_unused)
 823{
 824	return NULL;
 825}
 826
 827char *get_cpuid_allow_env_override(struct perf_cpu cpu)
 828{
 829	char *cpuid;
 830	static bool printed;
 831
 832	cpuid = getenv("PERF_CPUID");
 833	if (cpuid)
 834		cpuid = strdup(cpuid);
 835	if (!cpuid)
 836		cpuid = get_cpuid_str(cpu);
 837	if (!cpuid)
 838		return NULL;
 839
 840	if (!printed) {
 841		pr_debug("Using CPUID %s\n", cpuid);
 842		printed = true;
 843	}
 844	return cpuid;
 845}
 846
 847/* Return zero when the cpuid from the mapfile.csv matches the
 848 * cpuid string generated on this platform.
 849 * Otherwise return non-zero.
 850 */
 851int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 852{
 853	regex_t re;
 854	regmatch_t pmatch[1];
 855	int match;
 856
 857	if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 858		/* Warn unable to generate match particular string. */
 859		pr_info("Invalid regular expression %s\n", mapcpuid);
 860		return 1;
 861	}
 862
 863	match = !regexec(&re, cpuid, 1, pmatch, 0);
 864	regfree(&re);
 865	if (match) {
 866		size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 867
 868		/* Verify the entire string matched. */
 869		if (match_len == strlen(cpuid))
 870			return 0;
 871	}
 872	return 1;
 873}
 874
 875/*
 876 * default get_cpuid(): nothing gets recorded
 877 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 878 */
 879int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused,
 880		     struct perf_cpu cpu __maybe_unused)
 881{
 882	return ENOSYS; /* Not implemented */
 883}
 884
 885static int write_cpuid(struct feat_fd *ff, struct evlist *evlist)
 
 886{
 887	struct perf_cpu cpu = perf_cpu_map__min(evlist->core.all_cpus);
 888	char buffer[64];
 889	int ret;
 890
 891	ret = get_cpuid(buffer, sizeof(buffer), cpu);
 892	if (ret)
 893		return -1;
 894
 895	return do_write_string(ff, buffer);
 
 
 896}
 897
 898static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 899			      struct evlist *evlist __maybe_unused)
 
 900{
 901	return 0;
 902}
 903
 904static int write_auxtrace(struct feat_fd *ff,
 905			  struct evlist *evlist __maybe_unused)
 906{
 907	struct perf_session *session;
 908	int err;
 909
 910	if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 911		return -1;
 912
 913	session = container_of(ff->ph, struct perf_session, header);
 914
 915	err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 916	if (err < 0)
 917		pr_err("Failed to write auxtrace index\n");
 918	return err;
 919}
 920
 921static int write_clockid(struct feat_fd *ff,
 922			 struct evlist *evlist __maybe_unused)
 923{
 924	return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 925			sizeof(ff->ph->env.clock.clockid_res_ns));
 926}
 927
 928static int write_clock_data(struct feat_fd *ff,
 929			    struct evlist *evlist __maybe_unused)
 930{
 931	u64 *data64;
 932	u32 data32;
 933	int ret;
 934
 935	/* version */
 936	data32 = 1;
 937
 938	ret = do_write(ff, &data32, sizeof(data32));
 939	if (ret < 0)
 940		return ret;
 941
 942	/* clockid */
 943	data32 = ff->ph->env.clock.clockid;
 944
 945	ret = do_write(ff, &data32, sizeof(data32));
 946	if (ret < 0)
 947		return ret;
 948
 949	/* TOD ref time */
 950	data64 = &ff->ph->env.clock.tod_ns;
 951
 952	ret = do_write(ff, data64, sizeof(*data64));
 953	if (ret < 0)
 954		return ret;
 955
 956	/* clockid ref time */
 957	data64 = &ff->ph->env.clock.clockid_ns;
 958
 959	return do_write(ff, data64, sizeof(*data64));
 960}
 961
 962static int write_hybrid_topology(struct feat_fd *ff,
 963				 struct evlist *evlist __maybe_unused)
 964{
 965	struct hybrid_topology *tp;
 966	int ret;
 967	u32 i;
 968
 969	tp = hybrid_topology__new();
 970	if (!tp)
 971		return -ENOENT;
 972
 973	ret = do_write(ff, &tp->nr, sizeof(u32));
 974	if (ret < 0)
 975		goto err;
 976
 977	for (i = 0; i < tp->nr; i++) {
 978		struct hybrid_topology_node *n = &tp->nodes[i];
 979
 980		ret = do_write_string(ff, n->pmu_name);
 981		if (ret < 0)
 982			goto err;
 983
 984		ret = do_write_string(ff, n->cpus);
 985		if (ret < 0)
 986			goto err;
 987	}
 988
 989	ret = 0;
 990
 991err:
 992	hybrid_topology__delete(tp);
 993	return ret;
 994}
 995
 996static int write_dir_format(struct feat_fd *ff,
 997			    struct evlist *evlist __maybe_unused)
 998{
 999	struct perf_session *session;
1000	struct perf_data *data;
1001
1002	session = container_of(ff->ph, struct perf_session, header);
1003	data = session->data;
1004
1005	if (WARN_ON(!perf_data__is_dir(data)))
1006		return -1;
1007
1008	return do_write(ff, &data->dir.version, sizeof(data->dir.version));
1009}
1010
1011#ifdef HAVE_LIBBPF_SUPPORT
1012static int write_bpf_prog_info(struct feat_fd *ff,
1013			       struct evlist *evlist __maybe_unused)
1014{
1015	struct perf_env *env = &ff->ph->env;
1016	struct rb_root *root;
1017	struct rb_node *next;
1018	int ret;
1019
1020	down_read(&env->bpf_progs.lock);
1021
1022	ret = do_write(ff, &env->bpf_progs.infos_cnt,
1023		       sizeof(env->bpf_progs.infos_cnt));
1024	if (ret < 0)
1025		goto out;
1026
1027	root = &env->bpf_progs.infos;
1028	next = rb_first(root);
1029	while (next) {
1030		struct bpf_prog_info_node *node;
1031		size_t len;
1032
1033		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1034		next = rb_next(&node->rb_node);
1035		len = sizeof(struct perf_bpil) +
1036			node->info_linear->data_len;
1037
1038		/* before writing to file, translate address to offset */
1039		bpil_addr_to_offs(node->info_linear);
1040		ret = do_write(ff, node->info_linear, len);
1041		/*
1042		 * translate back to address even when do_write() fails,
1043		 * so that this function never changes the data.
1044		 */
1045		bpil_offs_to_addr(node->info_linear);
1046		if (ret < 0)
1047			goto out;
1048	}
1049out:
1050	up_read(&env->bpf_progs.lock);
1051	return ret;
1052}
1053
1054static int write_bpf_btf(struct feat_fd *ff,
1055			 struct evlist *evlist __maybe_unused)
1056{
1057	struct perf_env *env = &ff->ph->env;
1058	struct rb_root *root;
1059	struct rb_node *next;
1060	int ret;
1061
1062	down_read(&env->bpf_progs.lock);
1063
1064	ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1065		       sizeof(env->bpf_progs.btfs_cnt));
1066
1067	if (ret < 0)
1068		goto out;
1069
1070	root = &env->bpf_progs.btfs;
1071	next = rb_first(root);
1072	while (next) {
1073		struct btf_node *node;
1074
1075		node = rb_entry(next, struct btf_node, rb_node);
1076		next = rb_next(&node->rb_node);
1077		ret = do_write(ff, &node->id,
1078			       sizeof(u32) * 2 + node->data_size);
1079		if (ret < 0)
1080			goto out;
1081	}
1082out:
1083	up_read(&env->bpf_progs.lock);
1084	return ret;
1085}
1086#endif // HAVE_LIBBPF_SUPPORT
1087
1088static int cpu_cache_level__sort(const void *a, const void *b)
1089{
1090	struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1091	struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1092
1093	return cache_a->level - cache_b->level;
1094}
1095
1096static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1097{
1098	if (a->level != b->level)
1099		return false;
1100
1101	if (a->line_size != b->line_size)
1102		return false;
1103
1104	if (a->sets != b->sets)
1105		return false;
1106
1107	if (a->ways != b->ways)
1108		return false;
1109
1110	if (strcmp(a->type, b->type))
1111		return false;
1112
1113	if (strcmp(a->size, b->size))
1114		return false;
1115
1116	if (strcmp(a->map, b->map))
1117		return false;
1118
1119	return true;
1120}
1121
1122static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1123{
1124	char path[PATH_MAX], file[PATH_MAX];
1125	struct stat st;
1126	size_t len;
1127
1128	scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1129	scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1130
1131	if (stat(file, &st))
1132		return 1;
1133
1134	scnprintf(file, PATH_MAX, "%s/level", path);
1135	if (sysfs__read_int(file, (int *) &cache->level))
1136		return -1;
1137
1138	scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1139	if (sysfs__read_int(file, (int *) &cache->line_size))
1140		return -1;
1141
1142	scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1143	if (sysfs__read_int(file, (int *) &cache->sets))
1144		return -1;
1145
1146	scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1147	if (sysfs__read_int(file, (int *) &cache->ways))
1148		return -1;
1149
1150	scnprintf(file, PATH_MAX, "%s/type", path);
1151	if (sysfs__read_str(file, &cache->type, &len))
1152		return -1;
1153
1154	cache->type[len] = 0;
1155	cache->type = strim(cache->type);
1156
1157	scnprintf(file, PATH_MAX, "%s/size", path);
1158	if (sysfs__read_str(file, &cache->size, &len)) {
1159		zfree(&cache->type);
1160		return -1;
1161	}
1162
1163	cache->size[len] = 0;
1164	cache->size = strim(cache->size);
1165
1166	scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1167	if (sysfs__read_str(file, &cache->map, &len)) {
1168		zfree(&cache->size);
1169		zfree(&cache->type);
1170		return -1;
1171	}
1172
1173	cache->map[len] = 0;
1174	cache->map = strim(cache->map);
1175	return 0;
1176}
1177
1178static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1179{
1180	fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1181}
1182
1183/*
1184 * Build caches levels for a particular CPU from the data in
1185 * /sys/devices/system/cpu/cpu<cpu>/cache/
1186 * The cache level data is stored in caches[] from index at
1187 * *cntp.
1188 */
1189int build_caches_for_cpu(u32 cpu, struct cpu_cache_level caches[], u32 *cntp)
1190{
 
 
 
1191	u16 level;
1192
1193	for (level = 0; level < MAX_CACHE_LVL; level++) {
1194		struct cpu_cache_level c;
1195		int err;
1196		u32 i;
1197
1198		err = cpu_cache_level__read(&c, cpu, level);
1199		if (err < 0)
1200			return err;
1201
1202		if (err == 1)
1203			break;
 
 
 
 
 
 
1204
1205		for (i = 0; i < *cntp; i++) {
1206			if (cpu_cache_level__cmp(&c, &caches[i]))
1207				break;
1208		}
1209
1210		if (i == *cntp) {
1211			caches[*cntp] = c;
1212			*cntp = *cntp + 1;
1213		} else
1214			cpu_cache_level__free(&c);
1215	}
1216
1217	return 0;
1218}
 
 
1219
1220static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1221{
1222	u32 nr, cpu, cnt = 0;
1223
1224	nr = cpu__max_cpu().cpu;
1225
1226	for (cpu = 0; cpu < nr; cpu++) {
1227		int ret = build_caches_for_cpu(cpu, caches, &cnt);
1228
1229		if (ret)
1230			return ret;
1231	}
 
1232	*cntp = cnt;
1233	return 0;
1234}
1235
1236static int write_cache(struct feat_fd *ff,
1237		       struct evlist *evlist __maybe_unused)
 
 
1238{
1239	u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1240	struct cpu_cache_level caches[max_caches];
1241	u32 cnt = 0, i, version = 1;
1242	int ret;
1243
1244	ret = build_caches(caches, &cnt);
1245	if (ret)
1246		goto out;
1247
1248	qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1249
1250	ret = do_write(ff, &version, sizeof(u32));
1251	if (ret < 0)
1252		goto out;
1253
1254	ret = do_write(ff, &cnt, sizeof(u32));
1255	if (ret < 0)
1256		goto out;
1257
1258	for (i = 0; i < cnt; i++) {
1259		struct cpu_cache_level *c = &caches[i];
1260
1261		#define _W(v)					\
1262			ret = do_write(ff, &c->v, sizeof(u32));	\
1263			if (ret < 0)				\
1264				goto out;
1265
1266		_W(level)
1267		_W(line_size)
1268		_W(sets)
1269		_W(ways)
1270		#undef _W
1271
1272		#define _W(v)						\
1273			ret = do_write_string(ff, (const char *) c->v);	\
1274			if (ret < 0)					\
1275				goto out;
1276
1277		_W(type)
1278		_W(size)
1279		_W(map)
1280		#undef _W
1281	}
1282
1283out:
1284	for (i = 0; i < cnt; i++)
1285		cpu_cache_level__free(&caches[i]);
1286	return ret;
1287}
1288
1289static int write_stat(struct feat_fd *ff __maybe_unused,
1290		      struct evlist *evlist __maybe_unused)
 
1291{
1292	return 0;
1293}
1294
1295static int write_sample_time(struct feat_fd *ff,
1296			     struct evlist *evlist)
1297{
1298	int ret;
1299
1300	ret = do_write(ff, &evlist->first_sample_time,
1301		       sizeof(evlist->first_sample_time));
1302	if (ret < 0)
1303		return ret;
1304
1305	return do_write(ff, &evlist->last_sample_time,
1306			sizeof(evlist->last_sample_time));
1307}
1308
1309
1310static int memory_node__read(struct memory_node *n, unsigned long idx)
1311{
1312	unsigned int phys, size = 0;
1313	char path[PATH_MAX];
1314	struct dirent *ent;
1315	DIR *dir;
1316
1317#define for_each_memory(mem, dir)					\
1318	while ((ent = readdir(dir)))					\
1319		if (strcmp(ent->d_name, ".") &&				\
1320		    strcmp(ent->d_name, "..") &&			\
1321		    sscanf(ent->d_name, "memory%u", &mem) == 1)
1322
1323	scnprintf(path, PATH_MAX,
1324		  "%s/devices/system/node/node%lu",
1325		  sysfs__mountpoint(), idx);
1326
1327	dir = opendir(path);
1328	if (!dir) {
1329		pr_warning("failed: can't open memory sysfs data\n");
1330		return -1;
1331	}
1332
1333	for_each_memory(phys, dir) {
1334		size = max(phys, size);
1335	}
1336
1337	size++;
1338
1339	n->set = bitmap_zalloc(size);
1340	if (!n->set) {
1341		closedir(dir);
1342		return -ENOMEM;
1343	}
1344
1345	n->node = idx;
1346	n->size = size;
1347
1348	rewinddir(dir);
1349
1350	for_each_memory(phys, dir) {
1351		__set_bit(phys, n->set);
1352	}
1353
1354	closedir(dir);
1355	return 0;
1356}
1357
1358static void memory_node__delete_nodes(struct memory_node *nodesp, u64 cnt)
1359{
1360	for (u64 i = 0; i < cnt; i++)
1361		bitmap_free(nodesp[i].set);
1362
1363	free(nodesp);
1364}
1365
1366static int memory_node__sort(const void *a, const void *b)
 
1367{
1368	const struct memory_node *na = a;
1369	const struct memory_node *nb = b;
1370
1371	return na->node - nb->node;
1372}
1373
1374static int build_mem_topology(struct memory_node **nodesp, u64 *cntp)
 
1375{
1376	char path[PATH_MAX];
1377	struct dirent *ent;
1378	DIR *dir;
1379	int ret = 0;
1380	size_t cnt = 0, size = 0;
1381	struct memory_node *nodes = NULL;
1382
1383	scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1384		  sysfs__mountpoint());
1385
1386	dir = opendir(path);
1387	if (!dir) {
1388		pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1389			  __func__, path);
1390		return -1;
1391	}
1392
1393	while (!ret && (ent = readdir(dir))) {
1394		unsigned int idx;
1395		int r;
1396
1397		if (!strcmp(ent->d_name, ".") ||
1398		    !strcmp(ent->d_name, ".."))
1399			continue;
1400
1401		r = sscanf(ent->d_name, "node%u", &idx);
1402		if (r != 1)
1403			continue;
1404
1405		if (cnt >= size) {
1406			struct memory_node *new_nodes =
1407				reallocarray(nodes, cnt + 4, sizeof(*nodes));
1408
1409			if (!new_nodes) {
1410				pr_err("Failed to write MEM_TOPOLOGY, size %zd nodes\n", size);
1411				ret = -ENOMEM;
1412				goto out;
1413			}
1414			nodes = new_nodes;
1415			size += 4;
1416		}
1417		ret = memory_node__read(&nodes[cnt], idx);
1418		if (!ret)
1419			cnt += 1;
1420	}
1421out:
1422	closedir(dir);
1423	if (!ret) {
1424		*cntp = cnt;
1425		*nodesp = nodes;
1426		qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1427	} else
1428		memory_node__delete_nodes(nodes, cnt);
1429
1430	return ret;
1431}
1432
1433/*
1434 * The MEM_TOPOLOGY holds physical memory map for every
1435 * node in system. The format of data is as follows:
1436 *
1437 *  0 - version          | for future changes
1438 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1439 * 16 - count            | number of nodes
1440 *
1441 * For each node we store map of physical indexes for
1442 * each node:
1443 *
1444 * 32 - node id          | node index
1445 * 40 - size             | size of bitmap
1446 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1447 */
1448static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1449			      struct evlist *evlist __maybe_unused)
1450{
1451	struct memory_node *nodes = NULL;
1452	u64 bsize, version = 1, i, nr = 0;
1453	int ret;
1454
1455	ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1456			      (unsigned long long *) &bsize);
1457	if (ret)
1458		return ret;
1459
1460	ret = build_mem_topology(&nodes, &nr);
1461	if (ret)
1462		return ret;
1463
1464	ret = do_write(ff, &version, sizeof(version));
1465	if (ret < 0)
1466		goto out;
1467
1468	ret = do_write(ff, &bsize, sizeof(bsize));
1469	if (ret < 0)
1470		goto out;
1471
1472	ret = do_write(ff, &nr, sizeof(nr));
1473	if (ret < 0)
1474		goto out;
1475
1476	for (i = 0; i < nr; i++) {
1477		struct memory_node *n = &nodes[i];
1478
1479		#define _W(v)						\
1480			ret = do_write(ff, &n->v, sizeof(n->v));	\
1481			if (ret < 0)					\
1482				goto out;
1483
1484		_W(node)
1485		_W(size)
1486
1487		#undef _W
1488
1489		ret = do_write_bitmap(ff, n->set, n->size);
1490		if (ret < 0)
1491			goto out;
1492	}
1493
1494out:
1495	memory_node__delete_nodes(nodes, nr);
1496	return ret;
1497}
1498
1499static int write_compressed(struct feat_fd *ff __maybe_unused,
1500			    struct evlist *evlist __maybe_unused)
1501{
1502	int ret;
1503
1504	ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1505	if (ret)
1506		return ret;
1507
1508	ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1509	if (ret)
1510		return ret;
1511
1512	ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1513	if (ret)
1514		return ret;
1515
1516	ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1517	if (ret)
1518		return ret;
1519
1520	return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1521}
1522
1523static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1524			    bool write_pmu)
1525{
1526	struct perf_pmu_caps *caps = NULL;
1527	int ret;
1528
1529	ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1530	if (ret < 0)
1531		return ret;
1532
1533	list_for_each_entry(caps, &pmu->caps, list) {
1534		ret = do_write_string(ff, caps->name);
1535		if (ret < 0)
1536			return ret;
1537
1538		ret = do_write_string(ff, caps->value);
1539		if (ret < 0)
1540			return ret;
1541	}
1542
1543	if (write_pmu) {
1544		ret = do_write_string(ff, pmu->name);
1545		if (ret < 0)
1546			return ret;
1547	}
1548
1549	return ret;
1550}
1551
1552static int write_cpu_pmu_caps(struct feat_fd *ff,
1553			      struct evlist *evlist __maybe_unused)
1554{
1555	struct perf_pmu *cpu_pmu = perf_pmus__find("cpu");
1556	int ret;
1557
1558	if (!cpu_pmu)
1559		return -ENOENT;
1560
1561	ret = perf_pmu__caps_parse(cpu_pmu);
1562	if (ret < 0)
1563		return ret;
1564
1565	return __write_pmu_caps(ff, cpu_pmu, false);
1566}
1567
1568static int write_pmu_caps(struct feat_fd *ff,
1569			  struct evlist *evlist __maybe_unused)
1570{
1571	struct perf_pmu *pmu = NULL;
1572	int nr_pmu = 0;
1573	int ret;
1574
1575	while ((pmu = perf_pmus__scan(pmu))) {
1576		if (!strcmp(pmu->name, "cpu")) {
1577			/*
1578			 * The "cpu" PMU is special and covered by
1579			 * HEADER_CPU_PMU_CAPS. Note, core PMUs are
1580			 * counted/written here for ARM, s390 and Intel hybrid.
1581			 */
1582			continue;
1583		}
1584		if (perf_pmu__caps_parse(pmu) <= 0)
1585			continue;
1586		nr_pmu++;
1587	}
1588
1589	ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1590	if (ret < 0)
1591		return ret;
1592
1593	if (!nr_pmu)
1594		return 0;
1595
1596	/*
1597	 * Note older perf tools assume core PMUs come first, this is a property
1598	 * of perf_pmus__scan.
1599	 */
1600	pmu = NULL;
1601	while ((pmu = perf_pmus__scan(pmu))) {
1602		if (!strcmp(pmu->name, "cpu")) {
1603			/* Skip as above. */
1604			continue;
1605		}
1606		if (perf_pmu__caps_parse(pmu) <= 0)
1607			continue;
1608		ret = __write_pmu_caps(ff, pmu, true);
1609		if (ret < 0)
1610			return ret;
1611	}
1612	return 0;
1613}
1614
1615static void print_hostname(struct feat_fd *ff, FILE *fp)
1616{
1617	fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1618}
1619
1620static void print_osrelease(struct feat_fd *ff, FILE *fp)
1621{
1622	fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1623}
1624
1625static void print_arch(struct feat_fd *ff, FILE *fp)
1626{
1627	fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1628}
1629
1630static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1631{
1632	fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1633}
1634
1635static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1636{
1637	fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1638	fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1639}
1640
1641static void print_version(struct feat_fd *ff, FILE *fp)
1642{
1643	fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1644}
1645
1646static void print_cmdline(struct feat_fd *ff, FILE *fp)
1647{
1648	int nr, i;
1649
1650	nr = ff->ph->env.nr_cmdline;
1651
1652	fprintf(fp, "# cmdline : ");
1653
1654	for (i = 0; i < nr; i++) {
1655		char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1656		if (!argv_i) {
1657			fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1658		} else {
1659			char *mem = argv_i;
1660			do {
1661				char *quote = strchr(argv_i, '\'');
1662				if (!quote)
1663					break;
1664				*quote++ = '\0';
1665				fprintf(fp, "%s\\\'", argv_i);
1666				argv_i = quote;
1667			} while (1);
1668			fprintf(fp, "%s ", argv_i);
1669			free(mem);
1670		}
1671	}
1672	fputc('\n', fp);
1673}
1674
1675static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
 
1676{
1677	struct perf_header *ph = ff->ph;
1678	int cpu_nr = ph->env.nr_cpus_avail;
1679	int nr, i;
1680	char *str;
 
1681
1682	nr = ph->env.nr_sibling_cores;
1683	str = ph->env.sibling_cores;
1684
1685	for (i = 0; i < nr; i++) {
1686		fprintf(fp, "# sibling sockets : %s\n", str);
1687		str += strlen(str) + 1;
1688	}
1689
1690	if (ph->env.nr_sibling_dies) {
1691		nr = ph->env.nr_sibling_dies;
1692		str = ph->env.sibling_dies;
1693
1694		for (i = 0; i < nr; i++) {
1695			fprintf(fp, "# sibling dies    : %s\n", str);
1696			str += strlen(str) + 1;
1697		}
1698	}
1699
1700	nr = ph->env.nr_sibling_threads;
1701	str = ph->env.sibling_threads;
1702
1703	for (i = 0; i < nr; i++) {
1704		fprintf(fp, "# sibling threads : %s\n", str);
1705		str += strlen(str) + 1;
1706	}
1707
1708	if (ph->env.nr_sibling_dies) {
1709		if (ph->env.cpu != NULL) {
1710			for (i = 0; i < cpu_nr; i++)
1711				fprintf(fp, "# CPU %d: Core ID %d, "
1712					    "Die ID %d, Socket ID %d\n",
1713					    i, ph->env.cpu[i].core_id,
1714					    ph->env.cpu[i].die_id,
1715					    ph->env.cpu[i].socket_id);
1716		} else
1717			fprintf(fp, "# Core ID, Die ID and Socket ID "
1718				    "information is not available\n");
1719	} else {
1720		if (ph->env.cpu != NULL) {
1721			for (i = 0; i < cpu_nr; i++)
1722				fprintf(fp, "# CPU %d: Core ID %d, "
1723					    "Socket ID %d\n",
1724					    i, ph->env.cpu[i].core_id,
1725					    ph->env.cpu[i].socket_id);
1726		} else
1727			fprintf(fp, "# Core ID and Socket ID "
1728				    "information is not available\n");
1729	}
1730}
1731
1732static void print_clockid(struct feat_fd *ff, FILE *fp)
1733{
1734	fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1735		ff->ph->env.clock.clockid_res_ns * 1000);
1736}
1737
1738static void print_clock_data(struct feat_fd *ff, FILE *fp)
1739{
1740	struct timespec clockid_ns;
1741	char tstr[64], date[64];
1742	struct timeval tod_ns;
1743	clockid_t clockid;
1744	struct tm ltime;
1745	u64 ref;
1746
1747	if (!ff->ph->env.clock.enabled) {
1748		fprintf(fp, "# reference time disabled\n");
1749		return;
1750	}
1751
1752	/* Compute TOD time. */
1753	ref = ff->ph->env.clock.tod_ns;
1754	tod_ns.tv_sec = ref / NSEC_PER_SEC;
1755	ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1756	tod_ns.tv_usec = ref / NSEC_PER_USEC;
1757
1758	/* Compute clockid time. */
1759	ref = ff->ph->env.clock.clockid_ns;
1760	clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1761	ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1762	clockid_ns.tv_nsec = ref;
1763
1764	clockid = ff->ph->env.clock.clockid;
1765
1766	if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1767		snprintf(tstr, sizeof(tstr), "<error>");
1768	else {
1769		strftime(date, sizeof(date), "%F %T", &ltime);
1770		scnprintf(tstr, sizeof(tstr), "%s.%06d",
1771			  date, (int) tod_ns.tv_usec);
1772	}
1773
1774	fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1775	fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1776		    tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1777		    (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1778		    clockid_name(clockid));
1779}
1780
1781static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1782{
1783	int i;
1784	struct hybrid_node *n;
1785
1786	fprintf(fp, "# hybrid cpu system:\n");
1787	for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1788		n = &ff->ph->env.hybrid_nodes[i];
1789		fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1790	}
1791}
1792
1793static void print_dir_format(struct feat_fd *ff, FILE *fp)
1794{
1795	struct perf_session *session;
1796	struct perf_data *data;
1797
1798	session = container_of(ff->ph, struct perf_session, header);
1799	data = session->data;
1800
1801	fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1802}
1803
1804#ifdef HAVE_LIBBPF_SUPPORT
1805static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1806{
1807	struct perf_env *env = &ff->ph->env;
1808	struct rb_root *root;
1809	struct rb_node *next;
1810
1811	down_read(&env->bpf_progs.lock);
1812
1813	root = &env->bpf_progs.infos;
1814	next = rb_first(root);
1815
1816	while (next) {
1817		struct bpf_prog_info_node *node;
1818
1819		node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1820		next = rb_next(&node->rb_node);
1821
1822		__bpf_event__print_bpf_prog_info(&node->info_linear->info,
1823						 env, fp);
1824	}
1825
1826	up_read(&env->bpf_progs.lock);
1827}
1828
1829static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1830{
1831	struct perf_env *env = &ff->ph->env;
1832	struct rb_root *root;
1833	struct rb_node *next;
1834
1835	down_read(&env->bpf_progs.lock);
1836
1837	root = &env->bpf_progs.btfs;
1838	next = rb_first(root);
1839
1840	while (next) {
1841		struct btf_node *node;
1842
1843		node = rb_entry(next, struct btf_node, rb_node);
1844		next = rb_next(&node->rb_node);
1845		fprintf(fp, "# btf info of id %u\n", node->id);
1846	}
1847
1848	up_read(&env->bpf_progs.lock);
1849}
1850#endif // HAVE_LIBBPF_SUPPORT
1851
1852static void free_event_desc(struct evsel *events)
1853{
1854	struct evsel *evsel;
1855
1856	if (!events)
1857		return;
1858
1859	for (evsel = events; evsel->core.attr.size; evsel++) {
1860		zfree(&evsel->name);
1861		zfree(&evsel->core.id);
1862	}
1863
1864	free(events);
1865}
1866
1867static bool perf_attr_check(struct perf_event_attr *attr)
 
1868{
1869	if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1870		pr_warning("Reserved bits are set unexpectedly. "
1871			   "Please update perf tool.\n");
1872		return false;
1873	}
1874
1875	if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1876		pr_warning("Unknown sample type (0x%llx) is detected. "
1877			   "Please update perf tool.\n",
1878			   attr->sample_type);
1879		return false;
1880	}
1881
1882	if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1883		pr_warning("Unknown read format (0x%llx) is detected. "
1884			   "Please update perf tool.\n",
1885			   attr->read_format);
1886		return false;
1887	}
1888
1889	if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1890	    (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1891		pr_warning("Unknown branch sample type (0x%llx) is detected. "
1892			   "Please update perf tool.\n",
1893			   attr->branch_sample_type);
1894
1895		return false;
1896	}
1897
1898	return true;
1899}
1900
1901static struct evsel *read_event_desc(struct feat_fd *ff)
1902{
1903	struct evsel *evsel, *events = NULL;
1904	u64 *id;
1905	void *buf = NULL;
1906	u32 nre, sz, nr, i, j;
 
1907	size_t msz;
1908
1909	/* number of events */
1910	if (do_read_u32(ff, &nre))
 
1911		goto error;
1912
1913	if (do_read_u32(ff, &sz))
 
 
 
 
1914		goto error;
1915
 
 
 
1916	/* buffer to hold on file attr struct */
1917	buf = malloc(sz);
1918	if (!buf)
1919		goto error;
1920
1921	/* the last event terminates with evsel->core.attr.size == 0: */
1922	events = calloc(nre + 1, sizeof(*events));
1923	if (!events)
1924		goto error;
1925
1926	msz = sizeof(evsel->core.attr);
1927	if (sz < msz)
1928		msz = sz;
1929
1930	for (i = 0, evsel = events; i < nre; evsel++, i++) {
1931		evsel->core.idx = i;
1932
1933		/*
1934		 * must read entire on-file attr struct to
1935		 * sync up with layout.
1936		 */
1937		if (__do_read(ff, buf, sz))
 
1938			goto error;
1939
1940		if (ff->ph->needs_swap)
1941			perf_event__attr_swap(buf);
1942
1943		memcpy(&evsel->core.attr, buf, msz);
1944
1945		if (!perf_attr_check(&evsel->core.attr))
 
1946			goto error;
1947
1948		if (do_read_u32(ff, &nr))
1949			goto error;
1950
1951		if (ff->ph->needs_swap)
1952			evsel->needs_swap = true;
 
1953
1954		evsel->name = do_read_string(ff);
1955		if (!evsel->name)
1956			goto error;
1957
1958		if (!nr)
1959			continue;
1960
1961		id = calloc(nr, sizeof(*id));
1962		if (!id)
1963			goto error;
1964		evsel->core.ids = nr;
1965		evsel->core.id = id;
1966
1967		for (j = 0 ; j < nr; j++) {
1968			if (do_read_u64(ff, id))
 
1969				goto error;
 
 
1970			id++;
1971		}
1972	}
1973out:
1974	free(buf);
1975	return events;
1976error:
1977	free_event_desc(events);
1978	events = NULL;
1979	goto out;
1980}
1981
1982static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1983				void *priv __maybe_unused)
1984{
1985	return fprintf(fp, ", %s = %s", name, val);
1986}
1987
1988static void print_event_desc(struct feat_fd *ff, FILE *fp)
1989{
1990	struct evsel *evsel, *events;
1991	u32 j;
1992	u64 *id;
1993
1994	if (ff->events)
1995		events = ff->events;
1996	else
1997		events = read_event_desc(ff);
1998
1999	if (!events) {
2000		fprintf(fp, "# event desc: not available or unable to read\n");
2001		return;
2002	}
2003
2004	for (evsel = events; evsel->core.attr.size; evsel++) {
2005		fprintf(fp, "# event : name = %s, ", evsel->name);
2006
2007		if (evsel->core.ids) {
2008			fprintf(fp, ", id = {");
2009			for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2010				if (j)
2011					fputc(',', fp);
2012				fprintf(fp, " %"PRIu64, *id);
2013			}
2014			fprintf(fp, " }");
2015		}
2016
2017		perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2018
2019		fputc('\n', fp);
2020	}
2021
2022	free_event_desc(events);
2023	ff->events = NULL;
2024}
2025
2026static void print_total_mem(struct feat_fd *ff, FILE *fp)
 
2027{
2028	fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2029}
2030
2031static void print_numa_topology(struct feat_fd *ff, FILE *fp)
 
2032{
2033	int i;
2034	struct numa_node *n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2035
2036	for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2037		n = &ff->ph->env.numa_nodes[i];
 
 
2038
2039		fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
2040			    " free = %"PRIu64" kB\n",
2041			n->node, n->mem_total, n->mem_free);
 
 
 
2042
2043		fprintf(fp, "# node%u cpu list : ", n->node);
2044		cpu_map__fprintf(n->map, fp);
2045	}
 
 
 
2046}
2047
2048static void print_cpuid(struct feat_fd *ff, FILE *fp)
2049{
2050	fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2051}
2052
2053static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
 
2054{
2055	fprintf(fp, "# contains samples with branch stack\n");
2056}
2057
2058static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
 
2059{
2060	fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2061}
2062
2063static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
 
2064{
2065	fprintf(fp, "# contains stat data\n");
2066}
2067
2068static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
 
2069{
2070	int i;
2071
2072	fprintf(fp, "# CPU cache info:\n");
2073	for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2074		fprintf(fp, "#  ");
2075		cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2076	}
2077}
2078
2079static void print_compressed(struct feat_fd *ff, FILE *fp)
2080{
2081	fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2082		ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2083		ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2084}
2085
2086static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2087{
2088	const char *delimiter = "";
2089	int i;
2090
2091	if (!nr_caps) {
2092		fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2093		return;
2094	}
2095
2096	fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2097	for (i = 0; i < nr_caps; i++) {
2098		fprintf(fp, "%s%s", delimiter, caps[i]);
2099		delimiter = ", ";
2100	}
2101
2102	fprintf(fp, "\n");
2103}
2104
2105static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2106{
2107	__print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2108			 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2109}
2110
2111static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2112{
2113	struct pmu_caps *pmu_caps;
2114
2115	for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2116		pmu_caps = &ff->ph->env.pmu_caps[i];
2117		__print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2118				 pmu_caps->pmu_name);
2119	}
2120
2121	if (strcmp(perf_env__arch(&ff->ph->env), "x86") == 0 &&
2122	    perf_env__has_pmu_mapping(&ff->ph->env, "ibs_op")) {
2123		char *max_precise = perf_env__find_pmu_cap(&ff->ph->env, "cpu", "max_precise");
2124
2125		if (max_precise != NULL && atoi(max_precise) == 0)
2126			fprintf(fp, "# AMD systems uses ibs_op// PMU for some precise events, e.g.: cycles:p, see the 'perf list' man page for further details.\n");
2127	}
2128}
2129
2130static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2131{
2132	const char *delimiter = "# pmu mappings: ";
2133	char *str, *tmp;
2134	u32 pmu_num;
2135	u32 type;
2136
2137	pmu_num = ff->ph->env.nr_pmu_mappings;
2138	if (!pmu_num) {
2139		fprintf(fp, "# pmu mappings: not available\n");
2140		return;
2141	}
2142
2143	str = ff->ph->env.pmu_mappings;
2144
2145	while (pmu_num) {
2146		type = strtoul(str, &tmp, 0);
2147		if (*tmp != ':')
2148			goto error;
2149
2150		str = tmp + 1;
2151		fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2152
2153		delimiter = ", ";
2154		str += strlen(str) + 1;
2155		pmu_num--;
2156	}
2157
2158	fprintf(fp, "\n");
2159
2160	if (!pmu_num)
2161		return;
2162error:
2163	fprintf(fp, "# pmu mappings: unable to read\n");
2164}
2165
2166static void print_group_desc(struct feat_fd *ff, FILE *fp)
 
2167{
2168	struct perf_session *session;
2169	struct evsel *evsel;
2170	u32 nr = 0;
2171
2172	session = container_of(ff->ph, struct perf_session, header);
2173
2174	evlist__for_each_entry(session->evlist, evsel) {
2175		if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2176			fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
 
 
2177
2178			nr = evsel->core.nr_members - 1;
2179		} else if (nr) {
2180			fprintf(fp, ",%s", evsel__name(evsel));
2181
2182			if (--nr == 0)
2183				fprintf(fp, "}\n");
2184		}
2185	}
2186}
2187
2188static void print_sample_time(struct feat_fd *ff, FILE *fp)
2189{
2190	struct perf_session *session;
2191	char time_buf[32];
2192	double d;
2193
2194	session = container_of(ff->ph, struct perf_session, header);
2195
2196	timestamp__scnprintf_usec(session->evlist->first_sample_time,
2197				  time_buf, sizeof(time_buf));
2198	fprintf(fp, "# time of first sample : %s\n", time_buf);
2199
2200	timestamp__scnprintf_usec(session->evlist->last_sample_time,
2201				  time_buf, sizeof(time_buf));
2202	fprintf(fp, "# time of last sample : %s\n", time_buf);
2203
2204	d = (double)(session->evlist->last_sample_time -
2205		session->evlist->first_sample_time) / NSEC_PER_MSEC;
2206
2207	fprintf(fp, "# sample duration : %10.3f ms\n", d);
2208}
2209
2210static void memory_node__fprintf(struct memory_node *n,
2211				 unsigned long long bsize, FILE *fp)
2212{
2213	char buf_map[100], buf_size[50];
2214	unsigned long long size;
2215
2216	size = bsize * bitmap_weight(n->set, n->size);
2217	unit_number__scnprintf(buf_size, 50, size);
2218
2219	bitmap_scnprintf(n->set, n->size, buf_map, 100);
2220	fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2221}
2222
2223static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2224{
2225	struct memory_node *nodes;
2226	int i, nr;
2227
2228	nodes = ff->ph->env.memory_nodes;
2229	nr    = ff->ph->env.nr_memory_nodes;
2230
2231	fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2232		nr, ff->ph->env.memory_bsize);
2233
2234	for (i = 0; i < nr; i++) {
2235		memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2236	}
2237}
2238
2239static int __event_process_build_id(struct perf_record_header_build_id *bev,
2240				    char *filename,
2241				    struct perf_session *session)
2242{
2243	int err = -1;
2244	struct machine *machine;
2245	u16 cpumode;
2246	struct dso *dso;
2247	enum dso_space_type dso_space;
2248
2249	machine = perf_session__findnew_machine(session, bev->pid);
2250	if (!machine)
2251		goto out;
2252
2253	cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2254
2255	switch (cpumode) {
2256	case PERF_RECORD_MISC_KERNEL:
2257		dso_space = DSO_SPACE__KERNEL;
2258		break;
2259	case PERF_RECORD_MISC_GUEST_KERNEL:
2260		dso_space = DSO_SPACE__KERNEL_GUEST;
2261		break;
2262	case PERF_RECORD_MISC_USER:
2263	case PERF_RECORD_MISC_GUEST_USER:
2264		dso_space = DSO_SPACE__USER;
2265		break;
2266	default:
2267		goto out;
2268	}
2269
2270	dso = machine__findnew_dso(machine, filename);
2271	if (dso != NULL) {
2272		char sbuild_id[SBUILD_ID_SIZE];
2273		struct build_id bid;
2274		size_t size = BUILD_ID_SIZE;
2275
2276		if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2277			size = bev->size;
2278
2279		build_id__init(&bid, bev->data, size);
2280		dso__set_build_id(dso, &bid);
2281		dso__set_header_build_id(dso, true);
2282
2283		if (dso_space != DSO_SPACE__USER) {
2284			struct kmod_path m = { .name = NULL, };
2285
2286			if (!kmod_path__parse_name(&m, filename) && m.kmod)
2287				dso__set_module_info(dso, &m, machine);
2288
2289			dso__set_kernel(dso, dso_space);
2290			free(m.name);
2291		}
2292
2293		build_id__sprintf(dso__bid(dso), sbuild_id);
2294		pr_debug("build id event received for %s: %s [%zu]\n",
2295			 dso__long_name(dso), sbuild_id, size);
2296		dso__put(dso);
2297	}
2298
2299	err = 0;
2300out:
2301	return err;
2302}
2303
2304static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2305						 int input, u64 offset, u64 size)
2306{
2307	struct perf_session *session = container_of(header, struct perf_session, header);
2308	struct {
2309		struct perf_event_header   header;
2310		u8			   build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2311		char			   filename[0];
2312	} old_bev;
2313	struct perf_record_header_build_id bev;
2314	char filename[PATH_MAX];
2315	u64 limit = offset + size;
2316
2317	while (offset < limit) {
2318		ssize_t len;
2319
2320		if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2321			return -1;
2322
2323		if (header->needs_swap)
2324			perf_event_header__bswap(&old_bev.header);
2325
2326		len = old_bev.header.size - sizeof(old_bev);
2327		if (readn(input, filename, len) != len)
2328			return -1;
2329
2330		bev.header = old_bev.header;
2331
2332		/*
2333		 * As the pid is the missing value, we need to fill
2334		 * it properly. The header.misc value give us nice hint.
2335		 */
2336		bev.pid	= HOST_KERNEL_ID;
2337		if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2338		    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2339			bev.pid	= DEFAULT_GUEST_KERNEL_ID;
2340
2341		memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2342		__event_process_build_id(&bev, filename, session);
2343
2344		offset += bev.header.size;
2345	}
2346
2347	return 0;
2348}
2349
2350static int perf_header__read_build_ids(struct perf_header *header,
2351				       int input, u64 offset, u64 size)
2352{
2353	struct perf_session *session = container_of(header, struct perf_session, header);
2354	struct perf_record_header_build_id bev;
2355	char filename[PATH_MAX];
2356	u64 limit = offset + size, orig_offset = offset;
2357	int err = -1;
2358
2359	while (offset < limit) {
2360		ssize_t len;
2361
2362		if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2363			goto out;
2364
2365		if (header->needs_swap)
2366			perf_event_header__bswap(&bev.header);
2367
2368		len = bev.header.size - sizeof(bev);
2369		if (readn(input, filename, len) != len)
2370			goto out;
2371		/*
2372		 * The a1645ce1 changeset:
2373		 *
2374		 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2375		 *
2376		 * Added a field to struct perf_record_header_build_id that broke the file
2377		 * format.
2378		 *
2379		 * Since the kernel build-id is the first entry, process the
2380		 * table using the old format if the well known
2381		 * '[kernel.kallsyms]' string for the kernel build-id has the
2382		 * first 4 characters chopped off (where the pid_t sits).
2383		 */
2384		if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2385			if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2386				return -1;
2387			return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2388		}
2389
2390		__event_process_build_id(&bev, filename, session);
2391
2392		offset += bev.header.size;
2393	}
2394	err = 0;
2395out:
2396	return err;
2397}
2398
2399/* Macro for features that simply need to read and store a string. */
2400#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2401static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2402{\
2403	free(ff->ph->env.__feat_env);		     \
2404	ff->ph->env.__feat_env = do_read_string(ff); \
2405	return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2406}
2407
2408FEAT_PROCESS_STR_FUN(hostname, hostname);
2409FEAT_PROCESS_STR_FUN(osrelease, os_release);
2410FEAT_PROCESS_STR_FUN(version, version);
2411FEAT_PROCESS_STR_FUN(arch, arch);
2412FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2413FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2414
2415#ifdef HAVE_LIBTRACEEVENT
2416static int process_tracing_data(struct feat_fd *ff, void *data)
2417{
2418	ssize_t ret = trace_report(ff->fd, data, false);
2419
2420	return ret < 0 ? -1 : 0;
2421}
2422#endif
2423
2424static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
 
 
2425{
2426	if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2427		pr_debug("Failed to read buildids, continuing...\n");
2428	return 0;
2429}
2430
2431static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432{
2433	int ret;
2434	u32 nr_cpus_avail, nr_cpus_online;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2435
2436	ret = do_read_u32(ff, &nr_cpus_avail);
2437	if (ret)
2438		return ret;
2439
2440	ret = do_read_u32(ff, &nr_cpus_online);
2441	if (ret)
2442		return ret;
2443	ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2444	ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2445	return 0;
2446}
2447
2448static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449{
2450	u64 total_mem;
2451	int ret;
2452
2453	ret = do_read_u64(ff, &total_mem);
2454	if (ret)
2455		return -1;
2456	ff->ph->env.total_mem = (unsigned long long)total_mem;
 
 
 
 
2457	return 0;
2458}
2459
2460static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
 
2461{
2462	struct evsel *evsel;
2463
2464	evlist__for_each_entry(evlist, evsel) {
2465		if (evsel->core.idx == idx)
2466			return evsel;
2467	}
2468
2469	return NULL;
2470}
2471
2472static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
 
 
2473{
2474	struct evsel *evsel;
2475
2476	if (!event->name)
2477		return;
2478
2479	evsel = evlist__find_by_index(evlist, event->core.idx);
2480	if (!evsel)
2481		return;
2482
2483	if (evsel->name)
2484		return;
2485
2486	evsel->name = strdup(event->name);
2487}
2488
2489static int
2490process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
 
 
2491{
2492	struct perf_session *session;
2493	struct evsel *evsel, *events = read_event_desc(ff);
2494
2495	if (!events)
2496		return 0;
2497
2498	session = container_of(ff->ph, struct perf_session, header);
 
 
2499
2500	if (session->data->is_pipe) {
2501		/* Save events for reading later by print_event_desc,
2502		 * since they can't be read again in pipe mode. */
2503		ff->events = events;
2504	}
2505
2506	for (evsel = events; evsel->core.attr.size; evsel++)
2507		evlist__set_event_name(session->evlist, evsel);
2508
2509	if (!session->data->is_pipe)
2510		free_event_desc(events);
2511
2512	return 0;
2513}
2514
2515static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
 
 
2516{
 
2517	char *str, *cmdline = NULL, **argv = NULL;
2518	u32 nr, i, len = 0;
2519
2520	if (do_read_u32(ff, &nr))
 
2521		return -1;
2522
2523	ff->ph->env.nr_cmdline = nr;
 
 
 
2524
2525	cmdline = zalloc(ff->size + nr + 1);
2526	if (!cmdline)
2527		return -1;
2528
2529	argv = zalloc(sizeof(char *) * (nr + 1));
2530	if (!argv)
2531		goto error;
2532
2533	for (i = 0; i < nr; i++) {
2534		str = do_read_string(ff);
2535		if (!str)
2536			goto error;
2537
2538		argv[i] = cmdline + len;
2539		memcpy(argv[i], str, strlen(str) + 1);
2540		len += strlen(str) + 1;
2541		free(str);
2542	}
2543	ff->ph->env.cmdline = cmdline;
2544	ff->ph->env.cmdline_argv = (const char **) argv;
2545	return 0;
2546
2547error:
2548	free(argv);
2549	free(cmdline);
2550	return -1;
2551}
2552
2553static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
 
 
2554{
 
2555	u32 nr, i;
2556	char *str = NULL;
2557	struct strbuf sb;
2558	int cpu_nr = ff->ph->env.nr_cpus_avail;
2559	u64 size = 0;
2560	struct perf_header *ph = ff->ph;
2561	bool do_core_id_test = true;
2562
2563	ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2564	if (!ph->env.cpu)
2565		return -1;
2566
2567	if (do_read_u32(ff, &nr))
 
2568		goto free_cpu;
2569
 
 
 
2570	ph->env.nr_sibling_cores = nr;
2571	size += sizeof(u32);
2572	if (strbuf_init(&sb, 128) < 0)
2573		goto free_cpu;
2574
2575	for (i = 0; i < nr; i++) {
2576		str = do_read_string(ff);
2577		if (!str)
2578			goto error;
2579
2580		/* include a NULL character at the end */
2581		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2582			goto error;
2583		size += string_size(str);
2584		zfree(&str);
2585	}
2586	ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2587
2588	if (do_read_u32(ff, &nr))
 
2589		return -1;
2590
 
 
 
2591	ph->env.nr_sibling_threads = nr;
2592	size += sizeof(u32);
2593
2594	for (i = 0; i < nr; i++) {
2595		str = do_read_string(ff);
2596		if (!str)
2597			goto error;
2598
2599		/* include a NULL character at the end */
2600		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2601			goto error;
2602		size += string_size(str);
2603		zfree(&str);
2604	}
2605	ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2606
2607	/*
2608	 * The header may be from old perf,
2609	 * which doesn't include core id and socket id information.
2610	 */
2611	if (ff->size <= size) {
2612		zfree(&ph->env.cpu);
2613		return 0;
2614	}
2615
2616	/* On s390 the socket_id number is not related to the numbers of cpus.
2617	 * The socket_id number might be higher than the numbers of cpus.
2618	 * This depends on the configuration.
2619	 * AArch64 is the same.
2620	 */
2621	if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2622			  || !strncmp(ph->env.arch, "aarch64", 7)))
2623		do_core_id_test = false;
2624
2625	for (i = 0; i < (u32)cpu_nr; i++) {
2626		if (do_read_u32(ff, &nr))
 
2627			goto free_cpu;
2628
 
 
 
2629		ph->env.cpu[i].core_id = nr;
2630		size += sizeof(u32);
2631
2632		if (do_read_u32(ff, &nr))
 
2633			goto free_cpu;
2634
2635		if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
 
 
 
2636			pr_debug("socket_id number is too big."
2637				 "You may need to upgrade the perf tool.\n");
2638			goto free_cpu;
2639		}
2640
2641		ph->env.cpu[i].socket_id = nr;
2642		size += sizeof(u32);
2643	}
2644
2645	/*
2646	 * The header may be from old perf,
2647	 * which doesn't include die information.
2648	 */
2649	if (ff->size <= size)
2650		return 0;
2651
2652	if (do_read_u32(ff, &nr))
2653		return -1;
2654
2655	ph->env.nr_sibling_dies = nr;
2656	size += sizeof(u32);
2657
2658	for (i = 0; i < nr; i++) {
2659		str = do_read_string(ff);
2660		if (!str)
2661			goto error;
2662
2663		/* include a NULL character at the end */
2664		if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2665			goto error;
2666		size += string_size(str);
2667		zfree(&str);
2668	}
2669	ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2670
2671	for (i = 0; i < (u32)cpu_nr; i++) {
2672		if (do_read_u32(ff, &nr))
2673			goto free_cpu;
2674
2675		ph->env.cpu[i].die_id = nr;
2676	}
2677
2678	return 0;
2679
2680error:
2681	strbuf_release(&sb);
2682	zfree(&str);
2683free_cpu:
2684	zfree(&ph->env.cpu);
2685	return -1;
2686}
2687
2688static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
 
 
2689{
2690	struct numa_node *nodes, *n;
2691	u32 nr, i;
2692	char *str;
 
 
2693
2694	/* nr nodes */
2695	if (do_read_u32(ff, &nr))
2696		return -1;
 
 
 
 
2697
2698	nodes = zalloc(sizeof(*nodes) * nr);
2699	if (!nodes)
2700		return -ENOMEM;
2701
2702	for (i = 0; i < nr; i++) {
2703		n = &nodes[i];
2704
2705		/* node number */
2706		if (do_read_u32(ff, &n->node))
 
2707			goto error;
2708
2709		if (do_read_u64(ff, &n->mem_total))
 
2710			goto error;
2711
2712		if (do_read_u64(ff, &n->mem_free))
 
2713			goto error;
2714
2715		str = do_read_string(ff);
 
 
 
 
 
 
 
 
 
2716		if (!str)
2717			goto error;
2718
2719		n->map = perf_cpu_map__new(str);
 
2720		free(str);
2721		if (!n->map)
2722			goto error;
2723	}
2724	ff->ph->env.nr_numa_nodes = nr;
2725	ff->ph->env.numa_nodes = nodes;
2726	return 0;
2727
2728error:
2729	free(nodes);
2730	return -1;
2731}
2732
2733static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
 
 
2734{
 
2735	char *name;
2736	u32 pmu_num;
2737	u32 type;
2738	struct strbuf sb;
2739
2740	if (do_read_u32(ff, &pmu_num))
 
2741		return -1;
2742
 
 
 
2743	if (!pmu_num) {
2744		pr_debug("pmu mappings not available\n");
2745		return 0;
2746	}
2747
2748	ff->ph->env.nr_pmu_mappings = pmu_num;
2749	if (strbuf_init(&sb, 128) < 0)
2750		return -1;
2751
2752	while (pmu_num) {
2753		if (do_read_u32(ff, &type))
2754			goto error;
 
 
2755
2756		name = do_read_string(ff);
2757		if (!name)
2758			goto error;
2759
2760		if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2761			goto error;
2762		/* include a NULL character at the end */
2763		if (strbuf_add(&sb, "", 1) < 0)
2764			goto error;
2765
2766		if (!strcmp(name, "msr"))
2767			ff->ph->env.msr_pmu_type = type;
2768
2769		free(name);
2770		pmu_num--;
2771	}
2772	ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2773	return 0;
2774
2775error:
2776	strbuf_release(&sb);
2777	return -1;
2778}
2779
2780static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
 
 
2781{
2782	size_t ret = -1;
2783	u32 i, nr, nr_groups;
2784	struct perf_session *session;
2785	struct evsel *evsel, *leader = NULL;
2786	struct group_desc {
2787		char *name;
2788		u32 leader_idx;
2789		u32 nr_members;
2790	} *desc;
2791
2792	if (do_read_u32(ff, &nr_groups))
2793		return -1;
2794
2795	ff->ph->env.nr_groups = nr_groups;
 
 
 
2796	if (!nr_groups) {
2797		pr_debug("group desc not available\n");
2798		return 0;
2799	}
2800
2801	desc = calloc(nr_groups, sizeof(*desc));
2802	if (!desc)
2803		return -1;
2804
2805	for (i = 0; i < nr_groups; i++) {
2806		desc[i].name = do_read_string(ff);
2807		if (!desc[i].name)
2808			goto out_free;
2809
2810		if (do_read_u32(ff, &desc[i].leader_idx))
2811			goto out_free;
2812
2813		if (do_read_u32(ff, &desc[i].nr_members))
2814			goto out_free;
 
 
 
 
 
2815	}
2816
2817	/*
2818	 * Rebuild group relationship based on the group_desc
2819	 */
2820	session = container_of(ff->ph, struct perf_session, header);
 
2821
2822	i = nr = 0;
2823	evlist__for_each_entry(session->evlist, evsel) {
2824		if (i < nr_groups && evsel->core.idx == (int) desc[i].leader_idx) {
2825			evsel__set_leader(evsel, evsel);
2826			/* {anon_group} is a dummy name */
2827			if (strcmp(desc[i].name, "{anon_group}")) {
2828				evsel->group_name = desc[i].name;
2829				desc[i].name = NULL;
2830			}
2831			evsel->core.nr_members = desc[i].nr_members;
2832
2833			if (i >= nr_groups || nr > 0) {
2834				pr_debug("invalid group desc\n");
2835				goto out_free;
2836			}
2837
2838			leader = evsel;
2839			nr = evsel->core.nr_members - 1;
2840			i++;
2841		} else if (nr) {
2842			/* This is a group member */
2843			evsel__set_leader(evsel, leader);
2844
2845			nr--;
2846		}
2847	}
2848
2849	if (i != nr_groups || nr != 0) {
2850		pr_debug("invalid group desc\n");
2851		goto out_free;
2852	}
2853
2854	ret = 0;
2855out_free:
2856	for (i = 0; i < nr_groups; i++)
2857		zfree(&desc[i].name);
2858	free(desc);
2859
2860	return ret;
2861}
2862
2863static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
 
 
2864{
2865	struct perf_session *session;
2866	int err;
2867
2868	session = container_of(ff->ph, struct perf_session, header);
2869
2870	err = auxtrace_index__process(ff->fd, ff->size, session,
2871				      ff->ph->needs_swap);
2872	if (err < 0)
2873		pr_err("Failed to process auxtrace index\n");
2874	return err;
2875}
2876
2877static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
 
 
2878{
2879	struct cpu_cache_level *caches;
2880	u32 cnt, i, version;
2881
2882	if (do_read_u32(ff, &version))
2883		return -1;
2884
 
 
 
2885	if (version != 1)
2886		return -1;
2887
2888	if (do_read_u32(ff, &cnt))
2889		return -1;
2890
 
 
 
2891	caches = zalloc(sizeof(*caches) * cnt);
2892	if (!caches)
2893		return -1;
2894
2895	for (i = 0; i < cnt; i++) {
2896		struct cpu_cache_level *c = &caches[i];
2897
2898		#define _R(v)						\
2899			if (do_read_u32(ff, &c->v))			\
2900				goto out_free_caches;			\
 
 
2901
2902		_R(level)
2903		_R(line_size)
2904		_R(sets)
2905		_R(ways)
2906		#undef _R
2907
2908		#define _R(v)					\
2909			c->v = do_read_string(ff);		\
2910			if (!c->v)				\
2911				goto out_free_caches;		\
2912
2913		_R(type)
2914		_R(size)
2915		_R(map)
2916		#undef _R
 
 
2917	}
2918
2919	ff->ph->env.caches = caches;
2920	ff->ph->env.caches_cnt = cnt;
2921	return 0;
2922out_free_caches:
2923	for (i = 0; i < cnt; i++) {
2924		free(caches[i].type);
2925		free(caches[i].size);
2926		free(caches[i].map);
2927	}
2928	free(caches);
2929	return -1;
2930}
2931
2932static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2933{
2934	struct perf_session *session;
2935	u64 first_sample_time, last_sample_time;
2936	int ret;
2937
2938	session = container_of(ff->ph, struct perf_session, header);
2939
2940	ret = do_read_u64(ff, &first_sample_time);
2941	if (ret)
2942		return -1;
2943
2944	ret = do_read_u64(ff, &last_sample_time);
2945	if (ret)
2946		return -1;
2947
2948	session->evlist->first_sample_time = first_sample_time;
2949	session->evlist->last_sample_time = last_sample_time;
2950	return 0;
2951}
2952
2953static int process_mem_topology(struct feat_fd *ff,
2954				void *data __maybe_unused)
2955{
2956	struct memory_node *nodes;
2957	u64 version, i, nr, bsize;
2958	int ret = -1;
2959
2960	if (do_read_u64(ff, &version))
2961		return -1;
2962
2963	if (version != 1)
2964		return -1;
2965
2966	if (do_read_u64(ff, &bsize))
2967		return -1;
2968
2969	if (do_read_u64(ff, &nr))
2970		return -1;
2971
2972	nodes = zalloc(sizeof(*nodes) * nr);
2973	if (!nodes)
2974		return -1;
2975
2976	for (i = 0; i < nr; i++) {
2977		struct memory_node n;
2978
2979		#define _R(v)				\
2980			if (do_read_u64(ff, &n.v))	\
2981				goto out;		\
2982
2983		_R(node)
2984		_R(size)
2985
2986		#undef _R
2987
2988		if (do_read_bitmap(ff, &n.set, &n.size))
2989			goto out;
2990
2991		nodes[i] = n;
2992	}
2993
2994	ff->ph->env.memory_bsize    = bsize;
2995	ff->ph->env.memory_nodes    = nodes;
2996	ff->ph->env.nr_memory_nodes = nr;
2997	ret = 0;
2998
2999out:
3000	if (ret)
3001		free(nodes);
3002	return ret;
3003}
3004
3005static int process_clockid(struct feat_fd *ff,
3006			   void *data __maybe_unused)
3007{
3008	if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
3009		return -1;
3010
3011	return 0;
3012}
3013
3014static int process_clock_data(struct feat_fd *ff,
3015			      void *_data __maybe_unused)
3016{
3017	u32 data32;
3018	u64 data64;
3019
3020	/* version */
3021	if (do_read_u32(ff, &data32))
3022		return -1;
3023
3024	if (data32 != 1)
3025		return -1;
3026
3027	/* clockid */
3028	if (do_read_u32(ff, &data32))
3029		return -1;
3030
3031	ff->ph->env.clock.clockid = data32;
3032
3033	/* TOD ref time */
3034	if (do_read_u64(ff, &data64))
3035		return -1;
3036
3037	ff->ph->env.clock.tod_ns = data64;
3038
3039	/* clockid ref time */
3040	if (do_read_u64(ff, &data64))
3041		return -1;
3042
3043	ff->ph->env.clock.clockid_ns = data64;
3044	ff->ph->env.clock.enabled = true;
3045	return 0;
3046}
3047
3048static int process_hybrid_topology(struct feat_fd *ff,
3049				   void *data __maybe_unused)
3050{
3051	struct hybrid_node *nodes, *n;
3052	u32 nr, i;
3053
3054	/* nr nodes */
3055	if (do_read_u32(ff, &nr))
3056		return -1;
3057
3058	nodes = zalloc(sizeof(*nodes) * nr);
3059	if (!nodes)
3060		return -ENOMEM;
3061
3062	for (i = 0; i < nr; i++) {
3063		n = &nodes[i];
3064
3065		n->pmu_name = do_read_string(ff);
3066		if (!n->pmu_name)
3067			goto error;
3068
3069		n->cpus = do_read_string(ff);
3070		if (!n->cpus)
3071			goto error;
3072	}
3073
3074	ff->ph->env.nr_hybrid_nodes = nr;
3075	ff->ph->env.hybrid_nodes = nodes;
3076	return 0;
3077
3078error:
3079	for (i = 0; i < nr; i++) {
3080		free(nodes[i].pmu_name);
3081		free(nodes[i].cpus);
3082	}
3083
3084	free(nodes);
3085	return -1;
3086}
3087
3088static int process_dir_format(struct feat_fd *ff,
3089			      void *_data __maybe_unused)
3090{
3091	struct perf_session *session;
3092	struct perf_data *data;
3093
3094	session = container_of(ff->ph, struct perf_session, header);
3095	data = session->data;
3096
3097	if (WARN_ON(!perf_data__is_dir(data)))
3098		return -1;
3099
3100	return do_read_u64(ff, &data->dir.version);
3101}
3102
3103#ifdef HAVE_LIBBPF_SUPPORT
3104static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3105{
3106	struct bpf_prog_info_node *info_node;
3107	struct perf_env *env = &ff->ph->env;
3108	struct perf_bpil *info_linear;
3109	u32 count, i;
3110	int err = -1;
3111
3112	if (ff->ph->needs_swap) {
3113		pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3114		return 0;
3115	}
3116
3117	if (do_read_u32(ff, &count))
3118		return -1;
3119
3120	down_write(&env->bpf_progs.lock);
3121
3122	for (i = 0; i < count; ++i) {
3123		u32 info_len, data_len;
3124
3125		info_linear = NULL;
3126		info_node = NULL;
3127		if (do_read_u32(ff, &info_len))
3128			goto out;
3129		if (do_read_u32(ff, &data_len))
3130			goto out;
3131
3132		if (info_len > sizeof(struct bpf_prog_info)) {
3133			pr_warning("detected invalid bpf_prog_info\n");
3134			goto out;
3135		}
3136
3137		info_linear = malloc(sizeof(struct perf_bpil) +
3138				     data_len);
3139		if (!info_linear)
3140			goto out;
3141		info_linear->info_len = sizeof(struct bpf_prog_info);
3142		info_linear->data_len = data_len;
3143		if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3144			goto out;
3145		if (__do_read(ff, &info_linear->info, info_len))
3146			goto out;
3147		if (info_len < sizeof(struct bpf_prog_info))
3148			memset(((void *)(&info_linear->info)) + info_len, 0,
3149			       sizeof(struct bpf_prog_info) - info_len);
3150
3151		if (__do_read(ff, info_linear->data, data_len))
3152			goto out;
3153
3154		info_node = malloc(sizeof(struct bpf_prog_info_node));
3155		if (!info_node)
3156			goto out;
3157
3158		/* after reading from file, translate offset to address */
3159		bpil_offs_to_addr(info_linear);
3160		info_node->info_linear = info_linear;
3161		if (!__perf_env__insert_bpf_prog_info(env, info_node)) {
3162			free(info_linear);
3163			free(info_node);
3164		}
3165	}
3166
3167	up_write(&env->bpf_progs.lock);
3168	return 0;
3169out:
3170	free(info_linear);
3171	free(info_node);
3172	up_write(&env->bpf_progs.lock);
3173	return err;
3174}
3175
3176static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3177{
3178	struct perf_env *env = &ff->ph->env;
3179	struct btf_node *node = NULL;
3180	u32 count, i;
3181	int err = -1;
3182
3183	if (ff->ph->needs_swap) {
3184		pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3185		return 0;
3186	}
3187
3188	if (do_read_u32(ff, &count))
3189		return -1;
3190
3191	down_write(&env->bpf_progs.lock);
3192
3193	for (i = 0; i < count; ++i) {
3194		u32 id, data_size;
3195
3196		if (do_read_u32(ff, &id))
3197			goto out;
3198		if (do_read_u32(ff, &data_size))
3199			goto out;
3200
3201		node = malloc(sizeof(struct btf_node) + data_size);
3202		if (!node)
3203			goto out;
3204
3205		node->id = id;
3206		node->data_size = data_size;
3207
3208		if (__do_read(ff, node->data, data_size))
3209			goto out;
3210
3211		if (!__perf_env__insert_btf(env, node))
3212			free(node);
3213		node = NULL;
3214	}
3215
3216	err = 0;
3217out:
3218	up_write(&env->bpf_progs.lock);
3219	free(node);
3220	return err;
3221}
3222#endif // HAVE_LIBBPF_SUPPORT
3223
3224static int process_compressed(struct feat_fd *ff,
3225			      void *data __maybe_unused)
3226{
3227	if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3228		return -1;
3229
3230	if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3231		return -1;
3232
3233	if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3234		return -1;
3235
3236	if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3237		return -1;
3238
3239	if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3240		return -1;
3241
3242	return 0;
3243}
3244
3245static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3246			      char ***caps, unsigned int *max_branches,
3247			      unsigned int *br_cntr_nr,
3248			      unsigned int *br_cntr_width)
3249{
3250	char *name, *value, *ptr;
3251	u32 nr_pmu_caps, i;
3252
3253	*nr_caps = 0;
3254	*caps = NULL;
3255
3256	if (do_read_u32(ff, &nr_pmu_caps))
3257		return -1;
3258
3259	if (!nr_pmu_caps)
3260		return 0;
3261
3262	*caps = zalloc(sizeof(char *) * nr_pmu_caps);
3263	if (!*caps)
3264		return -1;
3265
3266	for (i = 0; i < nr_pmu_caps; i++) {
3267		name = do_read_string(ff);
3268		if (!name)
3269			goto error;
3270
3271		value = do_read_string(ff);
3272		if (!value)
3273			goto free_name;
3274
3275		if (asprintf(&ptr, "%s=%s", name, value) < 0)
3276			goto free_value;
3277
3278		(*caps)[i] = ptr;
3279
3280		if (!strcmp(name, "branches"))
3281			*max_branches = atoi(value);
3282
3283		if (!strcmp(name, "branch_counter_nr"))
3284			*br_cntr_nr = atoi(value);
3285
3286		if (!strcmp(name, "branch_counter_width"))
3287			*br_cntr_width = atoi(value);
3288
3289		free(value);
3290		free(name);
3291	}
3292	*nr_caps = nr_pmu_caps;
3293	return 0;
3294
3295free_value:
3296	free(value);
3297free_name:
3298	free(name);
3299error:
3300	for (; i > 0; i--)
3301		free((*caps)[i - 1]);
3302	free(*caps);
3303	*caps = NULL;
3304	*nr_caps = 0;
3305	return -1;
3306}
3307
3308static int process_cpu_pmu_caps(struct feat_fd *ff,
3309				void *data __maybe_unused)
3310{
3311	int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3312				     &ff->ph->env.cpu_pmu_caps,
3313				     &ff->ph->env.max_branches,
3314				     &ff->ph->env.br_cntr_nr,
3315				     &ff->ph->env.br_cntr_width);
3316
3317	if (!ret && !ff->ph->env.cpu_pmu_caps)
3318		pr_debug("cpu pmu capabilities not available\n");
3319	return ret;
3320}
3321
3322static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3323{
3324	struct pmu_caps *pmu_caps;
3325	u32 nr_pmu, i;
3326	int ret;
3327	int j;
3328
3329	if (do_read_u32(ff, &nr_pmu))
3330		return -1;
3331
3332	if (!nr_pmu) {
3333		pr_debug("pmu capabilities not available\n");
3334		return 0;
3335	}
3336
3337	pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3338	if (!pmu_caps)
3339		return -ENOMEM;
3340
3341	for (i = 0; i < nr_pmu; i++) {
3342		ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3343					 &pmu_caps[i].caps,
3344					 &pmu_caps[i].max_branches,
3345					 &pmu_caps[i].br_cntr_nr,
3346					 &pmu_caps[i].br_cntr_width);
3347		if (ret)
3348			goto err;
3349
3350		pmu_caps[i].pmu_name = do_read_string(ff);
3351		if (!pmu_caps[i].pmu_name) {
3352			ret = -1;
3353			goto err;
3354		}
3355		if (!pmu_caps[i].nr_caps) {
3356			pr_debug("%s pmu capabilities not available\n",
3357				 pmu_caps[i].pmu_name);
3358		}
3359	}
3360
3361	ff->ph->env.nr_pmus_with_caps = nr_pmu;
3362	ff->ph->env.pmu_caps = pmu_caps;
3363	return 0;
3364
3365err:
3366	for (i = 0; i < nr_pmu; i++) {
3367		for (j = 0; j < pmu_caps[i].nr_caps; j++)
3368			free(pmu_caps[i].caps[j]);
3369		free(pmu_caps[i].caps);
3370		free(pmu_caps[i].pmu_name);
3371	}
3372
3373	free(pmu_caps);
3374	return ret;
3375}
3376
3377#define FEAT_OPR(n, func, __full_only) \
3378	[HEADER_##n] = {					\
3379		.name	    = __stringify(n),			\
3380		.write	    = write_##func,			\
3381		.print	    = print_##func,			\
3382		.full_only  = __full_only,			\
3383		.process    = process_##func,			\
3384		.synthesize = true				\
3385	}
3386
3387#define FEAT_OPN(n, func, __full_only) \
3388	[HEADER_##n] = {					\
3389		.name	    = __stringify(n),			\
3390		.write	    = write_##func,			\
3391		.print	    = print_##func,			\
3392		.full_only  = __full_only,			\
3393		.process    = process_##func			\
3394	}
3395
3396/* feature_ops not implemented: */
3397#define print_tracing_data	NULL
3398#define print_build_id		NULL
3399
3400#define process_branch_stack	NULL
3401#define process_stat		NULL
3402
3403// Only used in util/synthetic-events.c
3404const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3405
3406const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3407#ifdef HAVE_LIBTRACEEVENT
3408	FEAT_OPN(TRACING_DATA,	tracing_data,	false),
3409#endif
3410	FEAT_OPN(BUILD_ID,	build_id,	false),
3411	FEAT_OPR(HOSTNAME,	hostname,	false),
3412	FEAT_OPR(OSRELEASE,	osrelease,	false),
3413	FEAT_OPR(VERSION,	version,	false),
3414	FEAT_OPR(ARCH,		arch,		false),
3415	FEAT_OPR(NRCPUS,	nrcpus,		false),
3416	FEAT_OPR(CPUDESC,	cpudesc,	false),
3417	FEAT_OPR(CPUID,		cpuid,		false),
3418	FEAT_OPR(TOTAL_MEM,	total_mem,	false),
3419	FEAT_OPR(EVENT_DESC,	event_desc,	false),
3420	FEAT_OPR(CMDLINE,	cmdline,	false),
3421	FEAT_OPR(CPU_TOPOLOGY,	cpu_topology,	true),
3422	FEAT_OPR(NUMA_TOPOLOGY,	numa_topology,	true),
3423	FEAT_OPN(BRANCH_STACK,	branch_stack,	false),
3424	FEAT_OPR(PMU_MAPPINGS,	pmu_mappings,	false),
3425	FEAT_OPR(GROUP_DESC,	group_desc,	false),
3426	FEAT_OPN(AUXTRACE,	auxtrace,	false),
3427	FEAT_OPN(STAT,		stat,		false),
3428	FEAT_OPN(CACHE,		cache,		true),
3429	FEAT_OPR(SAMPLE_TIME,	sample_time,	false),
3430	FEAT_OPR(MEM_TOPOLOGY,	mem_topology,	true),
3431	FEAT_OPR(CLOCKID,	clockid,	false),
3432	FEAT_OPN(DIR_FORMAT,	dir_format,	false),
3433#ifdef HAVE_LIBBPF_SUPPORT
3434	FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3435	FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3436#endif
3437	FEAT_OPR(COMPRESSED,	compressed,	false),
3438	FEAT_OPR(CPU_PMU_CAPS,	cpu_pmu_caps,	false),
3439	FEAT_OPR(CLOCK_DATA,	clock_data,	false),
3440	FEAT_OPN(HYBRID_TOPOLOGY,	hybrid_topology,	true),
3441	FEAT_OPR(PMU_CAPS,	pmu_caps,	false),
3442};
3443
3444struct header_print_data {
3445	FILE *fp;
3446	bool full; /* extended list of headers */
3447};
3448
3449static int perf_file_section__fprintf_info(struct perf_file_section *section,
3450					   struct perf_header *ph,
3451					   int feat, int fd, void *data)
3452{
3453	struct header_print_data *hd = data;
3454	struct feat_fd ff;
3455
3456	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3457		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3458				"%d, continuing...\n", section->offset, feat);
3459		return 0;
3460	}
3461	if (feat >= HEADER_LAST_FEATURE) {
3462		pr_warning("unknown feature %d\n", feat);
3463		return 0;
3464	}
3465	if (!feat_ops[feat].print)
3466		return 0;
3467
3468	ff = (struct  feat_fd) {
3469		.fd = fd,
3470		.ph = ph,
3471	};
3472
3473	if (!feat_ops[feat].full_only || hd->full)
3474		feat_ops[feat].print(&ff, hd->fp);
3475	else
3476		fprintf(hd->fp, "# %s info available, use -I to display\n",
3477			feat_ops[feat].name);
3478
3479	return 0;
3480}
3481
3482int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3483{
3484	struct header_print_data hd;
3485	struct perf_header *header = &session->header;
3486	int fd = perf_data__fd(session->data);
3487	struct stat st;
3488	time_t stctime;
3489	int ret, bit;
3490
3491	hd.fp = fp;
3492	hd.full = full;
3493
3494	ret = fstat(fd, &st);
3495	if (ret == -1)
3496		return -1;
3497
3498	stctime = st.st_mtime;
3499	fprintf(fp, "# captured on    : %s", ctime(&stctime));
3500
3501	fprintf(fp, "# header version : %u\n", header->version);
3502	fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3503	fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3504	fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3505
3506	perf_header__process_sections(header, fd, &hd,
3507				      perf_file_section__fprintf_info);
3508
3509	if (session->data->is_pipe)
3510		return 0;
3511
3512	fprintf(fp, "# missing features: ");
3513	for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3514		if (bit)
3515			fprintf(fp, "%s ", feat_ops[bit].name);
3516	}
3517
3518	fprintf(fp, "\n");
3519	return 0;
3520}
3521
3522struct header_fw {
3523	struct feat_writer	fw;
3524	struct feat_fd		*ff;
3525};
3526
3527static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3528{
3529	struct header_fw *h = container_of(fw, struct header_fw, fw);
3530
3531	return do_write(h->ff, buf, sz);
3532}
3533
3534static int do_write_feat(struct feat_fd *ff, int type,
3535			 struct perf_file_section **p,
3536			 struct evlist *evlist,
3537			 struct feat_copier *fc)
3538{
3539	int err;
3540	int ret = 0;
3541
3542	if (perf_header__has_feat(ff->ph, type)) {
3543		if (!feat_ops[type].write)
3544			return -1;
3545
3546		if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3547			return -1;
3548
3549		(*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3550
3551		/*
3552		 * Hook to let perf inject copy features sections from the input
3553		 * file.
3554		 */
3555		if (fc && fc->copy) {
3556			struct header_fw h = {
3557				.fw.write = feat_writer_cb,
3558				.ff = ff,
3559			};
3560
3561			/* ->copy() returns 0 if the feature was not copied */
3562			err = fc->copy(fc, type, &h.fw);
3563		} else {
3564			err = 0;
3565		}
3566		if (!err)
3567			err = feat_ops[type].write(ff, evlist);
3568		if (err < 0) {
3569			pr_debug("failed to write feature %s\n", feat_ops[type].name);
3570
3571			/* undo anything written */
3572			lseek(ff->fd, (*p)->offset, SEEK_SET);
3573
3574			return -1;
3575		}
3576		(*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3577		(*p)++;
3578	}
3579	return ret;
3580}
3581
3582static int perf_header__adds_write(struct perf_header *header,
3583				   struct evlist *evlist, int fd,
3584				   struct feat_copier *fc)
3585{
3586	int nr_sections;
3587	struct feat_fd ff = {
3588		.fd  = fd,
3589		.ph = header,
3590	};
3591	struct perf_file_section *feat_sec, *p;
3592	int sec_size;
3593	u64 sec_start;
3594	int feat;
3595	int err;
3596
3597	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3598	if (!nr_sections)
3599		return 0;
3600
3601	feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3602	if (feat_sec == NULL)
3603		return -ENOMEM;
3604
3605	sec_size = sizeof(*feat_sec) * nr_sections;
3606
3607	sec_start = header->feat_offset;
3608	lseek(fd, sec_start + sec_size, SEEK_SET);
3609
3610	for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3611		if (do_write_feat(&ff, feat, &p, evlist, fc))
3612			perf_header__clear_feat(header, feat);
3613	}
3614
3615	lseek(fd, sec_start, SEEK_SET);
3616	/*
3617	 * may write more than needed due to dropped feature, but
3618	 * this is okay, reader will skip the missing entries
3619	 */
3620	err = do_write(&ff, feat_sec, sec_size);
3621	if (err < 0)
3622		pr_debug("failed to write feature section\n");
3623	free(ff.buf); /* TODO: added to silence clang-tidy. */
3624	free(feat_sec);
3625	return err;
3626}
3627
3628int perf_header__write_pipe(int fd)
3629{
3630	struct perf_pipe_file_header f_header;
3631	struct feat_fd ff = {
3632		.fd = fd,
3633	};
3634	int err;
3635
3636	f_header = (struct perf_pipe_file_header){
3637		.magic	   = PERF_MAGIC,
3638		.size	   = sizeof(f_header),
3639	};
3640
3641	err = do_write(&ff, &f_header, sizeof(f_header));
3642	if (err < 0) {
3643		pr_debug("failed to write perf pipe header\n");
3644		return err;
3645	}
3646	free(ff.buf);
3647	return 0;
3648}
3649
3650static int perf_session__do_write_header(struct perf_session *session,
3651					 struct evlist *evlist,
3652					 int fd, bool at_exit,
3653					 struct feat_copier *fc,
3654					 bool write_attrs_after_data)
3655{
3656	struct perf_file_header f_header;
 
3657	struct perf_header *header = &session->header;
3658	struct evsel *evsel;
3659	struct feat_fd ff = {
3660		.fd = fd,
3661	};
3662	u64 attr_offset = sizeof(f_header), attr_size = 0;
3663	int err;
3664
3665	if (write_attrs_after_data && at_exit) {
3666		/*
3667		 * Write features at the end of the file first so that
3668		 * attributes may come after them.
3669		 */
3670		if (!header->data_offset && header->data_size) {
3671			pr_err("File contains data but offset unknown\n");
3672			err = -1;
3673			goto err_out;
3674		}
3675		header->feat_offset = header->data_offset + header->data_size;
3676		err = perf_header__adds_write(header, evlist, fd, fc);
3677		if (err < 0)
3678			goto err_out;
3679		attr_offset = lseek(fd, 0, SEEK_CUR);
3680	} else {
3681		lseek(fd, attr_offset, SEEK_SET);
3682	}
3683
3684	evlist__for_each_entry(session->evlist, evsel) {
3685		evsel->id_offset = attr_offset;
3686		/* Avoid writing at the end of the file until the session is exiting. */
3687		if (!write_attrs_after_data || at_exit) {
3688			err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3689			if (err < 0) {
3690				pr_debug("failed to write perf header\n");
3691				goto err_out;
3692			}
3693		}
3694		attr_offset += evsel->core.ids * sizeof(u64);
3695	}
3696
3697	evlist__for_each_entry(evlist, evsel) {
3698		if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3699			/*
3700			 * We are likely in "perf inject" and have read
3701			 * from an older file. Update attr size so that
3702			 * reader gets the right offset to the ids.
3703			 */
3704			evsel->core.attr.size = sizeof(evsel->core.attr);
3705		}
3706		/* Avoid writing at the end of the file until the session is exiting. */
3707		if (!write_attrs_after_data || at_exit) {
3708			struct perf_file_attr f_attr = {
3709				.attr = evsel->core.attr,
3710				.ids  = {
3711					.offset = evsel->id_offset,
3712					.size   = evsel->core.ids * sizeof(u64),
3713				}
3714			};
3715			err = do_write(&ff, &f_attr, sizeof(f_attr));
3716			if (err < 0) {
3717				pr_debug("failed to write perf header attribute\n");
3718				goto err_out;
3719			}
 
 
 
 
 
3720		}
3721		attr_size += sizeof(struct perf_file_attr);
3722	}
3723
3724	if (!header->data_offset) {
3725		if (write_attrs_after_data)
3726			header->data_offset = sizeof(f_header);
3727		else
3728			header->data_offset = attr_offset + attr_size;
3729	}
3730	header->feat_offset = header->data_offset + header->data_size;
3731
3732	if (!write_attrs_after_data && at_exit) {
3733		/* Write features now feat_offset is known. */
3734		err = perf_header__adds_write(header, evlist, fd, fc);
3735		if (err < 0)
3736			goto err_out;
3737	}
3738
3739	f_header = (struct perf_file_header){
3740		.magic	   = PERF_MAGIC,
3741		.size	   = sizeof(f_header),
3742		.attr_size = sizeof(struct perf_file_attr),
3743		.attrs = {
3744			.offset = attr_offset,
3745			.size   = attr_size,
3746		},
3747		.data = {
3748			.offset = header->data_offset,
3749			.size	= header->data_size,
3750		},
3751		/* event_types is ignored, store zeros */
3752	};
3753
3754	memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3755
3756	lseek(fd, 0, SEEK_SET);
3757	err = do_write(&ff, &f_header, sizeof(f_header));
3758	if (err < 0) {
3759		pr_debug("failed to write perf header\n");
3760		goto err_out;
3761	} else {
3762		lseek(fd, 0, SEEK_END);
3763		err = 0;
3764	}
3765err_out:
3766	free(ff.buf);
3767	return err;
3768}
3769
3770int perf_session__write_header(struct perf_session *session,
3771			       struct evlist *evlist,
3772			       int fd, bool at_exit)
3773{
3774	return perf_session__do_write_header(session, evlist, fd, at_exit, /*fc=*/NULL,
3775					     /*write_attrs_after_data=*/false);
3776}
3777
3778size_t perf_session__data_offset(const struct evlist *evlist)
3779{
3780	struct evsel *evsel;
3781	size_t data_offset;
3782
3783	data_offset = sizeof(struct perf_file_header);
3784	evlist__for_each_entry(evlist, evsel) {
3785		data_offset += evsel->core.ids * sizeof(u64);
3786	}
3787	data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3788
3789	return data_offset;
3790}
3791
3792int perf_session__inject_header(struct perf_session *session,
3793				struct evlist *evlist,
3794				int fd,
3795				struct feat_copier *fc,
3796				bool write_attrs_after_data)
3797{
3798	return perf_session__do_write_header(session, evlist, fd, true, fc,
3799					     write_attrs_after_data);
3800}
3801
3802static int perf_header__getbuffer64(struct perf_header *header,
3803				    int fd, void *buf, size_t size)
3804{
3805	if (readn(fd, buf, size) <= 0)
3806		return -1;
3807
3808	if (header->needs_swap)
3809		mem_bswap_64(buf, size);
3810
3811	return 0;
3812}
3813
3814int perf_header__process_sections(struct perf_header *header, int fd,
3815				  void *data,
3816				  int (*process)(struct perf_file_section *section,
3817						 struct perf_header *ph,
3818						 int feat, int fd, void *data))
3819{
3820	struct perf_file_section *feat_sec, *sec;
3821	int nr_sections;
3822	int sec_size;
3823	int feat;
3824	int err;
3825
3826	nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3827	if (!nr_sections)
3828		return 0;
3829
3830	feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3831	if (!feat_sec)
3832		return -1;
3833
3834	sec_size = sizeof(*feat_sec) * nr_sections;
3835
3836	lseek(fd, header->feat_offset, SEEK_SET);
3837
3838	err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3839	if (err < 0)
3840		goto out_free;
3841
3842	for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3843		err = process(sec++, header, feat, fd, data);
3844		if (err < 0)
3845			goto out_free;
3846	}
3847	err = 0;
3848out_free:
3849	free(feat_sec);
3850	return err;
3851}
3852
3853static const int attr_file_abi_sizes[] = {
3854	[0] = PERF_ATTR_SIZE_VER0,
3855	[1] = PERF_ATTR_SIZE_VER1,
3856	[2] = PERF_ATTR_SIZE_VER2,
3857	[3] = PERF_ATTR_SIZE_VER3,
3858	[4] = PERF_ATTR_SIZE_VER4,
3859	0,
3860};
3861
3862/*
3863 * In the legacy file format, the magic number is not used to encode endianness.
3864 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3865 * on ABI revisions, we need to try all combinations for all endianness to
3866 * detect the endianness.
3867 */
3868static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3869{
3870	uint64_t ref_size, attr_size;
3871	int i;
3872
3873	for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3874		ref_size = attr_file_abi_sizes[i]
3875			 + sizeof(struct perf_file_section);
3876		if (hdr_sz != ref_size) {
3877			attr_size = bswap_64(hdr_sz);
3878			if (attr_size != ref_size)
3879				continue;
3880
3881			ph->needs_swap = true;
3882		}
3883		pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3884			 i,
3885			 ph->needs_swap);
3886		return 0;
3887	}
3888	/* could not determine endianness */
3889	return -1;
3890}
3891
3892#define PERF_PIPE_HDR_VER0	16
3893
3894static const size_t attr_pipe_abi_sizes[] = {
3895	[0] = PERF_PIPE_HDR_VER0,
3896	0,
3897};
3898
3899/*
3900 * In the legacy pipe format, there is an implicit assumption that endianness
3901 * between host recording the samples, and host parsing the samples is the
3902 * same. This is not always the case given that the pipe output may always be
3903 * redirected into a file and analyzed on a different machine with possibly a
3904 * different endianness and perf_event ABI revisions in the perf tool itself.
3905 */
3906static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3907{
3908	u64 attr_size;
3909	int i;
3910
3911	for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3912		if (hdr_sz != attr_pipe_abi_sizes[i]) {
3913			attr_size = bswap_64(hdr_sz);
3914			if (attr_size != hdr_sz)
3915				continue;
3916
3917			ph->needs_swap = true;
3918		}
3919		pr_debug("Pipe ABI%d perf.data file detected\n", i);
3920		return 0;
3921	}
3922	return -1;
3923}
3924
3925bool is_perf_magic(u64 magic)
3926{
3927	if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3928		|| magic == __perf_magic2
3929		|| magic == __perf_magic2_sw)
3930		return true;
3931
3932	return false;
3933}
3934
3935static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3936			      bool is_pipe, struct perf_header *ph)
3937{
3938	int ret;
3939
3940	/* check for legacy format */
3941	ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3942	if (ret == 0) {
3943		ph->version = PERF_HEADER_VERSION_1;
3944		pr_debug("legacy perf.data format\n");
3945		if (is_pipe)
3946			return try_all_pipe_abis(hdr_sz, ph);
3947
3948		return try_all_file_abis(hdr_sz, ph);
3949	}
3950	/*
3951	 * the new magic number serves two purposes:
3952	 * - unique number to identify actual perf.data files
3953	 * - encode endianness of file
3954	 */
3955	ph->version = PERF_HEADER_VERSION_2;
3956
3957	/* check magic number with one endianness */
3958	if (magic == __perf_magic2)
3959		return 0;
3960
3961	/* check magic number with opposite endianness */
3962	if (magic != __perf_magic2_sw)
3963		return -1;
3964
3965	ph->needs_swap = true;
3966
3967	return 0;
3968}
3969
3970int perf_file_header__read(struct perf_file_header *header,
3971			   struct perf_header *ph, int fd)
3972{
3973	ssize_t ret;
3974
3975	lseek(fd, 0, SEEK_SET);
3976
3977	ret = readn(fd, header, sizeof(*header));
3978	if (ret <= 0)
3979		return -1;
3980
3981	if (check_magic_endian(header->magic,
3982			       header->attr_size, false, ph) < 0) {
3983		pr_debug("magic/endian check failed\n");
3984		return -1;
3985	}
3986
3987	if (ph->needs_swap) {
3988		mem_bswap_64(header, offsetof(struct perf_file_header,
3989			     adds_features));
3990	}
3991
3992	if (header->size > header->attrs.offset) {
3993		pr_err("Perf file header corrupt: header overlaps attrs\n");
3994		return -1;
3995	}
3996
3997	if (header->size > header->data.offset) {
3998		pr_err("Perf file header corrupt: header overlaps data\n");
3999		return -1;
4000	}
4001
4002	if ((header->attrs.offset <= header->data.offset &&
4003	     header->attrs.offset + header->attrs.size > header->data.offset) ||
4004	    (header->attrs.offset > header->data.offset &&
4005	     header->data.offset + header->data.size > header->attrs.offset)) {
4006		pr_err("Perf file header corrupt: Attributes and data overlap\n");
4007		return -1;
4008	}
4009
4010	if (header->size != sizeof(*header)) {
4011		/* Support the previous format */
4012		if (header->size == offsetof(typeof(*header), adds_features))
4013			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4014		else
4015			return -1;
4016	} else if (ph->needs_swap) {
4017		/*
4018		 * feature bitmap is declared as an array of unsigned longs --
4019		 * not good since its size can differ between the host that
4020		 * generated the data file and the host analyzing the file.
4021		 *
4022		 * We need to handle endianness, but we don't know the size of
4023		 * the unsigned long where the file was generated. Take a best
4024		 * guess at determining it: try 64-bit swap first (ie., file
4025		 * created on a 64-bit host), and check if the hostname feature
4026		 * bit is set (this feature bit is forced on as of fbe96f2).
4027		 * If the bit is not, undo the 64-bit swap and try a 32-bit
4028		 * swap. If the hostname bit is still not set (e.g., older data
4029		 * file), punt and fallback to the original behavior --
4030		 * clearing all feature bits and setting buildid.
4031		 */
4032		mem_bswap_64(&header->adds_features,
4033			    BITS_TO_U64(HEADER_FEAT_BITS));
4034
4035		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4036			/* unswap as u64 */
4037			mem_bswap_64(&header->adds_features,
4038				    BITS_TO_U64(HEADER_FEAT_BITS));
4039
4040			/* unswap as u32 */
4041			mem_bswap_32(&header->adds_features,
4042				    BITS_TO_U32(HEADER_FEAT_BITS));
4043		}
4044
4045		if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
4046			bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
4047			__set_bit(HEADER_BUILD_ID, header->adds_features);
4048		}
4049	}
4050
4051	memcpy(&ph->adds_features, &header->adds_features,
4052	       sizeof(ph->adds_features));
4053
4054	ph->data_offset  = header->data.offset;
4055	ph->data_size	 = header->data.size;
4056	ph->feat_offset  = header->data.offset + header->data.size;
4057	return 0;
4058}
4059
4060static int perf_file_section__process(struct perf_file_section *section,
4061				      struct perf_header *ph,
4062				      int feat, int fd, void *data)
4063{
4064	struct feat_fd fdd = {
4065		.fd	= fd,
4066		.ph	= ph,
4067		.size	= section->size,
4068		.offset	= section->offset,
4069	};
4070
4071	if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
4072		pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
4073			  "%d, continuing...\n", section->offset, feat);
4074		return 0;
4075	}
4076
4077	if (feat >= HEADER_LAST_FEATURE) {
4078		pr_debug("unknown feature %d, continuing...\n", feat);
4079		return 0;
4080	}
4081
4082	if (!feat_ops[feat].process)
4083		return 0;
4084
4085	return feat_ops[feat].process(&fdd, data);
4086}
4087
4088static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
4089				       struct perf_header *ph,
4090				       struct perf_data *data)
4091{
4092	ssize_t ret;
4093
4094	ret = perf_data__read(data, header, sizeof(*header));
4095	if (ret <= 0)
4096		return -1;
4097
4098	if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4099		pr_debug("endian/magic failed\n");
4100		return -1;
4101	}
4102
4103	if (ph->needs_swap)
4104		header->size = bswap_64(header->size);
4105
 
 
 
4106	return 0;
4107}
4108
4109static int perf_header__read_pipe(struct perf_session *session)
4110{
4111	struct perf_header *header = &session->header;
4112	struct perf_pipe_file_header f_header;
4113
4114	if (perf_file_header__read_pipe(&f_header, header, session->data) < 0) {
 
 
4115		pr_debug("incompatible file format\n");
4116		return -EINVAL;
4117	}
4118
4119	return f_header.size == sizeof(f_header) ? 0 : -1;
4120}
4121
4122static int read_attr(int fd, struct perf_header *ph,
4123		     struct perf_file_attr *f_attr)
4124{
4125	struct perf_event_attr *attr = &f_attr->attr;
4126	size_t sz, left;
4127	size_t our_sz = sizeof(f_attr->attr);
4128	ssize_t ret;
4129
4130	memset(f_attr, 0, sizeof(*f_attr));
4131
4132	/* read minimal guaranteed structure */
4133	ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4134	if (ret <= 0) {
4135		pr_debug("cannot read %d bytes of header attr\n",
4136			 PERF_ATTR_SIZE_VER0);
4137		return -1;
4138	}
4139
4140	/* on file perf_event_attr size */
4141	sz = attr->size;
4142
4143	if (ph->needs_swap)
4144		sz = bswap_32(sz);
4145
4146	if (sz == 0) {
4147		/* assume ABI0 */
4148		sz =  PERF_ATTR_SIZE_VER0;
4149	} else if (sz > our_sz) {
4150		pr_debug("file uses a more recent and unsupported ABI"
4151			 " (%zu bytes extra)\n", sz - our_sz);
4152		return -1;
4153	}
4154	/* what we have not yet read and that we know about */
4155	left = sz - PERF_ATTR_SIZE_VER0;
4156	if (left) {
4157		void *ptr = attr;
4158		ptr += PERF_ATTR_SIZE_VER0;
4159
4160		ret = readn(fd, ptr, left);
4161	}
4162	/* read perf_file_section, ids are read in caller */
4163	ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4164
4165	return ret <= 0 ? -1 : 0;
4166}
4167
4168#ifdef HAVE_LIBTRACEEVENT
4169static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4170{
4171	struct tep_event *event;
4172	char bf[128];
4173
4174	/* already prepared */
4175	if (evsel->tp_format)
4176		return 0;
4177
4178	if (pevent == NULL) {
4179		pr_debug("broken or missing trace data\n");
4180		return -1;
4181	}
4182
4183	event = tep_find_event(pevent, evsel->core.attr.config);
4184	if (event == NULL) {
4185		pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4186		return -1;
4187	}
4188
4189	if (!evsel->name) {
4190		snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4191		evsel->name = strdup(bf);
4192		if (evsel->name == NULL)
4193			return -1;
4194	}
4195
4196	evsel->tp_format = event;
4197	return 0;
4198}
4199
4200static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
 
4201{
4202	struct evsel *pos;
4203
4204	evlist__for_each_entry(evlist, pos) {
4205		if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4206		    evsel__prepare_tracepoint_event(pos, pevent))
4207			return -1;
4208	}
4209
4210	return 0;
4211}
4212#endif
4213
4214int perf_session__read_header(struct perf_session *session)
4215{
4216	struct perf_data *data = session->data;
4217	struct perf_header *header = &session->header;
4218	struct perf_file_header	f_header;
4219	struct perf_file_attr	f_attr;
4220	u64			f_id;
4221	int nr_attrs, nr_ids, i, j, err;
4222	int fd = perf_data__fd(data);
4223
4224	session->evlist = evlist__new();
4225	if (session->evlist == NULL)
4226		return -ENOMEM;
4227
4228	session->evlist->env = &header->env;
4229	session->machines.host.env = &header->env;
4230
4231	/*
4232	 * We can read 'pipe' data event from regular file,
4233	 * check for the pipe header regardless of source.
4234	 */
4235	err = perf_header__read_pipe(session);
4236	if (!err || perf_data__is_pipe(data)) {
4237		data->is_pipe = true;
4238		return err;
4239	}
4240
4241	if (perf_file_header__read(&f_header, header, fd) < 0)
4242		return -EINVAL;
4243
4244	if (header->needs_swap && data->in_place_update) {
4245		pr_err("In-place update not supported when byte-swapping is required\n");
4246		return -EINVAL;
4247	}
4248
4249	/*
4250	 * Sanity check that perf.data was written cleanly; data size is
4251	 * initialized to 0 and updated only if the on_exit function is run.
4252	 * If data size is still 0 then the file contains only partial
4253	 * information.  Just warn user and process it as much as it can.
4254	 */
4255	if (f_header.data.size == 0) {
4256		pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4257			   "Was the 'perf record' command properly terminated?\n",
4258			   data->file.path);
4259	}
4260
4261	if (f_header.attr_size == 0) {
4262		pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4263		       "Was the 'perf record' command properly terminated?\n",
4264		       data->file.path);
4265		return -EINVAL;
4266	}
4267
4268	nr_attrs = f_header.attrs.size / f_header.attr_size;
4269	lseek(fd, f_header.attrs.offset, SEEK_SET);
4270
4271	for (i = 0; i < nr_attrs; i++) {
4272		struct evsel *evsel;
4273		off_t tmp;
4274
4275		if (read_attr(fd, header, &f_attr) < 0)
4276			goto out_errno;
4277
4278		if (header->needs_swap) {
4279			f_attr.ids.size   = bswap_64(f_attr.ids.size);
4280			f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4281			perf_event__attr_swap(&f_attr.attr);
4282		}
4283
4284		tmp = lseek(fd, 0, SEEK_CUR);
4285		evsel = evsel__new(&f_attr.attr);
4286
4287		if (evsel == NULL)
4288			goto out_delete_evlist;
4289
4290		evsel->needs_swap = header->needs_swap;
4291		/*
4292		 * Do it before so that if perf_evsel__alloc_id fails, this
4293		 * entry gets purged too at evlist__delete().
4294		 */
4295		evlist__add(session->evlist, evsel);
4296
4297		nr_ids = f_attr.ids.size / sizeof(u64);
4298		/*
4299		 * We don't have the cpu and thread maps on the header, so
4300		 * for allocating the perf_sample_id table we fake 1 cpu and
4301		 * hattr->ids threads.
4302		 */
4303		if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4304			goto out_delete_evlist;
4305
4306		lseek(fd, f_attr.ids.offset, SEEK_SET);
4307
4308		for (j = 0; j < nr_ids; j++) {
4309			if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4310				goto out_errno;
4311
4312			perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4313		}
4314
4315		lseek(fd, tmp, SEEK_SET);
4316	}
4317
4318#ifdef HAVE_LIBTRACEEVENT
 
4319	perf_header__process_sections(header, fd, &session->tevent,
4320				      perf_file_section__process);
4321
4322	if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
 
4323		goto out_delete_evlist;
4324#else
4325	perf_header__process_sections(header, fd, NULL, perf_file_section__process);
4326#endif
4327
4328	return 0;
4329out_errno:
4330	return -errno;
4331
4332out_delete_evlist:
4333	evlist__delete(session->evlist);
4334	session->evlist = NULL;
4335	return -ENOMEM;
4336}
4337
4338int perf_event__process_feature(struct perf_session *session,
4339				union perf_event *event)
 
4340{
4341	const struct perf_tool *tool = session->tool;
4342	struct feat_fd ff = { .fd = 0 };
4343	struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4344	int type = fe->header.type;
4345	u64 feat = fe->feat_id;
4346	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4347
4348	if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4349		pr_warning("invalid record type %d in pipe-mode\n", type);
4350		return 0;
4351	}
4352	if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4353		pr_warning("invalid record type %d in pipe-mode\n", type);
4354		return -1;
4355	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4356
4357	if (!feat_ops[feat].process)
4358		return 0;
4359
4360	ff.buf  = (void *)fe->data;
4361	ff.size = event->header.size - sizeof(*fe);
4362	ff.ph = &session->header;
4363
4364	if (feat_ops[feat].process(&ff, NULL)) {
4365		ret = -1;
4366		goto out;
4367	}
4368
4369	if (!feat_ops[feat].print || !tool->show_feat_hdr)
4370		goto out;
 
 
 
 
 
 
4371
4372	if (!feat_ops[feat].full_only ||
4373	    tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4374		feat_ops[feat].print(&ff, stdout);
4375	} else {
4376		fprintf(stdout, "# %s info available, use -I to display\n",
4377			feat_ops[feat].name);
4378	}
4379out:
4380	free_event_desc(ff.events);
4381	return ret;
4382}
4383
4384size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4385{
4386	struct perf_record_event_update *ev = &event->event_update;
4387	struct perf_cpu_map *map;
 
 
4388	size_t ret;
4389
4390	ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
4391
4392	switch (ev->type) {
4393	case PERF_EVENT_UPDATE__SCALE:
4394		ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
 
4395		break;
4396	case PERF_EVENT_UPDATE__UNIT:
4397		ret += fprintf(fp, "... unit:  %s\n", ev->unit);
4398		break;
4399	case PERF_EVENT_UPDATE__NAME:
4400		ret += fprintf(fp, "... name:  %s\n", ev->name);
4401		break;
4402	case PERF_EVENT_UPDATE__CPUS:
 
4403		ret += fprintf(fp, "... ");
4404
4405		map = cpu_map__new_data(&ev->cpus.cpus);
4406		if (map) {
4407			ret += cpu_map__fprintf(map, fp);
4408			perf_cpu_map__put(map);
4409		} else
4410			ret += fprintf(fp, "failed to get cpus\n");
4411		break;
4412	default:
4413		ret += fprintf(fp, "... unknown type\n");
4414		break;
4415	}
4416
4417	return ret;
4418}
4419
4420int perf_event__process_attr(const struct perf_tool *tool __maybe_unused,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4421			     union perf_event *event,
4422			     struct evlist **pevlist)
4423{
4424	u32 i, n_ids;
4425	u64 *ids;
4426	struct evsel *evsel;
4427	struct evlist *evlist = *pevlist;
4428
4429	if (evlist == NULL) {
4430		*pevlist = evlist = evlist__new();
4431		if (evlist == NULL)
4432			return -ENOMEM;
4433	}
4434
4435	evsel = evsel__new(&event->attr.attr);
4436	if (evsel == NULL)
4437		return -ENOMEM;
4438
4439	evlist__add(evlist, evsel);
4440
4441	n_ids = event->header.size - sizeof(event->header) - event->attr.attr.size;
4442	n_ids = n_ids / sizeof(u64);
 
4443	/*
4444	 * We don't have the cpu and thread maps on the header, so
4445	 * for allocating the perf_sample_id table we fake 1 cpu and
4446	 * hattr->ids threads.
4447	 */
4448	if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4449		return -ENOMEM;
4450
4451	ids = perf_record_header_attr_id(event);
4452	for (i = 0; i < n_ids; i++) {
4453		perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, ids[i]);
4454	}
4455
 
 
4456	return 0;
4457}
4458
4459int perf_event__process_event_update(const struct perf_tool *tool __maybe_unused,
4460				     union perf_event *event,
4461				     struct evlist **pevlist)
4462{
4463	struct perf_record_event_update *ev = &event->event_update;
4464	struct evlist *evlist;
4465	struct evsel *evsel;
4466	struct perf_cpu_map *map;
4467
4468	if (dump_trace)
4469		perf_event__fprintf_event_update(event, stdout);
4470
4471	if (!pevlist || *pevlist == NULL)
4472		return -EINVAL;
4473
4474	evlist = *pevlist;
4475
4476	evsel = evlist__id2evsel(evlist, ev->id);
4477	if (evsel == NULL)
4478		return -EINVAL;
4479
4480	switch (ev->type) {
4481	case PERF_EVENT_UPDATE__UNIT:
4482		free((char *)evsel->unit);
4483		evsel->unit = strdup(ev->unit);
4484		break;
4485	case PERF_EVENT_UPDATE__NAME:
4486		free(evsel->name);
4487		evsel->name = strdup(ev->name);
4488		break;
4489	case PERF_EVENT_UPDATE__SCALE:
4490		evsel->scale = ev->scale.scale;
4491		break;
4492	case PERF_EVENT_UPDATE__CPUS:
4493		map = cpu_map__new_data(&ev->cpus.cpus);
4494		if (map) {
4495			perf_cpu_map__put(evsel->core.own_cpus);
4496			evsel->core.own_cpus = map;
4497		} else
 
4498			pr_err("failed to get event_update cpus\n");
4499	default:
4500		break;
4501	}
4502
4503	return 0;
4504}
4505
4506#ifdef HAVE_LIBTRACEEVENT
4507int perf_event__process_tracing_data(struct perf_session *session,
4508				     union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4509{
4510	ssize_t size_read, padding, size = event->tracing_data.size;
4511	int fd = perf_data__fd(session->data);
 
4512	char buf[BUFSIZ];
4513
4514	/*
4515	 * The pipe fd is already in proper place and in any case
4516	 * we can't move it, and we'd screw the case where we read
4517	 * 'pipe' data from regular file. The trace_report reads
4518	 * data from 'fd' so we need to set it directly behind the
4519	 * event, where the tracing data starts.
4520	 */
4521	if (!perf_data__is_pipe(session->data)) {
4522		off_t offset = lseek(fd, 0, SEEK_CUR);
4523
4524		/* setup for reading amidst mmap */
4525		lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4526		      SEEK_SET);
4527	}
4528
4529	size_read = trace_report(fd, &session->tevent, session->trace_event_repipe);
 
4530	padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4531
4532	if (readn(fd, buf, padding) < 0) {
4533		pr_err("%s: reading input file", __func__);
4534		return -1;
4535	}
4536	if (session->trace_event_repipe) {
4537		int retw = write(STDOUT_FILENO, buf, padding);
4538		if (retw <= 0 || retw != padding) {
4539			pr_err("%s: repiping tracing data padding", __func__);
4540			return -1;
4541		}
4542	}
4543
4544	if (size_read + padding != size) {
4545		pr_err("%s: tracing data size mismatch", __func__);
4546		return -1;
4547	}
4548
4549	evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
 
4550
4551	return size_read + padding;
4552}
4553#endif
4554
4555int perf_event__process_build_id(struct perf_session *session,
4556				 union perf_event *event)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4557{
4558	__event_process_build_id(&event->build_id,
4559				 event->build_id.filename,
4560				 session);
4561	return 0;
4562}