Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 * Copyright (c) 2006 Oracle.  All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 
 38#include <linux/poll.h>
 39#include <net/sock.h>
 40
 41#include "rds.h"
 42
 43/* this is just used for stats gathering :/ */
 44static DEFINE_SPINLOCK(rds_sock_lock);
 45static unsigned long rds_sock_count;
 46static LIST_HEAD(rds_sock_list);
 47DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 48
 49/*
 50 * This is called as the final descriptor referencing this socket is closed.
 51 * We have to unbind the socket so that another socket can be bound to the
 52 * address it was using.
 53 *
 54 * We have to be careful about racing with the incoming path.  sock_orphan()
 55 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 56 * messages shouldn't be queued.
 57 */
 58static int rds_release(struct socket *sock)
 59{
 60	struct sock *sk = sock->sk;
 61	struct rds_sock *rs;
 62
 63	if (!sk)
 64		goto out;
 65
 66	rs = rds_sk_to_rs(sk);
 67
 68	sock_orphan(sk);
 69	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 70	 * that ensures the recv path has completed messing
 71	 * with the socket. */
 72	rds_clear_recv_queue(rs);
 73	rds_cong_remove_socket(rs);
 74
 75	rds_remove_bound(rs);
 76
 77	rds_send_drop_to(rs, NULL);
 78	rds_rdma_drop_keys(rs);
 79	rds_notify_queue_get(rs, NULL);
 
 80
 81	spin_lock_bh(&rds_sock_lock);
 82	list_del_init(&rs->rs_item);
 83	rds_sock_count--;
 84	spin_unlock_bh(&rds_sock_lock);
 85
 86	rds_trans_put(rs->rs_transport);
 87
 88	sock->sk = NULL;
 89	sock_put(sk);
 90out:
 91	return 0;
 92}
 93
 94/*
 95 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 96 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 97 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
 98 * this seems more conservative.
 99 * NB - normally, one would use sk_callback_lock for this, but we can
100 * get here from interrupts, whereas the network code grabs sk_callback_lock
101 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
102 */
103void rds_wake_sk_sleep(struct rds_sock *rs)
104{
105	unsigned long flags;
106
107	read_lock_irqsave(&rs->rs_recv_lock, flags);
108	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
109	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
110}
111
112static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
113		       int *uaddr_len, int peer)
114{
115	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
116	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
117
118	memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
 
119
120	/* racey, don't care */
121	if (peer) {
122		if (!rs->rs_conn_addr)
123			return -ENOTCONN;
124
125		sin->sin_port = rs->rs_conn_port;
126		sin->sin_addr.s_addr = rs->rs_conn_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127	} else {
128		sin->sin_port = rs->rs_bound_port;
129		sin->sin_addr.s_addr = rs->rs_bound_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130	}
131
132	sin->sin_family = AF_INET;
133
134	*uaddr_len = sizeof(*sin);
135	return 0;
136}
137
138/*
139 * RDS' poll is without a doubt the least intuitive part of the interface,
140 * as POLLIN and POLLOUT do not behave entirely as you would expect from
141 * a network protocol.
142 *
143 * POLLIN is asserted if
144 *  -	there is data on the receive queue.
145 *  -	to signal that a previously congested destination may have become
146 *	uncongested
147 *  -	A notification has been queued to the socket (this can be a congestion
148 *	update, or a RDMA completion).
149 *
150 * POLLOUT is asserted if there is room on the send queue. This does not mean
151 * however, that the next sendmsg() call will succeed. If the application tries
152 * to send to a congested destination, the system call may still fail (and
153 * return ENOBUFS).
154 */
155static unsigned int rds_poll(struct file *file, struct socket *sock,
156			     poll_table *wait)
157{
158	struct sock *sk = sock->sk;
159	struct rds_sock *rs = rds_sk_to_rs(sk);
160	unsigned int mask = 0;
161	unsigned long flags;
162
163	poll_wait(file, sk_sleep(sk), wait);
164
165	if (rs->rs_seen_congestion)
166		poll_wait(file, &rds_poll_waitq, wait);
167
168	read_lock_irqsave(&rs->rs_recv_lock, flags);
169	if (!rs->rs_cong_monitor) {
170		/* When a congestion map was updated, we signal POLLIN for
171		 * "historical" reasons. Applications can also poll for
172		 * WRBAND instead. */
173		if (rds_cong_updated_since(&rs->rs_cong_track))
174			mask |= (POLLIN | POLLRDNORM | POLLWRBAND);
175	} else {
176		spin_lock(&rs->rs_lock);
177		if (rs->rs_cong_notify)
178			mask |= (POLLIN | POLLRDNORM);
179		spin_unlock(&rs->rs_lock);
180	}
181	if (!list_empty(&rs->rs_recv_queue) ||
182	    !list_empty(&rs->rs_notify_queue))
183		mask |= (POLLIN | POLLRDNORM);
 
184	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
185		mask |= (POLLOUT | POLLWRNORM);
 
 
186	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
187
188	/* clear state any time we wake a seen-congested socket */
189	if (mask)
190		rs->rs_seen_congestion = 0;
191
192	return mask;
193}
194
195static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
196{
197	return -ENOIOCTLCMD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198}
199
200static int rds_cancel_sent_to(struct rds_sock *rs, char __user *optval,
201			      int len)
202{
 
203	struct sockaddr_in sin;
204	int ret = 0;
205
206	/* racing with another thread binding seems ok here */
207	if (rs->rs_bound_addr == 0) {
208		ret = -ENOTCONN; /* XXX not a great errno */
209		goto out;
210	}
211
212	if (len < sizeof(struct sockaddr_in)) {
213		ret = -EINVAL;
214		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215	}
216
217	if (copy_from_user(&sin, optval, sizeof(sin))) {
218		ret = -EFAULT;
219		goto out;
220	}
221
222	rds_send_drop_to(rs, &sin);
223out:
224	return ret;
225}
226
227static int rds_set_bool_option(unsigned char *optvar, char __user *optval,
228			       int optlen)
229{
230	int value;
231
232	if (optlen < sizeof(int))
233		return -EINVAL;
234	if (get_user(value, (int __user *) optval))
235		return -EFAULT;
236	*optvar = !!value;
237	return 0;
238}
239
240static int rds_cong_monitor(struct rds_sock *rs, char __user *optval,
241			    int optlen)
242{
243	int ret;
244
245	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
246	if (ret == 0) {
247		if (rs->rs_cong_monitor) {
248			rds_cong_add_socket(rs);
249		} else {
250			rds_cong_remove_socket(rs);
251			rs->rs_cong_mask = 0;
252			rs->rs_cong_notify = 0;
253		}
254	}
255	return ret;
256}
257
258static int rds_set_transport(struct rds_sock *rs, char __user *optval,
259			     int optlen)
260{
261	int t_type;
262
263	if (rs->rs_transport)
264		return -EOPNOTSUPP; /* previously attached to transport */
265
266	if (optlen != sizeof(int))
267		return -EINVAL;
268
269	if (copy_from_user(&t_type, (int __user *)optval, sizeof(t_type)))
270		return -EFAULT;
271
272	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
273		return -EINVAL;
274
275	rs->rs_transport = rds_trans_get(t_type);
276
277	return rs->rs_transport ? 0 : -ENOPROTOOPT;
278}
279
280static int rds_enable_recvtstamp(struct sock *sk, char __user *optval,
281				 int optlen)
282{
283	int val, valbool;
284
285	if (optlen != sizeof(int))
286		return -EFAULT;
287
288	if (get_user(val, (int __user *)optval))
289		return -EFAULT;
290
291	valbool = val ? 1 : 0;
292
 
 
 
293	if (valbool)
294		sock_set_flag(sk, SOCK_RCVTSTAMP);
295	else
296		sock_reset_flag(sk, SOCK_RCVTSTAMP);
297
298	return 0;
299}
300
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301static int rds_setsockopt(struct socket *sock, int level, int optname,
302			  char __user *optval, unsigned int optlen)
303{
304	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
305	int ret;
306
307	if (level != SOL_RDS) {
308		ret = -ENOPROTOOPT;
309		goto out;
310	}
311
312	switch (optname) {
313	case RDS_CANCEL_SENT_TO:
314		ret = rds_cancel_sent_to(rs, optval, optlen);
315		break;
316	case RDS_GET_MR:
317		ret = rds_get_mr(rs, optval, optlen);
318		break;
319	case RDS_GET_MR_FOR_DEST:
320		ret = rds_get_mr_for_dest(rs, optval, optlen);
321		break;
322	case RDS_FREE_MR:
323		ret = rds_free_mr(rs, optval, optlen);
324		break;
325	case RDS_RECVERR:
326		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
327		break;
328	case RDS_CONG_MONITOR:
329		ret = rds_cong_monitor(rs, optval, optlen);
330		break;
331	case SO_RDS_TRANSPORT:
332		lock_sock(sock->sk);
333		ret = rds_set_transport(rs, optval, optlen);
334		release_sock(sock->sk);
335		break;
336	case SO_TIMESTAMP:
 
337		lock_sock(sock->sk);
338		ret = rds_enable_recvtstamp(sock->sk, optval, optlen);
339		release_sock(sock->sk);
340		break;
 
 
 
341	default:
342		ret = -ENOPROTOOPT;
343	}
344out:
345	return ret;
346}
347
348static int rds_getsockopt(struct socket *sock, int level, int optname,
349			  char __user *optval, int __user *optlen)
350{
351	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
352	int ret = -ENOPROTOOPT, len;
353	int trans;
354
355	if (level != SOL_RDS)
356		goto out;
357
358	if (get_user(len, optlen)) {
359		ret = -EFAULT;
360		goto out;
361	}
362
363	switch (optname) {
364	case RDS_INFO_FIRST ... RDS_INFO_LAST:
365		ret = rds_info_getsockopt(sock, optname, optval,
366					  optlen);
367		break;
368
369	case RDS_RECVERR:
370		if (len < sizeof(int))
371			ret = -EINVAL;
372		else
373		if (put_user(rs->rs_recverr, (int __user *) optval) ||
374		    put_user(sizeof(int), optlen))
375			ret = -EFAULT;
376		else
377			ret = 0;
378		break;
379	case SO_RDS_TRANSPORT:
380		if (len < sizeof(int)) {
381			ret = -EINVAL;
382			break;
383		}
384		trans = (rs->rs_transport ? rs->rs_transport->t_type :
385			 RDS_TRANS_NONE); /* unbound */
386		if (put_user(trans, (int __user *)optval) ||
387		    put_user(sizeof(int), optlen))
388			ret = -EFAULT;
389		else
390			ret = 0;
391		break;
392	default:
393		break;
394	}
395
396out:
397	return ret;
398
399}
400
401static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
402		       int addr_len, int flags)
403{
404	struct sock *sk = sock->sk;
405	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
406	struct rds_sock *rs = rds_sk_to_rs(sk);
407	int ret = 0;
408
 
 
 
409	lock_sock(sk);
410
411	if (addr_len != sizeof(struct sockaddr_in)) {
412		ret = -EINVAL;
413		goto out;
414	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415
416	if (sin->sin_family != AF_INET) {
417		ret = -EAFNOSUPPORT;
418		goto out;
419	}
420
421	if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
422		ret = -EDESTADDRREQ;
423		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424	}
 
425
426	rs->rs_conn_addr = sin->sin_addr.s_addr;
427	rs->rs_conn_port = sin->sin_port;
 
 
428
429out:
430	release_sock(sk);
431	return ret;
432}
433
434static struct proto rds_proto = {
435	.name	  = "RDS",
436	.owner	  = THIS_MODULE,
437	.obj_size = sizeof(struct rds_sock),
438};
439
440static const struct proto_ops rds_proto_ops = {
441	.family =	AF_RDS,
442	.owner =	THIS_MODULE,
443	.release =	rds_release,
444	.bind =		rds_bind,
445	.connect =	rds_connect,
446	.socketpair =	sock_no_socketpair,
447	.accept =	sock_no_accept,
448	.getname =	rds_getname,
449	.poll =		rds_poll,
450	.ioctl =	rds_ioctl,
451	.listen =	sock_no_listen,
452	.shutdown =	sock_no_shutdown,
453	.setsockopt =	rds_setsockopt,
454	.getsockopt =	rds_getsockopt,
455	.sendmsg =	rds_sendmsg,
456	.recvmsg =	rds_recvmsg,
457	.mmap =		sock_no_mmap,
458	.sendpage =	sock_no_sendpage,
459};
460
461static void rds_sock_destruct(struct sock *sk)
462{
463	struct rds_sock *rs = rds_sk_to_rs(sk);
464
465	WARN_ON((&rs->rs_item != rs->rs_item.next ||
466		 &rs->rs_item != rs->rs_item.prev));
467}
468
469static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
470{
471	struct rds_sock *rs;
472
473	sock_init_data(sock, sk);
474	sock->ops		= &rds_proto_ops;
475	sk->sk_protocol		= protocol;
476	sk->sk_destruct		= rds_sock_destruct;
477
478	rs = rds_sk_to_rs(sk);
479	spin_lock_init(&rs->rs_lock);
480	rwlock_init(&rs->rs_recv_lock);
481	INIT_LIST_HEAD(&rs->rs_send_queue);
482	INIT_LIST_HEAD(&rs->rs_recv_queue);
483	INIT_LIST_HEAD(&rs->rs_notify_queue);
484	INIT_LIST_HEAD(&rs->rs_cong_list);
 
485	spin_lock_init(&rs->rs_rdma_lock);
486	rs->rs_rdma_keys = RB_ROOT;
 
 
 
487
488	spin_lock_bh(&rds_sock_lock);
489	list_add_tail(&rs->rs_item, &rds_sock_list);
490	rds_sock_count++;
491	spin_unlock_bh(&rds_sock_lock);
492
493	return 0;
494}
495
496static int rds_create(struct net *net, struct socket *sock, int protocol,
497		      int kern)
498{
499	struct sock *sk;
500
501	if (sock->type != SOCK_SEQPACKET || protocol)
502		return -ESOCKTNOSUPPORT;
503
504	sk = sk_alloc(net, AF_RDS, GFP_ATOMIC, &rds_proto, kern);
505	if (!sk)
506		return -ENOMEM;
507
508	return __rds_create(sock, sk, protocol);
509}
510
511void rds_sock_addref(struct rds_sock *rs)
512{
513	sock_hold(rds_rs_to_sk(rs));
514}
515
516void rds_sock_put(struct rds_sock *rs)
517{
518	sock_put(rds_rs_to_sk(rs));
519}
520
521static const struct net_proto_family rds_family_ops = {
522	.family =	AF_RDS,
523	.create =	rds_create,
524	.owner	=	THIS_MODULE,
525};
526
527static void rds_sock_inc_info(struct socket *sock, unsigned int len,
528			      struct rds_info_iterator *iter,
529			      struct rds_info_lengths *lens)
530{
531	struct rds_sock *rs;
532	struct rds_incoming *inc;
533	unsigned int total = 0;
534
535	len /= sizeof(struct rds_info_message);
536
537	spin_lock_bh(&rds_sock_lock);
538
539	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
 
540		read_lock(&rs->rs_recv_lock);
541
542		/* XXX too lazy to maintain counts.. */
543		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
544			total++;
545			if (total <= len)
546				rds_inc_info_copy(inc, iter, inc->i_saddr,
547						  rs->rs_bound_addr, 1);
 
 
548		}
549
550		read_unlock(&rs->rs_recv_lock);
551	}
552
553	spin_unlock_bh(&rds_sock_lock);
554
555	lens->nr = total;
556	lens->each = sizeof(struct rds_info_message);
557}
558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559static void rds_sock_info(struct socket *sock, unsigned int len,
560			  struct rds_info_iterator *iter,
561			  struct rds_info_lengths *lens)
562{
563	struct rds_info_socket sinfo;
 
564	struct rds_sock *rs;
565
566	len /= sizeof(struct rds_info_socket);
567
568	spin_lock_bh(&rds_sock_lock);
569
570	if (len < rds_sock_count)
 
571		goto out;
 
572
573	list_for_each_entry(rs, &rds_sock_list, rs_item) {
 
 
 
574		sinfo.sndbuf = rds_sk_sndbuf(rs);
575		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
576		sinfo.bound_addr = rs->rs_bound_addr;
577		sinfo.connected_addr = rs->rs_conn_addr;
578		sinfo.bound_port = rs->rs_bound_port;
579		sinfo.connected_port = rs->rs_conn_port;
580		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
581
582		rds_info_copy(iter, &sinfo, sizeof(sinfo));
 
583	}
584
585out:
586	lens->nr = rds_sock_count;
587	lens->each = sizeof(struct rds_info_socket);
588
589	spin_unlock_bh(&rds_sock_lock);
590}
591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
592static void rds_exit(void)
593{
594	sock_unregister(rds_family_ops.family);
595	proto_unregister(&rds_proto);
596	rds_conn_exit();
597	rds_cong_exit();
598	rds_sysctl_exit();
599	rds_threads_exit();
600	rds_stats_exit();
601	rds_page_exit();
602	rds_bind_lock_destroy();
603	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
604	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
605}
606module_exit(rds_exit);
607
608static int rds_init(void)
 
 
609{
610	int ret;
611
 
 
612	ret = rds_bind_lock_init();
613	if (ret)
614		goto out;
615
616	ret = rds_conn_init();
617	if (ret)
618		goto out_bind;
619
620	ret = rds_threads_init();
621	if (ret)
622		goto out_conn;
623	ret = rds_sysctl_init();
624	if (ret)
625		goto out_threads;
626	ret = rds_stats_init();
627	if (ret)
628		goto out_sysctl;
629	ret = proto_register(&rds_proto, 1);
630	if (ret)
631		goto out_stats;
632	ret = sock_register(&rds_family_ops);
633	if (ret)
634		goto out_proto;
635
636	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
637	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
 
 
 
 
638
639	goto out;
640
641out_proto:
642	proto_unregister(&rds_proto);
643out_stats:
644	rds_stats_exit();
645out_sysctl:
646	rds_sysctl_exit();
647out_threads:
648	rds_threads_exit();
649out_conn:
650	rds_conn_exit();
651	rds_cong_exit();
652	rds_page_exit();
653out_bind:
654	rds_bind_lock_destroy();
655out:
656	return ret;
657}
658module_init(rds_init);
659
660#define DRV_VERSION     "4.0"
661#define DRV_RELDATE     "Feb 12, 2009"
662
663MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
664MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
665		   " v" DRV_VERSION " (" DRV_RELDATE ")");
666MODULE_VERSION(DRV_VERSION);
667MODULE_LICENSE("Dual BSD/GPL");
668MODULE_ALIAS_NETPROTO(PF_RDS);
v6.13.7
  1/*
  2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
  3 *
  4 * This software is available to you under a choice of one of two
  5 * licenses.  You may choose to be licensed under the terms of the GNU
  6 * General Public License (GPL) Version 2, available from the file
  7 * COPYING in the main directory of this source tree, or the
  8 * OpenIB.org BSD license below:
  9 *
 10 *     Redistribution and use in source and binary forms, with or
 11 *     without modification, are permitted provided that the following
 12 *     conditions are met:
 13 *
 14 *      - Redistributions of source code must retain the above
 15 *        copyright notice, this list of conditions and the following
 16 *        disclaimer.
 17 *
 18 *      - Redistributions in binary form must reproduce the above
 19 *        copyright notice, this list of conditions and the following
 20 *        disclaimer in the documentation and/or other materials
 21 *        provided with the distribution.
 22 *
 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 30 * SOFTWARE.
 31 *
 32 */
 33#include <linux/module.h>
 34#include <linux/errno.h>
 35#include <linux/kernel.h>
 36#include <linux/gfp.h>
 37#include <linux/in.h>
 38#include <linux/ipv6.h>
 39#include <linux/poll.h>
 40#include <net/sock.h>
 41
 42#include "rds.h"
 43
 44/* this is just used for stats gathering :/ */
 45static DEFINE_SPINLOCK(rds_sock_lock);
 46static unsigned long rds_sock_count;
 47static LIST_HEAD(rds_sock_list);
 48DECLARE_WAIT_QUEUE_HEAD(rds_poll_waitq);
 49
 50/*
 51 * This is called as the final descriptor referencing this socket is closed.
 52 * We have to unbind the socket so that another socket can be bound to the
 53 * address it was using.
 54 *
 55 * We have to be careful about racing with the incoming path.  sock_orphan()
 56 * sets SOCK_DEAD and we use that as an indicator to the rx path that new
 57 * messages shouldn't be queued.
 58 */
 59static int rds_release(struct socket *sock)
 60{
 61	struct sock *sk = sock->sk;
 62	struct rds_sock *rs;
 63
 64	if (!sk)
 65		goto out;
 66
 67	rs = rds_sk_to_rs(sk);
 68
 69	sock_orphan(sk);
 70	/* Note - rds_clear_recv_queue grabs rs_recv_lock, so
 71	 * that ensures the recv path has completed messing
 72	 * with the socket. */
 73	rds_clear_recv_queue(rs);
 74	rds_cong_remove_socket(rs);
 75
 76	rds_remove_bound(rs);
 77
 78	rds_send_drop_to(rs, NULL);
 79	rds_rdma_drop_keys(rs);
 80	rds_notify_queue_get(rs, NULL);
 81	rds_notify_msg_zcopy_purge(&rs->rs_zcookie_queue);
 82
 83	spin_lock_bh(&rds_sock_lock);
 84	list_del_init(&rs->rs_item);
 85	rds_sock_count--;
 86	spin_unlock_bh(&rds_sock_lock);
 87
 88	rds_trans_put(rs->rs_transport);
 89
 90	sock->sk = NULL;
 91	sock_put(sk);
 92out:
 93	return 0;
 94}
 95
 96/*
 97 * Careful not to race with rds_release -> sock_orphan which clears sk_sleep.
 98 * _bh() isn't OK here, we're called from interrupt handlers.  It's probably OK
 99 * to wake the waitqueue after sk_sleep is clear as we hold a sock ref, but
100 * this seems more conservative.
101 * NB - normally, one would use sk_callback_lock for this, but we can
102 * get here from interrupts, whereas the network code grabs sk_callback_lock
103 * with _lock_bh only - so relying on sk_callback_lock introduces livelocks.
104 */
105void rds_wake_sk_sleep(struct rds_sock *rs)
106{
107	unsigned long flags;
108
109	read_lock_irqsave(&rs->rs_recv_lock, flags);
110	__rds_wake_sk_sleep(rds_rs_to_sk(rs));
111	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
112}
113
114static int rds_getname(struct socket *sock, struct sockaddr *uaddr,
115		       int peer)
116{
 
117	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
118	struct sockaddr_in6 *sin6;
119	struct sockaddr_in *sin;
120	int uaddr_len;
121
122	/* racey, don't care */
123	if (peer) {
124		if (ipv6_addr_any(&rs->rs_conn_addr))
125			return -ENOTCONN;
126
127		if (ipv6_addr_v4mapped(&rs->rs_conn_addr)) {
128			sin = (struct sockaddr_in *)uaddr;
129			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
130			sin->sin_family = AF_INET;
131			sin->sin_port = rs->rs_conn_port;
132			sin->sin_addr.s_addr = rs->rs_conn_addr_v4;
133			uaddr_len = sizeof(*sin);
134		} else {
135			sin6 = (struct sockaddr_in6 *)uaddr;
136			sin6->sin6_family = AF_INET6;
137			sin6->sin6_port = rs->rs_conn_port;
138			sin6->sin6_addr = rs->rs_conn_addr;
139			sin6->sin6_flowinfo = 0;
140			/* scope_id is the same as in the bound address. */
141			sin6->sin6_scope_id = rs->rs_bound_scope_id;
142			uaddr_len = sizeof(*sin6);
143		}
144	} else {
145		/* If socket is not yet bound and the socket is connected,
146		 * set the return address family to be the same as the
147		 * connected address, but with 0 address value.  If it is not
148		 * connected, set the family to be AF_UNSPEC (value 0) and
149		 * the address size to be that of an IPv4 address.
150		 */
151		if (ipv6_addr_any(&rs->rs_bound_addr)) {
152			if (ipv6_addr_any(&rs->rs_conn_addr)) {
153				sin = (struct sockaddr_in *)uaddr;
154				memset(sin, 0, sizeof(*sin));
155				sin->sin_family = AF_UNSPEC;
156				return sizeof(*sin);
157			}
158
159#if IS_ENABLED(CONFIG_IPV6)
160			if (!(ipv6_addr_type(&rs->rs_conn_addr) &
161			      IPV6_ADDR_MAPPED)) {
162				sin6 = (struct sockaddr_in6 *)uaddr;
163				memset(sin6, 0, sizeof(*sin6));
164				sin6->sin6_family = AF_INET6;
165				return sizeof(*sin6);
166			}
167#endif
168
169			sin = (struct sockaddr_in *)uaddr;
170			memset(sin, 0, sizeof(*sin));
171			sin->sin_family = AF_INET;
172			return sizeof(*sin);
173		}
174		if (ipv6_addr_v4mapped(&rs->rs_bound_addr)) {
175			sin = (struct sockaddr_in *)uaddr;
176			memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
177			sin->sin_family = AF_INET;
178			sin->sin_port = rs->rs_bound_port;
179			sin->sin_addr.s_addr = rs->rs_bound_addr_v4;
180			uaddr_len = sizeof(*sin);
181		} else {
182			sin6 = (struct sockaddr_in6 *)uaddr;
183			sin6->sin6_family = AF_INET6;
184			sin6->sin6_port = rs->rs_bound_port;
185			sin6->sin6_addr = rs->rs_bound_addr;
186			sin6->sin6_flowinfo = 0;
187			sin6->sin6_scope_id = rs->rs_bound_scope_id;
188			uaddr_len = sizeof(*sin6);
189		}
190	}
191
192	return uaddr_len;
 
 
 
193}
194
195/*
196 * RDS' poll is without a doubt the least intuitive part of the interface,
197 * as EPOLLIN and EPOLLOUT do not behave entirely as you would expect from
198 * a network protocol.
199 *
200 * EPOLLIN is asserted if
201 *  -	there is data on the receive queue.
202 *  -	to signal that a previously congested destination may have become
203 *	uncongested
204 *  -	A notification has been queued to the socket (this can be a congestion
205 *	update, or a RDMA completion, or a MSG_ZEROCOPY completion).
206 *
207 * EPOLLOUT is asserted if there is room on the send queue. This does not mean
208 * however, that the next sendmsg() call will succeed. If the application tries
209 * to send to a congested destination, the system call may still fail (and
210 * return ENOBUFS).
211 */
212static __poll_t rds_poll(struct file *file, struct socket *sock,
213			     poll_table *wait)
214{
215	struct sock *sk = sock->sk;
216	struct rds_sock *rs = rds_sk_to_rs(sk);
217	__poll_t mask = 0;
218	unsigned long flags;
219
220	poll_wait(file, sk_sleep(sk), wait);
221
222	if (rs->rs_seen_congestion)
223		poll_wait(file, &rds_poll_waitq, wait);
224
225	read_lock_irqsave(&rs->rs_recv_lock, flags);
226	if (!rs->rs_cong_monitor) {
227		/* When a congestion map was updated, we signal EPOLLIN for
228		 * "historical" reasons. Applications can also poll for
229		 * WRBAND instead. */
230		if (rds_cong_updated_since(&rs->rs_cong_track))
231			mask |= (EPOLLIN | EPOLLRDNORM | EPOLLWRBAND);
232	} else {
233		spin_lock(&rs->rs_lock);
234		if (rs->rs_cong_notify)
235			mask |= (EPOLLIN | EPOLLRDNORM);
236		spin_unlock(&rs->rs_lock);
237	}
238	if (!list_empty(&rs->rs_recv_queue) ||
239	    !list_empty(&rs->rs_notify_queue) ||
240	    !list_empty(&rs->rs_zcookie_queue.zcookie_head))
241		mask |= (EPOLLIN | EPOLLRDNORM);
242	if (rs->rs_snd_bytes < rds_sk_sndbuf(rs))
243		mask |= (EPOLLOUT | EPOLLWRNORM);
244	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
245		mask |= POLLERR;
246	read_unlock_irqrestore(&rs->rs_recv_lock, flags);
247
248	/* clear state any time we wake a seen-congested socket */
249	if (mask)
250		rs->rs_seen_congestion = 0;
251
252	return mask;
253}
254
255static int rds_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
256{
257	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
258	rds_tos_t utos, tos = 0;
259
260	switch (cmd) {
261	case SIOCRDSSETTOS:
262		if (get_user(utos, (rds_tos_t __user *)arg))
263			return -EFAULT;
264
265		if (rs->rs_transport &&
266		    rs->rs_transport->get_tos_map)
267			tos = rs->rs_transport->get_tos_map(utos);
268		else
269			return -ENOIOCTLCMD;
270
271		spin_lock_bh(&rds_sock_lock);
272		if (rs->rs_tos || rs->rs_conn) {
273			spin_unlock_bh(&rds_sock_lock);
274			return -EINVAL;
275		}
276		rs->rs_tos = tos;
277		spin_unlock_bh(&rds_sock_lock);
278		break;
279	case SIOCRDSGETTOS:
280		spin_lock_bh(&rds_sock_lock);
281		tos = rs->rs_tos;
282		spin_unlock_bh(&rds_sock_lock);
283		if (put_user(tos, (rds_tos_t __user *)arg))
284			return -EFAULT;
285		break;
286	default:
287		return -ENOIOCTLCMD;
288	}
289
290	return 0;
291}
292
293static int rds_cancel_sent_to(struct rds_sock *rs, sockptr_t optval, int len)
 
294{
295	struct sockaddr_in6 sin6;
296	struct sockaddr_in sin;
297	int ret = 0;
298
299	/* racing with another thread binding seems ok here */
300	if (ipv6_addr_any(&rs->rs_bound_addr)) {
301		ret = -ENOTCONN; /* XXX not a great errno */
302		goto out;
303	}
304
305	if (len < sizeof(struct sockaddr_in)) {
306		ret = -EINVAL;
307		goto out;
308	} else if (len < sizeof(struct sockaddr_in6)) {
309		/* Assume IPv4 */
310		if (copy_from_sockptr(&sin, optval,
311				sizeof(struct sockaddr_in))) {
312			ret = -EFAULT;
313			goto out;
314		}
315		ipv6_addr_set_v4mapped(sin.sin_addr.s_addr, &sin6.sin6_addr);
316		sin6.sin6_port = sin.sin_port;
317	} else {
318		if (copy_from_sockptr(&sin6, optval,
319				   sizeof(struct sockaddr_in6))) {
320			ret = -EFAULT;
321			goto out;
322		}
323	}
324
325	rds_send_drop_to(rs, &sin6);
 
 
 
 
 
326out:
327	return ret;
328}
329
330static int rds_set_bool_option(unsigned char *optvar, sockptr_t optval,
331			       int optlen)
332{
333	int value;
334
335	if (optlen < sizeof(int))
336		return -EINVAL;
337	if (copy_from_sockptr(&value, optval, sizeof(int)))
338		return -EFAULT;
339	*optvar = !!value;
340	return 0;
341}
342
343static int rds_cong_monitor(struct rds_sock *rs, sockptr_t optval, int optlen)
 
344{
345	int ret;
346
347	ret = rds_set_bool_option(&rs->rs_cong_monitor, optval, optlen);
348	if (ret == 0) {
349		if (rs->rs_cong_monitor) {
350			rds_cong_add_socket(rs);
351		} else {
352			rds_cong_remove_socket(rs);
353			rs->rs_cong_mask = 0;
354			rs->rs_cong_notify = 0;
355		}
356	}
357	return ret;
358}
359
360static int rds_set_transport(struct rds_sock *rs, sockptr_t optval, int optlen)
 
361{
362	int t_type;
363
364	if (rs->rs_transport)
365		return -EOPNOTSUPP; /* previously attached to transport */
366
367	if (optlen != sizeof(int))
368		return -EINVAL;
369
370	if (copy_from_sockptr(&t_type, optval, sizeof(t_type)))
371		return -EFAULT;
372
373	if (t_type < 0 || t_type >= RDS_TRANS_COUNT)
374		return -EINVAL;
375
376	rs->rs_transport = rds_trans_get(t_type);
377
378	return rs->rs_transport ? 0 : -ENOPROTOOPT;
379}
380
381static int rds_enable_recvtstamp(struct sock *sk, sockptr_t optval,
382				 int optlen, int optname)
383{
384	int val, valbool;
385
386	if (optlen != sizeof(int))
387		return -EFAULT;
388
389	if (copy_from_sockptr(&val, optval, sizeof(int)))
390		return -EFAULT;
391
392	valbool = val ? 1 : 0;
393
394	if (optname == SO_TIMESTAMP_NEW)
395		sock_set_flag(sk, SOCK_TSTAMP_NEW);
396
397	if (valbool)
398		sock_set_flag(sk, SOCK_RCVTSTAMP);
399	else
400		sock_reset_flag(sk, SOCK_RCVTSTAMP);
401
402	return 0;
403}
404
405static int rds_recv_track_latency(struct rds_sock *rs, sockptr_t optval,
406				  int optlen)
407{
408	struct rds_rx_trace_so trace;
409	int i;
410
411	if (optlen != sizeof(struct rds_rx_trace_so))
412		return -EFAULT;
413
414	if (copy_from_sockptr(&trace, optval, sizeof(trace)))
415		return -EFAULT;
416
417	if (trace.rx_traces > RDS_MSG_RX_DGRAM_TRACE_MAX)
418		return -EFAULT;
419
420	rs->rs_rx_traces = trace.rx_traces;
421	for (i = 0; i < rs->rs_rx_traces; i++) {
422		if (trace.rx_trace_pos[i] >= RDS_MSG_RX_DGRAM_TRACE_MAX) {
423			rs->rs_rx_traces = 0;
424			return -EFAULT;
425		}
426		rs->rs_rx_trace[i] = trace.rx_trace_pos[i];
427	}
428
429	return 0;
430}
431
432static int rds_setsockopt(struct socket *sock, int level, int optname,
433			  sockptr_t optval, unsigned int optlen)
434{
435	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
436	int ret;
437
438	if (level != SOL_RDS) {
439		ret = -ENOPROTOOPT;
440		goto out;
441	}
442
443	switch (optname) {
444	case RDS_CANCEL_SENT_TO:
445		ret = rds_cancel_sent_to(rs, optval, optlen);
446		break;
447	case RDS_GET_MR:
448		ret = rds_get_mr(rs, optval, optlen);
449		break;
450	case RDS_GET_MR_FOR_DEST:
451		ret = rds_get_mr_for_dest(rs, optval, optlen);
452		break;
453	case RDS_FREE_MR:
454		ret = rds_free_mr(rs, optval, optlen);
455		break;
456	case RDS_RECVERR:
457		ret = rds_set_bool_option(&rs->rs_recverr, optval, optlen);
458		break;
459	case RDS_CONG_MONITOR:
460		ret = rds_cong_monitor(rs, optval, optlen);
461		break;
462	case SO_RDS_TRANSPORT:
463		lock_sock(sock->sk);
464		ret = rds_set_transport(rs, optval, optlen);
465		release_sock(sock->sk);
466		break;
467	case SO_TIMESTAMP_OLD:
468	case SO_TIMESTAMP_NEW:
469		lock_sock(sock->sk);
470		ret = rds_enable_recvtstamp(sock->sk, optval, optlen, optname);
471		release_sock(sock->sk);
472		break;
473	case SO_RDS_MSG_RXPATH_LATENCY:
474		ret = rds_recv_track_latency(rs, optval, optlen);
475		break;
476	default:
477		ret = -ENOPROTOOPT;
478	}
479out:
480	return ret;
481}
482
483static int rds_getsockopt(struct socket *sock, int level, int optname,
484			  char __user *optval, int __user *optlen)
485{
486	struct rds_sock *rs = rds_sk_to_rs(sock->sk);
487	int ret = -ENOPROTOOPT, len;
488	int trans;
489
490	if (level != SOL_RDS)
491		goto out;
492
493	if (get_user(len, optlen)) {
494		ret = -EFAULT;
495		goto out;
496	}
497
498	switch (optname) {
499	case RDS_INFO_FIRST ... RDS_INFO_LAST:
500		ret = rds_info_getsockopt(sock, optname, optval,
501					  optlen);
502		break;
503
504	case RDS_RECVERR:
505		if (len < sizeof(int))
506			ret = -EINVAL;
507		else
508		if (put_user(rs->rs_recverr, (int __user *) optval) ||
509		    put_user(sizeof(int), optlen))
510			ret = -EFAULT;
511		else
512			ret = 0;
513		break;
514	case SO_RDS_TRANSPORT:
515		if (len < sizeof(int)) {
516			ret = -EINVAL;
517			break;
518		}
519		trans = (rs->rs_transport ? rs->rs_transport->t_type :
520			 RDS_TRANS_NONE); /* unbound */
521		if (put_user(trans, (int __user *)optval) ||
522		    put_user(sizeof(int), optlen))
523			ret = -EFAULT;
524		else
525			ret = 0;
526		break;
527	default:
528		break;
529	}
530
531out:
532	return ret;
533
534}
535
536static int rds_connect(struct socket *sock, struct sockaddr *uaddr,
537		       int addr_len, int flags)
538{
539	struct sock *sk = sock->sk;
540	struct sockaddr_in *sin;
541	struct rds_sock *rs = rds_sk_to_rs(sk);
542	int ret = 0;
543
544	if (addr_len < offsetofend(struct sockaddr, sa_family))
545		return -EINVAL;
546
547	lock_sock(sk);
548
549	switch (uaddr->sa_family) {
550	case AF_INET:
551		sin = (struct sockaddr_in *)uaddr;
552		if (addr_len < sizeof(struct sockaddr_in)) {
553			ret = -EINVAL;
554			break;
555		}
556		if (sin->sin_addr.s_addr == htonl(INADDR_ANY)) {
557			ret = -EDESTADDRREQ;
558			break;
559		}
560		if (ipv4_is_multicast(sin->sin_addr.s_addr) ||
561		    sin->sin_addr.s_addr == htonl(INADDR_BROADCAST)) {
562			ret = -EINVAL;
563			break;
564		}
565		ipv6_addr_set_v4mapped(sin->sin_addr.s_addr, &rs->rs_conn_addr);
566		rs->rs_conn_port = sin->sin_port;
567		break;
568
569#if IS_ENABLED(CONFIG_IPV6)
570	case AF_INET6: {
571		struct sockaddr_in6 *sin6;
572		int addr_type;
573
574		sin6 = (struct sockaddr_in6 *)uaddr;
575		if (addr_len < sizeof(struct sockaddr_in6)) {
576			ret = -EINVAL;
577			break;
578		}
579		addr_type = ipv6_addr_type(&sin6->sin6_addr);
580		if (!(addr_type & IPV6_ADDR_UNICAST)) {
581			__be32 addr4;
582
583			if (!(addr_type & IPV6_ADDR_MAPPED)) {
584				ret = -EPROTOTYPE;
585				break;
586			}
587
588			/* It is a mapped address.  Need to do some sanity
589			 * checks.
590			 */
591			addr4 = sin6->sin6_addr.s6_addr32[3];
592			if (addr4 == htonl(INADDR_ANY) ||
593			    addr4 == htonl(INADDR_BROADCAST) ||
594			    ipv4_is_multicast(addr4)) {
595				ret = -EPROTOTYPE;
596				break;
597			}
598		}
599
600		if (addr_type & IPV6_ADDR_LINKLOCAL) {
601			/* If socket is arleady bound to a link local address,
602			 * the peer address must be on the same link.
603			 */
604			if (sin6->sin6_scope_id == 0 ||
605			    (!ipv6_addr_any(&rs->rs_bound_addr) &&
606			     rs->rs_bound_scope_id &&
607			     sin6->sin6_scope_id != rs->rs_bound_scope_id)) {
608				ret = -EINVAL;
609				break;
610			}
611			/* Remember the connected address scope ID.  It will
612			 * be checked against the binding local address when
613			 * the socket is bound.
614			 */
615			rs->rs_bound_scope_id = sin6->sin6_scope_id;
616		}
617		rs->rs_conn_addr = sin6->sin6_addr;
618		rs->rs_conn_port = sin6->sin6_port;
619		break;
620	}
621#endif
622
623	default:
624		ret = -EAFNOSUPPORT;
625		break;
626	}
627
 
628	release_sock(sk);
629	return ret;
630}
631
632static struct proto rds_proto = {
633	.name	  = "RDS",
634	.owner	  = THIS_MODULE,
635	.obj_size = sizeof(struct rds_sock),
636};
637
638static const struct proto_ops rds_proto_ops = {
639	.family =	AF_RDS,
640	.owner =	THIS_MODULE,
641	.release =	rds_release,
642	.bind =		rds_bind,
643	.connect =	rds_connect,
644	.socketpair =	sock_no_socketpair,
645	.accept =	sock_no_accept,
646	.getname =	rds_getname,
647	.poll =		rds_poll,
648	.ioctl =	rds_ioctl,
649	.listen =	sock_no_listen,
650	.shutdown =	sock_no_shutdown,
651	.setsockopt =	rds_setsockopt,
652	.getsockopt =	rds_getsockopt,
653	.sendmsg =	rds_sendmsg,
654	.recvmsg =	rds_recvmsg,
655	.mmap =		sock_no_mmap,
 
656};
657
658static void rds_sock_destruct(struct sock *sk)
659{
660	struct rds_sock *rs = rds_sk_to_rs(sk);
661
662	WARN_ON((&rs->rs_item != rs->rs_item.next ||
663		 &rs->rs_item != rs->rs_item.prev));
664}
665
666static int __rds_create(struct socket *sock, struct sock *sk, int protocol)
667{
668	struct rds_sock *rs;
669
670	sock_init_data(sock, sk);
671	sock->ops		= &rds_proto_ops;
672	sk->sk_protocol		= protocol;
673	sk->sk_destruct		= rds_sock_destruct;
674
675	rs = rds_sk_to_rs(sk);
676	spin_lock_init(&rs->rs_lock);
677	rwlock_init(&rs->rs_recv_lock);
678	INIT_LIST_HEAD(&rs->rs_send_queue);
679	INIT_LIST_HEAD(&rs->rs_recv_queue);
680	INIT_LIST_HEAD(&rs->rs_notify_queue);
681	INIT_LIST_HEAD(&rs->rs_cong_list);
682	rds_message_zcopy_queue_init(&rs->rs_zcookie_queue);
683	spin_lock_init(&rs->rs_rdma_lock);
684	rs->rs_rdma_keys = RB_ROOT;
685	rs->rs_rx_traces = 0;
686	rs->rs_tos = 0;
687	rs->rs_conn = NULL;
688
689	spin_lock_bh(&rds_sock_lock);
690	list_add_tail(&rs->rs_item, &rds_sock_list);
691	rds_sock_count++;
692	spin_unlock_bh(&rds_sock_lock);
693
694	return 0;
695}
696
697static int rds_create(struct net *net, struct socket *sock, int protocol,
698		      int kern)
699{
700	struct sock *sk;
701
702	if (sock->type != SOCK_SEQPACKET || protocol)
703		return -ESOCKTNOSUPPORT;
704
705	sk = sk_alloc(net, AF_RDS, GFP_KERNEL, &rds_proto, kern);
706	if (!sk)
707		return -ENOMEM;
708
709	return __rds_create(sock, sk, protocol);
710}
711
712void rds_sock_addref(struct rds_sock *rs)
713{
714	sock_hold(rds_rs_to_sk(rs));
715}
716
717void rds_sock_put(struct rds_sock *rs)
718{
719	sock_put(rds_rs_to_sk(rs));
720}
721
722static const struct net_proto_family rds_family_ops = {
723	.family =	AF_RDS,
724	.create =	rds_create,
725	.owner	=	THIS_MODULE,
726};
727
728static void rds_sock_inc_info(struct socket *sock, unsigned int len,
729			      struct rds_info_iterator *iter,
730			      struct rds_info_lengths *lens)
731{
732	struct rds_sock *rs;
733	struct rds_incoming *inc;
734	unsigned int total = 0;
735
736	len /= sizeof(struct rds_info_message);
737
738	spin_lock_bh(&rds_sock_lock);
739
740	list_for_each_entry(rs, &rds_sock_list, rs_item) {
741		/* This option only supports IPv4 sockets. */
742		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
743			continue;
744
745		read_lock(&rs->rs_recv_lock);
746
747		/* XXX too lazy to maintain counts.. */
748		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
749			total++;
750			if (total <= len)
751				rds_inc_info_copy(inc, iter,
752						  inc->i_saddr.s6_addr32[3],
753						  rs->rs_bound_addr_v4,
754						  1);
755		}
756
757		read_unlock(&rs->rs_recv_lock);
758	}
759
760	spin_unlock_bh(&rds_sock_lock);
761
762	lens->nr = total;
763	lens->each = sizeof(struct rds_info_message);
764}
765
766#if IS_ENABLED(CONFIG_IPV6)
767static void rds6_sock_inc_info(struct socket *sock, unsigned int len,
768			       struct rds_info_iterator *iter,
769			       struct rds_info_lengths *lens)
770{
771	struct rds_incoming *inc;
772	unsigned int total = 0;
773	struct rds_sock *rs;
774
775	len /= sizeof(struct rds6_info_message);
776
777	spin_lock_bh(&rds_sock_lock);
778
779	list_for_each_entry(rs, &rds_sock_list, rs_item) {
780		read_lock(&rs->rs_recv_lock);
781
782		list_for_each_entry(inc, &rs->rs_recv_queue, i_item) {
783			total++;
784			if (total <= len)
785				rds6_inc_info_copy(inc, iter, &inc->i_saddr,
786						   &rs->rs_bound_addr, 1);
787		}
788
789		read_unlock(&rs->rs_recv_lock);
790	}
791
792	spin_unlock_bh(&rds_sock_lock);
793
794	lens->nr = total;
795	lens->each = sizeof(struct rds6_info_message);
796}
797#endif
798
799static void rds_sock_info(struct socket *sock, unsigned int len,
800			  struct rds_info_iterator *iter,
801			  struct rds_info_lengths *lens)
802{
803	struct rds_info_socket sinfo;
804	unsigned int cnt = 0;
805	struct rds_sock *rs;
806
807	len /= sizeof(struct rds_info_socket);
808
809	spin_lock_bh(&rds_sock_lock);
810
811	if (len < rds_sock_count) {
812		cnt = rds_sock_count;
813		goto out;
814	}
815
816	list_for_each_entry(rs, &rds_sock_list, rs_item) {
817		/* This option only supports IPv4 sockets. */
818		if (!ipv6_addr_v4mapped(&rs->rs_bound_addr))
819			continue;
820		sinfo.sndbuf = rds_sk_sndbuf(rs);
821		sinfo.rcvbuf = rds_sk_rcvbuf(rs);
822		sinfo.bound_addr = rs->rs_bound_addr_v4;
823		sinfo.connected_addr = rs->rs_conn_addr_v4;
824		sinfo.bound_port = rs->rs_bound_port;
825		sinfo.connected_port = rs->rs_conn_port;
826		sinfo.inum = sock_i_ino(rds_rs_to_sk(rs));
827
828		rds_info_copy(iter, &sinfo, sizeof(sinfo));
829		cnt++;
830	}
831
832out:
833	lens->nr = cnt;
834	lens->each = sizeof(struct rds_info_socket);
835
836	spin_unlock_bh(&rds_sock_lock);
837}
838
839#if IS_ENABLED(CONFIG_IPV6)
840static void rds6_sock_info(struct socket *sock, unsigned int len,
841			   struct rds_info_iterator *iter,
842			   struct rds_info_lengths *lens)
843{
844	struct rds6_info_socket sinfo6;
845	struct rds_sock *rs;
846
847	len /= sizeof(struct rds6_info_socket);
848
849	spin_lock_bh(&rds_sock_lock);
850
851	if (len < rds_sock_count)
852		goto out;
853
854	list_for_each_entry(rs, &rds_sock_list, rs_item) {
855		sinfo6.sndbuf = rds_sk_sndbuf(rs);
856		sinfo6.rcvbuf = rds_sk_rcvbuf(rs);
857		sinfo6.bound_addr = rs->rs_bound_addr;
858		sinfo6.connected_addr = rs->rs_conn_addr;
859		sinfo6.bound_port = rs->rs_bound_port;
860		sinfo6.connected_port = rs->rs_conn_port;
861		sinfo6.inum = sock_i_ino(rds_rs_to_sk(rs));
862
863		rds_info_copy(iter, &sinfo6, sizeof(sinfo6));
864	}
865
866 out:
867	lens->nr = rds_sock_count;
868	lens->each = sizeof(struct rds6_info_socket);
869
870	spin_unlock_bh(&rds_sock_lock);
871}
872#endif
873
874static void rds_exit(void)
875{
876	sock_unregister(rds_family_ops.family);
877	proto_unregister(&rds_proto);
878	rds_conn_exit();
879	rds_cong_exit();
880	rds_sysctl_exit();
881	rds_threads_exit();
882	rds_stats_exit();
883	rds_page_exit();
884	rds_bind_lock_destroy();
885	rds_info_deregister_func(RDS_INFO_SOCKETS, rds_sock_info);
886	rds_info_deregister_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
887#if IS_ENABLED(CONFIG_IPV6)
888	rds_info_deregister_func(RDS6_INFO_SOCKETS, rds6_sock_info);
889	rds_info_deregister_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
890#endif
891}
892module_exit(rds_exit);
893
894u32 rds_gen_num;
895
896static int __init rds_init(void)
897{
898	int ret;
899
900	net_get_random_once(&rds_gen_num, sizeof(rds_gen_num));
901
902	ret = rds_bind_lock_init();
903	if (ret)
904		goto out;
905
906	ret = rds_conn_init();
907	if (ret)
908		goto out_bind;
909
910	ret = rds_threads_init();
911	if (ret)
912		goto out_conn;
913	ret = rds_sysctl_init();
914	if (ret)
915		goto out_threads;
916	ret = rds_stats_init();
917	if (ret)
918		goto out_sysctl;
919	ret = proto_register(&rds_proto, 1);
920	if (ret)
921		goto out_stats;
922	ret = sock_register(&rds_family_ops);
923	if (ret)
924		goto out_proto;
925
926	rds_info_register_func(RDS_INFO_SOCKETS, rds_sock_info);
927	rds_info_register_func(RDS_INFO_RECV_MESSAGES, rds_sock_inc_info);
928#if IS_ENABLED(CONFIG_IPV6)
929	rds_info_register_func(RDS6_INFO_SOCKETS, rds6_sock_info);
930	rds_info_register_func(RDS6_INFO_RECV_MESSAGES, rds6_sock_inc_info);
931#endif
932
933	goto out;
934
935out_proto:
936	proto_unregister(&rds_proto);
937out_stats:
938	rds_stats_exit();
939out_sysctl:
940	rds_sysctl_exit();
941out_threads:
942	rds_threads_exit();
943out_conn:
944	rds_conn_exit();
945	rds_cong_exit();
946	rds_page_exit();
947out_bind:
948	rds_bind_lock_destroy();
949out:
950	return ret;
951}
952module_init(rds_init);
953
954#define DRV_VERSION     "4.0"
955#define DRV_RELDATE     "Feb 12, 2009"
956
957MODULE_AUTHOR("Oracle Corporation <rds-devel@oss.oracle.com>");
958MODULE_DESCRIPTION("RDS: Reliable Datagram Sockets"
959		   " v" DRV_VERSION " (" DRV_RELDATE ")");
960MODULE_VERSION(DRV_VERSION);
961MODULE_LICENSE("Dual BSD/GPL");
962MODULE_ALIAS_NETPROTO(PF_RDS);