Loading...
1/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 *
13 * Changes:
14 * Yuji SEKIYA @USAGI: Support default route on router node;
15 * remove ip6_null_entry from the top of
16 * routing table.
17 * Ville Nuorvala: Fixed routing subtrees.
18 */
19
20#define pr_fmt(fmt) "IPv6: " fmt
21
22#include <linux/errno.h>
23#include <linux/types.h>
24#include <linux/net.h>
25#include <linux/route.h>
26#include <linux/netdevice.h>
27#include <linux/in6.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31
32#include <net/ipv6.h>
33#include <net/ndisc.h>
34#include <net/addrconf.h>
35#include <net/lwtunnel.h>
36
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40#define RT6_DEBUG 2
41
42#if RT6_DEBUG >= 3
43#define RT6_TRACE(x...) pr_debug(x)
44#else
45#define RT6_TRACE(x...) do { ; } while (0)
46#endif
47
48static struct kmem_cache *fib6_node_kmem __read_mostly;
49
50struct fib6_cleaner {
51 struct fib6_walker w;
52 struct net *net;
53 int (*func)(struct rt6_info *, void *arg);
54 int sernum;
55 void *arg;
56};
57
58#ifdef CONFIG_IPV6_SUBTREES
59#define FWS_INIT FWS_S
60#else
61#define FWS_INIT FWS_L
62#endif
63
64static void fib6_prune_clones(struct net *net, struct fib6_node *fn);
65static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
66static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
67static int fib6_walk(struct net *net, struct fib6_walker *w);
68static int fib6_walk_continue(struct fib6_walker *w);
69
70/*
71 * A routing update causes an increase of the serial number on the
72 * affected subtree. This allows for cached routes to be asynchronously
73 * tested when modifications are made to the destination cache as a
74 * result of redirects, path MTU changes, etc.
75 */
76
77static void fib6_gc_timer_cb(unsigned long arg);
78
79#define FOR_WALKERS(net, w) \
80 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
81
82static void fib6_walker_link(struct net *net, struct fib6_walker *w)
83{
84 write_lock_bh(&net->ipv6.fib6_walker_lock);
85 list_add(&w->lh, &net->ipv6.fib6_walkers);
86 write_unlock_bh(&net->ipv6.fib6_walker_lock);
87}
88
89static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
90{
91 write_lock_bh(&net->ipv6.fib6_walker_lock);
92 list_del(&w->lh);
93 write_unlock_bh(&net->ipv6.fib6_walker_lock);
94}
95
96static int fib6_new_sernum(struct net *net)
97{
98 int new, old;
99
100 do {
101 old = atomic_read(&net->ipv6.fib6_sernum);
102 new = old < INT_MAX ? old + 1 : 1;
103 } while (atomic_cmpxchg(&net->ipv6.fib6_sernum,
104 old, new) != old);
105 return new;
106}
107
108enum {
109 FIB6_NO_SERNUM_CHANGE = 0,
110};
111
112/*
113 * Auxiliary address test functions for the radix tree.
114 *
115 * These assume a 32bit processor (although it will work on
116 * 64bit processors)
117 */
118
119/*
120 * test bit
121 */
122#if defined(__LITTLE_ENDIAN)
123# define BITOP_BE32_SWIZZLE (0x1F & ~7)
124#else
125# define BITOP_BE32_SWIZZLE 0
126#endif
127
128static __be32 addr_bit_set(const void *token, int fn_bit)
129{
130 const __be32 *addr = token;
131 /*
132 * Here,
133 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
134 * is optimized version of
135 * htonl(1 << ((~fn_bit)&0x1F))
136 * See include/asm-generic/bitops/le.h.
137 */
138 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
139 addr[fn_bit >> 5];
140}
141
142static struct fib6_node *node_alloc(void)
143{
144 struct fib6_node *fn;
145
146 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
147
148 return fn;
149}
150
151static void node_free(struct fib6_node *fn)
152{
153 kmem_cache_free(fib6_node_kmem, fn);
154}
155
156static void rt6_rcu_free(struct rt6_info *rt)
157{
158 call_rcu(&rt->dst.rcu_head, dst_rcu_free);
159}
160
161static void rt6_free_pcpu(struct rt6_info *non_pcpu_rt)
162{
163 int cpu;
164
165 if (!non_pcpu_rt->rt6i_pcpu)
166 return;
167
168 for_each_possible_cpu(cpu) {
169 struct rt6_info **ppcpu_rt;
170 struct rt6_info *pcpu_rt;
171
172 ppcpu_rt = per_cpu_ptr(non_pcpu_rt->rt6i_pcpu, cpu);
173 pcpu_rt = *ppcpu_rt;
174 if (pcpu_rt) {
175 rt6_rcu_free(pcpu_rt);
176 *ppcpu_rt = NULL;
177 }
178 }
179
180 non_pcpu_rt->rt6i_pcpu = NULL;
181}
182
183static void rt6_release(struct rt6_info *rt)
184{
185 if (atomic_dec_and_test(&rt->rt6i_ref)) {
186 rt6_free_pcpu(rt);
187 rt6_rcu_free(rt);
188 }
189}
190
191static void fib6_link_table(struct net *net, struct fib6_table *tb)
192{
193 unsigned int h;
194
195 /*
196 * Initialize table lock at a single place to give lockdep a key,
197 * tables aren't visible prior to being linked to the list.
198 */
199 rwlock_init(&tb->tb6_lock);
200
201 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
202
203 /*
204 * No protection necessary, this is the only list mutatation
205 * operation, tables never disappear once they exist.
206 */
207 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
208}
209
210#ifdef CONFIG_IPV6_MULTIPLE_TABLES
211
212static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
213{
214 struct fib6_table *table;
215
216 table = kzalloc(sizeof(*table), GFP_ATOMIC);
217 if (table) {
218 table->tb6_id = id;
219 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
220 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
221 inet_peer_base_init(&table->tb6_peers);
222 }
223
224 return table;
225}
226
227struct fib6_table *fib6_new_table(struct net *net, u32 id)
228{
229 struct fib6_table *tb;
230
231 if (id == 0)
232 id = RT6_TABLE_MAIN;
233 tb = fib6_get_table(net, id);
234 if (tb)
235 return tb;
236
237 tb = fib6_alloc_table(net, id);
238 if (tb)
239 fib6_link_table(net, tb);
240
241 return tb;
242}
243
244struct fib6_table *fib6_get_table(struct net *net, u32 id)
245{
246 struct fib6_table *tb;
247 struct hlist_head *head;
248 unsigned int h;
249
250 if (id == 0)
251 id = RT6_TABLE_MAIN;
252 h = id & (FIB6_TABLE_HASHSZ - 1);
253 rcu_read_lock();
254 head = &net->ipv6.fib_table_hash[h];
255 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
256 if (tb->tb6_id == id) {
257 rcu_read_unlock();
258 return tb;
259 }
260 }
261 rcu_read_unlock();
262
263 return NULL;
264}
265EXPORT_SYMBOL_GPL(fib6_get_table);
266
267static void __net_init fib6_tables_init(struct net *net)
268{
269 fib6_link_table(net, net->ipv6.fib6_main_tbl);
270 fib6_link_table(net, net->ipv6.fib6_local_tbl);
271}
272#else
273
274struct fib6_table *fib6_new_table(struct net *net, u32 id)
275{
276 return fib6_get_table(net, id);
277}
278
279struct fib6_table *fib6_get_table(struct net *net, u32 id)
280{
281 return net->ipv6.fib6_main_tbl;
282}
283
284struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
285 int flags, pol_lookup_t lookup)
286{
287 struct rt6_info *rt;
288
289 rt = lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
290 if (rt->rt6i_flags & RTF_REJECT &&
291 rt->dst.error == -EAGAIN) {
292 ip6_rt_put(rt);
293 rt = net->ipv6.ip6_null_entry;
294 dst_hold(&rt->dst);
295 }
296
297 return &rt->dst;
298}
299
300static void __net_init fib6_tables_init(struct net *net)
301{
302 fib6_link_table(net, net->ipv6.fib6_main_tbl);
303}
304
305#endif
306
307static int fib6_dump_node(struct fib6_walker *w)
308{
309 int res;
310 struct rt6_info *rt;
311
312 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
313 res = rt6_dump_route(rt, w->args);
314 if (res < 0) {
315 /* Frame is full, suspend walking */
316 w->leaf = rt;
317 return 1;
318 }
319 }
320 w->leaf = NULL;
321 return 0;
322}
323
324static void fib6_dump_end(struct netlink_callback *cb)
325{
326 struct net *net = sock_net(cb->skb->sk);
327 struct fib6_walker *w = (void *)cb->args[2];
328
329 if (w) {
330 if (cb->args[4]) {
331 cb->args[4] = 0;
332 fib6_walker_unlink(net, w);
333 }
334 cb->args[2] = 0;
335 kfree(w);
336 }
337 cb->done = (void *)cb->args[3];
338 cb->args[1] = 3;
339}
340
341static int fib6_dump_done(struct netlink_callback *cb)
342{
343 fib6_dump_end(cb);
344 return cb->done ? cb->done(cb) : 0;
345}
346
347static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
348 struct netlink_callback *cb)
349{
350 struct net *net = sock_net(skb->sk);
351 struct fib6_walker *w;
352 int res;
353
354 w = (void *)cb->args[2];
355 w->root = &table->tb6_root;
356
357 if (cb->args[4] == 0) {
358 w->count = 0;
359 w->skip = 0;
360
361 read_lock_bh(&table->tb6_lock);
362 res = fib6_walk(net, w);
363 read_unlock_bh(&table->tb6_lock);
364 if (res > 0) {
365 cb->args[4] = 1;
366 cb->args[5] = w->root->fn_sernum;
367 }
368 } else {
369 if (cb->args[5] != w->root->fn_sernum) {
370 /* Begin at the root if the tree changed */
371 cb->args[5] = w->root->fn_sernum;
372 w->state = FWS_INIT;
373 w->node = w->root;
374 w->skip = w->count;
375 } else
376 w->skip = 0;
377
378 read_lock_bh(&table->tb6_lock);
379 res = fib6_walk_continue(w);
380 read_unlock_bh(&table->tb6_lock);
381 if (res <= 0) {
382 fib6_walker_unlink(net, w);
383 cb->args[4] = 0;
384 }
385 }
386
387 return res;
388}
389
390static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
391{
392 struct net *net = sock_net(skb->sk);
393 unsigned int h, s_h;
394 unsigned int e = 0, s_e;
395 struct rt6_rtnl_dump_arg arg;
396 struct fib6_walker *w;
397 struct fib6_table *tb;
398 struct hlist_head *head;
399 int res = 0;
400
401 s_h = cb->args[0];
402 s_e = cb->args[1];
403
404 w = (void *)cb->args[2];
405 if (!w) {
406 /* New dump:
407 *
408 * 1. hook callback destructor.
409 */
410 cb->args[3] = (long)cb->done;
411 cb->done = fib6_dump_done;
412
413 /*
414 * 2. allocate and initialize walker.
415 */
416 w = kzalloc(sizeof(*w), GFP_ATOMIC);
417 if (!w)
418 return -ENOMEM;
419 w->func = fib6_dump_node;
420 cb->args[2] = (long)w;
421 }
422
423 arg.skb = skb;
424 arg.cb = cb;
425 arg.net = net;
426 w->args = &arg;
427
428 rcu_read_lock();
429 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
430 e = 0;
431 head = &net->ipv6.fib_table_hash[h];
432 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
433 if (e < s_e)
434 goto next;
435 res = fib6_dump_table(tb, skb, cb);
436 if (res != 0)
437 goto out;
438next:
439 e++;
440 }
441 }
442out:
443 rcu_read_unlock();
444 cb->args[1] = e;
445 cb->args[0] = h;
446
447 res = res < 0 ? res : skb->len;
448 if (res <= 0)
449 fib6_dump_end(cb);
450 return res;
451}
452
453/*
454 * Routing Table
455 *
456 * return the appropriate node for a routing tree "add" operation
457 * by either creating and inserting or by returning an existing
458 * node.
459 */
460
461static struct fib6_node *fib6_add_1(struct fib6_node *root,
462 struct in6_addr *addr, int plen,
463 int offset, int allow_create,
464 int replace_required, int sernum)
465{
466 struct fib6_node *fn, *in, *ln;
467 struct fib6_node *pn = NULL;
468 struct rt6key *key;
469 int bit;
470 __be32 dir = 0;
471
472 RT6_TRACE("fib6_add_1\n");
473
474 /* insert node in tree */
475
476 fn = root;
477
478 do {
479 key = (struct rt6key *)((u8 *)fn->leaf + offset);
480
481 /*
482 * Prefix match
483 */
484 if (plen < fn->fn_bit ||
485 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
486 if (!allow_create) {
487 if (replace_required) {
488 pr_warn("Can't replace route, no match found\n");
489 return ERR_PTR(-ENOENT);
490 }
491 pr_warn("NLM_F_CREATE should be set when creating new route\n");
492 }
493 goto insert_above;
494 }
495
496 /*
497 * Exact match ?
498 */
499
500 if (plen == fn->fn_bit) {
501 /* clean up an intermediate node */
502 if (!(fn->fn_flags & RTN_RTINFO)) {
503 rt6_release(fn->leaf);
504 fn->leaf = NULL;
505 }
506
507 fn->fn_sernum = sernum;
508
509 return fn;
510 }
511
512 /*
513 * We have more bits to go
514 */
515
516 /* Try to walk down on tree. */
517 fn->fn_sernum = sernum;
518 dir = addr_bit_set(addr, fn->fn_bit);
519 pn = fn;
520 fn = dir ? fn->right : fn->left;
521 } while (fn);
522
523 if (!allow_create) {
524 /* We should not create new node because
525 * NLM_F_REPLACE was specified without NLM_F_CREATE
526 * I assume it is safe to require NLM_F_CREATE when
527 * REPLACE flag is used! Later we may want to remove the
528 * check for replace_required, because according
529 * to netlink specification, NLM_F_CREATE
530 * MUST be specified if new route is created.
531 * That would keep IPv6 consistent with IPv4
532 */
533 if (replace_required) {
534 pr_warn("Can't replace route, no match found\n");
535 return ERR_PTR(-ENOENT);
536 }
537 pr_warn("NLM_F_CREATE should be set when creating new route\n");
538 }
539 /*
540 * We walked to the bottom of tree.
541 * Create new leaf node without children.
542 */
543
544 ln = node_alloc();
545
546 if (!ln)
547 return ERR_PTR(-ENOMEM);
548 ln->fn_bit = plen;
549
550 ln->parent = pn;
551 ln->fn_sernum = sernum;
552
553 if (dir)
554 pn->right = ln;
555 else
556 pn->left = ln;
557
558 return ln;
559
560
561insert_above:
562 /*
563 * split since we don't have a common prefix anymore or
564 * we have a less significant route.
565 * we've to insert an intermediate node on the list
566 * this new node will point to the one we need to create
567 * and the current
568 */
569
570 pn = fn->parent;
571
572 /* find 1st bit in difference between the 2 addrs.
573
574 See comment in __ipv6_addr_diff: bit may be an invalid value,
575 but if it is >= plen, the value is ignored in any case.
576 */
577
578 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
579
580 /*
581 * (intermediate)[in]
582 * / \
583 * (new leaf node)[ln] (old node)[fn]
584 */
585 if (plen > bit) {
586 in = node_alloc();
587 ln = node_alloc();
588
589 if (!in || !ln) {
590 if (in)
591 node_free(in);
592 if (ln)
593 node_free(ln);
594 return ERR_PTR(-ENOMEM);
595 }
596
597 /*
598 * new intermediate node.
599 * RTN_RTINFO will
600 * be off since that an address that chooses one of
601 * the branches would not match less specific routes
602 * in the other branch
603 */
604
605 in->fn_bit = bit;
606
607 in->parent = pn;
608 in->leaf = fn->leaf;
609 atomic_inc(&in->leaf->rt6i_ref);
610
611 in->fn_sernum = sernum;
612
613 /* update parent pointer */
614 if (dir)
615 pn->right = in;
616 else
617 pn->left = in;
618
619 ln->fn_bit = plen;
620
621 ln->parent = in;
622 fn->parent = in;
623
624 ln->fn_sernum = sernum;
625
626 if (addr_bit_set(addr, bit)) {
627 in->right = ln;
628 in->left = fn;
629 } else {
630 in->left = ln;
631 in->right = fn;
632 }
633 } else { /* plen <= bit */
634
635 /*
636 * (new leaf node)[ln]
637 * / \
638 * (old node)[fn] NULL
639 */
640
641 ln = node_alloc();
642
643 if (!ln)
644 return ERR_PTR(-ENOMEM);
645
646 ln->fn_bit = plen;
647
648 ln->parent = pn;
649
650 ln->fn_sernum = sernum;
651
652 if (dir)
653 pn->right = ln;
654 else
655 pn->left = ln;
656
657 if (addr_bit_set(&key->addr, plen))
658 ln->right = fn;
659 else
660 ln->left = fn;
661
662 fn->parent = ln;
663 }
664 return ln;
665}
666
667static bool rt6_qualify_for_ecmp(struct rt6_info *rt)
668{
669 return (rt->rt6i_flags & (RTF_GATEWAY|RTF_ADDRCONF|RTF_DYNAMIC)) ==
670 RTF_GATEWAY;
671}
672
673static void fib6_copy_metrics(u32 *mp, const struct mx6_config *mxc)
674{
675 int i;
676
677 for (i = 0; i < RTAX_MAX; i++) {
678 if (test_bit(i, mxc->mx_valid))
679 mp[i] = mxc->mx[i];
680 }
681}
682
683static int fib6_commit_metrics(struct dst_entry *dst, struct mx6_config *mxc)
684{
685 if (!mxc->mx)
686 return 0;
687
688 if (dst->flags & DST_HOST) {
689 u32 *mp = dst_metrics_write_ptr(dst);
690
691 if (unlikely(!mp))
692 return -ENOMEM;
693
694 fib6_copy_metrics(mp, mxc);
695 } else {
696 dst_init_metrics(dst, mxc->mx, false);
697
698 /* We've stolen mx now. */
699 mxc->mx = NULL;
700 }
701
702 return 0;
703}
704
705static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
706 struct net *net)
707{
708 if (atomic_read(&rt->rt6i_ref) != 1) {
709 /* This route is used as dummy address holder in some split
710 * nodes. It is not leaked, but it still holds other resources,
711 * which must be released in time. So, scan ascendant nodes
712 * and replace dummy references to this route with references
713 * to still alive ones.
714 */
715 while (fn) {
716 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
717 fn->leaf = fib6_find_prefix(net, fn);
718 atomic_inc(&fn->leaf->rt6i_ref);
719 rt6_release(rt);
720 }
721 fn = fn->parent;
722 }
723 /* No more references are possible at this point. */
724 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
725 }
726}
727
728/*
729 * Insert routing information in a node.
730 */
731
732static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
733 struct nl_info *info, struct mx6_config *mxc)
734{
735 struct rt6_info *iter = NULL;
736 struct rt6_info **ins;
737 struct rt6_info **fallback_ins = NULL;
738 int replace = (info->nlh &&
739 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
740 int add = (!info->nlh ||
741 (info->nlh->nlmsg_flags & NLM_F_CREATE));
742 int found = 0;
743 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
744 int err;
745
746 ins = &fn->leaf;
747
748 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
749 /*
750 * Search for duplicates
751 */
752
753 if (iter->rt6i_metric == rt->rt6i_metric) {
754 /*
755 * Same priority level
756 */
757 if (info->nlh &&
758 (info->nlh->nlmsg_flags & NLM_F_EXCL))
759 return -EEXIST;
760 if (replace) {
761 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
762 found++;
763 break;
764 }
765 if (rt_can_ecmp)
766 fallback_ins = fallback_ins ?: ins;
767 goto next_iter;
768 }
769
770 if (iter->dst.dev == rt->dst.dev &&
771 iter->rt6i_idev == rt->rt6i_idev &&
772 ipv6_addr_equal(&iter->rt6i_gateway,
773 &rt->rt6i_gateway)) {
774 if (rt->rt6i_nsiblings)
775 rt->rt6i_nsiblings = 0;
776 if (!(iter->rt6i_flags & RTF_EXPIRES))
777 return -EEXIST;
778 if (!(rt->rt6i_flags & RTF_EXPIRES))
779 rt6_clean_expires(iter);
780 else
781 rt6_set_expires(iter, rt->dst.expires);
782 iter->rt6i_pmtu = rt->rt6i_pmtu;
783 return -EEXIST;
784 }
785 /* If we have the same destination and the same metric,
786 * but not the same gateway, then the route we try to
787 * add is sibling to this route, increment our counter
788 * of siblings, and later we will add our route to the
789 * list.
790 * Only static routes (which don't have flag
791 * RTF_EXPIRES) are used for ECMPv6.
792 *
793 * To avoid long list, we only had siblings if the
794 * route have a gateway.
795 */
796 if (rt_can_ecmp &&
797 rt6_qualify_for_ecmp(iter))
798 rt->rt6i_nsiblings++;
799 }
800
801 if (iter->rt6i_metric > rt->rt6i_metric)
802 break;
803
804next_iter:
805 ins = &iter->dst.rt6_next;
806 }
807
808 if (fallback_ins && !found) {
809 /* No ECMP-able route found, replace first non-ECMP one */
810 ins = fallback_ins;
811 iter = *ins;
812 found++;
813 }
814
815 /* Reset round-robin state, if necessary */
816 if (ins == &fn->leaf)
817 fn->rr_ptr = NULL;
818
819 /* Link this route to others same route. */
820 if (rt->rt6i_nsiblings) {
821 unsigned int rt6i_nsiblings;
822 struct rt6_info *sibling, *temp_sibling;
823
824 /* Find the first route that have the same metric */
825 sibling = fn->leaf;
826 while (sibling) {
827 if (sibling->rt6i_metric == rt->rt6i_metric &&
828 rt6_qualify_for_ecmp(sibling)) {
829 list_add_tail(&rt->rt6i_siblings,
830 &sibling->rt6i_siblings);
831 break;
832 }
833 sibling = sibling->dst.rt6_next;
834 }
835 /* For each sibling in the list, increment the counter of
836 * siblings. BUG() if counters does not match, list of siblings
837 * is broken!
838 */
839 rt6i_nsiblings = 0;
840 list_for_each_entry_safe(sibling, temp_sibling,
841 &rt->rt6i_siblings, rt6i_siblings) {
842 sibling->rt6i_nsiblings++;
843 BUG_ON(sibling->rt6i_nsiblings != rt->rt6i_nsiblings);
844 rt6i_nsiblings++;
845 }
846 BUG_ON(rt6i_nsiblings != rt->rt6i_nsiblings);
847 }
848
849 /*
850 * insert node
851 */
852 if (!replace) {
853 if (!add)
854 pr_warn("NLM_F_CREATE should be set when creating new route\n");
855
856add:
857 err = fib6_commit_metrics(&rt->dst, mxc);
858 if (err)
859 return err;
860
861 rt->dst.rt6_next = iter;
862 *ins = rt;
863 rt->rt6i_node = fn;
864 atomic_inc(&rt->rt6i_ref);
865 inet6_rt_notify(RTM_NEWROUTE, rt, info, 0);
866 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
867
868 if (!(fn->fn_flags & RTN_RTINFO)) {
869 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
870 fn->fn_flags |= RTN_RTINFO;
871 }
872
873 } else {
874 int nsiblings;
875
876 if (!found) {
877 if (add)
878 goto add;
879 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
880 return -ENOENT;
881 }
882
883 err = fib6_commit_metrics(&rt->dst, mxc);
884 if (err)
885 return err;
886
887 *ins = rt;
888 rt->rt6i_node = fn;
889 rt->dst.rt6_next = iter->dst.rt6_next;
890 atomic_inc(&rt->rt6i_ref);
891 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
892 if (!(fn->fn_flags & RTN_RTINFO)) {
893 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
894 fn->fn_flags |= RTN_RTINFO;
895 }
896 nsiblings = iter->rt6i_nsiblings;
897 fib6_purge_rt(iter, fn, info->nl_net);
898 rt6_release(iter);
899
900 if (nsiblings) {
901 /* Replacing an ECMP route, remove all siblings */
902 ins = &rt->dst.rt6_next;
903 iter = *ins;
904 while (iter) {
905 if (rt6_qualify_for_ecmp(iter)) {
906 *ins = iter->dst.rt6_next;
907 fib6_purge_rt(iter, fn, info->nl_net);
908 rt6_release(iter);
909 nsiblings--;
910 } else {
911 ins = &iter->dst.rt6_next;
912 }
913 iter = *ins;
914 }
915 WARN_ON(nsiblings != 0);
916 }
917 }
918
919 return 0;
920}
921
922static void fib6_start_gc(struct net *net, struct rt6_info *rt)
923{
924 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
925 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
926 mod_timer(&net->ipv6.ip6_fib_timer,
927 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
928}
929
930void fib6_force_start_gc(struct net *net)
931{
932 if (!timer_pending(&net->ipv6.ip6_fib_timer))
933 mod_timer(&net->ipv6.ip6_fib_timer,
934 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
935}
936
937/*
938 * Add routing information to the routing tree.
939 * <destination addr>/<source addr>
940 * with source addr info in sub-trees
941 */
942
943int fib6_add(struct fib6_node *root, struct rt6_info *rt,
944 struct nl_info *info, struct mx6_config *mxc)
945{
946 struct fib6_node *fn, *pn = NULL;
947 int err = -ENOMEM;
948 int allow_create = 1;
949 int replace_required = 0;
950 int sernum = fib6_new_sernum(info->nl_net);
951
952 if (WARN_ON_ONCE((rt->dst.flags & DST_NOCACHE) &&
953 !atomic_read(&rt->dst.__refcnt)))
954 return -EINVAL;
955
956 if (info->nlh) {
957 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
958 allow_create = 0;
959 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
960 replace_required = 1;
961 }
962 if (!allow_create && !replace_required)
963 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
964
965 fn = fib6_add_1(root, &rt->rt6i_dst.addr, rt->rt6i_dst.plen,
966 offsetof(struct rt6_info, rt6i_dst), allow_create,
967 replace_required, sernum);
968 if (IS_ERR(fn)) {
969 err = PTR_ERR(fn);
970 fn = NULL;
971 goto out;
972 }
973
974 pn = fn;
975
976#ifdef CONFIG_IPV6_SUBTREES
977 if (rt->rt6i_src.plen) {
978 struct fib6_node *sn;
979
980 if (!fn->subtree) {
981 struct fib6_node *sfn;
982
983 /*
984 * Create subtree.
985 *
986 * fn[main tree]
987 * |
988 * sfn[subtree root]
989 * \
990 * sn[new leaf node]
991 */
992
993 /* Create subtree root node */
994 sfn = node_alloc();
995 if (!sfn)
996 goto st_failure;
997
998 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
999 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
1000 sfn->fn_flags = RTN_ROOT;
1001 sfn->fn_sernum = sernum;
1002
1003 /* Now add the first leaf node to new subtree */
1004
1005 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
1006 rt->rt6i_src.plen,
1007 offsetof(struct rt6_info, rt6i_src),
1008 allow_create, replace_required, sernum);
1009
1010 if (IS_ERR(sn)) {
1011 /* If it is failed, discard just allocated
1012 root, and then (in st_failure) stale node
1013 in main tree.
1014 */
1015 node_free(sfn);
1016 err = PTR_ERR(sn);
1017 goto st_failure;
1018 }
1019
1020 /* Now link new subtree to main tree */
1021 sfn->parent = fn;
1022 fn->subtree = sfn;
1023 } else {
1024 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
1025 rt->rt6i_src.plen,
1026 offsetof(struct rt6_info, rt6i_src),
1027 allow_create, replace_required, sernum);
1028
1029 if (IS_ERR(sn)) {
1030 err = PTR_ERR(sn);
1031 goto st_failure;
1032 }
1033 }
1034
1035 if (!fn->leaf) {
1036 fn->leaf = rt;
1037 atomic_inc(&rt->rt6i_ref);
1038 }
1039 fn = sn;
1040 }
1041#endif
1042
1043 err = fib6_add_rt2node(fn, rt, info, mxc);
1044 if (!err) {
1045 fib6_start_gc(info->nl_net, rt);
1046 if (!(rt->rt6i_flags & RTF_CACHE))
1047 fib6_prune_clones(info->nl_net, pn);
1048 rt->dst.flags &= ~DST_NOCACHE;
1049 }
1050
1051out:
1052 if (err) {
1053#ifdef CONFIG_IPV6_SUBTREES
1054 /*
1055 * If fib6_add_1 has cleared the old leaf pointer in the
1056 * super-tree leaf node we have to find a new one for it.
1057 */
1058 if (pn != fn && pn->leaf == rt) {
1059 pn->leaf = NULL;
1060 atomic_dec(&rt->rt6i_ref);
1061 }
1062 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
1063 pn->leaf = fib6_find_prefix(info->nl_net, pn);
1064#if RT6_DEBUG >= 2
1065 if (!pn->leaf) {
1066 WARN_ON(pn->leaf == NULL);
1067 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
1068 }
1069#endif
1070 atomic_inc(&pn->leaf->rt6i_ref);
1071 }
1072#endif
1073 if (!(rt->dst.flags & DST_NOCACHE))
1074 dst_free(&rt->dst);
1075 }
1076 return err;
1077
1078#ifdef CONFIG_IPV6_SUBTREES
1079 /* Subtree creation failed, probably main tree node
1080 is orphan. If it is, shoot it.
1081 */
1082st_failure:
1083 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
1084 fib6_repair_tree(info->nl_net, fn);
1085 if (!(rt->dst.flags & DST_NOCACHE))
1086 dst_free(&rt->dst);
1087 return err;
1088#endif
1089}
1090
1091/*
1092 * Routing tree lookup
1093 *
1094 */
1095
1096struct lookup_args {
1097 int offset; /* key offset on rt6_info */
1098 const struct in6_addr *addr; /* search key */
1099};
1100
1101static struct fib6_node *fib6_lookup_1(struct fib6_node *root,
1102 struct lookup_args *args)
1103{
1104 struct fib6_node *fn;
1105 __be32 dir;
1106
1107 if (unlikely(args->offset == 0))
1108 return NULL;
1109
1110 /*
1111 * Descend on a tree
1112 */
1113
1114 fn = root;
1115
1116 for (;;) {
1117 struct fib6_node *next;
1118
1119 dir = addr_bit_set(args->addr, fn->fn_bit);
1120
1121 next = dir ? fn->right : fn->left;
1122
1123 if (next) {
1124 fn = next;
1125 continue;
1126 }
1127 break;
1128 }
1129
1130 while (fn) {
1131 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
1132 struct rt6key *key;
1133
1134 key = (struct rt6key *) ((u8 *) fn->leaf +
1135 args->offset);
1136
1137 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1138#ifdef CONFIG_IPV6_SUBTREES
1139 if (fn->subtree) {
1140 struct fib6_node *sfn;
1141 sfn = fib6_lookup_1(fn->subtree,
1142 args + 1);
1143 if (!sfn)
1144 goto backtrack;
1145 fn = sfn;
1146 }
1147#endif
1148 if (fn->fn_flags & RTN_RTINFO)
1149 return fn;
1150 }
1151 }
1152#ifdef CONFIG_IPV6_SUBTREES
1153backtrack:
1154#endif
1155 if (fn->fn_flags & RTN_ROOT)
1156 break;
1157
1158 fn = fn->parent;
1159 }
1160
1161 return NULL;
1162}
1163
1164struct fib6_node *fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1165 const struct in6_addr *saddr)
1166{
1167 struct fib6_node *fn;
1168 struct lookup_args args[] = {
1169 {
1170 .offset = offsetof(struct rt6_info, rt6i_dst),
1171 .addr = daddr,
1172 },
1173#ifdef CONFIG_IPV6_SUBTREES
1174 {
1175 .offset = offsetof(struct rt6_info, rt6i_src),
1176 .addr = saddr,
1177 },
1178#endif
1179 {
1180 .offset = 0, /* sentinel */
1181 }
1182 };
1183
1184 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1185 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1186 fn = root;
1187
1188 return fn;
1189}
1190
1191/*
1192 * Get node with specified destination prefix (and source prefix,
1193 * if subtrees are used)
1194 */
1195
1196
1197static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1198 const struct in6_addr *addr,
1199 int plen, int offset)
1200{
1201 struct fib6_node *fn;
1202
1203 for (fn = root; fn ; ) {
1204 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1205
1206 /*
1207 * Prefix match
1208 */
1209 if (plen < fn->fn_bit ||
1210 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1211 return NULL;
1212
1213 if (plen == fn->fn_bit)
1214 return fn;
1215
1216 /*
1217 * We have more bits to go
1218 */
1219 if (addr_bit_set(addr, fn->fn_bit))
1220 fn = fn->right;
1221 else
1222 fn = fn->left;
1223 }
1224 return NULL;
1225}
1226
1227struct fib6_node *fib6_locate(struct fib6_node *root,
1228 const struct in6_addr *daddr, int dst_len,
1229 const struct in6_addr *saddr, int src_len)
1230{
1231 struct fib6_node *fn;
1232
1233 fn = fib6_locate_1(root, daddr, dst_len,
1234 offsetof(struct rt6_info, rt6i_dst));
1235
1236#ifdef CONFIG_IPV6_SUBTREES
1237 if (src_len) {
1238 WARN_ON(saddr == NULL);
1239 if (fn && fn->subtree)
1240 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1241 offsetof(struct rt6_info, rt6i_src));
1242 }
1243#endif
1244
1245 if (fn && fn->fn_flags & RTN_RTINFO)
1246 return fn;
1247
1248 return NULL;
1249}
1250
1251
1252/*
1253 * Deletion
1254 *
1255 */
1256
1257static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1258{
1259 if (fn->fn_flags & RTN_ROOT)
1260 return net->ipv6.ip6_null_entry;
1261
1262 while (fn) {
1263 if (fn->left)
1264 return fn->left->leaf;
1265 if (fn->right)
1266 return fn->right->leaf;
1267
1268 fn = FIB6_SUBTREE(fn);
1269 }
1270 return NULL;
1271}
1272
1273/*
1274 * Called to trim the tree of intermediate nodes when possible. "fn"
1275 * is the node we want to try and remove.
1276 */
1277
1278static struct fib6_node *fib6_repair_tree(struct net *net,
1279 struct fib6_node *fn)
1280{
1281 int children;
1282 int nstate;
1283 struct fib6_node *child, *pn;
1284 struct fib6_walker *w;
1285 int iter = 0;
1286
1287 for (;;) {
1288 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1289 iter++;
1290
1291 WARN_ON(fn->fn_flags & RTN_RTINFO);
1292 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1293 WARN_ON(fn->leaf);
1294
1295 children = 0;
1296 child = NULL;
1297 if (fn->right)
1298 child = fn->right, children |= 1;
1299 if (fn->left)
1300 child = fn->left, children |= 2;
1301
1302 if (children == 3 || FIB6_SUBTREE(fn)
1303#ifdef CONFIG_IPV6_SUBTREES
1304 /* Subtree root (i.e. fn) may have one child */
1305 || (children && fn->fn_flags & RTN_ROOT)
1306#endif
1307 ) {
1308 fn->leaf = fib6_find_prefix(net, fn);
1309#if RT6_DEBUG >= 2
1310 if (!fn->leaf) {
1311 WARN_ON(!fn->leaf);
1312 fn->leaf = net->ipv6.ip6_null_entry;
1313 }
1314#endif
1315 atomic_inc(&fn->leaf->rt6i_ref);
1316 return fn->parent;
1317 }
1318
1319 pn = fn->parent;
1320#ifdef CONFIG_IPV6_SUBTREES
1321 if (FIB6_SUBTREE(pn) == fn) {
1322 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1323 FIB6_SUBTREE(pn) = NULL;
1324 nstate = FWS_L;
1325 } else {
1326 WARN_ON(fn->fn_flags & RTN_ROOT);
1327#endif
1328 if (pn->right == fn)
1329 pn->right = child;
1330 else if (pn->left == fn)
1331 pn->left = child;
1332#if RT6_DEBUG >= 2
1333 else
1334 WARN_ON(1);
1335#endif
1336 if (child)
1337 child->parent = pn;
1338 nstate = FWS_R;
1339#ifdef CONFIG_IPV6_SUBTREES
1340 }
1341#endif
1342
1343 read_lock(&net->ipv6.fib6_walker_lock);
1344 FOR_WALKERS(net, w) {
1345 if (!child) {
1346 if (w->root == fn) {
1347 w->root = w->node = NULL;
1348 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1349 } else if (w->node == fn) {
1350 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1351 w->node = pn;
1352 w->state = nstate;
1353 }
1354 } else {
1355 if (w->root == fn) {
1356 w->root = child;
1357 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1358 }
1359 if (w->node == fn) {
1360 w->node = child;
1361 if (children&2) {
1362 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1363 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1364 } else {
1365 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1366 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1367 }
1368 }
1369 }
1370 }
1371 read_unlock(&net->ipv6.fib6_walker_lock);
1372
1373 node_free(fn);
1374 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1375 return pn;
1376
1377 rt6_release(pn->leaf);
1378 pn->leaf = NULL;
1379 fn = pn;
1380 }
1381}
1382
1383static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1384 struct nl_info *info)
1385{
1386 struct fib6_walker *w;
1387 struct rt6_info *rt = *rtp;
1388 struct net *net = info->nl_net;
1389
1390 RT6_TRACE("fib6_del_route\n");
1391
1392 /* Unlink it */
1393 *rtp = rt->dst.rt6_next;
1394 rt->rt6i_node = NULL;
1395 net->ipv6.rt6_stats->fib_rt_entries--;
1396 net->ipv6.rt6_stats->fib_discarded_routes++;
1397
1398 /* Reset round-robin state, if necessary */
1399 if (fn->rr_ptr == rt)
1400 fn->rr_ptr = NULL;
1401
1402 /* Remove this entry from other siblings */
1403 if (rt->rt6i_nsiblings) {
1404 struct rt6_info *sibling, *next_sibling;
1405
1406 list_for_each_entry_safe(sibling, next_sibling,
1407 &rt->rt6i_siblings, rt6i_siblings)
1408 sibling->rt6i_nsiblings--;
1409 rt->rt6i_nsiblings = 0;
1410 list_del_init(&rt->rt6i_siblings);
1411 }
1412
1413 /* Adjust walkers */
1414 read_lock(&net->ipv6.fib6_walker_lock);
1415 FOR_WALKERS(net, w) {
1416 if (w->state == FWS_C && w->leaf == rt) {
1417 RT6_TRACE("walker %p adjusted by delroute\n", w);
1418 w->leaf = rt->dst.rt6_next;
1419 if (!w->leaf)
1420 w->state = FWS_U;
1421 }
1422 }
1423 read_unlock(&net->ipv6.fib6_walker_lock);
1424
1425 rt->dst.rt6_next = NULL;
1426
1427 /* If it was last route, expunge its radix tree node */
1428 if (!fn->leaf) {
1429 fn->fn_flags &= ~RTN_RTINFO;
1430 net->ipv6.rt6_stats->fib_route_nodes--;
1431 fn = fib6_repair_tree(net, fn);
1432 }
1433
1434 fib6_purge_rt(rt, fn, net);
1435
1436 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
1437 rt6_release(rt);
1438}
1439
1440int fib6_del(struct rt6_info *rt, struct nl_info *info)
1441{
1442 struct net *net = info->nl_net;
1443 struct fib6_node *fn = rt->rt6i_node;
1444 struct rt6_info **rtp;
1445
1446#if RT6_DEBUG >= 2
1447 if (rt->dst.obsolete > 0) {
1448 WARN_ON(fn);
1449 return -ENOENT;
1450 }
1451#endif
1452 if (!fn || rt == net->ipv6.ip6_null_entry)
1453 return -ENOENT;
1454
1455 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1456
1457 if (!(rt->rt6i_flags & RTF_CACHE)) {
1458 struct fib6_node *pn = fn;
1459#ifdef CONFIG_IPV6_SUBTREES
1460 /* clones of this route might be in another subtree */
1461 if (rt->rt6i_src.plen) {
1462 while (!(pn->fn_flags & RTN_ROOT))
1463 pn = pn->parent;
1464 pn = pn->parent;
1465 }
1466#endif
1467 fib6_prune_clones(info->nl_net, pn);
1468 }
1469
1470 /*
1471 * Walk the leaf entries looking for ourself
1472 */
1473
1474 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1475 if (*rtp == rt) {
1476 fib6_del_route(fn, rtp, info);
1477 return 0;
1478 }
1479 }
1480 return -ENOENT;
1481}
1482
1483/*
1484 * Tree traversal function.
1485 *
1486 * Certainly, it is not interrupt safe.
1487 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1488 * It means, that we can modify tree during walking
1489 * and use this function for garbage collection, clone pruning,
1490 * cleaning tree when a device goes down etc. etc.
1491 *
1492 * It guarantees that every node will be traversed,
1493 * and that it will be traversed only once.
1494 *
1495 * Callback function w->func may return:
1496 * 0 -> continue walking.
1497 * positive value -> walking is suspended (used by tree dumps,
1498 * and probably by gc, if it will be split to several slices)
1499 * negative value -> terminate walking.
1500 *
1501 * The function itself returns:
1502 * 0 -> walk is complete.
1503 * >0 -> walk is incomplete (i.e. suspended)
1504 * <0 -> walk is terminated by an error.
1505 */
1506
1507static int fib6_walk_continue(struct fib6_walker *w)
1508{
1509 struct fib6_node *fn, *pn;
1510
1511 for (;;) {
1512 fn = w->node;
1513 if (!fn)
1514 return 0;
1515
1516 if (w->prune && fn != w->root &&
1517 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1518 w->state = FWS_C;
1519 w->leaf = fn->leaf;
1520 }
1521 switch (w->state) {
1522#ifdef CONFIG_IPV6_SUBTREES
1523 case FWS_S:
1524 if (FIB6_SUBTREE(fn)) {
1525 w->node = FIB6_SUBTREE(fn);
1526 continue;
1527 }
1528 w->state = FWS_L;
1529#endif
1530 case FWS_L:
1531 if (fn->left) {
1532 w->node = fn->left;
1533 w->state = FWS_INIT;
1534 continue;
1535 }
1536 w->state = FWS_R;
1537 case FWS_R:
1538 if (fn->right) {
1539 w->node = fn->right;
1540 w->state = FWS_INIT;
1541 continue;
1542 }
1543 w->state = FWS_C;
1544 w->leaf = fn->leaf;
1545 case FWS_C:
1546 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1547 int err;
1548
1549 if (w->skip) {
1550 w->skip--;
1551 goto skip;
1552 }
1553
1554 err = w->func(w);
1555 if (err)
1556 return err;
1557
1558 w->count++;
1559 continue;
1560 }
1561skip:
1562 w->state = FWS_U;
1563 case FWS_U:
1564 if (fn == w->root)
1565 return 0;
1566 pn = fn->parent;
1567 w->node = pn;
1568#ifdef CONFIG_IPV6_SUBTREES
1569 if (FIB6_SUBTREE(pn) == fn) {
1570 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1571 w->state = FWS_L;
1572 continue;
1573 }
1574#endif
1575 if (pn->left == fn) {
1576 w->state = FWS_R;
1577 continue;
1578 }
1579 if (pn->right == fn) {
1580 w->state = FWS_C;
1581 w->leaf = w->node->leaf;
1582 continue;
1583 }
1584#if RT6_DEBUG >= 2
1585 WARN_ON(1);
1586#endif
1587 }
1588 }
1589}
1590
1591static int fib6_walk(struct net *net, struct fib6_walker *w)
1592{
1593 int res;
1594
1595 w->state = FWS_INIT;
1596 w->node = w->root;
1597
1598 fib6_walker_link(net, w);
1599 res = fib6_walk_continue(w);
1600 if (res <= 0)
1601 fib6_walker_unlink(net, w);
1602 return res;
1603}
1604
1605static int fib6_clean_node(struct fib6_walker *w)
1606{
1607 int res;
1608 struct rt6_info *rt;
1609 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
1610 struct nl_info info = {
1611 .nl_net = c->net,
1612 };
1613
1614 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
1615 w->node->fn_sernum != c->sernum)
1616 w->node->fn_sernum = c->sernum;
1617
1618 if (!c->func) {
1619 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
1620 w->leaf = NULL;
1621 return 0;
1622 }
1623
1624 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1625 res = c->func(rt, c->arg);
1626 if (res < 0) {
1627 w->leaf = rt;
1628 res = fib6_del(rt, &info);
1629 if (res) {
1630#if RT6_DEBUG >= 2
1631 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
1632 __func__, rt, rt->rt6i_node, res);
1633#endif
1634 continue;
1635 }
1636 return 0;
1637 }
1638 WARN_ON(res != 0);
1639 }
1640 w->leaf = rt;
1641 return 0;
1642}
1643
1644/*
1645 * Convenient frontend to tree walker.
1646 *
1647 * func is called on each route.
1648 * It may return -1 -> delete this route.
1649 * 0 -> continue walking
1650 *
1651 * prune==1 -> only immediate children of node (certainly,
1652 * ignoring pure split nodes) will be scanned.
1653 */
1654
1655static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1656 int (*func)(struct rt6_info *, void *arg),
1657 bool prune, int sernum, void *arg)
1658{
1659 struct fib6_cleaner c;
1660
1661 c.w.root = root;
1662 c.w.func = fib6_clean_node;
1663 c.w.prune = prune;
1664 c.w.count = 0;
1665 c.w.skip = 0;
1666 c.func = func;
1667 c.sernum = sernum;
1668 c.arg = arg;
1669 c.net = net;
1670
1671 fib6_walk(net, &c.w);
1672}
1673
1674static void __fib6_clean_all(struct net *net,
1675 int (*func)(struct rt6_info *, void *),
1676 int sernum, void *arg)
1677{
1678 struct fib6_table *table;
1679 struct hlist_head *head;
1680 unsigned int h;
1681
1682 rcu_read_lock();
1683 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1684 head = &net->ipv6.fib_table_hash[h];
1685 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
1686 write_lock_bh(&table->tb6_lock);
1687 fib6_clean_tree(net, &table->tb6_root,
1688 func, false, sernum, arg);
1689 write_unlock_bh(&table->tb6_lock);
1690 }
1691 }
1692 rcu_read_unlock();
1693}
1694
1695void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *),
1696 void *arg)
1697{
1698 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg);
1699}
1700
1701static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1702{
1703 if (rt->rt6i_flags & RTF_CACHE) {
1704 RT6_TRACE("pruning clone %p\n", rt);
1705 return -1;
1706 }
1707
1708 return 0;
1709}
1710
1711static void fib6_prune_clones(struct net *net, struct fib6_node *fn)
1712{
1713 fib6_clean_tree(net, fn, fib6_prune_clone, true,
1714 FIB6_NO_SERNUM_CHANGE, NULL);
1715}
1716
1717static void fib6_flush_trees(struct net *net)
1718{
1719 int new_sernum = fib6_new_sernum(net);
1720
1721 __fib6_clean_all(net, NULL, new_sernum, NULL);
1722}
1723
1724/*
1725 * Garbage collection
1726 */
1727
1728struct fib6_gc_args
1729{
1730 int timeout;
1731 int more;
1732};
1733
1734static int fib6_age(struct rt6_info *rt, void *arg)
1735{
1736 struct fib6_gc_args *gc_args = arg;
1737 unsigned long now = jiffies;
1738
1739 /*
1740 * check addrconf expiration here.
1741 * Routes are expired even if they are in use.
1742 *
1743 * Also age clones. Note, that clones are aged out
1744 * only if they are not in use now.
1745 */
1746
1747 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1748 if (time_after(now, rt->dst.expires)) {
1749 RT6_TRACE("expiring %p\n", rt);
1750 return -1;
1751 }
1752 gc_args->more++;
1753 } else if (rt->rt6i_flags & RTF_CACHE) {
1754 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1755 time_after_eq(now, rt->dst.lastuse + gc_args->timeout)) {
1756 RT6_TRACE("aging clone %p\n", rt);
1757 return -1;
1758 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1759 struct neighbour *neigh;
1760 __u8 neigh_flags = 0;
1761
1762 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1763 if (neigh) {
1764 neigh_flags = neigh->flags;
1765 neigh_release(neigh);
1766 }
1767 if (!(neigh_flags & NTF_ROUTER)) {
1768 RT6_TRACE("purging route %p via non-router but gateway\n",
1769 rt);
1770 return -1;
1771 }
1772 }
1773 gc_args->more++;
1774 }
1775
1776 return 0;
1777}
1778
1779void fib6_run_gc(unsigned long expires, struct net *net, bool force)
1780{
1781 struct fib6_gc_args gc_args;
1782 unsigned long now;
1783
1784 if (force) {
1785 spin_lock_bh(&net->ipv6.fib6_gc_lock);
1786 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
1787 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1788 return;
1789 }
1790 gc_args.timeout = expires ? (int)expires :
1791 net->ipv6.sysctl.ip6_rt_gc_interval;
1792
1793 gc_args.more = icmp6_dst_gc();
1794
1795 fib6_clean_all(net, fib6_age, &gc_args);
1796 now = jiffies;
1797 net->ipv6.ip6_rt_last_gc = now;
1798
1799 if (gc_args.more)
1800 mod_timer(&net->ipv6.ip6_fib_timer,
1801 round_jiffies(now
1802 + net->ipv6.sysctl.ip6_rt_gc_interval));
1803 else
1804 del_timer(&net->ipv6.ip6_fib_timer);
1805 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
1806}
1807
1808static void fib6_gc_timer_cb(unsigned long arg)
1809{
1810 fib6_run_gc(0, (struct net *)arg, true);
1811}
1812
1813static int __net_init fib6_net_init(struct net *net)
1814{
1815 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1816
1817 spin_lock_init(&net->ipv6.fib6_gc_lock);
1818 rwlock_init(&net->ipv6.fib6_walker_lock);
1819 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
1820 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1821
1822 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1823 if (!net->ipv6.rt6_stats)
1824 goto out_timer;
1825
1826 /* Avoid false sharing : Use at least a full cache line */
1827 size = max_t(size_t, size, L1_CACHE_BYTES);
1828
1829 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1830 if (!net->ipv6.fib_table_hash)
1831 goto out_rt6_stats;
1832
1833 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1834 GFP_KERNEL);
1835 if (!net->ipv6.fib6_main_tbl)
1836 goto out_fib_table_hash;
1837
1838 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1839 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1840 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1841 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1842 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
1843
1844#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1845 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1846 GFP_KERNEL);
1847 if (!net->ipv6.fib6_local_tbl)
1848 goto out_fib6_main_tbl;
1849 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1850 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1851 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1852 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1853 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
1854#endif
1855 fib6_tables_init(net);
1856
1857 return 0;
1858
1859#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1860out_fib6_main_tbl:
1861 kfree(net->ipv6.fib6_main_tbl);
1862#endif
1863out_fib_table_hash:
1864 kfree(net->ipv6.fib_table_hash);
1865out_rt6_stats:
1866 kfree(net->ipv6.rt6_stats);
1867out_timer:
1868 return -ENOMEM;
1869}
1870
1871static void fib6_net_exit(struct net *net)
1872{
1873 rt6_ifdown(net, NULL);
1874 del_timer_sync(&net->ipv6.ip6_fib_timer);
1875
1876#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1877 inetpeer_invalidate_tree(&net->ipv6.fib6_local_tbl->tb6_peers);
1878 kfree(net->ipv6.fib6_local_tbl);
1879#endif
1880 inetpeer_invalidate_tree(&net->ipv6.fib6_main_tbl->tb6_peers);
1881 kfree(net->ipv6.fib6_main_tbl);
1882 kfree(net->ipv6.fib_table_hash);
1883 kfree(net->ipv6.rt6_stats);
1884}
1885
1886static struct pernet_operations fib6_net_ops = {
1887 .init = fib6_net_init,
1888 .exit = fib6_net_exit,
1889};
1890
1891int __init fib6_init(void)
1892{
1893 int ret = -ENOMEM;
1894
1895 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1896 sizeof(struct fib6_node),
1897 0, SLAB_HWCACHE_ALIGN,
1898 NULL);
1899 if (!fib6_node_kmem)
1900 goto out;
1901
1902 ret = register_pernet_subsys(&fib6_net_ops);
1903 if (ret)
1904 goto out_kmem_cache_create;
1905
1906 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1907 NULL);
1908 if (ret)
1909 goto out_unregister_subsys;
1910
1911 __fib6_flush_trees = fib6_flush_trees;
1912out:
1913 return ret;
1914
1915out_unregister_subsys:
1916 unregister_pernet_subsys(&fib6_net_ops);
1917out_kmem_cache_create:
1918 kmem_cache_destroy(fib6_node_kmem);
1919 goto out;
1920}
1921
1922void fib6_gc_cleanup(void)
1923{
1924 unregister_pernet_subsys(&fib6_net_ops);
1925 kmem_cache_destroy(fib6_node_kmem);
1926}
1927
1928#ifdef CONFIG_PROC_FS
1929
1930struct ipv6_route_iter {
1931 struct seq_net_private p;
1932 struct fib6_walker w;
1933 loff_t skip;
1934 struct fib6_table *tbl;
1935 int sernum;
1936};
1937
1938static int ipv6_route_seq_show(struct seq_file *seq, void *v)
1939{
1940 struct rt6_info *rt = v;
1941 struct ipv6_route_iter *iter = seq->private;
1942
1943 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_dst.addr, rt->rt6i_dst.plen);
1944
1945#ifdef CONFIG_IPV6_SUBTREES
1946 seq_printf(seq, "%pi6 %02x ", &rt->rt6i_src.addr, rt->rt6i_src.plen);
1947#else
1948 seq_puts(seq, "00000000000000000000000000000000 00 ");
1949#endif
1950 if (rt->rt6i_flags & RTF_GATEWAY)
1951 seq_printf(seq, "%pi6", &rt->rt6i_gateway);
1952 else
1953 seq_puts(seq, "00000000000000000000000000000000");
1954
1955 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
1956 rt->rt6i_metric, atomic_read(&rt->dst.__refcnt),
1957 rt->dst.__use, rt->rt6i_flags,
1958 rt->dst.dev ? rt->dst.dev->name : "");
1959 iter->w.leaf = NULL;
1960 return 0;
1961}
1962
1963static int ipv6_route_yield(struct fib6_walker *w)
1964{
1965 struct ipv6_route_iter *iter = w->args;
1966
1967 if (!iter->skip)
1968 return 1;
1969
1970 do {
1971 iter->w.leaf = iter->w.leaf->dst.rt6_next;
1972 iter->skip--;
1973 if (!iter->skip && iter->w.leaf)
1974 return 1;
1975 } while (iter->w.leaf);
1976
1977 return 0;
1978}
1979
1980static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
1981 struct net *net)
1982{
1983 memset(&iter->w, 0, sizeof(iter->w));
1984 iter->w.func = ipv6_route_yield;
1985 iter->w.root = &iter->tbl->tb6_root;
1986 iter->w.state = FWS_INIT;
1987 iter->w.node = iter->w.root;
1988 iter->w.args = iter;
1989 iter->sernum = iter->w.root->fn_sernum;
1990 INIT_LIST_HEAD(&iter->w.lh);
1991 fib6_walker_link(net, &iter->w);
1992}
1993
1994static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
1995 struct net *net)
1996{
1997 unsigned int h;
1998 struct hlist_node *node;
1999
2000 if (tbl) {
2001 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2002 node = rcu_dereference_bh(hlist_next_rcu(&tbl->tb6_hlist));
2003 } else {
2004 h = 0;
2005 node = NULL;
2006 }
2007
2008 while (!node && h < FIB6_TABLE_HASHSZ) {
2009 node = rcu_dereference_bh(
2010 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2011 }
2012 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2013}
2014
2015static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2016{
2017 if (iter->sernum != iter->w.root->fn_sernum) {
2018 iter->sernum = iter->w.root->fn_sernum;
2019 iter->w.state = FWS_INIT;
2020 iter->w.node = iter->w.root;
2021 WARN_ON(iter->w.skip);
2022 iter->w.skip = iter->w.count;
2023 }
2024}
2025
2026static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2027{
2028 int r;
2029 struct rt6_info *n;
2030 struct net *net = seq_file_net(seq);
2031 struct ipv6_route_iter *iter = seq->private;
2032
2033 if (!v)
2034 goto iter_table;
2035
2036 n = ((struct rt6_info *)v)->dst.rt6_next;
2037 if (n) {
2038 ++*pos;
2039 return n;
2040 }
2041
2042iter_table:
2043 ipv6_route_check_sernum(iter);
2044 read_lock(&iter->tbl->tb6_lock);
2045 r = fib6_walk_continue(&iter->w);
2046 read_unlock(&iter->tbl->tb6_lock);
2047 if (r > 0) {
2048 if (v)
2049 ++*pos;
2050 return iter->w.leaf;
2051 } else if (r < 0) {
2052 fib6_walker_unlink(net, &iter->w);
2053 return NULL;
2054 }
2055 fib6_walker_unlink(net, &iter->w);
2056
2057 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2058 if (!iter->tbl)
2059 return NULL;
2060
2061 ipv6_route_seq_setup_walk(iter, net);
2062 goto iter_table;
2063}
2064
2065static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2066 __acquires(RCU_BH)
2067{
2068 struct net *net = seq_file_net(seq);
2069 struct ipv6_route_iter *iter = seq->private;
2070
2071 rcu_read_lock_bh();
2072 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2073 iter->skip = *pos;
2074
2075 if (iter->tbl) {
2076 ipv6_route_seq_setup_walk(iter, net);
2077 return ipv6_route_seq_next(seq, NULL, pos);
2078 } else {
2079 return NULL;
2080 }
2081}
2082
2083static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2084{
2085 struct fib6_walker *w = &iter->w;
2086 return w->node && !(w->state == FWS_U && w->node == w->root);
2087}
2088
2089static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2090 __releases(RCU_BH)
2091{
2092 struct net *net = seq_file_net(seq);
2093 struct ipv6_route_iter *iter = seq->private;
2094
2095 if (ipv6_route_iter_active(iter))
2096 fib6_walker_unlink(net, &iter->w);
2097
2098 rcu_read_unlock_bh();
2099}
2100
2101static const struct seq_operations ipv6_route_seq_ops = {
2102 .start = ipv6_route_seq_start,
2103 .next = ipv6_route_seq_next,
2104 .stop = ipv6_route_seq_stop,
2105 .show = ipv6_route_seq_show
2106};
2107
2108int ipv6_route_open(struct inode *inode, struct file *file)
2109{
2110 return seq_open_net(inode, file, &ipv6_route_seq_ops,
2111 sizeof(struct ipv6_route_iter));
2112}
2113
2114#endif /* CONFIG_PROC_FS */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Linux INET6 implementation
4 * Forwarding Information Database
5 *
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
8 *
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
14 */
15
16#define pr_fmt(fmt) "IPv6: " fmt
17
18#include <linux/bpf.h>
19#include <linux/errno.h>
20#include <linux/types.h>
21#include <linux/net.h>
22#include <linux/route.h>
23#include <linux/netdevice.h>
24#include <linux/in6.h>
25#include <linux/init.h>
26#include <linux/list.h>
27#include <linux/slab.h>
28
29#include <net/ip.h>
30#include <net/ipv6.h>
31#include <net/ndisc.h>
32#include <net/addrconf.h>
33#include <net/lwtunnel.h>
34#include <net/fib_notifier.h>
35
36#include <net/ip_fib.h>
37#include <net/ip6_fib.h>
38#include <net/ip6_route.h>
39
40static struct kmem_cache *fib6_node_kmem __read_mostly;
41
42struct fib6_cleaner {
43 struct fib6_walker w;
44 struct net *net;
45 int (*func)(struct fib6_info *, void *arg);
46 int sernum;
47 void *arg;
48 bool skip_notify;
49};
50
51#ifdef CONFIG_IPV6_SUBTREES
52#define FWS_INIT FWS_S
53#else
54#define FWS_INIT FWS_L
55#endif
56
57static struct fib6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63static int fib6_walk(struct net *net, struct fib6_walker *w);
64static int fib6_walk_continue(struct fib6_walker *w);
65
66/*
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
71 */
72
73static void fib6_gc_timer_cb(struct timer_list *t);
74
75#define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
77
78static void fib6_walker_link(struct net *net, struct fib6_walker *w)
79{
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
83}
84
85static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
86{
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
90}
91
92static int fib6_new_sernum(struct net *net)
93{
94 int new, old = atomic_read(&net->ipv6.fib6_sernum);
95
96 do {
97 new = old < INT_MAX ? old + 1 : 1;
98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
99
100 return new;
101}
102
103enum {
104 FIB6_NO_SERNUM_CHANGE = 0,
105};
106
107void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
108{
109 struct fib6_node *fn;
110
111 fn = rcu_dereference_protected(f6i->fib6_node,
112 lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 if (fn)
114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
115}
116
117/*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124/*
125 * test bit
126 */
127#if defined(__LITTLE_ENDIAN)
128# define BITOP_BE32_SWIZZLE (0x1F & ~7)
129#else
130# define BITOP_BE32_SWIZZLE 0
131#endif
132
133static __be32 addr_bit_set(const void *token, int fn_bit)
134{
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145}
146
147struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
148{
149 struct fib6_info *f6i;
150 size_t sz = sizeof(*f6i);
151
152 if (with_fib6_nh)
153 sz += sizeof(struct fib6_nh);
154
155 f6i = kzalloc(sz, gfp_flags);
156 if (!f6i)
157 return NULL;
158
159 /* fib6_siblings is a union with nh_list, so this initializes both */
160 INIT_LIST_HEAD(&f6i->fib6_siblings);
161 refcount_set(&f6i->fib6_ref, 1);
162
163 INIT_HLIST_NODE(&f6i->gc_link);
164
165 return f6i;
166}
167
168void fib6_info_destroy_rcu(struct rcu_head *head)
169{
170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
171
172 WARN_ON(f6i->fib6_node);
173
174 if (f6i->nh)
175 nexthop_put(f6i->nh);
176 else
177 fib6_nh_release(f6i->fib6_nh);
178
179 ip_fib_metrics_put(f6i->fib6_metrics);
180 kfree(f6i);
181}
182EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
183
184static struct fib6_node *node_alloc(struct net *net)
185{
186 struct fib6_node *fn;
187
188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 if (fn)
190 net->ipv6.rt6_stats->fib_nodes++;
191
192 return fn;
193}
194
195static void node_free_immediate(struct net *net, struct fib6_node *fn)
196{
197 kmem_cache_free(fib6_node_kmem, fn);
198 net->ipv6.rt6_stats->fib_nodes--;
199}
200
201static void node_free(struct net *net, struct fib6_node *fn)
202{
203 kfree_rcu(fn, rcu);
204 net->ipv6.rt6_stats->fib_nodes--;
205}
206
207static void fib6_free_table(struct fib6_table *table)
208{
209 inetpeer_invalidate_tree(&table->tb6_peers);
210 kfree(table);
211}
212
213static void fib6_link_table(struct net *net, struct fib6_table *tb)
214{
215 unsigned int h;
216
217 /*
218 * Initialize table lock at a single place to give lockdep a key,
219 * tables aren't visible prior to being linked to the list.
220 */
221 spin_lock_init(&tb->tb6_lock);
222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
223
224 /*
225 * No protection necessary, this is the only list mutatation
226 * operation, tables never disappear once they exist.
227 */
228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
229}
230
231#ifdef CONFIG_IPV6_MULTIPLE_TABLES
232
233static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
234{
235 struct fib6_table *table;
236
237 table = kzalloc(sizeof(*table), GFP_ATOMIC);
238 if (table) {
239 table->tb6_id = id;
240 rcu_assign_pointer(table->tb6_root.leaf,
241 net->ipv6.fib6_null_entry);
242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
243 inet_peer_base_init(&table->tb6_peers);
244 INIT_HLIST_HEAD(&table->tb6_gc_hlist);
245 }
246
247 return table;
248}
249
250struct fib6_table *fib6_new_table(struct net *net, u32 id)
251{
252 struct fib6_table *tb;
253
254 if (id == 0)
255 id = RT6_TABLE_MAIN;
256 tb = fib6_get_table(net, id);
257 if (tb)
258 return tb;
259
260 tb = fib6_alloc_table(net, id);
261 if (tb)
262 fib6_link_table(net, tb);
263
264 return tb;
265}
266EXPORT_SYMBOL_GPL(fib6_new_table);
267
268struct fib6_table *fib6_get_table(struct net *net, u32 id)
269{
270 struct fib6_table *tb;
271 struct hlist_head *head;
272 unsigned int h;
273
274 if (id == 0)
275 id = RT6_TABLE_MAIN;
276 h = id & (FIB6_TABLE_HASHSZ - 1);
277 rcu_read_lock();
278 head = &net->ipv6.fib_table_hash[h];
279 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
280 if (tb->tb6_id == id) {
281 rcu_read_unlock();
282 return tb;
283 }
284 }
285 rcu_read_unlock();
286
287 return NULL;
288}
289EXPORT_SYMBOL_GPL(fib6_get_table);
290
291static void __net_init fib6_tables_init(struct net *net)
292{
293 fib6_link_table(net, net->ipv6.fib6_main_tbl);
294 fib6_link_table(net, net->ipv6.fib6_local_tbl);
295}
296#else
297
298struct fib6_table *fib6_new_table(struct net *net, u32 id)
299{
300 return fib6_get_table(net, id);
301}
302
303struct fib6_table *fib6_get_table(struct net *net, u32 id)
304{
305 return net->ipv6.fib6_main_tbl;
306}
307
308struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
309 const struct sk_buff *skb,
310 int flags, pol_lookup_t lookup)
311{
312 struct rt6_info *rt;
313
314 rt = pol_lookup_func(lookup,
315 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
316 if (rt->dst.error == -EAGAIN) {
317 ip6_rt_put_flags(rt, flags);
318 rt = net->ipv6.ip6_null_entry;
319 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
320 dst_hold(&rt->dst);
321 }
322
323 return &rt->dst;
324}
325
326/* called with rcu lock held; no reference taken on fib6_info */
327int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
328 struct fib6_result *res, int flags)
329{
330 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
331 res, flags);
332}
333
334static void __net_init fib6_tables_init(struct net *net)
335{
336 fib6_link_table(net, net->ipv6.fib6_main_tbl);
337}
338
339#endif
340
341unsigned int fib6_tables_seq_read(const struct net *net)
342{
343 unsigned int h, fib_seq = 0;
344
345 rcu_read_lock();
346 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
347 const struct hlist_head *head = &net->ipv6.fib_table_hash[h];
348 const struct fib6_table *tb;
349
350 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
351 fib_seq += READ_ONCE(tb->fib_seq);
352 }
353 rcu_read_unlock();
354
355 return fib_seq;
356}
357
358static int call_fib6_entry_notifier(struct notifier_block *nb,
359 enum fib_event_type event_type,
360 struct fib6_info *rt,
361 struct netlink_ext_ack *extack)
362{
363 struct fib6_entry_notifier_info info = {
364 .info.extack = extack,
365 .rt = rt,
366 };
367
368 return call_fib6_notifier(nb, event_type, &info.info);
369}
370
371static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
372 enum fib_event_type event_type,
373 struct fib6_info *rt,
374 unsigned int nsiblings,
375 struct netlink_ext_ack *extack)
376{
377 struct fib6_entry_notifier_info info = {
378 .info.extack = extack,
379 .rt = rt,
380 .nsiblings = nsiblings,
381 };
382
383 return call_fib6_notifier(nb, event_type, &info.info);
384}
385
386int call_fib6_entry_notifiers(struct net *net,
387 enum fib_event_type event_type,
388 struct fib6_info *rt,
389 struct netlink_ext_ack *extack)
390{
391 struct fib6_entry_notifier_info info = {
392 .info.extack = extack,
393 .rt = rt,
394 };
395
396 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
397 return call_fib6_notifiers(net, event_type, &info.info);
398}
399
400int call_fib6_multipath_entry_notifiers(struct net *net,
401 enum fib_event_type event_type,
402 struct fib6_info *rt,
403 unsigned int nsiblings,
404 struct netlink_ext_ack *extack)
405{
406 struct fib6_entry_notifier_info info = {
407 .info.extack = extack,
408 .rt = rt,
409 .nsiblings = nsiblings,
410 };
411
412 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
413 return call_fib6_notifiers(net, event_type, &info.info);
414}
415
416int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
417{
418 struct fib6_entry_notifier_info info = {
419 .rt = rt,
420 .nsiblings = rt->fib6_nsiblings,
421 };
422
423 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
424 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
425}
426
427struct fib6_dump_arg {
428 struct net *net;
429 struct notifier_block *nb;
430 struct netlink_ext_ack *extack;
431};
432
433static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
434{
435 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
436 int err;
437
438 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
439 return 0;
440
441 if (rt->fib6_nsiblings)
442 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
443 rt,
444 rt->fib6_nsiblings,
445 arg->extack);
446 else
447 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
448 arg->extack);
449
450 return err;
451}
452
453static int fib6_node_dump(struct fib6_walker *w)
454{
455 int err;
456
457 err = fib6_rt_dump(w->leaf, w->args);
458 w->leaf = NULL;
459 return err;
460}
461
462static int fib6_table_dump(struct net *net, struct fib6_table *tb,
463 struct fib6_walker *w)
464{
465 int err;
466
467 w->root = &tb->tb6_root;
468 spin_lock_bh(&tb->tb6_lock);
469 err = fib6_walk(net, w);
470 spin_unlock_bh(&tb->tb6_lock);
471 return err;
472}
473
474/* Called with rcu_read_lock() */
475int fib6_tables_dump(struct net *net, struct notifier_block *nb,
476 struct netlink_ext_ack *extack)
477{
478 struct fib6_dump_arg arg;
479 struct fib6_walker *w;
480 unsigned int h;
481 int err = 0;
482
483 w = kzalloc(sizeof(*w), GFP_ATOMIC);
484 if (!w)
485 return -ENOMEM;
486
487 w->func = fib6_node_dump;
488 arg.net = net;
489 arg.nb = nb;
490 arg.extack = extack;
491 w->args = &arg;
492
493 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
494 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
495 struct fib6_table *tb;
496
497 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
498 err = fib6_table_dump(net, tb, w);
499 if (err)
500 goto out;
501 }
502 }
503
504out:
505 kfree(w);
506
507 /* The tree traversal function should never return a positive value. */
508 return err > 0 ? -EINVAL : err;
509}
510
511static int fib6_dump_node(struct fib6_walker *w)
512{
513 int res;
514 struct fib6_info *rt;
515
516 for_each_fib6_walker_rt(w) {
517 res = rt6_dump_route(rt, w->args, w->skip_in_node);
518 if (res >= 0) {
519 /* Frame is full, suspend walking */
520 w->leaf = rt;
521
522 /* We'll restart from this node, so if some routes were
523 * already dumped, skip them next time.
524 */
525 w->skip_in_node += res;
526
527 return 1;
528 }
529 w->skip_in_node = 0;
530
531 /* Multipath routes are dumped in one route with the
532 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
533 * last sibling of this route (no need to dump the
534 * sibling routes again)
535 */
536 if (rt->fib6_nsiblings)
537 rt = list_last_entry(&rt->fib6_siblings,
538 struct fib6_info,
539 fib6_siblings);
540 }
541 w->leaf = NULL;
542 return 0;
543}
544
545static void fib6_dump_end(struct netlink_callback *cb)
546{
547 struct net *net = sock_net(cb->skb->sk);
548 struct fib6_walker *w = (void *)cb->args[2];
549
550 if (w) {
551 if (cb->args[4]) {
552 cb->args[4] = 0;
553 fib6_walker_unlink(net, w);
554 }
555 cb->args[2] = 0;
556 kfree(w);
557 }
558 cb->done = (void *)cb->args[3];
559 cb->args[1] = 3;
560}
561
562static int fib6_dump_done(struct netlink_callback *cb)
563{
564 fib6_dump_end(cb);
565 return cb->done ? cb->done(cb) : 0;
566}
567
568static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
569 struct netlink_callback *cb)
570{
571 struct net *net = sock_net(skb->sk);
572 struct fib6_walker *w;
573 int res;
574
575 w = (void *)cb->args[2];
576 w->root = &table->tb6_root;
577
578 if (cb->args[4] == 0) {
579 w->count = 0;
580 w->skip = 0;
581 w->skip_in_node = 0;
582
583 spin_lock_bh(&table->tb6_lock);
584 res = fib6_walk(net, w);
585 spin_unlock_bh(&table->tb6_lock);
586 if (res > 0) {
587 cb->args[4] = 1;
588 cb->args[5] = READ_ONCE(w->root->fn_sernum);
589 }
590 } else {
591 int sernum = READ_ONCE(w->root->fn_sernum);
592 if (cb->args[5] != sernum) {
593 /* Begin at the root if the tree changed */
594 cb->args[5] = sernum;
595 w->state = FWS_INIT;
596 w->node = w->root;
597 w->skip = w->count;
598 w->skip_in_node = 0;
599 } else
600 w->skip = 0;
601
602 spin_lock_bh(&table->tb6_lock);
603 res = fib6_walk_continue(w);
604 spin_unlock_bh(&table->tb6_lock);
605 if (res <= 0) {
606 fib6_walker_unlink(net, w);
607 cb->args[4] = 0;
608 }
609 }
610
611 return res;
612}
613
614static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
615{
616 struct rt6_rtnl_dump_arg arg = {
617 .filter.dump_exceptions = true,
618 .filter.dump_routes = true,
619 .filter.rtnl_held = false,
620 };
621 const struct nlmsghdr *nlh = cb->nlh;
622 struct net *net = sock_net(skb->sk);
623 unsigned int e = 0, s_e;
624 struct hlist_head *head;
625 struct fib6_walker *w;
626 struct fib6_table *tb;
627 unsigned int h, s_h;
628 int err = 0;
629
630 rcu_read_lock();
631 if (cb->strict_check) {
632 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
633 if (err < 0)
634 goto unlock;
635 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
636 struct rtmsg *rtm = nlmsg_data(nlh);
637
638 if (rtm->rtm_flags & RTM_F_PREFIX)
639 arg.filter.flags = RTM_F_PREFIX;
640 }
641
642 w = (void *)cb->args[2];
643 if (!w) {
644 /* New dump:
645 *
646 * 1. allocate and initialize walker.
647 */
648 w = kzalloc(sizeof(*w), GFP_ATOMIC);
649 if (!w) {
650 err = -ENOMEM;
651 goto unlock;
652 }
653 w->func = fib6_dump_node;
654 cb->args[2] = (long)w;
655
656 /* 2. hook callback destructor.
657 */
658 cb->args[3] = (long)cb->done;
659 cb->done = fib6_dump_done;
660
661 }
662
663 arg.skb = skb;
664 arg.cb = cb;
665 arg.net = net;
666 w->args = &arg;
667
668 if (arg.filter.table_id) {
669 tb = fib6_get_table(net, arg.filter.table_id);
670 if (!tb) {
671 if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 goto unlock;
673
674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 err = -ENOENT;
676 goto unlock;
677 }
678
679 if (!cb->args[0]) {
680 err = fib6_dump_table(tb, skb, cb);
681 if (!err)
682 cb->args[0] = 1;
683 }
684 goto unlock;
685 }
686
687 s_h = cb->args[0];
688 s_e = cb->args[1];
689
690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 e = 0;
692 head = &net->ipv6.fib_table_hash[h];
693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 if (e < s_e)
695 goto next;
696 err = fib6_dump_table(tb, skb, cb);
697 if (err != 0)
698 goto out;
699next:
700 e++;
701 }
702 }
703out:
704 cb->args[1] = e;
705 cb->args[0] = h;
706
707unlock:
708 rcu_read_unlock();
709 if (err <= 0)
710 fib6_dump_end(cb);
711 return err;
712}
713
714void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
715{
716 if (!f6i)
717 return;
718
719 if (f6i->fib6_metrics == &dst_default_metrics) {
720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
721
722 if (!p)
723 return;
724
725 refcount_set(&p->refcnt, 1);
726 f6i->fib6_metrics = p;
727 }
728
729 f6i->fib6_metrics->metrics[metric - 1] = val;
730}
731
732/*
733 * Routing Table
734 *
735 * return the appropriate node for a routing tree "add" operation
736 * by either creating and inserting or by returning an existing
737 * node.
738 */
739
740static struct fib6_node *fib6_add_1(struct net *net,
741 struct fib6_table *table,
742 struct fib6_node *root,
743 struct in6_addr *addr, int plen,
744 int offset, int allow_create,
745 int replace_required,
746 struct netlink_ext_ack *extack)
747{
748 struct fib6_node *fn, *in, *ln;
749 struct fib6_node *pn = NULL;
750 struct rt6key *key;
751 int bit;
752 __be32 dir = 0;
753
754 /* insert node in tree */
755
756 fn = root;
757
758 do {
759 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
760 lockdep_is_held(&table->tb6_lock));
761 key = (struct rt6key *)((u8 *)leaf + offset);
762
763 /*
764 * Prefix match
765 */
766 if (plen < fn->fn_bit ||
767 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
768 if (!allow_create) {
769 if (replace_required) {
770 NL_SET_ERR_MSG(extack,
771 "Can not replace route - no match found");
772 pr_warn("Can't replace route, no match found\n");
773 return ERR_PTR(-ENOENT);
774 }
775 pr_warn("NLM_F_CREATE should be set when creating new route\n");
776 }
777 goto insert_above;
778 }
779
780 /*
781 * Exact match ?
782 */
783
784 if (plen == fn->fn_bit) {
785 /* clean up an intermediate node */
786 if (!(fn->fn_flags & RTN_RTINFO)) {
787 RCU_INIT_POINTER(fn->leaf, NULL);
788 fib6_info_release(leaf);
789 /* remove null_entry in the root node */
790 } else if (fn->fn_flags & RTN_TL_ROOT &&
791 rcu_access_pointer(fn->leaf) ==
792 net->ipv6.fib6_null_entry) {
793 RCU_INIT_POINTER(fn->leaf, NULL);
794 }
795
796 return fn;
797 }
798
799 /*
800 * We have more bits to go
801 */
802
803 /* Try to walk down on tree. */
804 dir = addr_bit_set(addr, fn->fn_bit);
805 pn = fn;
806 fn = dir ?
807 rcu_dereference_protected(fn->right,
808 lockdep_is_held(&table->tb6_lock)) :
809 rcu_dereference_protected(fn->left,
810 lockdep_is_held(&table->tb6_lock));
811 } while (fn);
812
813 if (!allow_create) {
814 /* We should not create new node because
815 * NLM_F_REPLACE was specified without NLM_F_CREATE
816 * I assume it is safe to require NLM_F_CREATE when
817 * REPLACE flag is used! Later we may want to remove the
818 * check for replace_required, because according
819 * to netlink specification, NLM_F_CREATE
820 * MUST be specified if new route is created.
821 * That would keep IPv6 consistent with IPv4
822 */
823 if (replace_required) {
824 NL_SET_ERR_MSG(extack,
825 "Can not replace route - no match found");
826 pr_warn("Can't replace route, no match found\n");
827 return ERR_PTR(-ENOENT);
828 }
829 pr_warn("NLM_F_CREATE should be set when creating new route\n");
830 }
831 /*
832 * We walked to the bottom of tree.
833 * Create new leaf node without children.
834 */
835
836 ln = node_alloc(net);
837
838 if (!ln)
839 return ERR_PTR(-ENOMEM);
840 ln->fn_bit = plen;
841 RCU_INIT_POINTER(ln->parent, pn);
842
843 if (dir)
844 rcu_assign_pointer(pn->right, ln);
845 else
846 rcu_assign_pointer(pn->left, ln);
847
848 return ln;
849
850
851insert_above:
852 /*
853 * split since we don't have a common prefix anymore or
854 * we have a less significant route.
855 * we've to insert an intermediate node on the list
856 * this new node will point to the one we need to create
857 * and the current
858 */
859
860 pn = rcu_dereference_protected(fn->parent,
861 lockdep_is_held(&table->tb6_lock));
862
863 /* find 1st bit in difference between the 2 addrs.
864
865 See comment in __ipv6_addr_diff: bit may be an invalid value,
866 but if it is >= plen, the value is ignored in any case.
867 */
868
869 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
870
871 /*
872 * (intermediate)[in]
873 * / \
874 * (new leaf node)[ln] (old node)[fn]
875 */
876 if (plen > bit) {
877 in = node_alloc(net);
878 ln = node_alloc(net);
879
880 if (!in || !ln) {
881 if (in)
882 node_free_immediate(net, in);
883 if (ln)
884 node_free_immediate(net, ln);
885 return ERR_PTR(-ENOMEM);
886 }
887
888 /*
889 * new intermediate node.
890 * RTN_RTINFO will
891 * be off since that an address that chooses one of
892 * the branches would not match less specific routes
893 * in the other branch
894 */
895
896 in->fn_bit = bit;
897
898 RCU_INIT_POINTER(in->parent, pn);
899 in->leaf = fn->leaf;
900 fib6_info_hold(rcu_dereference_protected(in->leaf,
901 lockdep_is_held(&table->tb6_lock)));
902
903 /* update parent pointer */
904 if (dir)
905 rcu_assign_pointer(pn->right, in);
906 else
907 rcu_assign_pointer(pn->left, in);
908
909 ln->fn_bit = plen;
910
911 RCU_INIT_POINTER(ln->parent, in);
912 rcu_assign_pointer(fn->parent, in);
913
914 if (addr_bit_set(addr, bit)) {
915 rcu_assign_pointer(in->right, ln);
916 rcu_assign_pointer(in->left, fn);
917 } else {
918 rcu_assign_pointer(in->left, ln);
919 rcu_assign_pointer(in->right, fn);
920 }
921 } else { /* plen <= bit */
922
923 /*
924 * (new leaf node)[ln]
925 * / \
926 * (old node)[fn] NULL
927 */
928
929 ln = node_alloc(net);
930
931 if (!ln)
932 return ERR_PTR(-ENOMEM);
933
934 ln->fn_bit = plen;
935
936 RCU_INIT_POINTER(ln->parent, pn);
937
938 if (addr_bit_set(&key->addr, plen))
939 RCU_INIT_POINTER(ln->right, fn);
940 else
941 RCU_INIT_POINTER(ln->left, fn);
942
943 rcu_assign_pointer(fn->parent, ln);
944
945 if (dir)
946 rcu_assign_pointer(pn->right, ln);
947 else
948 rcu_assign_pointer(pn->left, ln);
949 }
950 return ln;
951}
952
953static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
954 const struct fib6_info *match,
955 const struct fib6_table *table)
956{
957 int cpu;
958
959 if (!fib6_nh->rt6i_pcpu)
960 return;
961
962 rcu_read_lock();
963 /* release the reference to this fib entry from
964 * all of its cached pcpu routes
965 */
966 for_each_possible_cpu(cpu) {
967 struct rt6_info **ppcpu_rt;
968 struct rt6_info *pcpu_rt;
969
970 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
971
972 /* Paired with xchg() in rt6_get_pcpu_route() */
973 pcpu_rt = READ_ONCE(*ppcpu_rt);
974
975 /* only dropping the 'from' reference if the cached route
976 * is using 'match'. The cached pcpu_rt->from only changes
977 * from a fib6_info to NULL (ip6_dst_destroy); it can never
978 * change from one fib6_info reference to another
979 */
980 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
981 struct fib6_info *from;
982
983 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL));
984 fib6_info_release(from);
985 }
986 }
987 rcu_read_unlock();
988}
989
990struct fib6_nh_pcpu_arg {
991 struct fib6_info *from;
992 const struct fib6_table *table;
993};
994
995static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
996{
997 struct fib6_nh_pcpu_arg *arg = _arg;
998
999 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
1000 return 0;
1001}
1002
1003static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1004 const struct fib6_table *table)
1005{
1006 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1007 * while we are cleaning them here.
1008 */
1009 f6i->fib6_destroying = 1;
1010 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1011
1012 if (f6i->nh) {
1013 struct fib6_nh_pcpu_arg arg = {
1014 .from = f6i,
1015 .table = table
1016 };
1017
1018 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1019 &arg);
1020 } else {
1021 struct fib6_nh *fib6_nh;
1022
1023 fib6_nh = f6i->fib6_nh;
1024 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1025 }
1026}
1027
1028static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1029 struct net *net)
1030{
1031 struct fib6_table *table = rt->fib6_table;
1032
1033 /* Flush all cached dst in exception table */
1034 rt6_flush_exceptions(rt);
1035 fib6_drop_pcpu_from(rt, table);
1036
1037 if (rt->nh && !list_empty(&rt->nh_list))
1038 list_del_init(&rt->nh_list);
1039
1040 if (refcount_read(&rt->fib6_ref) != 1) {
1041 /* This route is used as dummy address holder in some split
1042 * nodes. It is not leaked, but it still holds other resources,
1043 * which must be released in time. So, scan ascendant nodes
1044 * and replace dummy references to this route with references
1045 * to still alive ones.
1046 */
1047 while (fn) {
1048 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1049 lockdep_is_held(&table->tb6_lock));
1050 struct fib6_info *new_leaf;
1051 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1052 new_leaf = fib6_find_prefix(net, table, fn);
1053 fib6_info_hold(new_leaf);
1054
1055 rcu_assign_pointer(fn->leaf, new_leaf);
1056 fib6_info_release(rt);
1057 }
1058 fn = rcu_dereference_protected(fn->parent,
1059 lockdep_is_held(&table->tb6_lock));
1060 }
1061 }
1062
1063 fib6_clean_expires(rt);
1064 fib6_remove_gc_list(rt);
1065}
1066
1067/*
1068 * Insert routing information in a node.
1069 */
1070
1071static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1072 struct nl_info *info,
1073 struct netlink_ext_ack *extack)
1074{
1075 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1076 lockdep_is_held(&rt->fib6_table->tb6_lock));
1077 struct fib6_info *iter = NULL;
1078 struct fib6_info __rcu **ins;
1079 struct fib6_info __rcu **fallback_ins = NULL;
1080 int replace = (info->nlh &&
1081 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1082 int add = (!info->nlh ||
1083 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1084 int found = 0;
1085 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1086 bool notify_sibling_rt = false;
1087 u16 nlflags = NLM_F_EXCL;
1088 int err;
1089
1090 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1091 nlflags |= NLM_F_APPEND;
1092
1093 ins = &fn->leaf;
1094
1095 for (iter = leaf; iter;
1096 iter = rcu_dereference_protected(iter->fib6_next,
1097 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1098 /*
1099 * Search for duplicates
1100 */
1101
1102 if (iter->fib6_metric == rt->fib6_metric) {
1103 /*
1104 * Same priority level
1105 */
1106 if (info->nlh &&
1107 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1108 return -EEXIST;
1109
1110 nlflags &= ~NLM_F_EXCL;
1111 if (replace) {
1112 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1113 found++;
1114 break;
1115 }
1116 fallback_ins = fallback_ins ?: ins;
1117 goto next_iter;
1118 }
1119
1120 if (rt6_duplicate_nexthop(iter, rt)) {
1121 if (rt->fib6_nsiblings)
1122 rt->fib6_nsiblings = 0;
1123 if (!(iter->fib6_flags & RTF_EXPIRES))
1124 return -EEXIST;
1125 if (!(rt->fib6_flags & RTF_EXPIRES)) {
1126 fib6_clean_expires(iter);
1127 fib6_remove_gc_list(iter);
1128 } else {
1129 fib6_set_expires(iter, rt->expires);
1130 fib6_add_gc_list(iter);
1131 }
1132
1133 if (rt->fib6_pmtu)
1134 fib6_metric_set(iter, RTAX_MTU,
1135 rt->fib6_pmtu);
1136 return -EEXIST;
1137 }
1138 /* If we have the same destination and the same metric,
1139 * but not the same gateway, then the route we try to
1140 * add is sibling to this route, increment our counter
1141 * of siblings, and later we will add our route to the
1142 * list.
1143 * Only static routes (which don't have flag
1144 * RTF_EXPIRES) are used for ECMPv6.
1145 *
1146 * To avoid long list, we only had siblings if the
1147 * route have a gateway.
1148 */
1149 if (rt_can_ecmp &&
1150 rt6_qualify_for_ecmp(iter))
1151 rt->fib6_nsiblings++;
1152 }
1153
1154 if (iter->fib6_metric > rt->fib6_metric)
1155 break;
1156
1157next_iter:
1158 ins = &iter->fib6_next;
1159 }
1160
1161 if (fallback_ins && !found) {
1162 /* No matching route with same ecmp-able-ness found, replace
1163 * first matching route
1164 */
1165 ins = fallback_ins;
1166 iter = rcu_dereference_protected(*ins,
1167 lockdep_is_held(&rt->fib6_table->tb6_lock));
1168 found++;
1169 }
1170
1171 /* Reset round-robin state, if necessary */
1172 if (ins == &fn->leaf)
1173 fn->rr_ptr = NULL;
1174
1175 /* Link this route to others same route. */
1176 if (rt->fib6_nsiblings) {
1177 unsigned int fib6_nsiblings;
1178 struct fib6_info *sibling, *temp_sibling;
1179
1180 /* Find the first route that have the same metric */
1181 sibling = leaf;
1182 notify_sibling_rt = true;
1183 while (sibling) {
1184 if (sibling->fib6_metric == rt->fib6_metric &&
1185 rt6_qualify_for_ecmp(sibling)) {
1186 list_add_tail_rcu(&rt->fib6_siblings,
1187 &sibling->fib6_siblings);
1188 break;
1189 }
1190 sibling = rcu_dereference_protected(sibling->fib6_next,
1191 lockdep_is_held(&rt->fib6_table->tb6_lock));
1192 notify_sibling_rt = false;
1193 }
1194 /* For each sibling in the list, increment the counter of
1195 * siblings. BUG() if counters does not match, list of siblings
1196 * is broken!
1197 */
1198 fib6_nsiblings = 0;
1199 list_for_each_entry_safe(sibling, temp_sibling,
1200 &rt->fib6_siblings, fib6_siblings) {
1201 sibling->fib6_nsiblings++;
1202 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1203 fib6_nsiblings++;
1204 }
1205 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1206 rt6_multipath_rebalance(temp_sibling);
1207 }
1208
1209 /*
1210 * insert node
1211 */
1212 if (!replace) {
1213 if (!add)
1214 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1215
1216add:
1217 nlflags |= NLM_F_CREATE;
1218
1219 /* The route should only be notified if it is the first
1220 * route in the node or if it is added as a sibling
1221 * route to the first route in the node.
1222 */
1223 if (!info->skip_notify_kernel &&
1224 (notify_sibling_rt || ins == &fn->leaf)) {
1225 enum fib_event_type fib_event;
1226
1227 if (notify_sibling_rt)
1228 fib_event = FIB_EVENT_ENTRY_APPEND;
1229 else
1230 fib_event = FIB_EVENT_ENTRY_REPLACE;
1231 err = call_fib6_entry_notifiers(info->nl_net,
1232 fib_event, rt,
1233 extack);
1234 if (err) {
1235 struct fib6_info *sibling, *next_sibling;
1236
1237 /* If the route has siblings, then it first
1238 * needs to be unlinked from them.
1239 */
1240 if (!rt->fib6_nsiblings)
1241 return err;
1242
1243 list_for_each_entry_safe(sibling, next_sibling,
1244 &rt->fib6_siblings,
1245 fib6_siblings)
1246 sibling->fib6_nsiblings--;
1247 rt->fib6_nsiblings = 0;
1248 list_del_rcu(&rt->fib6_siblings);
1249 rt6_multipath_rebalance(next_sibling);
1250 return err;
1251 }
1252 }
1253
1254 rcu_assign_pointer(rt->fib6_next, iter);
1255 fib6_info_hold(rt);
1256 rcu_assign_pointer(rt->fib6_node, fn);
1257 rcu_assign_pointer(*ins, rt);
1258 if (!info->skip_notify)
1259 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1260 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1261
1262 if (!(fn->fn_flags & RTN_RTINFO)) {
1263 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1264 fn->fn_flags |= RTN_RTINFO;
1265 }
1266
1267 } else {
1268 int nsiblings;
1269
1270 if (!found) {
1271 if (add)
1272 goto add;
1273 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1274 return -ENOENT;
1275 }
1276
1277 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1278 err = call_fib6_entry_notifiers(info->nl_net,
1279 FIB_EVENT_ENTRY_REPLACE,
1280 rt, extack);
1281 if (err)
1282 return err;
1283 }
1284
1285 fib6_info_hold(rt);
1286 rcu_assign_pointer(rt->fib6_node, fn);
1287 rt->fib6_next = iter->fib6_next;
1288 rcu_assign_pointer(*ins, rt);
1289 if (!info->skip_notify)
1290 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1291 if (!(fn->fn_flags & RTN_RTINFO)) {
1292 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1293 fn->fn_flags |= RTN_RTINFO;
1294 }
1295 nsiblings = iter->fib6_nsiblings;
1296 iter->fib6_node = NULL;
1297 fib6_purge_rt(iter, fn, info->nl_net);
1298 if (rcu_access_pointer(fn->rr_ptr) == iter)
1299 fn->rr_ptr = NULL;
1300 fib6_info_release(iter);
1301
1302 if (nsiblings) {
1303 /* Replacing an ECMP route, remove all siblings */
1304 ins = &rt->fib6_next;
1305 iter = rcu_dereference_protected(*ins,
1306 lockdep_is_held(&rt->fib6_table->tb6_lock));
1307 while (iter) {
1308 if (iter->fib6_metric > rt->fib6_metric)
1309 break;
1310 if (rt6_qualify_for_ecmp(iter)) {
1311 *ins = iter->fib6_next;
1312 iter->fib6_node = NULL;
1313 fib6_purge_rt(iter, fn, info->nl_net);
1314 if (rcu_access_pointer(fn->rr_ptr) == iter)
1315 fn->rr_ptr = NULL;
1316 fib6_info_release(iter);
1317 nsiblings--;
1318 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1319 } else {
1320 ins = &iter->fib6_next;
1321 }
1322 iter = rcu_dereference_protected(*ins,
1323 lockdep_is_held(&rt->fib6_table->tb6_lock));
1324 }
1325 WARN_ON(nsiblings != 0);
1326 }
1327 }
1328
1329 return 0;
1330}
1331
1332static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1333{
1334 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1335 (rt->fib6_flags & RTF_EXPIRES))
1336 mod_timer(&net->ipv6.ip6_fib_timer,
1337 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1338}
1339
1340void fib6_force_start_gc(struct net *net)
1341{
1342 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1343 mod_timer(&net->ipv6.ip6_fib_timer,
1344 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1345}
1346
1347static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1348 int sernum)
1349{
1350 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1351 lockdep_is_held(&rt->fib6_table->tb6_lock));
1352
1353 /* paired with smp_rmb() in fib6_get_cookie_safe() */
1354 smp_wmb();
1355 while (fn) {
1356 WRITE_ONCE(fn->fn_sernum, sernum);
1357 fn = rcu_dereference_protected(fn->parent,
1358 lockdep_is_held(&rt->fib6_table->tb6_lock));
1359 }
1360}
1361
1362void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1363{
1364 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1365}
1366
1367/* allow ipv4 to update sernum via ipv6_stub */
1368void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1369{
1370 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1371 fib6_update_sernum_upto_root(net, f6i);
1372 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1373}
1374
1375/*
1376 * Add routing information to the routing tree.
1377 * <destination addr>/<source addr>
1378 * with source addr info in sub-trees
1379 * Need to own table->tb6_lock
1380 */
1381
1382int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1383 struct nl_info *info, struct netlink_ext_ack *extack)
1384{
1385 struct fib6_table *table = rt->fib6_table;
1386 struct fib6_node *fn;
1387#ifdef CONFIG_IPV6_SUBTREES
1388 struct fib6_node *pn = NULL;
1389#endif
1390 int err = -ENOMEM;
1391 int allow_create = 1;
1392 int replace_required = 0;
1393
1394 if (info->nlh) {
1395 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1396 allow_create = 0;
1397 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1398 replace_required = 1;
1399 }
1400 if (!allow_create && !replace_required)
1401 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1402
1403 fn = fib6_add_1(info->nl_net, table, root,
1404 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1405 offsetof(struct fib6_info, fib6_dst), allow_create,
1406 replace_required, extack);
1407 if (IS_ERR(fn)) {
1408 err = PTR_ERR(fn);
1409 fn = NULL;
1410 goto out;
1411 }
1412
1413#ifdef CONFIG_IPV6_SUBTREES
1414 pn = fn;
1415
1416 if (rt->fib6_src.plen) {
1417 struct fib6_node *sn;
1418
1419 if (!rcu_access_pointer(fn->subtree)) {
1420 struct fib6_node *sfn;
1421
1422 /*
1423 * Create subtree.
1424 *
1425 * fn[main tree]
1426 * |
1427 * sfn[subtree root]
1428 * \
1429 * sn[new leaf node]
1430 */
1431
1432 /* Create subtree root node */
1433 sfn = node_alloc(info->nl_net);
1434 if (!sfn)
1435 goto failure;
1436
1437 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1438 rcu_assign_pointer(sfn->leaf,
1439 info->nl_net->ipv6.fib6_null_entry);
1440 sfn->fn_flags = RTN_ROOT;
1441
1442 /* Now add the first leaf node to new subtree */
1443
1444 sn = fib6_add_1(info->nl_net, table, sfn,
1445 &rt->fib6_src.addr, rt->fib6_src.plen,
1446 offsetof(struct fib6_info, fib6_src),
1447 allow_create, replace_required, extack);
1448
1449 if (IS_ERR(sn)) {
1450 /* If it is failed, discard just allocated
1451 root, and then (in failure) stale node
1452 in main tree.
1453 */
1454 node_free_immediate(info->nl_net, sfn);
1455 err = PTR_ERR(sn);
1456 goto failure;
1457 }
1458
1459 /* Now link new subtree to main tree */
1460 rcu_assign_pointer(sfn->parent, fn);
1461 rcu_assign_pointer(fn->subtree, sfn);
1462 } else {
1463 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1464 &rt->fib6_src.addr, rt->fib6_src.plen,
1465 offsetof(struct fib6_info, fib6_src),
1466 allow_create, replace_required, extack);
1467
1468 if (IS_ERR(sn)) {
1469 err = PTR_ERR(sn);
1470 goto failure;
1471 }
1472 }
1473
1474 if (!rcu_access_pointer(fn->leaf)) {
1475 if (fn->fn_flags & RTN_TL_ROOT) {
1476 /* put back null_entry for root node */
1477 rcu_assign_pointer(fn->leaf,
1478 info->nl_net->ipv6.fib6_null_entry);
1479 } else {
1480 fib6_info_hold(rt);
1481 rcu_assign_pointer(fn->leaf, rt);
1482 }
1483 }
1484 fn = sn;
1485 }
1486#endif
1487
1488 err = fib6_add_rt2node(fn, rt, info, extack);
1489 if (!err) {
1490 if (rt->nh)
1491 list_add(&rt->nh_list, &rt->nh->f6i_list);
1492 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1493
1494 if (rt->fib6_flags & RTF_EXPIRES)
1495 fib6_add_gc_list(rt);
1496
1497 fib6_start_gc(info->nl_net, rt);
1498 }
1499
1500out:
1501 if (err) {
1502#ifdef CONFIG_IPV6_SUBTREES
1503 /*
1504 * If fib6_add_1 has cleared the old leaf pointer in the
1505 * super-tree leaf node we have to find a new one for it.
1506 */
1507 if (pn != fn) {
1508 struct fib6_info *pn_leaf =
1509 rcu_dereference_protected(pn->leaf,
1510 lockdep_is_held(&table->tb6_lock));
1511 if (pn_leaf == rt) {
1512 pn_leaf = NULL;
1513 RCU_INIT_POINTER(pn->leaf, NULL);
1514 fib6_info_release(rt);
1515 }
1516 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1517 pn_leaf = fib6_find_prefix(info->nl_net, table,
1518 pn);
1519 if (!pn_leaf)
1520 pn_leaf =
1521 info->nl_net->ipv6.fib6_null_entry;
1522 fib6_info_hold(pn_leaf);
1523 rcu_assign_pointer(pn->leaf, pn_leaf);
1524 }
1525 }
1526#endif
1527 goto failure;
1528 } else if (fib6_requires_src(rt)) {
1529 fib6_routes_require_src_inc(info->nl_net);
1530 }
1531 return err;
1532
1533failure:
1534 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1535 * 1. fn is an intermediate node and we failed to add the new
1536 * route to it in both subtree creation failure and fib6_add_rt2node()
1537 * failure case.
1538 * 2. fn is the root node in the table and we fail to add the first
1539 * default route to it.
1540 */
1541 if (fn &&
1542 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1543 (fn->fn_flags & RTN_TL_ROOT &&
1544 !rcu_access_pointer(fn->leaf))))
1545 fib6_repair_tree(info->nl_net, table, fn);
1546 return err;
1547}
1548
1549/*
1550 * Routing tree lookup
1551 *
1552 */
1553
1554struct lookup_args {
1555 int offset; /* key offset on fib6_info */
1556 const struct in6_addr *addr; /* search key */
1557};
1558
1559static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1560 struct lookup_args *args)
1561{
1562 struct fib6_node *fn;
1563 __be32 dir;
1564
1565 if (unlikely(args->offset == 0))
1566 return NULL;
1567
1568 /*
1569 * Descend on a tree
1570 */
1571
1572 fn = root;
1573
1574 for (;;) {
1575 struct fib6_node *next;
1576
1577 dir = addr_bit_set(args->addr, fn->fn_bit);
1578
1579 next = dir ? rcu_dereference(fn->right) :
1580 rcu_dereference(fn->left);
1581
1582 if (next) {
1583 fn = next;
1584 continue;
1585 }
1586 break;
1587 }
1588
1589 while (fn) {
1590 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1591
1592 if (subtree || fn->fn_flags & RTN_RTINFO) {
1593 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1594 struct rt6key *key;
1595
1596 if (!leaf)
1597 goto backtrack;
1598
1599 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1600
1601 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1602#ifdef CONFIG_IPV6_SUBTREES
1603 if (subtree) {
1604 struct fib6_node *sfn;
1605 sfn = fib6_node_lookup_1(subtree,
1606 args + 1);
1607 if (!sfn)
1608 goto backtrack;
1609 fn = sfn;
1610 }
1611#endif
1612 if (fn->fn_flags & RTN_RTINFO)
1613 return fn;
1614 }
1615 }
1616backtrack:
1617 if (fn->fn_flags & RTN_ROOT)
1618 break;
1619
1620 fn = rcu_dereference(fn->parent);
1621 }
1622
1623 return NULL;
1624}
1625
1626/* called with rcu_read_lock() held
1627 */
1628struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1629 const struct in6_addr *daddr,
1630 const struct in6_addr *saddr)
1631{
1632 struct fib6_node *fn;
1633 struct lookup_args args[] = {
1634 {
1635 .offset = offsetof(struct fib6_info, fib6_dst),
1636 .addr = daddr,
1637 },
1638#ifdef CONFIG_IPV6_SUBTREES
1639 {
1640 .offset = offsetof(struct fib6_info, fib6_src),
1641 .addr = saddr,
1642 },
1643#endif
1644 {
1645 .offset = 0, /* sentinel */
1646 }
1647 };
1648
1649 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1650 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1651 fn = root;
1652
1653 return fn;
1654}
1655
1656/*
1657 * Get node with specified destination prefix (and source prefix,
1658 * if subtrees are used)
1659 * exact_match == true means we try to find fn with exact match of
1660 * the passed in prefix addr
1661 * exact_match == false means we try to find fn with longest prefix
1662 * match of the passed in prefix addr. This is useful for finding fn
1663 * for cached route as it will be stored in the exception table under
1664 * the node with longest prefix length.
1665 */
1666
1667
1668static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1669 const struct in6_addr *addr,
1670 int plen, int offset,
1671 bool exact_match)
1672{
1673 struct fib6_node *fn, *prev = NULL;
1674
1675 for (fn = root; fn ; ) {
1676 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1677 struct rt6key *key;
1678
1679 /* This node is being deleted */
1680 if (!leaf) {
1681 if (plen <= fn->fn_bit)
1682 goto out;
1683 else
1684 goto next;
1685 }
1686
1687 key = (struct rt6key *)((u8 *)leaf + offset);
1688
1689 /*
1690 * Prefix match
1691 */
1692 if (plen < fn->fn_bit ||
1693 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1694 goto out;
1695
1696 if (plen == fn->fn_bit)
1697 return fn;
1698
1699 if (fn->fn_flags & RTN_RTINFO)
1700 prev = fn;
1701
1702next:
1703 /*
1704 * We have more bits to go
1705 */
1706 if (addr_bit_set(addr, fn->fn_bit))
1707 fn = rcu_dereference(fn->right);
1708 else
1709 fn = rcu_dereference(fn->left);
1710 }
1711out:
1712 if (exact_match)
1713 return NULL;
1714 else
1715 return prev;
1716}
1717
1718struct fib6_node *fib6_locate(struct fib6_node *root,
1719 const struct in6_addr *daddr, int dst_len,
1720 const struct in6_addr *saddr, int src_len,
1721 bool exact_match)
1722{
1723 struct fib6_node *fn;
1724
1725 fn = fib6_locate_1(root, daddr, dst_len,
1726 offsetof(struct fib6_info, fib6_dst),
1727 exact_match);
1728
1729#ifdef CONFIG_IPV6_SUBTREES
1730 if (src_len) {
1731 WARN_ON(saddr == NULL);
1732 if (fn) {
1733 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1734
1735 if (subtree) {
1736 fn = fib6_locate_1(subtree, saddr, src_len,
1737 offsetof(struct fib6_info, fib6_src),
1738 exact_match);
1739 }
1740 }
1741 }
1742#endif
1743
1744 if (fn && fn->fn_flags & RTN_RTINFO)
1745 return fn;
1746
1747 return NULL;
1748}
1749
1750
1751/*
1752 * Deletion
1753 *
1754 */
1755
1756static struct fib6_info *fib6_find_prefix(struct net *net,
1757 struct fib6_table *table,
1758 struct fib6_node *fn)
1759{
1760 struct fib6_node *child_left, *child_right;
1761
1762 if (fn->fn_flags & RTN_ROOT)
1763 return net->ipv6.fib6_null_entry;
1764
1765 while (fn) {
1766 child_left = rcu_dereference_protected(fn->left,
1767 lockdep_is_held(&table->tb6_lock));
1768 child_right = rcu_dereference_protected(fn->right,
1769 lockdep_is_held(&table->tb6_lock));
1770 if (child_left)
1771 return rcu_dereference_protected(child_left->leaf,
1772 lockdep_is_held(&table->tb6_lock));
1773 if (child_right)
1774 return rcu_dereference_protected(child_right->leaf,
1775 lockdep_is_held(&table->tb6_lock));
1776
1777 fn = FIB6_SUBTREE(fn);
1778 }
1779 return NULL;
1780}
1781
1782/*
1783 * Called to trim the tree of intermediate nodes when possible. "fn"
1784 * is the node we want to try and remove.
1785 * Need to own table->tb6_lock
1786 */
1787
1788static struct fib6_node *fib6_repair_tree(struct net *net,
1789 struct fib6_table *table,
1790 struct fib6_node *fn)
1791{
1792 int children;
1793 int nstate;
1794 struct fib6_node *child;
1795 struct fib6_walker *w;
1796 int iter = 0;
1797
1798 /* Set fn->leaf to null_entry for root node. */
1799 if (fn->fn_flags & RTN_TL_ROOT) {
1800 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1801 return fn;
1802 }
1803
1804 for (;;) {
1805 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1806 lockdep_is_held(&table->tb6_lock));
1807 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1808 lockdep_is_held(&table->tb6_lock));
1809 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1810 lockdep_is_held(&table->tb6_lock));
1811 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1812 lockdep_is_held(&table->tb6_lock));
1813 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1814 lockdep_is_held(&table->tb6_lock));
1815 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1816 lockdep_is_held(&table->tb6_lock));
1817 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1818 lockdep_is_held(&table->tb6_lock));
1819 struct fib6_info *new_fn_leaf;
1820
1821 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1822 iter++;
1823
1824 WARN_ON(fn->fn_flags & RTN_RTINFO);
1825 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1826 WARN_ON(fn_leaf);
1827
1828 children = 0;
1829 child = NULL;
1830 if (fn_r) {
1831 child = fn_r;
1832 children |= 1;
1833 }
1834 if (fn_l) {
1835 child = fn_l;
1836 children |= 2;
1837 }
1838
1839 if (children == 3 || FIB6_SUBTREE(fn)
1840#ifdef CONFIG_IPV6_SUBTREES
1841 /* Subtree root (i.e. fn) may have one child */
1842 || (children && fn->fn_flags & RTN_ROOT)
1843#endif
1844 ) {
1845 new_fn_leaf = fib6_find_prefix(net, table, fn);
1846#if RT6_DEBUG >= 2
1847 if (!new_fn_leaf) {
1848 WARN_ON(!new_fn_leaf);
1849 new_fn_leaf = net->ipv6.fib6_null_entry;
1850 }
1851#endif
1852 fib6_info_hold(new_fn_leaf);
1853 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1854 return pn;
1855 }
1856
1857#ifdef CONFIG_IPV6_SUBTREES
1858 if (FIB6_SUBTREE(pn) == fn) {
1859 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1860 RCU_INIT_POINTER(pn->subtree, NULL);
1861 nstate = FWS_L;
1862 } else {
1863 WARN_ON(fn->fn_flags & RTN_ROOT);
1864#endif
1865 if (pn_r == fn)
1866 rcu_assign_pointer(pn->right, child);
1867 else if (pn_l == fn)
1868 rcu_assign_pointer(pn->left, child);
1869#if RT6_DEBUG >= 2
1870 else
1871 WARN_ON(1);
1872#endif
1873 if (child)
1874 rcu_assign_pointer(child->parent, pn);
1875 nstate = FWS_R;
1876#ifdef CONFIG_IPV6_SUBTREES
1877 }
1878#endif
1879
1880 read_lock(&net->ipv6.fib6_walker_lock);
1881 FOR_WALKERS(net, w) {
1882 if (!child) {
1883 if (w->node == fn) {
1884 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1885 w, w->state, nstate);
1886 w->node = pn;
1887 w->state = nstate;
1888 }
1889 } else {
1890 if (w->node == fn) {
1891 w->node = child;
1892 if (children&2) {
1893 pr_debug("W %p adjusted by delnode 2, s=%d\n",
1894 w, w->state);
1895 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1896 } else {
1897 pr_debug("W %p adjusted by delnode 2, s=%d\n",
1898 w, w->state);
1899 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1900 }
1901 }
1902 }
1903 }
1904 read_unlock(&net->ipv6.fib6_walker_lock);
1905
1906 node_free(net, fn);
1907 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1908 return pn;
1909
1910 RCU_INIT_POINTER(pn->leaf, NULL);
1911 fib6_info_release(pn_leaf);
1912 fn = pn;
1913 }
1914}
1915
1916static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1917 struct fib6_info __rcu **rtp, struct nl_info *info)
1918{
1919 struct fib6_info *leaf, *replace_rt = NULL;
1920 struct fib6_walker *w;
1921 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1922 lockdep_is_held(&table->tb6_lock));
1923 struct net *net = info->nl_net;
1924 bool notify_del = false;
1925
1926 /* If the deleted route is the first in the node and it is not part of
1927 * a multipath route, then we need to replace it with the next route
1928 * in the node, if exists.
1929 */
1930 leaf = rcu_dereference_protected(fn->leaf,
1931 lockdep_is_held(&table->tb6_lock));
1932 if (leaf == rt && !rt->fib6_nsiblings) {
1933 if (rcu_access_pointer(rt->fib6_next))
1934 replace_rt = rcu_dereference_protected(rt->fib6_next,
1935 lockdep_is_held(&table->tb6_lock));
1936 else
1937 notify_del = true;
1938 }
1939
1940 /* Unlink it */
1941 *rtp = rt->fib6_next;
1942 rt->fib6_node = NULL;
1943 net->ipv6.rt6_stats->fib_rt_entries--;
1944 net->ipv6.rt6_stats->fib_discarded_routes++;
1945
1946 /* Reset round-robin state, if necessary */
1947 if (rcu_access_pointer(fn->rr_ptr) == rt)
1948 fn->rr_ptr = NULL;
1949
1950 /* Remove this entry from other siblings */
1951 if (rt->fib6_nsiblings) {
1952 struct fib6_info *sibling, *next_sibling;
1953
1954 /* The route is deleted from a multipath route. If this
1955 * multipath route is the first route in the node, then we need
1956 * to emit a delete notification. Otherwise, we need to skip
1957 * the notification.
1958 */
1959 if (rt->fib6_metric == leaf->fib6_metric &&
1960 rt6_qualify_for_ecmp(leaf))
1961 notify_del = true;
1962 list_for_each_entry_safe(sibling, next_sibling,
1963 &rt->fib6_siblings, fib6_siblings)
1964 sibling->fib6_nsiblings--;
1965 rt->fib6_nsiblings = 0;
1966 list_del_rcu(&rt->fib6_siblings);
1967 rt6_multipath_rebalance(next_sibling);
1968 }
1969
1970 /* Adjust walkers */
1971 read_lock(&net->ipv6.fib6_walker_lock);
1972 FOR_WALKERS(net, w) {
1973 if (w->state == FWS_C && w->leaf == rt) {
1974 pr_debug("walker %p adjusted by delroute\n", w);
1975 w->leaf = rcu_dereference_protected(rt->fib6_next,
1976 lockdep_is_held(&table->tb6_lock));
1977 if (!w->leaf)
1978 w->state = FWS_U;
1979 }
1980 }
1981 read_unlock(&net->ipv6.fib6_walker_lock);
1982
1983 /* If it was last route, call fib6_repair_tree() to:
1984 * 1. For root node, put back null_entry as how the table was created.
1985 * 2. For other nodes, expunge its radix tree node.
1986 */
1987 if (!rcu_access_pointer(fn->leaf)) {
1988 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1989 fn->fn_flags &= ~RTN_RTINFO;
1990 net->ipv6.rt6_stats->fib_route_nodes--;
1991 }
1992 fn = fib6_repair_tree(net, table, fn);
1993 }
1994
1995 fib6_purge_rt(rt, fn, net);
1996
1997 if (!info->skip_notify_kernel) {
1998 if (notify_del)
1999 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2000 rt, NULL);
2001 else if (replace_rt)
2002 call_fib6_entry_notifiers_replace(net, replace_rt);
2003 }
2004 if (!info->skip_notify)
2005 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2006
2007 fib6_info_release(rt);
2008}
2009
2010/* Need to own table->tb6_lock */
2011int fib6_del(struct fib6_info *rt, struct nl_info *info)
2012{
2013 struct net *net = info->nl_net;
2014 struct fib6_info __rcu **rtp;
2015 struct fib6_info __rcu **rtp_next;
2016 struct fib6_table *table;
2017 struct fib6_node *fn;
2018
2019 if (rt == net->ipv6.fib6_null_entry)
2020 return -ENOENT;
2021
2022 table = rt->fib6_table;
2023 fn = rcu_dereference_protected(rt->fib6_node,
2024 lockdep_is_held(&table->tb6_lock));
2025 if (!fn)
2026 return -ENOENT;
2027
2028 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2029
2030 /*
2031 * Walk the leaf entries looking for ourself
2032 */
2033
2034 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2035 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2036 lockdep_is_held(&table->tb6_lock));
2037 if (rt == cur) {
2038 if (fib6_requires_src(cur))
2039 fib6_routes_require_src_dec(info->nl_net);
2040 fib6_del_route(table, fn, rtp, info);
2041 return 0;
2042 }
2043 rtp_next = &cur->fib6_next;
2044 }
2045 return -ENOENT;
2046}
2047
2048/*
2049 * Tree traversal function.
2050 *
2051 * Certainly, it is not interrupt safe.
2052 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2053 * It means, that we can modify tree during walking
2054 * and use this function for garbage collection, clone pruning,
2055 * cleaning tree when a device goes down etc. etc.
2056 *
2057 * It guarantees that every node will be traversed,
2058 * and that it will be traversed only once.
2059 *
2060 * Callback function w->func may return:
2061 * 0 -> continue walking.
2062 * positive value -> walking is suspended (used by tree dumps,
2063 * and probably by gc, if it will be split to several slices)
2064 * negative value -> terminate walking.
2065 *
2066 * The function itself returns:
2067 * 0 -> walk is complete.
2068 * >0 -> walk is incomplete (i.e. suspended)
2069 * <0 -> walk is terminated by an error.
2070 *
2071 * This function is called with tb6_lock held.
2072 */
2073
2074static int fib6_walk_continue(struct fib6_walker *w)
2075{
2076 struct fib6_node *fn, *pn, *left, *right;
2077
2078 /* w->root should always be table->tb6_root */
2079 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2080
2081 for (;;) {
2082 fn = w->node;
2083 if (!fn)
2084 return 0;
2085
2086 switch (w->state) {
2087#ifdef CONFIG_IPV6_SUBTREES
2088 case FWS_S:
2089 if (FIB6_SUBTREE(fn)) {
2090 w->node = FIB6_SUBTREE(fn);
2091 continue;
2092 }
2093 w->state = FWS_L;
2094 fallthrough;
2095#endif
2096 case FWS_L:
2097 left = rcu_dereference_protected(fn->left, 1);
2098 if (left) {
2099 w->node = left;
2100 w->state = FWS_INIT;
2101 continue;
2102 }
2103 w->state = FWS_R;
2104 fallthrough;
2105 case FWS_R:
2106 right = rcu_dereference_protected(fn->right, 1);
2107 if (right) {
2108 w->node = right;
2109 w->state = FWS_INIT;
2110 continue;
2111 }
2112 w->state = FWS_C;
2113 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2114 fallthrough;
2115 case FWS_C:
2116 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2117 int err;
2118
2119 if (w->skip) {
2120 w->skip--;
2121 goto skip;
2122 }
2123
2124 err = w->func(w);
2125 if (err)
2126 return err;
2127
2128 w->count++;
2129 continue;
2130 }
2131skip:
2132 w->state = FWS_U;
2133 fallthrough;
2134 case FWS_U:
2135 if (fn == w->root)
2136 return 0;
2137 pn = rcu_dereference_protected(fn->parent, 1);
2138 left = rcu_dereference_protected(pn->left, 1);
2139 right = rcu_dereference_protected(pn->right, 1);
2140 w->node = pn;
2141#ifdef CONFIG_IPV6_SUBTREES
2142 if (FIB6_SUBTREE(pn) == fn) {
2143 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2144 w->state = FWS_L;
2145 continue;
2146 }
2147#endif
2148 if (left == fn) {
2149 w->state = FWS_R;
2150 continue;
2151 }
2152 if (right == fn) {
2153 w->state = FWS_C;
2154 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2155 continue;
2156 }
2157#if RT6_DEBUG >= 2
2158 WARN_ON(1);
2159#endif
2160 }
2161 }
2162}
2163
2164static int fib6_walk(struct net *net, struct fib6_walker *w)
2165{
2166 int res;
2167
2168 w->state = FWS_INIT;
2169 w->node = w->root;
2170
2171 fib6_walker_link(net, w);
2172 res = fib6_walk_continue(w);
2173 if (res <= 0)
2174 fib6_walker_unlink(net, w);
2175 return res;
2176}
2177
2178static int fib6_clean_node(struct fib6_walker *w)
2179{
2180 int res;
2181 struct fib6_info *rt;
2182 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2183 struct nl_info info = {
2184 .nl_net = c->net,
2185 .skip_notify = c->skip_notify,
2186 };
2187
2188 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2189 READ_ONCE(w->node->fn_sernum) != c->sernum)
2190 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2191
2192 if (!c->func) {
2193 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2194 w->leaf = NULL;
2195 return 0;
2196 }
2197
2198 for_each_fib6_walker_rt(w) {
2199 res = c->func(rt, c->arg);
2200 if (res == -1) {
2201 w->leaf = rt;
2202 res = fib6_del(rt, &info);
2203 if (res) {
2204#if RT6_DEBUG >= 2
2205 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2206 __func__, rt,
2207 rcu_access_pointer(rt->fib6_node),
2208 res);
2209#endif
2210 continue;
2211 }
2212 return 0;
2213 } else if (res == -2) {
2214 if (WARN_ON(!rt->fib6_nsiblings))
2215 continue;
2216 rt = list_last_entry(&rt->fib6_siblings,
2217 struct fib6_info, fib6_siblings);
2218 continue;
2219 }
2220 WARN_ON(res != 0);
2221 }
2222 w->leaf = rt;
2223 return 0;
2224}
2225
2226/*
2227 * Convenient frontend to tree walker.
2228 *
2229 * func is called on each route.
2230 * It may return -2 -> skip multipath route.
2231 * -1 -> delete this route.
2232 * 0 -> continue walking
2233 */
2234
2235static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2236 int (*func)(struct fib6_info *, void *arg),
2237 int sernum, void *arg, bool skip_notify)
2238{
2239 struct fib6_cleaner c;
2240
2241 c.w.root = root;
2242 c.w.func = fib6_clean_node;
2243 c.w.count = 0;
2244 c.w.skip = 0;
2245 c.w.skip_in_node = 0;
2246 c.func = func;
2247 c.sernum = sernum;
2248 c.arg = arg;
2249 c.net = net;
2250 c.skip_notify = skip_notify;
2251
2252 fib6_walk(net, &c.w);
2253}
2254
2255static void __fib6_clean_all(struct net *net,
2256 int (*func)(struct fib6_info *, void *),
2257 int sernum, void *arg, bool skip_notify)
2258{
2259 struct fib6_table *table;
2260 struct hlist_head *head;
2261 unsigned int h;
2262
2263 rcu_read_lock();
2264 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2265 head = &net->ipv6.fib_table_hash[h];
2266 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2267 spin_lock_bh(&table->tb6_lock);
2268 fib6_clean_tree(net, &table->tb6_root,
2269 func, sernum, arg, skip_notify);
2270 spin_unlock_bh(&table->tb6_lock);
2271 }
2272 }
2273 rcu_read_unlock();
2274}
2275
2276void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2277 void *arg)
2278{
2279 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2280}
2281
2282void fib6_clean_all_skip_notify(struct net *net,
2283 int (*func)(struct fib6_info *, void *),
2284 void *arg)
2285{
2286 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2287}
2288
2289static void fib6_flush_trees(struct net *net)
2290{
2291 int new_sernum = fib6_new_sernum(net);
2292
2293 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2294}
2295
2296/*
2297 * Garbage collection
2298 */
2299
2300static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2301{
2302 unsigned long now = jiffies;
2303
2304 /*
2305 * check addrconf expiration here.
2306 * Routes are expired even if they are in use.
2307 */
2308
2309 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2310 if (time_after(now, rt->expires)) {
2311 pr_debug("expiring %p\n", rt);
2312 return -1;
2313 }
2314 gc_args->more++;
2315 }
2316
2317 /* Also age clones in the exception table.
2318 * Note, that clones are aged out
2319 * only if they are not in use now.
2320 */
2321 rt6_age_exceptions(rt, gc_args, now);
2322
2323 return 0;
2324}
2325
2326static void fib6_gc_table(struct net *net,
2327 struct fib6_table *tb6,
2328 struct fib6_gc_args *gc_args)
2329{
2330 struct fib6_info *rt;
2331 struct hlist_node *n;
2332 struct nl_info info = {
2333 .nl_net = net,
2334 .skip_notify = false,
2335 };
2336
2337 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2338 if (fib6_age(rt, gc_args) == -1)
2339 fib6_del(rt, &info);
2340}
2341
2342static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2343{
2344 struct fib6_table *table;
2345 struct hlist_head *head;
2346 unsigned int h;
2347
2348 rcu_read_lock();
2349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2350 head = &net->ipv6.fib_table_hash[h];
2351 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2352 spin_lock_bh(&table->tb6_lock);
2353
2354 fib6_gc_table(net, table, gc_args);
2355
2356 spin_unlock_bh(&table->tb6_lock);
2357 }
2358 }
2359 rcu_read_unlock();
2360}
2361
2362void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2363{
2364 struct fib6_gc_args gc_args;
2365 unsigned long now;
2366
2367 if (force) {
2368 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2369 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2370 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2371 return;
2372 }
2373 gc_args.timeout = expires ? (int)expires :
2374 net->ipv6.sysctl.ip6_rt_gc_interval;
2375 gc_args.more = 0;
2376
2377 fib6_gc_all(net, &gc_args);
2378 now = jiffies;
2379 net->ipv6.ip6_rt_last_gc = now;
2380
2381 if (gc_args.more)
2382 mod_timer(&net->ipv6.ip6_fib_timer,
2383 round_jiffies(now
2384 + net->ipv6.sysctl.ip6_rt_gc_interval));
2385 else
2386 del_timer(&net->ipv6.ip6_fib_timer);
2387 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2388}
2389
2390static void fib6_gc_timer_cb(struct timer_list *t)
2391{
2392 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2393
2394 fib6_run_gc(0, arg, true);
2395}
2396
2397static int __net_init fib6_net_init(struct net *net)
2398{
2399 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2400 int err;
2401
2402 err = fib6_notifier_init(net);
2403 if (err)
2404 return err;
2405
2406 /* Default to 3-tuple */
2407 net->ipv6.sysctl.multipath_hash_fields =
2408 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2409
2410 spin_lock_init(&net->ipv6.fib6_gc_lock);
2411 rwlock_init(&net->ipv6.fib6_walker_lock);
2412 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2413 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2414
2415 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2416 if (!net->ipv6.rt6_stats)
2417 goto out_notifier;
2418
2419 /* Avoid false sharing : Use at least a full cache line */
2420 size = max_t(size_t, size, L1_CACHE_BYTES);
2421
2422 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2423 if (!net->ipv6.fib_table_hash)
2424 goto out_rt6_stats;
2425
2426 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2427 GFP_KERNEL);
2428 if (!net->ipv6.fib6_main_tbl)
2429 goto out_fib_table_hash;
2430
2431 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2432 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2433 net->ipv6.fib6_null_entry);
2434 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2435 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2436 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2437 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2438
2439#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2440 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2441 GFP_KERNEL);
2442 if (!net->ipv6.fib6_local_tbl)
2443 goto out_fib6_main_tbl;
2444 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2445 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2446 net->ipv6.fib6_null_entry);
2447 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2448 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2449 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2450 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2451#endif
2452 fib6_tables_init(net);
2453
2454 return 0;
2455
2456#ifdef CONFIG_IPV6_MULTIPLE_TABLES
2457out_fib6_main_tbl:
2458 kfree(net->ipv6.fib6_main_tbl);
2459#endif
2460out_fib_table_hash:
2461 kfree(net->ipv6.fib_table_hash);
2462out_rt6_stats:
2463 kfree(net->ipv6.rt6_stats);
2464out_notifier:
2465 fib6_notifier_exit(net);
2466 return -ENOMEM;
2467}
2468
2469static void fib6_net_exit(struct net *net)
2470{
2471 unsigned int i;
2472
2473 del_timer_sync(&net->ipv6.ip6_fib_timer);
2474
2475 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2476 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2477 struct hlist_node *tmp;
2478 struct fib6_table *tb;
2479
2480 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2481 hlist_del(&tb->tb6_hlist);
2482 fib6_free_table(tb);
2483 }
2484 }
2485
2486 kfree(net->ipv6.fib_table_hash);
2487 kfree(net->ipv6.rt6_stats);
2488 fib6_notifier_exit(net);
2489}
2490
2491static struct pernet_operations fib6_net_ops = {
2492 .init = fib6_net_init,
2493 .exit = fib6_net_exit,
2494};
2495
2496static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = {
2497 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE,
2498 .dumpit = inet6_dump_fib,
2499 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE},
2500};
2501
2502int __init fib6_init(void)
2503{
2504 int ret = -ENOMEM;
2505
2506 fib6_node_kmem = KMEM_CACHE(fib6_node,
2507 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2508 if (!fib6_node_kmem)
2509 goto out;
2510
2511 ret = register_pernet_subsys(&fib6_net_ops);
2512 if (ret)
2513 goto out_kmem_cache_create;
2514
2515 ret = rtnl_register_many(fib6_rtnl_msg_handlers);
2516 if (ret)
2517 goto out_unregister_subsys;
2518
2519 __fib6_flush_trees = fib6_flush_trees;
2520out:
2521 return ret;
2522
2523out_unregister_subsys:
2524 unregister_pernet_subsys(&fib6_net_ops);
2525out_kmem_cache_create:
2526 kmem_cache_destroy(fib6_node_kmem);
2527 goto out;
2528}
2529
2530void fib6_gc_cleanup(void)
2531{
2532 unregister_pernet_subsys(&fib6_net_ops);
2533 kmem_cache_destroy(fib6_node_kmem);
2534}
2535
2536#ifdef CONFIG_PROC_FS
2537static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2538{
2539 struct fib6_info *rt = v;
2540 struct ipv6_route_iter *iter = seq->private;
2541 struct fib6_nh *fib6_nh = rt->fib6_nh;
2542 unsigned int flags = rt->fib6_flags;
2543 const struct net_device *dev;
2544
2545 if (rt->nh)
2546 fib6_nh = nexthop_fib6_nh(rt->nh);
2547
2548 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2549
2550#ifdef CONFIG_IPV6_SUBTREES
2551 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2552#else
2553 seq_puts(seq, "00000000000000000000000000000000 00 ");
2554#endif
2555 if (fib6_nh->fib_nh_gw_family) {
2556 flags |= RTF_GATEWAY;
2557 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2558 } else {
2559 seq_puts(seq, "00000000000000000000000000000000");
2560 }
2561
2562 dev = fib6_nh->fib_nh_dev;
2563 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2564 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2565 flags, dev ? dev->name : "");
2566 iter->w.leaf = NULL;
2567 return 0;
2568}
2569
2570static int ipv6_route_yield(struct fib6_walker *w)
2571{
2572 struct ipv6_route_iter *iter = w->args;
2573
2574 if (!iter->skip)
2575 return 1;
2576
2577 do {
2578 iter->w.leaf = rcu_dereference_protected(
2579 iter->w.leaf->fib6_next,
2580 lockdep_is_held(&iter->tbl->tb6_lock));
2581 iter->skip--;
2582 if (!iter->skip && iter->w.leaf)
2583 return 1;
2584 } while (iter->w.leaf);
2585
2586 return 0;
2587}
2588
2589static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2590 struct net *net)
2591{
2592 memset(&iter->w, 0, sizeof(iter->w));
2593 iter->w.func = ipv6_route_yield;
2594 iter->w.root = &iter->tbl->tb6_root;
2595 iter->w.state = FWS_INIT;
2596 iter->w.node = iter->w.root;
2597 iter->w.args = iter;
2598 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2599 INIT_LIST_HEAD(&iter->w.lh);
2600 fib6_walker_link(net, &iter->w);
2601}
2602
2603static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2604 struct net *net)
2605{
2606 unsigned int h;
2607 struct hlist_node *node;
2608
2609 if (tbl) {
2610 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2611 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2612 } else {
2613 h = 0;
2614 node = NULL;
2615 }
2616
2617 while (!node && h < FIB6_TABLE_HASHSZ) {
2618 node = rcu_dereference(
2619 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2620 }
2621 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2622}
2623
2624static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2625{
2626 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2627
2628 if (iter->sernum != sernum) {
2629 iter->sernum = sernum;
2630 iter->w.state = FWS_INIT;
2631 iter->w.node = iter->w.root;
2632 WARN_ON(iter->w.skip);
2633 iter->w.skip = iter->w.count;
2634 }
2635}
2636
2637static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2638{
2639 int r;
2640 struct fib6_info *n;
2641 struct net *net = seq_file_net(seq);
2642 struct ipv6_route_iter *iter = seq->private;
2643
2644 ++(*pos);
2645 if (!v)
2646 goto iter_table;
2647
2648 n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2649 if (n)
2650 return n;
2651
2652iter_table:
2653 ipv6_route_check_sernum(iter);
2654 spin_lock_bh(&iter->tbl->tb6_lock);
2655 r = fib6_walk_continue(&iter->w);
2656 spin_unlock_bh(&iter->tbl->tb6_lock);
2657 if (r > 0) {
2658 return iter->w.leaf;
2659 } else if (r < 0) {
2660 fib6_walker_unlink(net, &iter->w);
2661 return NULL;
2662 }
2663 fib6_walker_unlink(net, &iter->w);
2664
2665 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2666 if (!iter->tbl)
2667 return NULL;
2668
2669 ipv6_route_seq_setup_walk(iter, net);
2670 goto iter_table;
2671}
2672
2673static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2674 __acquires(RCU)
2675{
2676 struct net *net = seq_file_net(seq);
2677 struct ipv6_route_iter *iter = seq->private;
2678
2679 rcu_read_lock();
2680 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2681 iter->skip = *pos;
2682
2683 if (iter->tbl) {
2684 loff_t p = 0;
2685
2686 ipv6_route_seq_setup_walk(iter, net);
2687 return ipv6_route_seq_next(seq, NULL, &p);
2688 } else {
2689 return NULL;
2690 }
2691}
2692
2693static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2694{
2695 struct fib6_walker *w = &iter->w;
2696 return w->node && !(w->state == FWS_U && w->node == w->root);
2697}
2698
2699static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2700 __releases(RCU)
2701{
2702 struct net *net = seq_file_net(seq);
2703 struct ipv6_route_iter *iter = seq->private;
2704
2705 if (ipv6_route_iter_active(iter))
2706 fib6_walker_unlink(net, &iter->w);
2707
2708 rcu_read_unlock();
2709}
2710
2711#if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2712static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2713 struct bpf_iter_meta *meta,
2714 void *v)
2715{
2716 struct bpf_iter__ipv6_route ctx;
2717
2718 ctx.meta = meta;
2719 ctx.rt = v;
2720 return bpf_iter_run_prog(prog, &ctx);
2721}
2722
2723static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2724{
2725 struct ipv6_route_iter *iter = seq->private;
2726 struct bpf_iter_meta meta;
2727 struct bpf_prog *prog;
2728 int ret;
2729
2730 meta.seq = seq;
2731 prog = bpf_iter_get_info(&meta, false);
2732 if (!prog)
2733 return ipv6_route_native_seq_show(seq, v);
2734
2735 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2736 iter->w.leaf = NULL;
2737
2738 return ret;
2739}
2740
2741static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2742{
2743 struct bpf_iter_meta meta;
2744 struct bpf_prog *prog;
2745
2746 if (!v) {
2747 meta.seq = seq;
2748 prog = bpf_iter_get_info(&meta, true);
2749 if (prog)
2750 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2751 }
2752
2753 ipv6_route_native_seq_stop(seq, v);
2754}
2755#else
2756static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2757{
2758 return ipv6_route_native_seq_show(seq, v);
2759}
2760
2761static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2762{
2763 ipv6_route_native_seq_stop(seq, v);
2764}
2765#endif
2766
2767const struct seq_operations ipv6_route_seq_ops = {
2768 .start = ipv6_route_seq_start,
2769 .next = ipv6_route_seq_next,
2770 .stop = ipv6_route_seq_stop,
2771 .show = ipv6_route_seq_show
2772};
2773#endif /* CONFIG_PROC_FS */