Linux Audio

Check our new training course

Loading...
v4.6
  1#include <linux/export.h>
  2#include <linux/sched.h>
  3#include <linux/tsacct_kern.h>
  4#include <linux/kernel_stat.h>
  5#include <linux/static_key.h>
  6#include <linux/context_tracking.h>
  7#include "sched.h"
  8#ifdef CONFIG_PARAVIRT
  9#include <asm/paravirt.h>
 10#endif
 11
 
 
 
 12
 13#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 14
 15/*
 16 * There are no locks covering percpu hardirq/softirq time.
 17 * They are only modified in vtime_account, on corresponding CPU
 18 * with interrupts disabled. So, writes are safe.
 19 * They are read and saved off onto struct rq in update_rq_clock().
 20 * This may result in other CPU reading this CPU's irq time and can
 21 * race with irq/vtime_account on this CPU. We would either get old
 22 * or new value with a side effect of accounting a slice of irq time to wrong
 23 * task when irq is in progress while we read rq->clock. That is a worthy
 24 * compromise in place of having locks on each irq in account_system_time.
 25 */
 26DEFINE_PER_CPU(u64, cpu_hardirq_time);
 27DEFINE_PER_CPU(u64, cpu_softirq_time);
 28
 29static DEFINE_PER_CPU(u64, irq_start_time);
 30static int sched_clock_irqtime;
 31
 32void enable_sched_clock_irqtime(void)
 33{
 34	sched_clock_irqtime = 1;
 35}
 36
 37void disable_sched_clock_irqtime(void)
 38{
 39	sched_clock_irqtime = 0;
 40}
 41
 42#ifndef CONFIG_64BIT
 43DEFINE_PER_CPU(seqcount_t, irq_time_seq);
 44#endif /* CONFIG_64BIT */
 
 
 
 
 
 
 
 
 45
 46/*
 47 * Called before incrementing preempt_count on {soft,}irq_enter
 48 * and before decrementing preempt_count on {soft,}irq_exit.
 49 */
 50void irqtime_account_irq(struct task_struct *curr)
 51{
 52	unsigned long flags;
 
 53	s64 delta;
 54	int cpu;
 55
 56	if (!sched_clock_irqtime)
 57		return;
 58
 59	local_irq_save(flags);
 60
 61	cpu = smp_processor_id();
 62	delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
 63	__this_cpu_add(irq_start_time, delta);
 
 64
 65	irq_time_write_begin();
 66	/*
 67	 * We do not account for softirq time from ksoftirqd here.
 68	 * We want to continue accounting softirq time to ksoftirqd thread
 69	 * in that case, so as not to confuse scheduler with a special task
 70	 * that do not consume any time, but still wants to run.
 71	 */
 72	if (hardirq_count())
 73		__this_cpu_add(cpu_hardirq_time, delta);
 74	else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
 75		__this_cpu_add(cpu_softirq_time, delta);
 76
 77	irq_time_write_end();
 78	local_irq_restore(flags);
 79}
 80EXPORT_SYMBOL_GPL(irqtime_account_irq);
 81
 82static int irqtime_account_hi_update(void)
 83{
 84	u64 *cpustat = kcpustat_this_cpu->cpustat;
 85	unsigned long flags;
 86	u64 latest_ns;
 87	int ret = 0;
 88
 89	local_irq_save(flags);
 90	latest_ns = this_cpu_read(cpu_hardirq_time);
 91	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
 92		ret = 1;
 93	local_irq_restore(flags);
 94	return ret;
 95}
 96
 97static int irqtime_account_si_update(void)
 98{
 99	u64 *cpustat = kcpustat_this_cpu->cpustat;
100	unsigned long flags;
101	u64 latest_ns;
102	int ret = 0;
103
104	local_irq_save(flags);
105	latest_ns = this_cpu_read(cpu_softirq_time);
106	if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
107		ret = 1;
108	local_irq_restore(flags);
109	return ret;
110}
111
112#else /* CONFIG_IRQ_TIME_ACCOUNTING */
113
114#define sched_clock_irqtime	(0)
115
 
 
 
 
 
116#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
117
118static inline void task_group_account_field(struct task_struct *p, int index,
119					    u64 tmp)
120{
121	/*
122	 * Since all updates are sure to touch the root cgroup, we
123	 * get ourselves ahead and touch it first. If the root cgroup
124	 * is the only cgroup, then nothing else should be necessary.
125	 *
126	 */
127	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
128
129	cpuacct_account_field(p, index, tmp);
130}
131
132/*
133 * Account user cpu time to a process.
134 * @p: the process that the cpu time gets accounted to
135 * @cputime: the cpu time spent in user space since the last update
136 * @cputime_scaled: cputime scaled by cpu frequency
137 */
138void account_user_time(struct task_struct *p, cputime_t cputime,
139		       cputime_t cputime_scaled)
140{
141	int index;
142
143	/* Add user time to process. */
144	p->utime += cputime;
145	p->utimescaled += cputime_scaled;
146	account_group_user_time(p, cputime);
147
148	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
149
150	/* Add user time to cpustat. */
151	task_group_account_field(p, index, (__force u64) cputime);
152
153	/* Account for user time used */
154	acct_account_cputime(p);
155}
156
157/*
158 * Account guest cpu time to a process.
159 * @p: the process that the cpu time gets accounted to
160 * @cputime: the cpu time spent in virtual machine since the last update
161 * @cputime_scaled: cputime scaled by cpu frequency
162 */
163static void account_guest_time(struct task_struct *p, cputime_t cputime,
164			       cputime_t cputime_scaled)
165{
166	u64 *cpustat = kcpustat_this_cpu->cpustat;
167
168	/* Add guest time to process. */
169	p->utime += cputime;
170	p->utimescaled += cputime_scaled;
171	account_group_user_time(p, cputime);
172	p->gtime += cputime;
173
174	/* Add guest time to cpustat. */
175	if (task_nice(p) > 0) {
176		cpustat[CPUTIME_NICE] += (__force u64) cputime;
177		cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
178	} else {
179		cpustat[CPUTIME_USER] += (__force u64) cputime;
180		cpustat[CPUTIME_GUEST] += (__force u64) cputime;
181	}
182}
183
184/*
185 * Account system cpu time to a process and desired cpustat field
186 * @p: the process that the cpu time gets accounted to
187 * @cputime: the cpu time spent in kernel space since the last update
188 * @cputime_scaled: cputime scaled by cpu frequency
189 * @target_cputime64: pointer to cpustat field that has to be updated
190 */
191static inline
192void __account_system_time(struct task_struct *p, cputime_t cputime,
193			cputime_t cputime_scaled, int index)
194{
195	/* Add system time to process. */
196	p->stime += cputime;
197	p->stimescaled += cputime_scaled;
198	account_group_system_time(p, cputime);
199
200	/* Add system time to cpustat. */
201	task_group_account_field(p, index, (__force u64) cputime);
202
203	/* Account for system time used */
204	acct_account_cputime(p);
205}
206
207/*
208 * Account system cpu time to a process.
209 * @p: the process that the cpu time gets accounted to
210 * @hardirq_offset: the offset to subtract from hardirq_count()
211 * @cputime: the cpu time spent in kernel space since the last update
212 * @cputime_scaled: cputime scaled by cpu frequency
213 */
214void account_system_time(struct task_struct *p, int hardirq_offset,
215			 cputime_t cputime, cputime_t cputime_scaled)
216{
217	int index;
218
219	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
220		account_guest_time(p, cputime, cputime_scaled);
221		return;
222	}
223
224	if (hardirq_count() - hardirq_offset)
225		index = CPUTIME_IRQ;
226	else if (in_serving_softirq())
227		index = CPUTIME_SOFTIRQ;
228	else
229		index = CPUTIME_SYSTEM;
230
231	__account_system_time(p, cputime, cputime_scaled, index);
232}
233
234/*
235 * Account for involuntary wait time.
236 * @cputime: the cpu time spent in involuntary wait
237 */
238void account_steal_time(cputime_t cputime)
239{
240	u64 *cpustat = kcpustat_this_cpu->cpustat;
241
242	cpustat[CPUTIME_STEAL] += (__force u64) cputime;
243}
244
245/*
246 * Account for idle time.
247 * @cputime: the cpu time spent in idle wait
248 */
249void account_idle_time(cputime_t cputime)
250{
251	u64 *cpustat = kcpustat_this_cpu->cpustat;
252	struct rq *rq = this_rq();
253
254	if (atomic_read(&rq->nr_iowait) > 0)
255		cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
256	else
257		cpustat[CPUTIME_IDLE] += (__force u64) cputime;
258}
259
260static __always_inline bool steal_account_process_tick(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
261{
262#ifdef CONFIG_PARAVIRT
263	if (static_key_false(&paravirt_steal_enabled)) {
264		u64 steal;
265		unsigned long steal_jiffies;
266
267		steal = paravirt_steal_clock(smp_processor_id());
268		steal -= this_rq()->prev_steal_time;
 
 
 
269
270		/*
271		 * steal is in nsecs but our caller is expecting steal
272		 * time in jiffies. Lets cast the result to jiffies
273		 * granularity and account the rest on the next rounds.
274		 */
275		steal_jiffies = nsecs_to_jiffies(steal);
276		this_rq()->prev_steal_time += jiffies_to_nsecs(steal_jiffies);
277
278		account_steal_time(jiffies_to_cputime(steal_jiffies));
279		return steal_jiffies;
280	}
281#endif
282	return false;
283}
284
285/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
287 * tasks (sum on group iteration) belonging to @tsk's group.
288 */
289void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
290{
291	struct signal_struct *sig = tsk->signal;
292	cputime_t utime, stime;
293	struct task_struct *t;
294	unsigned int seq, nextseq;
295	unsigned long flags;
296
 
 
 
 
 
 
 
 
 
 
 
297	rcu_read_lock();
298	/* Attempt a lockless read on the first round. */
299	nextseq = 0;
300	do {
301		seq = nextseq;
302		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
303		times->utime = sig->utime;
304		times->stime = sig->stime;
305		times->sum_exec_runtime = sig->sum_sched_runtime;
306
307		for_each_thread(tsk, t) {
308			task_cputime(t, &utime, &stime);
309			times->utime += utime;
310			times->stime += stime;
311			times->sum_exec_runtime += task_sched_runtime(t);
312		}
313		/* If lockless access failed, take the lock. */
314		nextseq = 1;
315	} while (need_seqretry(&sig->stats_lock, seq));
316	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
317	rcu_read_unlock();
318}
319
320#ifdef CONFIG_IRQ_TIME_ACCOUNTING
321/*
322 * Account a tick to a process and cpustat
323 * @p: the process that the cpu time gets accounted to
324 * @user_tick: is the tick from userspace
325 * @rq: the pointer to rq
326 *
327 * Tick demultiplexing follows the order
328 * - pending hardirq update
329 * - pending softirq update
330 * - user_time
331 * - idle_time
332 * - system time
333 *   - check for guest_time
334 *   - else account as system_time
335 *
336 * Check for hardirq is done both for system and user time as there is
337 * no timer going off while we are on hardirq and hence we may never get an
338 * opportunity to update it solely in system time.
339 * p->stime and friends are only updated on system time and not on irq
340 * softirq as those do not count in task exec_runtime any more.
341 */
342static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
343					 struct rq *rq, int ticks)
344{
345	cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
346	u64 cputime = (__force u64) cputime_one_jiffy;
347	u64 *cpustat = kcpustat_this_cpu->cpustat;
348
349	if (steal_account_process_tick())
 
 
 
 
 
 
 
 
350		return;
351
352	cputime *= ticks;
353	scaled *= ticks;
354
355	if (irqtime_account_hi_update()) {
356		cpustat[CPUTIME_IRQ] += cputime;
357	} else if (irqtime_account_si_update()) {
358		cpustat[CPUTIME_SOFTIRQ] += cputime;
359	} else if (this_cpu_ksoftirqd() == p) {
360		/*
361		 * ksoftirqd time do not get accounted in cpu_softirq_time.
362		 * So, we have to handle it separately here.
363		 * Also, p->stime needs to be updated for ksoftirqd.
364		 */
365		__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
366	} else if (user_tick) {
367		account_user_time(p, cputime, scaled);
368	} else if (p == rq->idle) {
369		account_idle_time(cputime);
370	} else if (p->flags & PF_VCPU) { /* System time or guest time */
371		account_guest_time(p, cputime, scaled);
372	} else {
373		__account_system_time(p, cputime, scaled,	CPUTIME_SYSTEM);
374	}
375}
376
377static void irqtime_account_idle_ticks(int ticks)
378{
379	struct rq *rq = this_rq();
380
381	irqtime_account_process_tick(current, 0, rq, ticks);
382}
383#else /* CONFIG_IRQ_TIME_ACCOUNTING */
384static inline void irqtime_account_idle_ticks(int ticks) {}
385static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
386						struct rq *rq, int nr_ticks) {}
387#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
388
389/*
390 * Use precise platform statistics if available:
391 */
392#ifdef CONFIG_VIRT_CPU_ACCOUNTING
393
394#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
395void vtime_common_task_switch(struct task_struct *prev)
396{
397	if (is_idle_task(prev))
398		vtime_account_idle(prev);
399	else
400		vtime_account_system(prev);
401
402#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
403	vtime_account_user(prev);
404#endif
405	arch_vtime_task_switch(prev);
406}
407#endif
408
409/*
410 * Archs that account the whole time spent in the idle task
411 * (outside irq) as idle time can rely on this and just implement
412 * vtime_account_system() and vtime_account_idle(). Archs that
413 * have other meaning of the idle time (s390 only includes the
414 * time spent by the CPU when it's in low power mode) must override
415 * vtime_account().
416 */
417#ifndef __ARCH_HAS_VTIME_ACCOUNT
418void vtime_common_account_irq_enter(struct task_struct *tsk)
419{
420	if (!in_interrupt()) {
421		/*
422		 * If we interrupted user, context_tracking_in_user()
423		 * is 1 because the context tracking don't hook
424		 * on irq entry/exit. This way we know if
425		 * we need to flush user time on kernel entry.
426		 */
427		if (context_tracking_in_user()) {
428			vtime_account_user(tsk);
429			return;
430		}
431
432		if (is_idle_task(tsk)) {
433			vtime_account_idle(tsk);
434			return;
435		}
 
 
 
 
 
436	}
437	vtime_account_system(tsk);
438}
439EXPORT_SYMBOL_GPL(vtime_common_account_irq_enter);
440#endif /* __ARCH_HAS_VTIME_ACCOUNT */
441#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
442
 
 
 
 
 
 
443
444#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
445void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
446{
447	*ut = p->utime;
448	*st = p->stime;
449}
450EXPORT_SYMBOL_GPL(task_cputime_adjusted);
451
452void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
453{
454	struct task_cputime cputime;
455
456	thread_group_cputime(p, &cputime);
457
458	*ut = cputime.utime;
459	*st = cputime.stime;
460}
461#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 
 
462/*
463 * Account a single tick of cpu time.
464 * @p: the process that the cpu time gets accounted to
465 * @user_tick: indicates if the tick is a user or a system tick
466 */
467void account_process_tick(struct task_struct *p, int user_tick)
468{
469	cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
470	struct rq *rq = this_rq();
471
472	if (vtime_accounting_cpu_enabled())
473		return;
474
475	if (sched_clock_irqtime) {
476		irqtime_account_process_tick(p, user_tick, rq, 1);
477		return;
478	}
479
480	if (steal_account_process_tick())
 
 
 
481		return;
482
 
 
483	if (user_tick)
484		account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
485	else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
486		account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
487				    one_jiffy_scaled);
488	else
489		account_idle_time(cputime_one_jiffy);
490}
491
492/*
493 * Account multiple ticks of steal time.
494 * @p: the process from which the cpu time has been stolen
495 * @ticks: number of stolen ticks
496 */
497void account_steal_ticks(unsigned long ticks)
498{
499	account_steal_time(jiffies_to_cputime(ticks));
500}
501
502/*
503 * Account multiple ticks of idle time.
504 * @ticks: number of stolen ticks
505 */
506void account_idle_ticks(unsigned long ticks)
507{
 
508
509	if (sched_clock_irqtime) {
510		irqtime_account_idle_ticks(ticks);
511		return;
512	}
513
514	account_idle_time(jiffies_to_cputime(ticks));
515}
516
517/*
518 * Perform (stime * rtime) / total, but avoid multiplication overflow by
519 * loosing precision when the numbers are big.
520 */
521static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
522{
523	u64 scaled;
524
525	for (;;) {
526		/* Make sure "rtime" is the bigger of stime/rtime */
527		if (stime > rtime)
528			swap(rtime, stime);
529
530		/* Make sure 'total' fits in 32 bits */
531		if (total >> 32)
532			goto drop_precision;
533
534		/* Does rtime (and thus stime) fit in 32 bits? */
535		if (!(rtime >> 32))
536			break;
537
538		/* Can we just balance rtime/stime rather than dropping bits? */
539		if (stime >> 31)
540			goto drop_precision;
541
542		/* We can grow stime and shrink rtime and try to make them both fit */
543		stime <<= 1;
544		rtime >>= 1;
545		continue;
546
547drop_precision:
548		/* We drop from rtime, it has more bits than stime */
549		rtime >>= 1;
550		total >>= 1;
551	}
552
553	/*
554	 * Make sure gcc understands that this is a 32x32->64 multiply,
555	 * followed by a 64/32->64 divide.
556	 */
557	scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
558	return (__force cputime_t) scaled;
559}
560
561/*
562 * Adjust tick based cputime random precision against scheduler runtime
563 * accounting.
564 *
565 * Tick based cputime accounting depend on random scheduling timeslices of a
566 * task to be interrupted or not by the timer.  Depending on these
567 * circumstances, the number of these interrupts may be over or
568 * under-optimistic, matching the real user and system cputime with a variable
569 * precision.
570 *
571 * Fix this by scaling these tick based values against the total runtime
572 * accounted by the CFS scheduler.
573 *
574 * This code provides the following guarantees:
575 *
576 *   stime + utime == rtime
577 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
578 *
579 * Assuming that rtime_i+1 >= rtime_i.
580 */
581static void cputime_adjust(struct task_cputime *curr,
582			   struct prev_cputime *prev,
583			   cputime_t *ut, cputime_t *st)
584{
585	cputime_t rtime, stime, utime;
586	unsigned long flags;
587
588	/* Serialize concurrent callers such that we can honour our guarantees */
589	raw_spin_lock_irqsave(&prev->lock, flags);
590	rtime = nsecs_to_cputime(curr->sum_exec_runtime);
591
592	/*
593	 * This is possible under two circumstances:
594	 *  - rtime isn't monotonic after all (a bug);
595	 *  - we got reordered by the lock.
596	 *
597	 * In both cases this acts as a filter such that the rest of the code
598	 * can assume it is monotonic regardless of anything else.
599	 */
600	if (prev->stime + prev->utime >= rtime)
601		goto out;
602
603	stime = curr->stime;
604	utime = curr->utime;
605
606	if (utime == 0) {
607		stime = rtime;
 
 
 
 
 
608		goto update;
609	}
610
611	if (stime == 0) {
612		utime = rtime;
613		goto update;
614	}
615
616	stime = scale_stime((__force u64)stime, (__force u64)rtime,
617			    (__force u64)(stime + utime));
 
 
 
 
 
618
 
619	/*
620	 * Make sure stime doesn't go backwards; this preserves monotonicity
621	 * for utime because rtime is monotonic.
622	 *
623	 *  utime_i+1 = rtime_i+1 - stime_i
624	 *            = rtime_i+1 - (rtime_i - utime_i)
625	 *            = (rtime_i+1 - rtime_i) + utime_i
626	 *            >= utime_i
627	 */
628	if (stime < prev->stime)
629		stime = prev->stime;
630	utime = rtime - stime;
631
632	/*
633	 * Make sure utime doesn't go backwards; this still preserves
634	 * monotonicity for stime, analogous argument to above.
635	 */
636	if (utime < prev->utime) {
637		utime = prev->utime;
638		stime = rtime - utime;
639	}
640
641update:
642	prev->stime = stime;
643	prev->utime = utime;
644out:
645	*ut = prev->utime;
646	*st = prev->stime;
647	raw_spin_unlock_irqrestore(&prev->lock, flags);
648}
649
650void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
651{
652	struct task_cputime cputime = {
653		.sum_exec_runtime = p->se.sum_exec_runtime,
654	};
655
656	task_cputime(p, &cputime.utime, &cputime.stime);
 
657	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
658}
659EXPORT_SYMBOL_GPL(task_cputime_adjusted);
660
661void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
662{
663	struct task_cputime cputime;
664
665	thread_group_cputime(p, &cputime);
666	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
667}
668#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
669
670#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
671static cputime_t vtime_delta(struct task_struct *tsk)
672{
673	unsigned long now = READ_ONCE(jiffies);
674
675	if (time_before(now, (unsigned long)tsk->vtime_snap))
 
676		return 0;
677
678	return jiffies_to_cputime(now - tsk->vtime_snap);
679}
680
681static cputime_t get_vtime_delta(struct task_struct *tsk)
682{
683	unsigned long now = READ_ONCE(jiffies);
684	unsigned long delta = now - tsk->vtime_snap;
685
686	WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_INACTIVE);
687	tsk->vtime_snap = now;
 
 
 
 
 
 
 
 
688
689	return jiffies_to_cputime(delta);
690}
691
692static void __vtime_account_system(struct task_struct *tsk)
 
693{
694	cputime_t delta_cpu = get_vtime_delta(tsk);
695
696	account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
 
 
697}
698
699void vtime_account_system(struct task_struct *tsk)
 
700{
701	if (!vtime_delta(tsk))
702		return;
703
704	write_seqcount_begin(&tsk->vtime_seqcount);
705	__vtime_account_system(tsk);
706	write_seqcount_end(&tsk->vtime_seqcount);
707}
708
709void vtime_gen_account_irq_exit(struct task_struct *tsk)
 
710{
711	write_seqcount_begin(&tsk->vtime_seqcount);
712	if (vtime_delta(tsk))
713		__vtime_account_system(tsk);
714	if (context_tracking_in_user())
715		tsk->vtime_snap_whence = VTIME_USER;
716	write_seqcount_end(&tsk->vtime_seqcount);
717}
718
719void vtime_account_user(struct task_struct *tsk)
720{
721	cputime_t delta_cpu;
722
723	write_seqcount_begin(&tsk->vtime_seqcount);
724	tsk->vtime_snap_whence = VTIME_SYS;
725	if (vtime_delta(tsk)) {
726		delta_cpu = get_vtime_delta(tsk);
727		account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
728	}
729	write_seqcount_end(&tsk->vtime_seqcount);
730}
731
732void vtime_user_enter(struct task_struct *tsk)
733{
734	write_seqcount_begin(&tsk->vtime_seqcount);
735	if (vtime_delta(tsk))
736		__vtime_account_system(tsk);
737	tsk->vtime_snap_whence = VTIME_USER;
738	write_seqcount_end(&tsk->vtime_seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739}
740
741void vtime_guest_enter(struct task_struct *tsk)
742{
 
743	/*
744	 * The flags must be updated under the lock with
745	 * the vtime_snap flush and update.
746	 * That enforces a right ordering and update sequence
747	 * synchronization against the reader (task_gtime())
748	 * that can thus safely catch up with a tickless delta.
749	 */
750	write_seqcount_begin(&tsk->vtime_seqcount);
751	if (vtime_delta(tsk))
752		__vtime_account_system(tsk);
753	current->flags |= PF_VCPU;
754	write_seqcount_end(&tsk->vtime_seqcount);
755}
756EXPORT_SYMBOL_GPL(vtime_guest_enter);
757
758void vtime_guest_exit(struct task_struct *tsk)
759{
760	write_seqcount_begin(&tsk->vtime_seqcount);
761	__vtime_account_system(tsk);
762	current->flags &= ~PF_VCPU;
763	write_seqcount_end(&tsk->vtime_seqcount);
 
 
 
764}
765EXPORT_SYMBOL_GPL(vtime_guest_exit);
766
767void vtime_account_idle(struct task_struct *tsk)
768{
769	cputime_t delta_cpu = get_vtime_delta(tsk);
770
771	account_idle_time(delta_cpu);
772}
773
774void arch_vtime_task_switch(struct task_struct *prev)
775{
776	write_seqcount_begin(&prev->vtime_seqcount);
777	prev->vtime_snap_whence = VTIME_INACTIVE;
778	write_seqcount_end(&prev->vtime_seqcount);
779
780	write_seqcount_begin(&current->vtime_seqcount);
781	current->vtime_snap_whence = VTIME_SYS;
782	current->vtime_snap = jiffies;
783	write_seqcount_end(&current->vtime_seqcount);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
784}
785
786void vtime_init_idle(struct task_struct *t, int cpu)
787{
 
788	unsigned long flags;
789
790	local_irq_save(flags);
791	write_seqcount_begin(&t->vtime_seqcount);
792	t->vtime_snap_whence = VTIME_SYS;
793	t->vtime_snap = jiffies;
794	write_seqcount_end(&t->vtime_seqcount);
 
795	local_irq_restore(flags);
796}
797
798cputime_t task_gtime(struct task_struct *t)
799{
 
800	unsigned int seq;
801	cputime_t gtime;
802
803	if (!vtime_accounting_enabled())
804		return t->gtime;
805
806	do {
807		seq = read_seqcount_begin(&t->vtime_seqcount);
808
809		gtime = t->gtime;
810		if (t->vtime_snap_whence == VTIME_SYS && t->flags & PF_VCPU)
811			gtime += vtime_delta(t);
812
813	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
814
815	return gtime;
816}
817
818/*
819 * Fetch cputime raw values from fields of task_struct and
820 * add up the pending nohz execution time since the last
821 * cputime snapshot.
822 */
823static void
824fetch_task_cputime(struct task_struct *t,
825		   cputime_t *u_dst, cputime_t *s_dst,
826		   cputime_t *u_src, cputime_t *s_src,
827		   cputime_t *udelta, cputime_t *sdelta)
828{
 
829	unsigned int seq;
830	unsigned long long delta;
 
 
 
 
 
 
 
831
832	do {
833		*udelta = 0;
834		*sdelta = 0;
835
836		seq = read_seqcount_begin(&t->vtime_seqcount);
 
837
838		if (u_dst)
839			*u_dst = *u_src;
840		if (s_dst)
841			*s_dst = *s_src;
842
843		/* Task is sleeping, nothing to add */
844		if (t->vtime_snap_whence == VTIME_INACTIVE ||
845		    is_idle_task(t))
846			continue;
847
848		delta = vtime_delta(t);
 
849
850		/*
851		 * Task runs either in user or kernel space, add pending nohz time to
852		 * the right place.
853		 */
854		if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
855			*udelta = delta;
856		} else {
857			if (t->vtime_snap_whence == VTIME_SYS)
858				*sdelta = delta;
859		}
860	} while (read_seqcount_retry(&t->vtime_seqcount, seq));
861}
862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863
864void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
865{
866	cputime_t udelta, sdelta;
 
 
 
 
 
867
868	if (!vtime_accounting_enabled()) {
869		if (utime)
870			*utime = t->utime;
871		if (stime)
872			*stime = t->stime;
873		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
874	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
875
876	fetch_task_cputime(t, utime, stime, &t->utime,
877			   &t->stime, &udelta, &sdelta);
878	if (utime)
879		*utime += udelta;
880	if (stime)
881		*stime += sdelta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882}
883
884void task_cputime_scaled(struct task_struct *t,
885			 cputime_t *utimescaled, cputime_t *stimescaled)
886{
887	cputime_t udelta, sdelta;
 
 
888
889	if (!vtime_accounting_enabled()) {
890		if (utimescaled)
891			*utimescaled = t->utimescaled;
892		if (stimescaled)
893			*stimescaled = t->stimescaled;
894		return;
895	}
896
897	fetch_task_cputime(t, utimescaled, stimescaled,
898			   &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
899	if (utimescaled)
900		*utimescaled += cputime_to_scaled(udelta);
901	if (stimescaled)
902		*stimescaled += cputime_to_scaled(sdelta);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
903}
 
 
904#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Simple CPU accounting cgroup controller
   4 */
 
 
 
 
 
 
   5
   6#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
   7 #include <asm/cputime.h>
   8#endif
   9
  10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
  11
  12/*
  13 * There are no locks covering percpu hardirq/softirq time.
  14 * They are only modified in vtime_account, on corresponding CPU
  15 * with interrupts disabled. So, writes are safe.
  16 * They are read and saved off onto struct rq in update_rq_clock().
  17 * This may result in other CPU reading this CPU's IRQ time and can
  18 * race with irq/vtime_account on this CPU. We would either get old
  19 * or new value with a side effect of accounting a slice of IRQ time to wrong
  20 * task when IRQ is in progress while we read rq->clock. That is a worthy
  21 * compromise in place of having locks on each IRQ in account_system_time.
  22 */
  23DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
 
  24
 
  25static int sched_clock_irqtime;
  26
  27void enable_sched_clock_irqtime(void)
  28{
  29	sched_clock_irqtime = 1;
  30}
  31
  32void disable_sched_clock_irqtime(void)
  33{
  34	sched_clock_irqtime = 0;
  35}
  36
  37static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
  38				  enum cpu_usage_stat idx)
  39{
  40	u64 *cpustat = kcpustat_this_cpu->cpustat;
  41
  42	u64_stats_update_begin(&irqtime->sync);
  43	cpustat[idx] += delta;
  44	irqtime->total += delta;
  45	irqtime->tick_delta += delta;
  46	u64_stats_update_end(&irqtime->sync);
  47}
  48
  49/*
  50 * Called after incrementing preempt_count on {soft,}irq_enter
  51 * and before decrementing preempt_count on {soft,}irq_exit.
  52 */
  53void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
  54{
  55	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  56	unsigned int pc;
  57	s64 delta;
  58	int cpu;
  59
  60	if (!sched_clock_irqtime)
  61		return;
  62
 
 
  63	cpu = smp_processor_id();
  64	delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
  65	irqtime->irq_start_time += delta;
  66	pc = irq_count() - offset;
  67
 
  68	/*
  69	 * We do not account for softirq time from ksoftirqd here.
  70	 * We want to continue accounting softirq time to ksoftirqd thread
  71	 * in that case, so as not to confuse scheduler with a special task
  72	 * that do not consume any time, but still wants to run.
  73	 */
  74	if (pc & HARDIRQ_MASK)
  75		irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
  76	else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd())
  77		irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
 
 
 
  78}
 
  79
  80static u64 irqtime_tick_accounted(u64 maxtime)
  81{
  82	struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
  83	u64 delta;
 
 
  84
  85	delta = min(irqtime->tick_delta, maxtime);
  86	irqtime->tick_delta -= delta;
 
 
 
 
 
  87
  88	return delta;
 
 
 
 
 
 
 
 
 
 
 
 
  89}
  90
  91#else /* CONFIG_IRQ_TIME_ACCOUNTING */
  92
  93#define sched_clock_irqtime	(0)
  94
  95static u64 irqtime_tick_accounted(u64 dummy)
  96{
  97	return 0;
  98}
  99
 100#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
 101
 102static inline void task_group_account_field(struct task_struct *p, int index,
 103					    u64 tmp)
 104{
 105	/*
 106	 * Since all updates are sure to touch the root cgroup, we
 107	 * get ourselves ahead and touch it first. If the root cgroup
 108	 * is the only cgroup, then nothing else should be necessary.
 109	 *
 110	 */
 111	__this_cpu_add(kernel_cpustat.cpustat[index], tmp);
 112
 113	cgroup_account_cputime_field(p, index, tmp);
 114}
 115
 116/*
 117 * Account user CPU time to a process.
 118 * @p: the process that the CPU time gets accounted to
 119 * @cputime: the CPU time spent in user space since the last update
 
 120 */
 121void account_user_time(struct task_struct *p, u64 cputime)
 
 122{
 123	int index;
 124
 125	/* Add user time to process. */
 126	p->utime += cputime;
 
 127	account_group_user_time(p, cputime);
 128
 129	index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
 130
 131	/* Add user time to cpustat. */
 132	task_group_account_field(p, index, cputime);
 133
 134	/* Account for user time used */
 135	acct_account_cputime(p);
 136}
 137
 138/*
 139 * Account guest CPU time to a process.
 140 * @p: the process that the CPU time gets accounted to
 141 * @cputime: the CPU time spent in virtual machine since the last update
 
 142 */
 143void account_guest_time(struct task_struct *p, u64 cputime)
 
 144{
 145	u64 *cpustat = kcpustat_this_cpu->cpustat;
 146
 147	/* Add guest time to process. */
 148	p->utime += cputime;
 
 149	account_group_user_time(p, cputime);
 150	p->gtime += cputime;
 151
 152	/* Add guest time to cpustat. */
 153	if (task_nice(p) > 0) {
 154		task_group_account_field(p, CPUTIME_NICE, cputime);
 155		cpustat[CPUTIME_GUEST_NICE] += cputime;
 156	} else {
 157		task_group_account_field(p, CPUTIME_USER, cputime);
 158		cpustat[CPUTIME_GUEST] += cputime;
 159	}
 160}
 161
 162/*
 163 * Account system CPU time to a process and desired cpustat field
 164 * @p: the process that the CPU time gets accounted to
 165 * @cputime: the CPU time spent in kernel space since the last update
 166 * @index: pointer to cpustat field that has to be updated
 
 167 */
 168void account_system_index_time(struct task_struct *p,
 169			       u64 cputime, enum cpu_usage_stat index)
 
 170{
 171	/* Add system time to process. */
 172	p->stime += cputime;
 
 173	account_group_system_time(p, cputime);
 174
 175	/* Add system time to cpustat. */
 176	task_group_account_field(p, index, cputime);
 177
 178	/* Account for system time used */
 179	acct_account_cputime(p);
 180}
 181
 182/*
 183 * Account system CPU time to a process.
 184 * @p: the process that the CPU time gets accounted to
 185 * @hardirq_offset: the offset to subtract from hardirq_count()
 186 * @cputime: the CPU time spent in kernel space since the last update
 
 187 */
 188void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
 
 189{
 190	int index;
 191
 192	if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
 193		account_guest_time(p, cputime);
 194		return;
 195	}
 196
 197	if (hardirq_count() - hardirq_offset)
 198		index = CPUTIME_IRQ;
 199	else if (in_serving_softirq())
 200		index = CPUTIME_SOFTIRQ;
 201	else
 202		index = CPUTIME_SYSTEM;
 203
 204	account_system_index_time(p, cputime, index);
 205}
 206
 207/*
 208 * Account for involuntary wait time.
 209 * @cputime: the CPU time spent in involuntary wait
 210 */
 211void account_steal_time(u64 cputime)
 212{
 213	u64 *cpustat = kcpustat_this_cpu->cpustat;
 214
 215	cpustat[CPUTIME_STEAL] += cputime;
 216}
 217
 218/*
 219 * Account for idle time.
 220 * @cputime: the CPU time spent in idle wait
 221 */
 222void account_idle_time(u64 cputime)
 223{
 224	u64 *cpustat = kcpustat_this_cpu->cpustat;
 225	struct rq *rq = this_rq();
 226
 227	if (atomic_read(&rq->nr_iowait) > 0)
 228		cpustat[CPUTIME_IOWAIT] += cputime;
 229	else
 230		cpustat[CPUTIME_IDLE] += cputime;
 231}
 232
 233
 234#ifdef CONFIG_SCHED_CORE
 235/*
 236 * Account for forceidle time due to core scheduling.
 237 *
 238 * REQUIRES: schedstat is enabled.
 239 */
 240void __account_forceidle_time(struct task_struct *p, u64 delta)
 241{
 242	__schedstat_add(p->stats.core_forceidle_sum, delta);
 243
 244	task_group_account_field(p, CPUTIME_FORCEIDLE, delta);
 245}
 246#endif
 247
 248/*
 249 * When a guest is interrupted for a longer amount of time, missed clock
 250 * ticks are not redelivered later. Due to that, this function may on
 251 * occasion account more time than the calling functions think elapsed.
 252 */
 253static __always_inline u64 steal_account_process_time(u64 maxtime)
 254{
 255#ifdef CONFIG_PARAVIRT
 256	if (static_key_false(&paravirt_steal_enabled)) {
 257		u64 steal;
 
 258
 259		steal = paravirt_steal_clock(smp_processor_id());
 260		steal -= this_rq()->prev_steal_time;
 261		steal = min(steal, maxtime);
 262		account_steal_time(steal);
 263		this_rq()->prev_steal_time += steal;
 264
 265		return steal;
 
 
 
 
 
 
 
 
 
 266	}
 267#endif
 268	return 0;
 269}
 270
 271/*
 272 * Account how much elapsed time was spent in steal, IRQ, or softirq time.
 273 */
 274static inline u64 account_other_time(u64 max)
 275{
 276	u64 accounted;
 277
 278	lockdep_assert_irqs_disabled();
 279
 280	accounted = steal_account_process_time(max);
 281
 282	if (accounted < max)
 283		accounted += irqtime_tick_accounted(max - accounted);
 284
 285	return accounted;
 286}
 287
 288#ifdef CONFIG_64BIT
 289static inline u64 read_sum_exec_runtime(struct task_struct *t)
 290{
 291	return t->se.sum_exec_runtime;
 292}
 293#else
 294static u64 read_sum_exec_runtime(struct task_struct *t)
 295{
 296	u64 ns;
 297	struct rq_flags rf;
 298	struct rq *rq;
 299
 300	rq = task_rq_lock(t, &rf);
 301	ns = t->se.sum_exec_runtime;
 302	task_rq_unlock(rq, t, &rf);
 303
 304	return ns;
 305}
 306#endif
 307
 308/*
 309 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
 310 * tasks (sum on group iteration) belonging to @tsk's group.
 311 */
 312void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
 313{
 314	struct signal_struct *sig = tsk->signal;
 315	u64 utime, stime;
 316	struct task_struct *t;
 317	unsigned int seq, nextseq;
 318	unsigned long flags;
 319
 320	/*
 321	 * Update current task runtime to account pending time since last
 322	 * scheduler action or thread_group_cputime() call. This thread group
 323	 * might have other running tasks on different CPUs, but updating
 324	 * their runtime can affect syscall performance, so we skip account
 325	 * those pending times and rely only on values updated on tick or
 326	 * other scheduler action.
 327	 */
 328	if (same_thread_group(current, tsk))
 329		(void) task_sched_runtime(current);
 330
 331	rcu_read_lock();
 332	/* Attempt a lockless read on the first round. */
 333	nextseq = 0;
 334	do {
 335		seq = nextseq;
 336		flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
 337		times->utime = sig->utime;
 338		times->stime = sig->stime;
 339		times->sum_exec_runtime = sig->sum_sched_runtime;
 340
 341		for_each_thread(tsk, t) {
 342			task_cputime(t, &utime, &stime);
 343			times->utime += utime;
 344			times->stime += stime;
 345			times->sum_exec_runtime += read_sum_exec_runtime(t);
 346		}
 347		/* If lockless access failed, take the lock. */
 348		nextseq = 1;
 349	} while (need_seqretry(&sig->stats_lock, seq));
 350	done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
 351	rcu_read_unlock();
 352}
 353
 354#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 355/*
 356 * Account a tick to a process and cpustat
 357 * @p: the process that the CPU time gets accounted to
 358 * @user_tick: is the tick from userspace
 359 * @rq: the pointer to rq
 360 *
 361 * Tick demultiplexing follows the order
 362 * - pending hardirq update
 363 * - pending softirq update
 364 * - user_time
 365 * - idle_time
 366 * - system time
 367 *   - check for guest_time
 368 *   - else account as system_time
 369 *
 370 * Check for hardirq is done both for system and user time as there is
 371 * no timer going off while we are on hardirq and hence we may never get an
 372 * opportunity to update it solely in system time.
 373 * p->stime and friends are only updated on system time and not on IRQ
 374 * softirq as those do not count in task exec_runtime any more.
 375 */
 376static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 377					 int ticks)
 378{
 379	u64 other, cputime = TICK_NSEC * ticks;
 
 
 380
 381	/*
 382	 * When returning from idle, many ticks can get accounted at
 383	 * once, including some ticks of steal, IRQ, and softirq time.
 384	 * Subtract those ticks from the amount of time accounted to
 385	 * idle, or potentially user or system time. Due to rounding,
 386	 * other time can exceed ticks occasionally.
 387	 */
 388	other = account_other_time(ULONG_MAX);
 389	if (other >= cputime)
 390		return;
 391
 392	cputime -= other;
 
 393
 394	if (this_cpu_ksoftirqd() == p) {
 
 
 
 
 395		/*
 396		 * ksoftirqd time do not get accounted in cpu_softirq_time.
 397		 * So, we have to handle it separately here.
 398		 * Also, p->stime needs to be updated for ksoftirqd.
 399		 */
 400		account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
 401	} else if (user_tick) {
 402		account_user_time(p, cputime);
 403	} else if (p == this_rq()->idle) {
 404		account_idle_time(cputime);
 405	} else if (p->flags & PF_VCPU) { /* System time or guest time */
 406		account_guest_time(p, cputime);
 407	} else {
 408		account_system_index_time(p, cputime, CPUTIME_SYSTEM);
 409	}
 410}
 411
 412static void irqtime_account_idle_ticks(int ticks)
 413{
 414	irqtime_account_process_tick(current, 0, ticks);
 
 
 415}
 416#else /* CONFIG_IRQ_TIME_ACCOUNTING */
 417static inline void irqtime_account_idle_ticks(int ticks) { }
 418static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
 419						int nr_ticks) { }
 420#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
 421
 422/*
 423 * Use precise platform statistics if available:
 424 */
 
 
 
 
 
 
 
 
 
 
 425#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 
 
 
 
 
 426
 427void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
 
 
 
 
 
 
 
 
 
 428{
 429	unsigned int pc = irq_count() - offset;
 
 
 
 
 
 
 
 
 
 
 430
 431	if (pc & HARDIRQ_OFFSET) {
 432		vtime_account_hardirq(tsk);
 433	} else if (pc & SOFTIRQ_OFFSET) {
 434		vtime_account_softirq(tsk);
 435	} else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
 436		   is_idle_task(tsk)) {
 437		vtime_account_idle(tsk);
 438	} else {
 439		vtime_account_kernel(tsk);
 440	}
 
 441}
 
 
 
 442
 443void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 444		    u64 *ut, u64 *st)
 445{
 446	*ut = curr->utime;
 447	*st = curr->stime;
 448}
 449
 450void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 
 451{
 452	*ut = p->utime;
 453	*st = p->stime;
 454}
 455EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 456
 457void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 458{
 459	struct task_cputime cputime;
 460
 461	thread_group_cputime(p, &cputime);
 462
 463	*ut = cputime.utime;
 464	*st = cputime.stime;
 465}
 466
 467#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
 468
 469/*
 470 * Account a single tick of CPU time.
 471 * @p: the process that the CPU time gets accounted to
 472 * @user_tick: indicates if the tick is a user or a system tick
 473 */
 474void account_process_tick(struct task_struct *p, int user_tick)
 475{
 476	u64 cputime, steal;
 
 477
 478	if (vtime_accounting_enabled_this_cpu())
 479		return;
 480
 481	if (sched_clock_irqtime) {
 482		irqtime_account_process_tick(p, user_tick, 1);
 483		return;
 484	}
 485
 486	cputime = TICK_NSEC;
 487	steal = steal_account_process_time(ULONG_MAX);
 488
 489	if (steal >= cputime)
 490		return;
 491
 492	cputime -= steal;
 493
 494	if (user_tick)
 495		account_user_time(p, cputime);
 496	else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
 497		account_system_time(p, HARDIRQ_OFFSET, cputime);
 
 498	else
 499		account_idle_time(cputime);
 
 
 
 
 
 
 
 
 
 
 500}
 501
 502/*
 503 * Account multiple ticks of idle time.
 504 * @ticks: number of stolen ticks
 505 */
 506void account_idle_ticks(unsigned long ticks)
 507{
 508	u64 cputime, steal;
 509
 510	if (sched_clock_irqtime) {
 511		irqtime_account_idle_ticks(ticks);
 512		return;
 513	}
 514
 515	cputime = ticks * TICK_NSEC;
 516	steal = steal_account_process_time(ULONG_MAX);
 517
 518	if (steal >= cputime)
 519		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520
 521	cputime -= steal;
 522	account_idle_time(cputime);
 
 
 
 
 523}
 524
 525/*
 526 * Adjust tick based cputime random precision against scheduler runtime
 527 * accounting.
 528 *
 529 * Tick based cputime accounting depend on random scheduling timeslices of a
 530 * task to be interrupted or not by the timer.  Depending on these
 531 * circumstances, the number of these interrupts may be over or
 532 * under-optimistic, matching the real user and system cputime with a variable
 533 * precision.
 534 *
 535 * Fix this by scaling these tick based values against the total runtime
 536 * accounted by the CFS scheduler.
 537 *
 538 * This code provides the following guarantees:
 539 *
 540 *   stime + utime == rtime
 541 *   stime_i+1 >= stime_i, utime_i+1 >= utime_i
 542 *
 543 * Assuming that rtime_i+1 >= rtime_i.
 544 */
 545void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
 546		    u64 *ut, u64 *st)
 
 547{
 548	u64 rtime, stime, utime;
 549	unsigned long flags;
 550
 551	/* Serialize concurrent callers such that we can honour our guarantees */
 552	raw_spin_lock_irqsave(&prev->lock, flags);
 553	rtime = curr->sum_exec_runtime;
 554
 555	/*
 556	 * This is possible under two circumstances:
 557	 *  - rtime isn't monotonic after all (a bug);
 558	 *  - we got reordered by the lock.
 559	 *
 560	 * In both cases this acts as a filter such that the rest of the code
 561	 * can assume it is monotonic regardless of anything else.
 562	 */
 563	if (prev->stime + prev->utime >= rtime)
 564		goto out;
 565
 566	stime = curr->stime;
 567	utime = curr->utime;
 568
 569	/*
 570	 * If either stime or utime are 0, assume all runtime is userspace.
 571	 * Once a task gets some ticks, the monotonicity code at 'update:'
 572	 * will ensure things converge to the observed ratio.
 573	 */
 574	if (stime == 0) {
 575		utime = rtime;
 576		goto update;
 577	}
 578
 579	if (utime == 0) {
 580		stime = rtime;
 581		goto update;
 582	}
 583
 584	stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
 585	/*
 586	 * Because mul_u64_u64_div_u64() can approximate on some
 587	 * achitectures; enforce the constraint that: a*b/(b+c) <= a.
 588	 */
 589	if (unlikely(stime > rtime))
 590		stime = rtime;
 591
 592update:
 593	/*
 594	 * Make sure stime doesn't go backwards; this preserves monotonicity
 595	 * for utime because rtime is monotonic.
 596	 *
 597	 *  utime_i+1 = rtime_i+1 - stime_i
 598	 *            = rtime_i+1 - (rtime_i - utime_i)
 599	 *            = (rtime_i+1 - rtime_i) + utime_i
 600	 *            >= utime_i
 601	 */
 602	if (stime < prev->stime)
 603		stime = prev->stime;
 604	utime = rtime - stime;
 605
 606	/*
 607	 * Make sure utime doesn't go backwards; this still preserves
 608	 * monotonicity for stime, analogous argument to above.
 609	 */
 610	if (utime < prev->utime) {
 611		utime = prev->utime;
 612		stime = rtime - utime;
 613	}
 614
 
 615	prev->stime = stime;
 616	prev->utime = utime;
 617out:
 618	*ut = prev->utime;
 619	*st = prev->stime;
 620	raw_spin_unlock_irqrestore(&prev->lock, flags);
 621}
 622
 623void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 624{
 625	struct task_cputime cputime = {
 626		.sum_exec_runtime = p->se.sum_exec_runtime,
 627	};
 628
 629	if (task_cputime(p, &cputime.utime, &cputime.stime))
 630		cputime.sum_exec_runtime = task_sched_runtime(p);
 631	cputime_adjust(&cputime, &p->prev_cputime, ut, st);
 632}
 633EXPORT_SYMBOL_GPL(task_cputime_adjusted);
 634
 635void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
 636{
 637	struct task_cputime cputime;
 638
 639	thread_group_cputime(p, &cputime);
 640	cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
 641}
 642#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 643
 644#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 645static u64 vtime_delta(struct vtime *vtime)
 646{
 647	unsigned long long clock;
 648
 649	clock = sched_clock();
 650	if (clock < vtime->starttime)
 651		return 0;
 652
 653	return clock - vtime->starttime;
 654}
 655
 656static u64 get_vtime_delta(struct vtime *vtime)
 657{
 658	u64 delta = vtime_delta(vtime);
 659	u64 other;
 660
 661	/*
 662	 * Unlike tick based timing, vtime based timing never has lost
 663	 * ticks, and no need for steal time accounting to make up for
 664	 * lost ticks. Vtime accounts a rounded version of actual
 665	 * elapsed time. Limit account_other_time to prevent rounding
 666	 * errors from causing elapsed vtime to go negative.
 667	 */
 668	other = account_other_time(delta);
 669	WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
 670	vtime->starttime += delta;
 671
 672	return delta - other;
 673}
 674
 675static void vtime_account_system(struct task_struct *tsk,
 676				 struct vtime *vtime)
 677{
 678	vtime->stime += get_vtime_delta(vtime);
 679	if (vtime->stime >= TICK_NSEC) {
 680		account_system_time(tsk, irq_count(), vtime->stime);
 681		vtime->stime = 0;
 682	}
 683}
 684
 685static void vtime_account_guest(struct task_struct *tsk,
 686				struct vtime *vtime)
 687{
 688	vtime->gtime += get_vtime_delta(vtime);
 689	if (vtime->gtime >= TICK_NSEC) {
 690		account_guest_time(tsk, vtime->gtime);
 691		vtime->gtime = 0;
 692	}
 
 693}
 694
 695static void __vtime_account_kernel(struct task_struct *tsk,
 696				   struct vtime *vtime)
 697{
 698	/* We might have scheduled out from guest path */
 699	if (vtime->state == VTIME_GUEST)
 700		vtime_account_guest(tsk, vtime);
 701	else
 702		vtime_account_system(tsk, vtime);
 
 703}
 704
 705void vtime_account_kernel(struct task_struct *tsk)
 706{
 707	struct vtime *vtime = &tsk->vtime;
 708
 709	if (!vtime_delta(vtime))
 710		return;
 711
 712	write_seqcount_begin(&vtime->seqcount);
 713	__vtime_account_kernel(tsk, vtime);
 714	write_seqcount_end(&vtime->seqcount);
 
 715}
 716
 717void vtime_user_enter(struct task_struct *tsk)
 718{
 719	struct vtime *vtime = &tsk->vtime;
 720
 721	write_seqcount_begin(&vtime->seqcount);
 722	vtime_account_system(tsk, vtime);
 723	vtime->state = VTIME_USER;
 724	write_seqcount_end(&vtime->seqcount);
 725}
 726
 727void vtime_user_exit(struct task_struct *tsk)
 728{
 729	struct vtime *vtime = &tsk->vtime;
 730
 731	write_seqcount_begin(&vtime->seqcount);
 732	vtime->utime += get_vtime_delta(vtime);
 733	if (vtime->utime >= TICK_NSEC) {
 734		account_user_time(tsk, vtime->utime);
 735		vtime->utime = 0;
 736	}
 737	vtime->state = VTIME_SYS;
 738	write_seqcount_end(&vtime->seqcount);
 739}
 740
 741void vtime_guest_enter(struct task_struct *tsk)
 742{
 743	struct vtime *vtime = &tsk->vtime;
 744	/*
 745	 * The flags must be updated under the lock with
 746	 * the vtime_starttime flush and update.
 747	 * That enforces a right ordering and update sequence
 748	 * synchronization against the reader (task_gtime())
 749	 * that can thus safely catch up with a tickless delta.
 750	 */
 751	write_seqcount_begin(&vtime->seqcount);
 752	vtime_account_system(tsk, vtime);
 753	tsk->flags |= PF_VCPU;
 754	vtime->state = VTIME_GUEST;
 755	write_seqcount_end(&vtime->seqcount);
 756}
 757EXPORT_SYMBOL_GPL(vtime_guest_enter);
 758
 759void vtime_guest_exit(struct task_struct *tsk)
 760{
 761	struct vtime *vtime = &tsk->vtime;
 762
 763	write_seqcount_begin(&vtime->seqcount);
 764	vtime_account_guest(tsk, vtime);
 765	tsk->flags &= ~PF_VCPU;
 766	vtime->state = VTIME_SYS;
 767	write_seqcount_end(&vtime->seqcount);
 768}
 769EXPORT_SYMBOL_GPL(vtime_guest_exit);
 770
 771void vtime_account_idle(struct task_struct *tsk)
 772{
 773	account_idle_time(get_vtime_delta(&tsk->vtime));
 
 
 774}
 775
 776void vtime_task_switch_generic(struct task_struct *prev)
 777{
 778	struct vtime *vtime = &prev->vtime;
 
 
 779
 780	write_seqcount_begin(&vtime->seqcount);
 781	if (vtime->state == VTIME_IDLE)
 782		vtime_account_idle(prev);
 783	else
 784		__vtime_account_kernel(prev, vtime);
 785	vtime->state = VTIME_INACTIVE;
 786	vtime->cpu = -1;
 787	write_seqcount_end(&vtime->seqcount);
 788
 789	vtime = &current->vtime;
 790
 791	write_seqcount_begin(&vtime->seqcount);
 792	if (is_idle_task(current))
 793		vtime->state = VTIME_IDLE;
 794	else if (current->flags & PF_VCPU)
 795		vtime->state = VTIME_GUEST;
 796	else
 797		vtime->state = VTIME_SYS;
 798	vtime->starttime = sched_clock();
 799	vtime->cpu = smp_processor_id();
 800	write_seqcount_end(&vtime->seqcount);
 801}
 802
 803void vtime_init_idle(struct task_struct *t, int cpu)
 804{
 805	struct vtime *vtime = &t->vtime;
 806	unsigned long flags;
 807
 808	local_irq_save(flags);
 809	write_seqcount_begin(&vtime->seqcount);
 810	vtime->state = VTIME_IDLE;
 811	vtime->starttime = sched_clock();
 812	vtime->cpu = cpu;
 813	write_seqcount_end(&vtime->seqcount);
 814	local_irq_restore(flags);
 815}
 816
 817u64 task_gtime(struct task_struct *t)
 818{
 819	struct vtime *vtime = &t->vtime;
 820	unsigned int seq;
 821	u64 gtime;
 822
 823	if (!vtime_accounting_enabled())
 824		return t->gtime;
 825
 826	do {
 827		seq = read_seqcount_begin(&vtime->seqcount);
 828
 829		gtime = t->gtime;
 830		if (vtime->state == VTIME_GUEST)
 831			gtime += vtime->gtime + vtime_delta(vtime);
 832
 833	} while (read_seqcount_retry(&vtime->seqcount, seq));
 834
 835	return gtime;
 836}
 837
 838/*
 839 * Fetch cputime raw values from fields of task_struct and
 840 * add up the pending nohz execution time since the last
 841 * cputime snapshot.
 842 */
 843bool task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
 
 
 
 
 844{
 845	struct vtime *vtime = &t->vtime;
 846	unsigned int seq;
 847	u64 delta;
 848	int ret;
 849
 850	if (!vtime_accounting_enabled()) {
 851		*utime = t->utime;
 852		*stime = t->stime;
 853		return false;
 854	}
 855
 856	do {
 857		ret = false;
 858		seq = read_seqcount_begin(&vtime->seqcount);
 859
 860		*utime = t->utime;
 861		*stime = t->stime;
 862
 863		/* Task is sleeping or idle, nothing to add */
 864		if (vtime->state < VTIME_SYS)
 
 
 
 
 
 
 865			continue;
 866
 867		ret = true;
 868		delta = vtime_delta(vtime);
 869
 870		/*
 871		 * Task runs either in user (including guest) or kernel space,
 872		 * add pending nohz time to the right place.
 873		 */
 874		if (vtime->state == VTIME_SYS)
 875			*stime += vtime->stime + delta;
 876		else
 877			*utime += vtime->utime + delta;
 878	} while (read_seqcount_retry(&vtime->seqcount, seq));
 879
 880	return ret;
 881}
 882
 883static int vtime_state_fetch(struct vtime *vtime, int cpu)
 884{
 885	int state = READ_ONCE(vtime->state);
 886
 887	/*
 888	 * We raced against a context switch, fetch the
 889	 * kcpustat task again.
 890	 */
 891	if (vtime->cpu != cpu && vtime->cpu != -1)
 892		return -EAGAIN;
 893
 894	/*
 895	 * Two possible things here:
 896	 * 1) We are seeing the scheduling out task (prev) or any past one.
 897	 * 2) We are seeing the scheduling in task (next) but it hasn't
 898	 *    passed though vtime_task_switch() yet so the pending
 899	 *    cputime of the prev task may not be flushed yet.
 900	 *
 901	 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
 902	 */
 903	if (state == VTIME_INACTIVE)
 904		return -EAGAIN;
 905
 906	return state;
 907}
 908
 909static u64 kcpustat_user_vtime(struct vtime *vtime)
 910{
 911	if (vtime->state == VTIME_USER)
 912		return vtime->utime + vtime_delta(vtime);
 913	else if (vtime->state == VTIME_GUEST)
 914		return vtime->gtime + vtime_delta(vtime);
 915	return 0;
 916}
 917
 918static int kcpustat_field_vtime(u64 *cpustat,
 919				struct task_struct *tsk,
 920				enum cpu_usage_stat usage,
 921				int cpu, u64 *val)
 922{
 923	struct vtime *vtime = &tsk->vtime;
 924	unsigned int seq;
 925
 926	do {
 927		int state;
 928
 929		seq = read_seqcount_begin(&vtime->seqcount);
 930
 931		state = vtime_state_fetch(vtime, cpu);
 932		if (state < 0)
 933			return state;
 934
 935		*val = cpustat[usage];
 936
 937		/*
 938		 * Nice VS unnice cputime accounting may be inaccurate if
 939		 * the nice value has changed since the last vtime update.
 940		 * But proper fix would involve interrupting target on nice
 941		 * updates which is a no go on nohz_full (although the scheduler
 942		 * may still interrupt the target if rescheduling is needed...)
 943		 */
 944		switch (usage) {
 945		case CPUTIME_SYSTEM:
 946			if (state == VTIME_SYS)
 947				*val += vtime->stime + vtime_delta(vtime);
 948			break;
 949		case CPUTIME_USER:
 950			if (task_nice(tsk) <= 0)
 951				*val += kcpustat_user_vtime(vtime);
 952			break;
 953		case CPUTIME_NICE:
 954			if (task_nice(tsk) > 0)
 955				*val += kcpustat_user_vtime(vtime);
 956			break;
 957		case CPUTIME_GUEST:
 958			if (state == VTIME_GUEST && task_nice(tsk) <= 0)
 959				*val += vtime->gtime + vtime_delta(vtime);
 960			break;
 961		case CPUTIME_GUEST_NICE:
 962			if (state == VTIME_GUEST && task_nice(tsk) > 0)
 963				*val += vtime->gtime + vtime_delta(vtime);
 964			break;
 965		default:
 966			break;
 967		}
 968	} while (read_seqcount_retry(&vtime->seqcount, seq));
 969
 970	return 0;
 971}
 972
 973u64 kcpustat_field(struct kernel_cpustat *kcpustat,
 974		   enum cpu_usage_stat usage, int cpu)
 975{
 976	u64 *cpustat = kcpustat->cpustat;
 977	u64 val = cpustat[usage];
 978	struct rq *rq;
 979	int err;
 980
 981	if (!vtime_accounting_enabled_cpu(cpu))
 982		return val;
 983
 984	rq = cpu_rq(cpu);
 985
 986	for (;;) {
 987		struct task_struct *curr;
 988
 989		rcu_read_lock();
 990		curr = rcu_dereference(rq->curr);
 991		if (WARN_ON_ONCE(!curr)) {
 992			rcu_read_unlock();
 993			return cpustat[usage];
 994		}
 995
 996		err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
 997		rcu_read_unlock();
 998
 999		if (!err)
1000			return val;
1001
1002		cpu_relax();
1003	}
1004}
1005EXPORT_SYMBOL_GPL(kcpustat_field);
1006
1007static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1008				    const struct kernel_cpustat *src,
1009				    struct task_struct *tsk, int cpu)
1010{
1011	struct vtime *vtime = &tsk->vtime;
1012	unsigned int seq;
1013
1014	do {
1015		u64 *cpustat;
1016		u64 delta;
1017		int state;
1018
1019		seq = read_seqcount_begin(&vtime->seqcount);
1020
1021		state = vtime_state_fetch(vtime, cpu);
1022		if (state < 0)
1023			return state;
1024
1025		*dst = *src;
1026		cpustat = dst->cpustat;
1027
1028		/* Task is sleeping, dead or idle, nothing to add */
1029		if (state < VTIME_SYS)
1030			continue;
1031
1032		delta = vtime_delta(vtime);
1033
1034		/*
1035		 * Task runs either in user (including guest) or kernel space,
1036		 * add pending nohz time to the right place.
1037		 */
1038		if (state == VTIME_SYS) {
1039			cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1040		} else if (state == VTIME_USER) {
1041			if (task_nice(tsk) > 0)
1042				cpustat[CPUTIME_NICE] += vtime->utime + delta;
1043			else
1044				cpustat[CPUTIME_USER] += vtime->utime + delta;
1045		} else {
1046			WARN_ON_ONCE(state != VTIME_GUEST);
1047			if (task_nice(tsk) > 0) {
1048				cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1049				cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1050			} else {
1051				cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1052				cpustat[CPUTIME_USER] += vtime->gtime + delta;
1053			}
1054		}
1055	} while (read_seqcount_retry(&vtime->seqcount, seq));
1056
1057	return 0;
1058}
1059
1060void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
 
1061{
1062	const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1063	struct rq *rq;
1064	int err;
1065
1066	if (!vtime_accounting_enabled_cpu(cpu)) {
1067		*dst = *src;
 
 
 
1068		return;
1069	}
1070
1071	rq = cpu_rq(cpu);
1072
1073	for (;;) {
1074		struct task_struct *curr;
1075
1076		rcu_read_lock();
1077		curr = rcu_dereference(rq->curr);
1078		if (WARN_ON_ONCE(!curr)) {
1079			rcu_read_unlock();
1080			*dst = *src;
1081			return;
1082		}
1083
1084		err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1085		rcu_read_unlock();
1086
1087		if (!err)
1088			return;
1089
1090		cpu_relax();
1091	}
1092}
1093EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1094
1095#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */