Loading...
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46#include <linux/file.h>
47#include <linux/init.h>
48#include <linux/types.h>
49#include <linux/atomic.h>
50#include <linux/mm.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/err.h>
54#include <linux/kthread.h>
55#include <linux/kernel.h>
56#include <linux/syscalls.h>
57
58#include <linux/audit.h>
59
60#include <net/sock.h>
61#include <net/netlink.h>
62#include <linux/skbuff.h>
63#ifdef CONFIG_SECURITY
64#include <linux/security.h>
65#endif
66#include <linux/freezer.h>
67#include <linux/tty.h>
68#include <linux/pid_namespace.h>
69#include <net/netns/generic.h>
70
71#include "audit.h"
72
73/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
74 * (Initialization happens after skb_init is called.) */
75#define AUDIT_DISABLED -1
76#define AUDIT_UNINITIALIZED 0
77#define AUDIT_INITIALIZED 1
78static int audit_initialized;
79
80#define AUDIT_OFF 0
81#define AUDIT_ON 1
82#define AUDIT_LOCKED 2
83u32 audit_enabled;
84u32 audit_ever_enabled;
85
86EXPORT_SYMBOL_GPL(audit_enabled);
87
88/* Default state when kernel boots without any parameters. */
89static u32 audit_default;
90
91/* If auditing cannot proceed, audit_failure selects what happens. */
92static u32 audit_failure = AUDIT_FAIL_PRINTK;
93
94/*
95 * If audit records are to be written to the netlink socket, audit_pid
96 * contains the pid of the auditd process and audit_nlk_portid contains
97 * the portid to use to send netlink messages to that process.
98 */
99int audit_pid;
100static __u32 audit_nlk_portid;
101
102/* If audit_rate_limit is non-zero, limit the rate of sending audit records
103 * to that number per second. This prevents DoS attacks, but results in
104 * audit records being dropped. */
105static u32 audit_rate_limit;
106
107/* Number of outstanding audit_buffers allowed.
108 * When set to zero, this means unlimited. */
109static u32 audit_backlog_limit = 64;
110#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
111static u32 audit_backlog_wait_time_master = AUDIT_BACKLOG_WAIT_TIME;
112static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
113
114/* The identity of the user shutting down the audit system. */
115kuid_t audit_sig_uid = INVALID_UID;
116pid_t audit_sig_pid = -1;
117u32 audit_sig_sid = 0;
118
119/* Records can be lost in several ways:
120 0) [suppressed in audit_alloc]
121 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
122 2) out of memory in audit_log_move [alloc_skb]
123 3) suppressed due to audit_rate_limit
124 4) suppressed due to audit_backlog_limit
125*/
126static atomic_t audit_lost = ATOMIC_INIT(0);
127
128/* The netlink socket. */
129static struct sock *audit_sock;
130static int audit_net_id;
131
132/* Hash for inode-based rules */
133struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
134
135/* The audit_freelist is a list of pre-allocated audit buffers (if more
136 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
137 * being placed on the freelist). */
138static DEFINE_SPINLOCK(audit_freelist_lock);
139static int audit_freelist_count;
140static LIST_HEAD(audit_freelist);
141
142static struct sk_buff_head audit_skb_queue;
143/* queue of skbs to send to auditd when/if it comes back */
144static struct sk_buff_head audit_skb_hold_queue;
145static struct task_struct *kauditd_task;
146static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
147static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
148
149static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
150 .mask = -1,
151 .features = 0,
152 .lock = 0,};
153
154static char *audit_feature_names[2] = {
155 "only_unset_loginuid",
156 "loginuid_immutable",
157};
158
159
160/* Serialize requests from userspace. */
161DEFINE_MUTEX(audit_cmd_mutex);
162
163/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
164 * audit records. Since printk uses a 1024 byte buffer, this buffer
165 * should be at least that large. */
166#define AUDIT_BUFSIZ 1024
167
168/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
169 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
170#define AUDIT_MAXFREE (2*NR_CPUS)
171
172/* The audit_buffer is used when formatting an audit record. The caller
173 * locks briefly to get the record off the freelist or to allocate the
174 * buffer, and locks briefly to send the buffer to the netlink layer or
175 * to place it on a transmit queue. Multiple audit_buffers can be in
176 * use simultaneously. */
177struct audit_buffer {
178 struct list_head list;
179 struct sk_buff *skb; /* formatted skb ready to send */
180 struct audit_context *ctx; /* NULL or associated context */
181 gfp_t gfp_mask;
182};
183
184struct audit_reply {
185 __u32 portid;
186 struct net *net;
187 struct sk_buff *skb;
188};
189
190static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
191{
192 if (ab) {
193 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
194 nlh->nlmsg_pid = portid;
195 }
196}
197
198void audit_panic(const char *message)
199{
200 switch (audit_failure) {
201 case AUDIT_FAIL_SILENT:
202 break;
203 case AUDIT_FAIL_PRINTK:
204 if (printk_ratelimit())
205 pr_err("%s\n", message);
206 break;
207 case AUDIT_FAIL_PANIC:
208 /* test audit_pid since printk is always losey, why bother? */
209 if (audit_pid)
210 panic("audit: %s\n", message);
211 break;
212 }
213}
214
215static inline int audit_rate_check(void)
216{
217 static unsigned long last_check = 0;
218 static int messages = 0;
219 static DEFINE_SPINLOCK(lock);
220 unsigned long flags;
221 unsigned long now;
222 unsigned long elapsed;
223 int retval = 0;
224
225 if (!audit_rate_limit) return 1;
226
227 spin_lock_irqsave(&lock, flags);
228 if (++messages < audit_rate_limit) {
229 retval = 1;
230 } else {
231 now = jiffies;
232 elapsed = now - last_check;
233 if (elapsed > HZ) {
234 last_check = now;
235 messages = 0;
236 retval = 1;
237 }
238 }
239 spin_unlock_irqrestore(&lock, flags);
240
241 return retval;
242}
243
244/**
245 * audit_log_lost - conditionally log lost audit message event
246 * @message: the message stating reason for lost audit message
247 *
248 * Emit at least 1 message per second, even if audit_rate_check is
249 * throttling.
250 * Always increment the lost messages counter.
251*/
252void audit_log_lost(const char *message)
253{
254 static unsigned long last_msg = 0;
255 static DEFINE_SPINLOCK(lock);
256 unsigned long flags;
257 unsigned long now;
258 int print;
259
260 atomic_inc(&audit_lost);
261
262 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
263
264 if (!print) {
265 spin_lock_irqsave(&lock, flags);
266 now = jiffies;
267 if (now - last_msg > HZ) {
268 print = 1;
269 last_msg = now;
270 }
271 spin_unlock_irqrestore(&lock, flags);
272 }
273
274 if (print) {
275 if (printk_ratelimit())
276 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
281 }
282}
283
284static int audit_log_config_change(char *function_name, u32 new, u32 old,
285 int allow_changes)
286{
287 struct audit_buffer *ab;
288 int rc = 0;
289
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
301}
302
303static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
304{
305 int allow_changes, rc = 0;
306 u32 old = *to_change;
307
308 /* check if we are locked */
309 if (audit_enabled == AUDIT_LOCKED)
310 allow_changes = 0;
311 else
312 allow_changes = 1;
313
314 if (audit_enabled != AUDIT_OFF) {
315 rc = audit_log_config_change(function_name, new, old, allow_changes);
316 if (rc)
317 allow_changes = 0;
318 }
319
320 /* If we are allowed, make the change */
321 if (allow_changes == 1)
322 *to_change = new;
323 /* Not allowed, update reason */
324 else if (rc == 0)
325 rc = -EPERM;
326 return rc;
327}
328
329static int audit_set_rate_limit(u32 limit)
330{
331 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
332}
333
334static int audit_set_backlog_limit(u32 limit)
335{
336 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
337}
338
339static int audit_set_backlog_wait_time(u32 timeout)
340{
341 return audit_do_config_change("audit_backlog_wait_time",
342 &audit_backlog_wait_time_master, timeout);
343}
344
345static int audit_set_enabled(u32 state)
346{
347 int rc;
348 if (state > AUDIT_LOCKED)
349 return -EINVAL;
350
351 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
352 if (!rc)
353 audit_ever_enabled |= !!state;
354
355 return rc;
356}
357
358static int audit_set_failure(u32 state)
359{
360 if (state != AUDIT_FAIL_SILENT
361 && state != AUDIT_FAIL_PRINTK
362 && state != AUDIT_FAIL_PANIC)
363 return -EINVAL;
364
365 return audit_do_config_change("audit_failure", &audit_failure, state);
366}
367
368/*
369 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
370 * already have been sent via prink/syslog and so if these messages are dropped
371 * it is not a huge concern since we already passed the audit_log_lost()
372 * notification and stuff. This is just nice to get audit messages during
373 * boot before auditd is running or messages generated while auditd is stopped.
374 * This only holds messages is audit_default is set, aka booting with audit=1
375 * or building your kernel that way.
376 */
377static void audit_hold_skb(struct sk_buff *skb)
378{
379 if (audit_default &&
380 (!audit_backlog_limit ||
381 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
382 skb_queue_tail(&audit_skb_hold_queue, skb);
383 else
384 kfree_skb(skb);
385}
386
387/*
388 * For one reason or another this nlh isn't getting delivered to the userspace
389 * audit daemon, just send it to printk.
390 */
391static void audit_printk_skb(struct sk_buff *skb)
392{
393 struct nlmsghdr *nlh = nlmsg_hdr(skb);
394 char *data = nlmsg_data(nlh);
395
396 if (nlh->nlmsg_type != AUDIT_EOE) {
397 if (printk_ratelimit())
398 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
399 else
400 audit_log_lost("printk limit exceeded");
401 }
402
403 audit_hold_skb(skb);
404}
405
406static void kauditd_send_skb(struct sk_buff *skb)
407{
408 int err;
409 int attempts = 0;
410#define AUDITD_RETRIES 5
411
412restart:
413 /* take a reference in case we can't send it and we want to hold it */
414 skb_get(skb);
415 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
416 if (err < 0) {
417 pr_err("netlink_unicast sending to audit_pid=%d returned error: %d\n",
418 audit_pid, err);
419 if (audit_pid) {
420 if (err == -ECONNREFUSED || err == -EPERM
421 || ++attempts >= AUDITD_RETRIES) {
422 char s[32];
423
424 snprintf(s, sizeof(s), "audit_pid=%d reset", audit_pid);
425 audit_log_lost(s);
426 audit_pid = 0;
427 audit_sock = NULL;
428 } else {
429 pr_warn("re-scheduling(#%d) write to audit_pid=%d\n",
430 attempts, audit_pid);
431 set_current_state(TASK_INTERRUPTIBLE);
432 schedule();
433 __set_current_state(TASK_RUNNING);
434 goto restart;
435 }
436 }
437 /* we might get lucky and get this in the next auditd */
438 audit_hold_skb(skb);
439 } else
440 /* drop the extra reference if sent ok */
441 consume_skb(skb);
442}
443
444/*
445 * kauditd_send_multicast_skb - send the skb to multicast userspace listeners
446 *
447 * This function doesn't consume an skb as might be expected since it has to
448 * copy it anyways.
449 */
450static void kauditd_send_multicast_skb(struct sk_buff *skb, gfp_t gfp_mask)
451{
452 struct sk_buff *copy;
453 struct audit_net *aunet = net_generic(&init_net, audit_net_id);
454 struct sock *sock = aunet->nlsk;
455
456 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
457 return;
458
459 /*
460 * The seemingly wasteful skb_copy() rather than bumping the refcount
461 * using skb_get() is necessary because non-standard mods are made to
462 * the skb by the original kaudit unicast socket send routine. The
463 * existing auditd daemon assumes this breakage. Fixing this would
464 * require co-ordinating a change in the established protocol between
465 * the kaudit kernel subsystem and the auditd userspace code. There is
466 * no reason for new multicast clients to continue with this
467 * non-compliance.
468 */
469 copy = skb_copy(skb, gfp_mask);
470 if (!copy)
471 return;
472
473 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, gfp_mask);
474}
475
476/*
477 * flush_hold_queue - empty the hold queue if auditd appears
478 *
479 * If auditd just started, drain the queue of messages already
480 * sent to syslog/printk. Remember loss here is ok. We already
481 * called audit_log_lost() if it didn't go out normally. so the
482 * race between the skb_dequeue and the next check for audit_pid
483 * doesn't matter.
484 *
485 * If you ever find kauditd to be too slow we can get a perf win
486 * by doing our own locking and keeping better track if there
487 * are messages in this queue. I don't see the need now, but
488 * in 5 years when I want to play with this again I'll see this
489 * note and still have no friggin idea what i'm thinking today.
490 */
491static void flush_hold_queue(void)
492{
493 struct sk_buff *skb;
494
495 if (!audit_default || !audit_pid)
496 return;
497
498 skb = skb_dequeue(&audit_skb_hold_queue);
499 if (likely(!skb))
500 return;
501
502 while (skb && audit_pid) {
503 kauditd_send_skb(skb);
504 skb = skb_dequeue(&audit_skb_hold_queue);
505 }
506
507 /*
508 * if auditd just disappeared but we
509 * dequeued an skb we need to drop ref
510 */
511 consume_skb(skb);
512}
513
514static int kauditd_thread(void *dummy)
515{
516 set_freezable();
517 while (!kthread_should_stop()) {
518 struct sk_buff *skb;
519
520 flush_hold_queue();
521
522 skb = skb_dequeue(&audit_skb_queue);
523
524 if (skb) {
525 if (!audit_backlog_limit ||
526 (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit))
527 wake_up(&audit_backlog_wait);
528 if (audit_pid)
529 kauditd_send_skb(skb);
530 else
531 audit_printk_skb(skb);
532 continue;
533 }
534
535 wait_event_freezable(kauditd_wait, skb_queue_len(&audit_skb_queue));
536 }
537 return 0;
538}
539
540int audit_send_list(void *_dest)
541{
542 struct audit_netlink_list *dest = _dest;
543 struct sk_buff *skb;
544 struct net *net = dest->net;
545 struct audit_net *aunet = net_generic(net, audit_net_id);
546
547 /* wait for parent to finish and send an ACK */
548 mutex_lock(&audit_cmd_mutex);
549 mutex_unlock(&audit_cmd_mutex);
550
551 while ((skb = __skb_dequeue(&dest->q)) != NULL)
552 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
553
554 put_net(net);
555 kfree(dest);
556
557 return 0;
558}
559
560struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
561 int multi, const void *payload, int size)
562{
563 struct sk_buff *skb;
564 struct nlmsghdr *nlh;
565 void *data;
566 int flags = multi ? NLM_F_MULTI : 0;
567 int t = done ? NLMSG_DONE : type;
568
569 skb = nlmsg_new(size, GFP_KERNEL);
570 if (!skb)
571 return NULL;
572
573 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
574 if (!nlh)
575 goto out_kfree_skb;
576 data = nlmsg_data(nlh);
577 memcpy(data, payload, size);
578 return skb;
579
580out_kfree_skb:
581 kfree_skb(skb);
582 return NULL;
583}
584
585static int audit_send_reply_thread(void *arg)
586{
587 struct audit_reply *reply = (struct audit_reply *)arg;
588 struct net *net = reply->net;
589 struct audit_net *aunet = net_generic(net, audit_net_id);
590
591 mutex_lock(&audit_cmd_mutex);
592 mutex_unlock(&audit_cmd_mutex);
593
594 /* Ignore failure. It'll only happen if the sender goes away,
595 because our timeout is set to infinite. */
596 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
597 put_net(net);
598 kfree(reply);
599 return 0;
600}
601/**
602 * audit_send_reply - send an audit reply message via netlink
603 * @request_skb: skb of request we are replying to (used to target the reply)
604 * @seq: sequence number
605 * @type: audit message type
606 * @done: done (last) flag
607 * @multi: multi-part message flag
608 * @payload: payload data
609 * @size: payload size
610 *
611 * Allocates an skb, builds the netlink message, and sends it to the port id.
612 * No failure notifications.
613 */
614static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
615 int multi, const void *payload, int size)
616{
617 u32 portid = NETLINK_CB(request_skb).portid;
618 struct net *net = sock_net(NETLINK_CB(request_skb).sk);
619 struct sk_buff *skb;
620 struct task_struct *tsk;
621 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
622 GFP_KERNEL);
623
624 if (!reply)
625 return;
626
627 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
628 if (!skb)
629 goto out;
630
631 reply->net = get_net(net);
632 reply->portid = portid;
633 reply->skb = skb;
634
635 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
636 if (!IS_ERR(tsk))
637 return;
638 kfree_skb(skb);
639out:
640 kfree(reply);
641}
642
643/*
644 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
645 * control messages.
646 */
647static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
648{
649 int err = 0;
650
651 /* Only support initial user namespace for now. */
652 /*
653 * We return ECONNREFUSED because it tricks userspace into thinking
654 * that audit was not configured into the kernel. Lots of users
655 * configure their PAM stack (because that's what the distro does)
656 * to reject login if unable to send messages to audit. If we return
657 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
658 * configured in and will let login proceed. If we return EPERM
659 * userspace will reject all logins. This should be removed when we
660 * support non init namespaces!!
661 */
662 if (current_user_ns() != &init_user_ns)
663 return -ECONNREFUSED;
664
665 switch (msg_type) {
666 case AUDIT_LIST:
667 case AUDIT_ADD:
668 case AUDIT_DEL:
669 return -EOPNOTSUPP;
670 case AUDIT_GET:
671 case AUDIT_SET:
672 case AUDIT_GET_FEATURE:
673 case AUDIT_SET_FEATURE:
674 case AUDIT_LIST_RULES:
675 case AUDIT_ADD_RULE:
676 case AUDIT_DEL_RULE:
677 case AUDIT_SIGNAL_INFO:
678 case AUDIT_TTY_GET:
679 case AUDIT_TTY_SET:
680 case AUDIT_TRIM:
681 case AUDIT_MAKE_EQUIV:
682 /* Only support auditd and auditctl in initial pid namespace
683 * for now. */
684 if (task_active_pid_ns(current) != &init_pid_ns)
685 return -EPERM;
686
687 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
688 err = -EPERM;
689 break;
690 case AUDIT_USER:
691 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
692 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
693 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
694 err = -EPERM;
695 break;
696 default: /* bad msg */
697 err = -EINVAL;
698 }
699
700 return err;
701}
702
703static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
704{
705 uid_t uid = from_kuid(&init_user_ns, current_uid());
706 pid_t pid = task_tgid_nr(current);
707
708 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
709 *ab = NULL;
710 return;
711 }
712
713 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
714 if (unlikely(!*ab))
715 return;
716 audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
717 audit_log_session_info(*ab);
718 audit_log_task_context(*ab);
719}
720
721int is_audit_feature_set(int i)
722{
723 return af.features & AUDIT_FEATURE_TO_MASK(i);
724}
725
726
727static int audit_get_feature(struct sk_buff *skb)
728{
729 u32 seq;
730
731 seq = nlmsg_hdr(skb)->nlmsg_seq;
732
733 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
734
735 return 0;
736}
737
738static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
739 u32 old_lock, u32 new_lock, int res)
740{
741 struct audit_buffer *ab;
742
743 if (audit_enabled == AUDIT_OFF)
744 return;
745
746 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
747 audit_log_task_info(ab, current);
748 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
749 audit_feature_names[which], !!old_feature, !!new_feature,
750 !!old_lock, !!new_lock, res);
751 audit_log_end(ab);
752}
753
754static int audit_set_feature(struct sk_buff *skb)
755{
756 struct audit_features *uaf;
757 int i;
758
759 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
760 uaf = nlmsg_data(nlmsg_hdr(skb));
761
762 /* if there is ever a version 2 we should handle that here */
763
764 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
765 u32 feature = AUDIT_FEATURE_TO_MASK(i);
766 u32 old_feature, new_feature, old_lock, new_lock;
767
768 /* if we are not changing this feature, move along */
769 if (!(feature & uaf->mask))
770 continue;
771
772 old_feature = af.features & feature;
773 new_feature = uaf->features & feature;
774 new_lock = (uaf->lock | af.lock) & feature;
775 old_lock = af.lock & feature;
776
777 /* are we changing a locked feature? */
778 if (old_lock && (new_feature != old_feature)) {
779 audit_log_feature_change(i, old_feature, new_feature,
780 old_lock, new_lock, 0);
781 return -EPERM;
782 }
783 }
784 /* nothing invalid, do the changes */
785 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
786 u32 feature = AUDIT_FEATURE_TO_MASK(i);
787 u32 old_feature, new_feature, old_lock, new_lock;
788
789 /* if we are not changing this feature, move along */
790 if (!(feature & uaf->mask))
791 continue;
792
793 old_feature = af.features & feature;
794 new_feature = uaf->features & feature;
795 old_lock = af.lock & feature;
796 new_lock = (uaf->lock | af.lock) & feature;
797
798 if (new_feature != old_feature)
799 audit_log_feature_change(i, old_feature, new_feature,
800 old_lock, new_lock, 1);
801
802 if (new_feature)
803 af.features |= feature;
804 else
805 af.features &= ~feature;
806 af.lock |= new_lock;
807 }
808
809 return 0;
810}
811
812static int audit_replace(pid_t pid)
813{
814 struct sk_buff *skb = audit_make_reply(0, 0, AUDIT_REPLACE, 0, 0,
815 &pid, sizeof(pid));
816
817 if (!skb)
818 return -ENOMEM;
819 return netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
820}
821
822static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
823{
824 u32 seq;
825 void *data;
826 int err;
827 struct audit_buffer *ab;
828 u16 msg_type = nlh->nlmsg_type;
829 struct audit_sig_info *sig_data;
830 char *ctx = NULL;
831 u32 len;
832
833 err = audit_netlink_ok(skb, msg_type);
834 if (err)
835 return err;
836
837 /* As soon as there's any sign of userspace auditd,
838 * start kauditd to talk to it */
839 if (!kauditd_task) {
840 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
841 if (IS_ERR(kauditd_task)) {
842 err = PTR_ERR(kauditd_task);
843 kauditd_task = NULL;
844 return err;
845 }
846 }
847 seq = nlh->nlmsg_seq;
848 data = nlmsg_data(nlh);
849
850 switch (msg_type) {
851 case AUDIT_GET: {
852 struct audit_status s;
853 memset(&s, 0, sizeof(s));
854 s.enabled = audit_enabled;
855 s.failure = audit_failure;
856 s.pid = audit_pid;
857 s.rate_limit = audit_rate_limit;
858 s.backlog_limit = audit_backlog_limit;
859 s.lost = atomic_read(&audit_lost);
860 s.backlog = skb_queue_len(&audit_skb_queue);
861 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
862 s.backlog_wait_time = audit_backlog_wait_time_master;
863 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
864 break;
865 }
866 case AUDIT_SET: {
867 struct audit_status s;
868 memset(&s, 0, sizeof(s));
869 /* guard against past and future API changes */
870 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
871 if (s.mask & AUDIT_STATUS_ENABLED) {
872 err = audit_set_enabled(s.enabled);
873 if (err < 0)
874 return err;
875 }
876 if (s.mask & AUDIT_STATUS_FAILURE) {
877 err = audit_set_failure(s.failure);
878 if (err < 0)
879 return err;
880 }
881 if (s.mask & AUDIT_STATUS_PID) {
882 int new_pid = s.pid;
883 pid_t requesting_pid = task_tgid_vnr(current);
884
885 if ((!new_pid) && (requesting_pid != audit_pid)) {
886 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
887 return -EACCES;
888 }
889 if (audit_pid && new_pid &&
890 audit_replace(requesting_pid) != -ECONNREFUSED) {
891 audit_log_config_change("audit_pid", new_pid, audit_pid, 0);
892 return -EEXIST;
893 }
894 if (audit_enabled != AUDIT_OFF)
895 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
896 audit_pid = new_pid;
897 audit_nlk_portid = NETLINK_CB(skb).portid;
898 audit_sock = skb->sk;
899 }
900 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
901 err = audit_set_rate_limit(s.rate_limit);
902 if (err < 0)
903 return err;
904 }
905 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
906 err = audit_set_backlog_limit(s.backlog_limit);
907 if (err < 0)
908 return err;
909 }
910 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
911 if (sizeof(s) > (size_t)nlh->nlmsg_len)
912 return -EINVAL;
913 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
914 return -EINVAL;
915 err = audit_set_backlog_wait_time(s.backlog_wait_time);
916 if (err < 0)
917 return err;
918 }
919 break;
920 }
921 case AUDIT_GET_FEATURE:
922 err = audit_get_feature(skb);
923 if (err)
924 return err;
925 break;
926 case AUDIT_SET_FEATURE:
927 err = audit_set_feature(skb);
928 if (err)
929 return err;
930 break;
931 case AUDIT_USER:
932 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
933 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
934 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
935 return 0;
936
937 err = audit_filter_user(msg_type);
938 if (err == 1) { /* match or error */
939 err = 0;
940 if (msg_type == AUDIT_USER_TTY) {
941 err = tty_audit_push();
942 if (err)
943 break;
944 }
945 mutex_unlock(&audit_cmd_mutex);
946 audit_log_common_recv_msg(&ab, msg_type);
947 if (msg_type != AUDIT_USER_TTY)
948 audit_log_format(ab, " msg='%.*s'",
949 AUDIT_MESSAGE_TEXT_MAX,
950 (char *)data);
951 else {
952 int size;
953
954 audit_log_format(ab, " data=");
955 size = nlmsg_len(nlh);
956 if (size > 0 &&
957 ((unsigned char *)data)[size - 1] == '\0')
958 size--;
959 audit_log_n_untrustedstring(ab, data, size);
960 }
961 audit_set_portid(ab, NETLINK_CB(skb).portid);
962 audit_log_end(ab);
963 mutex_lock(&audit_cmd_mutex);
964 }
965 break;
966 case AUDIT_ADD_RULE:
967 case AUDIT_DEL_RULE:
968 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
969 return -EINVAL;
970 if (audit_enabled == AUDIT_LOCKED) {
971 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
972 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
973 audit_log_end(ab);
974 return -EPERM;
975 }
976 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
977 seq, data, nlmsg_len(nlh));
978 break;
979 case AUDIT_LIST_RULES:
980 err = audit_list_rules_send(skb, seq);
981 break;
982 case AUDIT_TRIM:
983 audit_trim_trees();
984 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
985 audit_log_format(ab, " op=trim res=1");
986 audit_log_end(ab);
987 break;
988 case AUDIT_MAKE_EQUIV: {
989 void *bufp = data;
990 u32 sizes[2];
991 size_t msglen = nlmsg_len(nlh);
992 char *old, *new;
993
994 err = -EINVAL;
995 if (msglen < 2 * sizeof(u32))
996 break;
997 memcpy(sizes, bufp, 2 * sizeof(u32));
998 bufp += 2 * sizeof(u32);
999 msglen -= 2 * sizeof(u32);
1000 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1001 if (IS_ERR(old)) {
1002 err = PTR_ERR(old);
1003 break;
1004 }
1005 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1006 if (IS_ERR(new)) {
1007 err = PTR_ERR(new);
1008 kfree(old);
1009 break;
1010 }
1011 /* OK, here comes... */
1012 err = audit_tag_tree(old, new);
1013
1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015
1016 audit_log_format(ab, " op=make_equiv old=");
1017 audit_log_untrustedstring(ab, old);
1018 audit_log_format(ab, " new=");
1019 audit_log_untrustedstring(ab, new);
1020 audit_log_format(ab, " res=%d", !err);
1021 audit_log_end(ab);
1022 kfree(old);
1023 kfree(new);
1024 break;
1025 }
1026 case AUDIT_SIGNAL_INFO:
1027 len = 0;
1028 if (audit_sig_sid) {
1029 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1030 if (err)
1031 return err;
1032 }
1033 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1034 if (!sig_data) {
1035 if (audit_sig_sid)
1036 security_release_secctx(ctx, len);
1037 return -ENOMEM;
1038 }
1039 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1040 sig_data->pid = audit_sig_pid;
1041 if (audit_sig_sid) {
1042 memcpy(sig_data->ctx, ctx, len);
1043 security_release_secctx(ctx, len);
1044 }
1045 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1046 sig_data, sizeof(*sig_data) + len);
1047 kfree(sig_data);
1048 break;
1049 case AUDIT_TTY_GET: {
1050 struct audit_tty_status s;
1051 unsigned int t;
1052
1053 t = READ_ONCE(current->signal->audit_tty);
1054 s.enabled = t & AUDIT_TTY_ENABLE;
1055 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1056
1057 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1058 break;
1059 }
1060 case AUDIT_TTY_SET: {
1061 struct audit_tty_status s, old;
1062 struct audit_buffer *ab;
1063 unsigned int t;
1064
1065 memset(&s, 0, sizeof(s));
1066 /* guard against past and future API changes */
1067 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1068 /* check if new data is valid */
1069 if ((s.enabled != 0 && s.enabled != 1) ||
1070 (s.log_passwd != 0 && s.log_passwd != 1))
1071 err = -EINVAL;
1072
1073 if (err)
1074 t = READ_ONCE(current->signal->audit_tty);
1075 else {
1076 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1077 t = xchg(¤t->signal->audit_tty, t);
1078 }
1079 old.enabled = t & AUDIT_TTY_ENABLE;
1080 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1081
1082 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1083 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1084 " old-log_passwd=%d new-log_passwd=%d res=%d",
1085 old.enabled, s.enabled, old.log_passwd,
1086 s.log_passwd, !err);
1087 audit_log_end(ab);
1088 break;
1089 }
1090 default:
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 return err < 0 ? err : 0;
1096}
1097
1098/*
1099 * Get message from skb. Each message is processed by audit_receive_msg.
1100 * Malformed skbs with wrong length are discarded silently.
1101 */
1102static void audit_receive_skb(struct sk_buff *skb)
1103{
1104 struct nlmsghdr *nlh;
1105 /*
1106 * len MUST be signed for nlmsg_next to be able to dec it below 0
1107 * if the nlmsg_len was not aligned
1108 */
1109 int len;
1110 int err;
1111
1112 nlh = nlmsg_hdr(skb);
1113 len = skb->len;
1114
1115 while (nlmsg_ok(nlh, len)) {
1116 err = audit_receive_msg(skb, nlh);
1117 /* if err or if this message says it wants a response */
1118 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1119 netlink_ack(skb, nlh, err);
1120
1121 nlh = nlmsg_next(nlh, &len);
1122 }
1123}
1124
1125/* Receive messages from netlink socket. */
1126static void audit_receive(struct sk_buff *skb)
1127{
1128 mutex_lock(&audit_cmd_mutex);
1129 audit_receive_skb(skb);
1130 mutex_unlock(&audit_cmd_mutex);
1131}
1132
1133/* Run custom bind function on netlink socket group connect or bind requests. */
1134static int audit_bind(struct net *net, int group)
1135{
1136 if (!capable(CAP_AUDIT_READ))
1137 return -EPERM;
1138
1139 return 0;
1140}
1141
1142static int __net_init audit_net_init(struct net *net)
1143{
1144 struct netlink_kernel_cfg cfg = {
1145 .input = audit_receive,
1146 .bind = audit_bind,
1147 .flags = NL_CFG_F_NONROOT_RECV,
1148 .groups = AUDIT_NLGRP_MAX,
1149 };
1150
1151 struct audit_net *aunet = net_generic(net, audit_net_id);
1152
1153 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1154 if (aunet->nlsk == NULL) {
1155 audit_panic("cannot initialize netlink socket in namespace");
1156 return -ENOMEM;
1157 }
1158 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1159 return 0;
1160}
1161
1162static void __net_exit audit_net_exit(struct net *net)
1163{
1164 struct audit_net *aunet = net_generic(net, audit_net_id);
1165 struct sock *sock = aunet->nlsk;
1166 if (sock == audit_sock) {
1167 audit_pid = 0;
1168 audit_sock = NULL;
1169 }
1170
1171 RCU_INIT_POINTER(aunet->nlsk, NULL);
1172 synchronize_net();
1173 netlink_kernel_release(sock);
1174}
1175
1176static struct pernet_operations audit_net_ops __net_initdata = {
1177 .init = audit_net_init,
1178 .exit = audit_net_exit,
1179 .id = &audit_net_id,
1180 .size = sizeof(struct audit_net),
1181};
1182
1183/* Initialize audit support at boot time. */
1184static int __init audit_init(void)
1185{
1186 int i;
1187
1188 if (audit_initialized == AUDIT_DISABLED)
1189 return 0;
1190
1191 pr_info("initializing netlink subsys (%s)\n",
1192 audit_default ? "enabled" : "disabled");
1193 register_pernet_subsys(&audit_net_ops);
1194
1195 skb_queue_head_init(&audit_skb_queue);
1196 skb_queue_head_init(&audit_skb_hold_queue);
1197 audit_initialized = AUDIT_INITIALIZED;
1198 audit_enabled = audit_default;
1199 audit_ever_enabled |= !!audit_default;
1200
1201 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1202
1203 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1204 INIT_LIST_HEAD(&audit_inode_hash[i]);
1205
1206 return 0;
1207}
1208__initcall(audit_init);
1209
1210/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1211static int __init audit_enable(char *str)
1212{
1213 audit_default = !!simple_strtol(str, NULL, 0);
1214 if (!audit_default)
1215 audit_initialized = AUDIT_DISABLED;
1216
1217 pr_info("%s\n", audit_default ?
1218 "enabled (after initialization)" : "disabled (until reboot)");
1219
1220 return 1;
1221}
1222__setup("audit=", audit_enable);
1223
1224/* Process kernel command-line parameter at boot time.
1225 * audit_backlog_limit=<n> */
1226static int __init audit_backlog_limit_set(char *str)
1227{
1228 u32 audit_backlog_limit_arg;
1229
1230 pr_info("audit_backlog_limit: ");
1231 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1232 pr_cont("using default of %u, unable to parse %s\n",
1233 audit_backlog_limit, str);
1234 return 1;
1235 }
1236
1237 audit_backlog_limit = audit_backlog_limit_arg;
1238 pr_cont("%d\n", audit_backlog_limit);
1239
1240 return 1;
1241}
1242__setup("audit_backlog_limit=", audit_backlog_limit_set);
1243
1244static void audit_buffer_free(struct audit_buffer *ab)
1245{
1246 unsigned long flags;
1247
1248 if (!ab)
1249 return;
1250
1251 kfree_skb(ab->skb);
1252 spin_lock_irqsave(&audit_freelist_lock, flags);
1253 if (audit_freelist_count > AUDIT_MAXFREE)
1254 kfree(ab);
1255 else {
1256 audit_freelist_count++;
1257 list_add(&ab->list, &audit_freelist);
1258 }
1259 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1260}
1261
1262static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1263 gfp_t gfp_mask, int type)
1264{
1265 unsigned long flags;
1266 struct audit_buffer *ab = NULL;
1267 struct nlmsghdr *nlh;
1268
1269 spin_lock_irqsave(&audit_freelist_lock, flags);
1270 if (!list_empty(&audit_freelist)) {
1271 ab = list_entry(audit_freelist.next,
1272 struct audit_buffer, list);
1273 list_del(&ab->list);
1274 --audit_freelist_count;
1275 }
1276 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1277
1278 if (!ab) {
1279 ab = kmalloc(sizeof(*ab), gfp_mask);
1280 if (!ab)
1281 goto err;
1282 }
1283
1284 ab->ctx = ctx;
1285 ab->gfp_mask = gfp_mask;
1286
1287 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1288 if (!ab->skb)
1289 goto err;
1290
1291 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1292 if (!nlh)
1293 goto out_kfree_skb;
1294
1295 return ab;
1296
1297out_kfree_skb:
1298 kfree_skb(ab->skb);
1299 ab->skb = NULL;
1300err:
1301 audit_buffer_free(ab);
1302 return NULL;
1303}
1304
1305/**
1306 * audit_serial - compute a serial number for the audit record
1307 *
1308 * Compute a serial number for the audit record. Audit records are
1309 * written to user-space as soon as they are generated, so a complete
1310 * audit record may be written in several pieces. The timestamp of the
1311 * record and this serial number are used by the user-space tools to
1312 * determine which pieces belong to the same audit record. The
1313 * (timestamp,serial) tuple is unique for each syscall and is live from
1314 * syscall entry to syscall exit.
1315 *
1316 * NOTE: Another possibility is to store the formatted records off the
1317 * audit context (for those records that have a context), and emit them
1318 * all at syscall exit. However, this could delay the reporting of
1319 * significant errors until syscall exit (or never, if the system
1320 * halts).
1321 */
1322unsigned int audit_serial(void)
1323{
1324 static atomic_t serial = ATOMIC_INIT(0);
1325
1326 return atomic_add_return(1, &serial);
1327}
1328
1329static inline void audit_get_stamp(struct audit_context *ctx,
1330 struct timespec *t, unsigned int *serial)
1331{
1332 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1333 *t = CURRENT_TIME;
1334 *serial = audit_serial();
1335 }
1336}
1337
1338/*
1339 * Wait for auditd to drain the queue a little
1340 */
1341static long wait_for_auditd(long sleep_time)
1342{
1343 DECLARE_WAITQUEUE(wait, current);
1344 set_current_state(TASK_UNINTERRUPTIBLE);
1345 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1346
1347 if (audit_backlog_limit &&
1348 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1349 sleep_time = schedule_timeout(sleep_time);
1350
1351 __set_current_state(TASK_RUNNING);
1352 remove_wait_queue(&audit_backlog_wait, &wait);
1353
1354 return sleep_time;
1355}
1356
1357/**
1358 * audit_log_start - obtain an audit buffer
1359 * @ctx: audit_context (may be NULL)
1360 * @gfp_mask: type of allocation
1361 * @type: audit message type
1362 *
1363 * Returns audit_buffer pointer on success or NULL on error.
1364 *
1365 * Obtain an audit buffer. This routine does locking to obtain the
1366 * audit buffer, but then no locking is required for calls to
1367 * audit_log_*format. If the task (ctx) is a task that is currently in a
1368 * syscall, then the syscall is marked as auditable and an audit record
1369 * will be written at syscall exit. If there is no associated task, then
1370 * task context (ctx) should be NULL.
1371 */
1372struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1373 int type)
1374{
1375 struct audit_buffer *ab = NULL;
1376 struct timespec t;
1377 unsigned int uninitialized_var(serial);
1378 int reserve = 5; /* Allow atomic callers to go up to five
1379 entries over the normal backlog limit */
1380 unsigned long timeout_start = jiffies;
1381
1382 if (audit_initialized != AUDIT_INITIALIZED)
1383 return NULL;
1384
1385 if (unlikely(audit_filter_type(type)))
1386 return NULL;
1387
1388 if (gfp_mask & __GFP_DIRECT_RECLAIM) {
1389 if (audit_pid && audit_pid == current->tgid)
1390 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
1391 else
1392 reserve = 0;
1393 }
1394
1395 while (audit_backlog_limit
1396 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1397 if (gfp_mask & __GFP_DIRECT_RECLAIM && audit_backlog_wait_time) {
1398 long sleep_time;
1399
1400 sleep_time = timeout_start + audit_backlog_wait_time - jiffies;
1401 if (sleep_time > 0) {
1402 sleep_time = wait_for_auditd(sleep_time);
1403 if (sleep_time > 0)
1404 continue;
1405 }
1406 }
1407 if (audit_rate_check() && printk_ratelimit())
1408 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1409 skb_queue_len(&audit_skb_queue),
1410 audit_backlog_limit);
1411 audit_log_lost("backlog limit exceeded");
1412 audit_backlog_wait_time = 0;
1413 wake_up(&audit_backlog_wait);
1414 return NULL;
1415 }
1416
1417 if (!reserve && !audit_backlog_wait_time)
1418 audit_backlog_wait_time = audit_backlog_wait_time_master;
1419
1420 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1421 if (!ab) {
1422 audit_log_lost("out of memory in audit_log_start");
1423 return NULL;
1424 }
1425
1426 audit_get_stamp(ab->ctx, &t, &serial);
1427
1428 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1429 t.tv_sec, t.tv_nsec/1000000, serial);
1430 return ab;
1431}
1432
1433/**
1434 * audit_expand - expand skb in the audit buffer
1435 * @ab: audit_buffer
1436 * @extra: space to add at tail of the skb
1437 *
1438 * Returns 0 (no space) on failed expansion, or available space if
1439 * successful.
1440 */
1441static inline int audit_expand(struct audit_buffer *ab, int extra)
1442{
1443 struct sk_buff *skb = ab->skb;
1444 int oldtail = skb_tailroom(skb);
1445 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1446 int newtail = skb_tailroom(skb);
1447
1448 if (ret < 0) {
1449 audit_log_lost("out of memory in audit_expand");
1450 return 0;
1451 }
1452
1453 skb->truesize += newtail - oldtail;
1454 return newtail;
1455}
1456
1457/*
1458 * Format an audit message into the audit buffer. If there isn't enough
1459 * room in the audit buffer, more room will be allocated and vsnprint
1460 * will be called a second time. Currently, we assume that a printk
1461 * can't format message larger than 1024 bytes, so we don't either.
1462 */
1463static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1464 va_list args)
1465{
1466 int len, avail;
1467 struct sk_buff *skb;
1468 va_list args2;
1469
1470 if (!ab)
1471 return;
1472
1473 BUG_ON(!ab->skb);
1474 skb = ab->skb;
1475 avail = skb_tailroom(skb);
1476 if (avail == 0) {
1477 avail = audit_expand(ab, AUDIT_BUFSIZ);
1478 if (!avail)
1479 goto out;
1480 }
1481 va_copy(args2, args);
1482 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1483 if (len >= avail) {
1484 /* The printk buffer is 1024 bytes long, so if we get
1485 * here and AUDIT_BUFSIZ is at least 1024, then we can
1486 * log everything that printk could have logged. */
1487 avail = audit_expand(ab,
1488 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1489 if (!avail)
1490 goto out_va_end;
1491 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1492 }
1493 if (len > 0)
1494 skb_put(skb, len);
1495out_va_end:
1496 va_end(args2);
1497out:
1498 return;
1499}
1500
1501/**
1502 * audit_log_format - format a message into the audit buffer.
1503 * @ab: audit_buffer
1504 * @fmt: format string
1505 * @...: optional parameters matching @fmt string
1506 *
1507 * All the work is done in audit_log_vformat.
1508 */
1509void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1510{
1511 va_list args;
1512
1513 if (!ab)
1514 return;
1515 va_start(args, fmt);
1516 audit_log_vformat(ab, fmt, args);
1517 va_end(args);
1518}
1519
1520/**
1521 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1522 * @ab: the audit_buffer
1523 * @buf: buffer to convert to hex
1524 * @len: length of @buf to be converted
1525 *
1526 * No return value; failure to expand is silently ignored.
1527 *
1528 * This function will take the passed buf and convert it into a string of
1529 * ascii hex digits. The new string is placed onto the skb.
1530 */
1531void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1532 size_t len)
1533{
1534 int i, avail, new_len;
1535 unsigned char *ptr;
1536 struct sk_buff *skb;
1537
1538 if (!ab)
1539 return;
1540
1541 BUG_ON(!ab->skb);
1542 skb = ab->skb;
1543 avail = skb_tailroom(skb);
1544 new_len = len<<1;
1545 if (new_len >= avail) {
1546 /* Round the buffer request up to the next multiple */
1547 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1548 avail = audit_expand(ab, new_len);
1549 if (!avail)
1550 return;
1551 }
1552
1553 ptr = skb_tail_pointer(skb);
1554 for (i = 0; i < len; i++)
1555 ptr = hex_byte_pack_upper(ptr, buf[i]);
1556 *ptr = 0;
1557 skb_put(skb, len << 1); /* new string is twice the old string */
1558}
1559
1560/*
1561 * Format a string of no more than slen characters into the audit buffer,
1562 * enclosed in quote marks.
1563 */
1564void audit_log_n_string(struct audit_buffer *ab, const char *string,
1565 size_t slen)
1566{
1567 int avail, new_len;
1568 unsigned char *ptr;
1569 struct sk_buff *skb;
1570
1571 if (!ab)
1572 return;
1573
1574 BUG_ON(!ab->skb);
1575 skb = ab->skb;
1576 avail = skb_tailroom(skb);
1577 new_len = slen + 3; /* enclosing quotes + null terminator */
1578 if (new_len > avail) {
1579 avail = audit_expand(ab, new_len);
1580 if (!avail)
1581 return;
1582 }
1583 ptr = skb_tail_pointer(skb);
1584 *ptr++ = '"';
1585 memcpy(ptr, string, slen);
1586 ptr += slen;
1587 *ptr++ = '"';
1588 *ptr = 0;
1589 skb_put(skb, slen + 2); /* don't include null terminator */
1590}
1591
1592/**
1593 * audit_string_contains_control - does a string need to be logged in hex
1594 * @string: string to be checked
1595 * @len: max length of the string to check
1596 */
1597bool audit_string_contains_control(const char *string, size_t len)
1598{
1599 const unsigned char *p;
1600 for (p = string; p < (const unsigned char *)string + len; p++) {
1601 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1602 return true;
1603 }
1604 return false;
1605}
1606
1607/**
1608 * audit_log_n_untrustedstring - log a string that may contain random characters
1609 * @ab: audit_buffer
1610 * @len: length of string (not including trailing null)
1611 * @string: string to be logged
1612 *
1613 * This code will escape a string that is passed to it if the string
1614 * contains a control character, unprintable character, double quote mark,
1615 * or a space. Unescaped strings will start and end with a double quote mark.
1616 * Strings that are escaped are printed in hex (2 digits per char).
1617 *
1618 * The caller specifies the number of characters in the string to log, which may
1619 * or may not be the entire string.
1620 */
1621void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1622 size_t len)
1623{
1624 if (audit_string_contains_control(string, len))
1625 audit_log_n_hex(ab, string, len);
1626 else
1627 audit_log_n_string(ab, string, len);
1628}
1629
1630/**
1631 * audit_log_untrustedstring - log a string that may contain random characters
1632 * @ab: audit_buffer
1633 * @string: string to be logged
1634 *
1635 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1636 * determine string length.
1637 */
1638void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1639{
1640 audit_log_n_untrustedstring(ab, string, strlen(string));
1641}
1642
1643/* This is a helper-function to print the escaped d_path */
1644void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1645 const struct path *path)
1646{
1647 char *p, *pathname;
1648
1649 if (prefix)
1650 audit_log_format(ab, "%s", prefix);
1651
1652 /* We will allow 11 spaces for ' (deleted)' to be appended */
1653 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1654 if (!pathname) {
1655 audit_log_string(ab, "<no_memory>");
1656 return;
1657 }
1658 p = d_path(path, pathname, PATH_MAX+11);
1659 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1660 /* FIXME: can we save some information here? */
1661 audit_log_string(ab, "<too_long>");
1662 } else
1663 audit_log_untrustedstring(ab, p);
1664 kfree(pathname);
1665}
1666
1667void audit_log_session_info(struct audit_buffer *ab)
1668{
1669 unsigned int sessionid = audit_get_sessionid(current);
1670 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1671
1672 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1673}
1674
1675void audit_log_key(struct audit_buffer *ab, char *key)
1676{
1677 audit_log_format(ab, " key=");
1678 if (key)
1679 audit_log_untrustedstring(ab, key);
1680 else
1681 audit_log_format(ab, "(null)");
1682}
1683
1684void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1685{
1686 int i;
1687
1688 audit_log_format(ab, " %s=", prefix);
1689 CAP_FOR_EACH_U32(i) {
1690 audit_log_format(ab, "%08x",
1691 cap->cap[CAP_LAST_U32 - i]);
1692 }
1693}
1694
1695static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1696{
1697 kernel_cap_t *perm = &name->fcap.permitted;
1698 kernel_cap_t *inh = &name->fcap.inheritable;
1699 int log = 0;
1700
1701 if (!cap_isclear(*perm)) {
1702 audit_log_cap(ab, "cap_fp", perm);
1703 log = 1;
1704 }
1705 if (!cap_isclear(*inh)) {
1706 audit_log_cap(ab, "cap_fi", inh);
1707 log = 1;
1708 }
1709
1710 if (log)
1711 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1712 name->fcap.fE, name->fcap_ver);
1713}
1714
1715static inline int audit_copy_fcaps(struct audit_names *name,
1716 const struct dentry *dentry)
1717{
1718 struct cpu_vfs_cap_data caps;
1719 int rc;
1720
1721 if (!dentry)
1722 return 0;
1723
1724 rc = get_vfs_caps_from_disk(dentry, &caps);
1725 if (rc)
1726 return rc;
1727
1728 name->fcap.permitted = caps.permitted;
1729 name->fcap.inheritable = caps.inheritable;
1730 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1731 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1732 VFS_CAP_REVISION_SHIFT;
1733
1734 return 0;
1735}
1736
1737/* Copy inode data into an audit_names. */
1738void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1739 struct inode *inode)
1740{
1741 name->ino = inode->i_ino;
1742 name->dev = inode->i_sb->s_dev;
1743 name->mode = inode->i_mode;
1744 name->uid = inode->i_uid;
1745 name->gid = inode->i_gid;
1746 name->rdev = inode->i_rdev;
1747 security_inode_getsecid(inode, &name->osid);
1748 audit_copy_fcaps(name, dentry);
1749}
1750
1751/**
1752 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1753 * @context: audit_context for the task
1754 * @n: audit_names structure with reportable details
1755 * @path: optional path to report instead of audit_names->name
1756 * @record_num: record number to report when handling a list of names
1757 * @call_panic: optional pointer to int that will be updated if secid fails
1758 */
1759void audit_log_name(struct audit_context *context, struct audit_names *n,
1760 struct path *path, int record_num, int *call_panic)
1761{
1762 struct audit_buffer *ab;
1763 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1764 if (!ab)
1765 return;
1766
1767 audit_log_format(ab, "item=%d", record_num);
1768
1769 if (path)
1770 audit_log_d_path(ab, " name=", path);
1771 else if (n->name) {
1772 switch (n->name_len) {
1773 case AUDIT_NAME_FULL:
1774 /* log the full path */
1775 audit_log_format(ab, " name=");
1776 audit_log_untrustedstring(ab, n->name->name);
1777 break;
1778 case 0:
1779 /* name was specified as a relative path and the
1780 * directory component is the cwd */
1781 audit_log_d_path(ab, " name=", &context->pwd);
1782 break;
1783 default:
1784 /* log the name's directory component */
1785 audit_log_format(ab, " name=");
1786 audit_log_n_untrustedstring(ab, n->name->name,
1787 n->name_len);
1788 }
1789 } else
1790 audit_log_format(ab, " name=(null)");
1791
1792 if (n->ino != AUDIT_INO_UNSET)
1793 audit_log_format(ab, " inode=%lu"
1794 " dev=%02x:%02x mode=%#ho"
1795 " ouid=%u ogid=%u rdev=%02x:%02x",
1796 n->ino,
1797 MAJOR(n->dev),
1798 MINOR(n->dev),
1799 n->mode,
1800 from_kuid(&init_user_ns, n->uid),
1801 from_kgid(&init_user_ns, n->gid),
1802 MAJOR(n->rdev),
1803 MINOR(n->rdev));
1804 if (n->osid != 0) {
1805 char *ctx = NULL;
1806 u32 len;
1807 if (security_secid_to_secctx(
1808 n->osid, &ctx, &len)) {
1809 audit_log_format(ab, " osid=%u", n->osid);
1810 if (call_panic)
1811 *call_panic = 2;
1812 } else {
1813 audit_log_format(ab, " obj=%s", ctx);
1814 security_release_secctx(ctx, len);
1815 }
1816 }
1817
1818 /* log the audit_names record type */
1819 audit_log_format(ab, " nametype=");
1820 switch(n->type) {
1821 case AUDIT_TYPE_NORMAL:
1822 audit_log_format(ab, "NORMAL");
1823 break;
1824 case AUDIT_TYPE_PARENT:
1825 audit_log_format(ab, "PARENT");
1826 break;
1827 case AUDIT_TYPE_CHILD_DELETE:
1828 audit_log_format(ab, "DELETE");
1829 break;
1830 case AUDIT_TYPE_CHILD_CREATE:
1831 audit_log_format(ab, "CREATE");
1832 break;
1833 default:
1834 audit_log_format(ab, "UNKNOWN");
1835 break;
1836 }
1837
1838 audit_log_fcaps(ab, n);
1839 audit_log_end(ab);
1840}
1841
1842int audit_log_task_context(struct audit_buffer *ab)
1843{
1844 char *ctx = NULL;
1845 unsigned len;
1846 int error;
1847 u32 sid;
1848
1849 security_task_getsecid(current, &sid);
1850 if (!sid)
1851 return 0;
1852
1853 error = security_secid_to_secctx(sid, &ctx, &len);
1854 if (error) {
1855 if (error != -EINVAL)
1856 goto error_path;
1857 return 0;
1858 }
1859
1860 audit_log_format(ab, " subj=%s", ctx);
1861 security_release_secctx(ctx, len);
1862 return 0;
1863
1864error_path:
1865 audit_panic("error in audit_log_task_context");
1866 return error;
1867}
1868EXPORT_SYMBOL(audit_log_task_context);
1869
1870void audit_log_d_path_exe(struct audit_buffer *ab,
1871 struct mm_struct *mm)
1872{
1873 struct file *exe_file;
1874
1875 if (!mm)
1876 goto out_null;
1877
1878 exe_file = get_mm_exe_file(mm);
1879 if (!exe_file)
1880 goto out_null;
1881
1882 audit_log_d_path(ab, " exe=", &exe_file->f_path);
1883 fput(exe_file);
1884 return;
1885out_null:
1886 audit_log_format(ab, " exe=(null)");
1887}
1888
1889void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1890{
1891 const struct cred *cred;
1892 char comm[sizeof(tsk->comm)];
1893 char *tty;
1894
1895 if (!ab)
1896 return;
1897
1898 /* tsk == current */
1899 cred = current_cred();
1900
1901 spin_lock_irq(&tsk->sighand->siglock);
1902 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1903 tty = tsk->signal->tty->name;
1904 else
1905 tty = "(none)";
1906 spin_unlock_irq(&tsk->sighand->siglock);
1907
1908 audit_log_format(ab,
1909 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1910 " euid=%u suid=%u fsuid=%u"
1911 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1912 task_ppid_nr(tsk),
1913 task_pid_nr(tsk),
1914 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1915 from_kuid(&init_user_ns, cred->uid),
1916 from_kgid(&init_user_ns, cred->gid),
1917 from_kuid(&init_user_ns, cred->euid),
1918 from_kuid(&init_user_ns, cred->suid),
1919 from_kuid(&init_user_ns, cred->fsuid),
1920 from_kgid(&init_user_ns, cred->egid),
1921 from_kgid(&init_user_ns, cred->sgid),
1922 from_kgid(&init_user_ns, cred->fsgid),
1923 tty, audit_get_sessionid(tsk));
1924
1925 audit_log_format(ab, " comm=");
1926 audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
1927
1928 audit_log_d_path_exe(ab, tsk->mm);
1929 audit_log_task_context(ab);
1930}
1931EXPORT_SYMBOL(audit_log_task_info);
1932
1933/**
1934 * audit_log_link_denied - report a link restriction denial
1935 * @operation: specific link operation
1936 * @link: the path that triggered the restriction
1937 */
1938void audit_log_link_denied(const char *operation, struct path *link)
1939{
1940 struct audit_buffer *ab;
1941 struct audit_names *name;
1942
1943 name = kzalloc(sizeof(*name), GFP_NOFS);
1944 if (!name)
1945 return;
1946
1947 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1948 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1949 AUDIT_ANOM_LINK);
1950 if (!ab)
1951 goto out;
1952 audit_log_format(ab, "op=%s", operation);
1953 audit_log_task_info(ab, current);
1954 audit_log_format(ab, " res=0");
1955 audit_log_end(ab);
1956
1957 /* Generate AUDIT_PATH record with object. */
1958 name->type = AUDIT_TYPE_NORMAL;
1959 audit_copy_inode(name, link->dentry, d_backing_inode(link->dentry));
1960 audit_log_name(current->audit_context, name, link, 0, NULL);
1961out:
1962 kfree(name);
1963}
1964
1965/**
1966 * audit_log_end - end one audit record
1967 * @ab: the audit_buffer
1968 *
1969 * netlink_unicast() cannot be called inside an irq context because it blocks
1970 * (last arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed
1971 * on a queue and a tasklet is scheduled to remove them from the queue outside
1972 * the irq context. May be called in any context.
1973 */
1974void audit_log_end(struct audit_buffer *ab)
1975{
1976 if (!ab)
1977 return;
1978 if (!audit_rate_check()) {
1979 audit_log_lost("rate limit exceeded");
1980 } else {
1981 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1982
1983 nlh->nlmsg_len = ab->skb->len;
1984 kauditd_send_multicast_skb(ab->skb, ab->gfp_mask);
1985
1986 /*
1987 * The original kaudit unicast socket sends up messages with
1988 * nlmsg_len set to the payload length rather than the entire
1989 * message length. This breaks the standard set by netlink.
1990 * The existing auditd daemon assumes this breakage. Fixing
1991 * this would require co-ordinating a change in the established
1992 * protocol between the kaudit kernel subsystem and the auditd
1993 * userspace code.
1994 */
1995 nlh->nlmsg_len -= NLMSG_HDRLEN;
1996
1997 if (audit_pid) {
1998 skb_queue_tail(&audit_skb_queue, ab->skb);
1999 wake_up_interruptible(&kauditd_wait);
2000 } else {
2001 audit_printk_skb(ab->skb);
2002 }
2003 ab->skb = NULL;
2004 }
2005 audit_buffer_free(ab);
2006}
2007
2008/**
2009 * audit_log - Log an audit record
2010 * @ctx: audit context
2011 * @gfp_mask: type of allocation
2012 * @type: audit message type
2013 * @fmt: format string to use
2014 * @...: variable parameters matching the format string
2015 *
2016 * This is a convenience function that calls audit_log_start,
2017 * audit_log_vformat, and audit_log_end. It may be called
2018 * in any context.
2019 */
2020void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2021 const char *fmt, ...)
2022{
2023 struct audit_buffer *ab;
2024 va_list args;
2025
2026 ab = audit_log_start(ctx, gfp_mask, type);
2027 if (ab) {
2028 va_start(args, fmt);
2029 audit_log_vformat(ab, fmt, args);
2030 va_end(args);
2031 audit_log_end(ab);
2032 }
2033}
2034
2035#ifdef CONFIG_SECURITY
2036/**
2037 * audit_log_secctx - Converts and logs SELinux context
2038 * @ab: audit_buffer
2039 * @secid: security number
2040 *
2041 * This is a helper function that calls security_secid_to_secctx to convert
2042 * secid to secctx and then adds the (converted) SELinux context to the audit
2043 * log by calling audit_log_format, thus also preventing leak of internal secid
2044 * to userspace. If secid cannot be converted audit_panic is called.
2045 */
2046void audit_log_secctx(struct audit_buffer *ab, u32 secid)
2047{
2048 u32 len;
2049 char *secctx;
2050
2051 if (security_secid_to_secctx(secid, &secctx, &len)) {
2052 audit_panic("Cannot convert secid to context");
2053 } else {
2054 audit_log_format(ab, " obj=%s", secctx);
2055 security_release_secctx(secctx, len);
2056 }
2057}
2058EXPORT_SYMBOL(audit_log_secctx);
2059#endif
2060
2061EXPORT_SYMBOL(audit_log_start);
2062EXPORT_SYMBOL(audit_log_end);
2063EXPORT_SYMBOL(audit_log_format);
2064EXPORT_SYMBOL(audit_log);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
5 *
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
8 *
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
10 *
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
27 *
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/file.h>
35#include <linux/init.h>
36#include <linux/types.h>
37#include <linux/atomic.h>
38#include <linux/mm.h>
39#include <linux/export.h>
40#include <linux/slab.h>
41#include <linux/err.h>
42#include <linux/kthread.h>
43#include <linux/kernel.h>
44#include <linux/syscalls.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/mutex.h>
48#include <linux/gfp.h>
49#include <linux/pid.h>
50
51#include <linux/audit.h>
52
53#include <net/sock.h>
54#include <net/netlink.h>
55#include <linux/skbuff.h>
56#include <linux/security.h>
57#include <linux/freezer.h>
58#include <linux/pid_namespace.h>
59#include <net/netns/generic.h>
60
61#include "audit.h"
62
63/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
64 * (Initialization happens after skb_init is called.) */
65#define AUDIT_DISABLED -1
66#define AUDIT_UNINITIALIZED 0
67#define AUDIT_INITIALIZED 1
68static int audit_initialized = AUDIT_UNINITIALIZED;
69
70u32 audit_enabled = AUDIT_OFF;
71bool audit_ever_enabled = !!AUDIT_OFF;
72
73EXPORT_SYMBOL_GPL(audit_enabled);
74
75/* Default state when kernel boots without any parameters. */
76static u32 audit_default = AUDIT_OFF;
77
78/* If auditing cannot proceed, audit_failure selects what happens. */
79static u32 audit_failure = AUDIT_FAIL_PRINTK;
80
81/* private audit network namespace index */
82static unsigned int audit_net_id;
83
84/**
85 * struct audit_net - audit private network namespace data
86 * @sk: communication socket
87 */
88struct audit_net {
89 struct sock *sk;
90};
91
92/**
93 * struct auditd_connection - kernel/auditd connection state
94 * @pid: auditd PID
95 * @portid: netlink portid
96 * @net: the associated network namespace
97 * @rcu: RCU head
98 *
99 * Description:
100 * This struct is RCU protected; you must either hold the RCU lock for reading
101 * or the associated spinlock for writing.
102 */
103struct auditd_connection {
104 struct pid *pid;
105 u32 portid;
106 struct net *net;
107 struct rcu_head rcu;
108};
109static struct auditd_connection __rcu *auditd_conn;
110static DEFINE_SPINLOCK(auditd_conn_lock);
111
112/* If audit_rate_limit is non-zero, limit the rate of sending audit records
113 * to that number per second. This prevents DoS attacks, but results in
114 * audit records being dropped. */
115static u32 audit_rate_limit;
116
117/* Number of outstanding audit_buffers allowed.
118 * When set to zero, this means unlimited. */
119static u32 audit_backlog_limit = 64;
120#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
121static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
122
123/* The identity of the user shutting down the audit system. */
124static kuid_t audit_sig_uid = INVALID_UID;
125static pid_t audit_sig_pid = -1;
126static struct lsm_prop audit_sig_lsm;
127
128/* Records can be lost in several ways:
129 0) [suppressed in audit_alloc]
130 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
131 2) out of memory in audit_log_move [alloc_skb]
132 3) suppressed due to audit_rate_limit
133 4) suppressed due to audit_backlog_limit
134*/
135static atomic_t audit_lost = ATOMIC_INIT(0);
136
137/* Monotonically increasing sum of time the kernel has spent
138 * waiting while the backlog limit is exceeded.
139 */
140static atomic_t audit_backlog_wait_time_actual = ATOMIC_INIT(0);
141
142/* Hash for inode-based rules */
143struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
144
145static struct kmem_cache *audit_buffer_cache;
146
147/* queue msgs to send via kauditd_task */
148static struct sk_buff_head audit_queue;
149/* queue msgs due to temporary unicast send problems */
150static struct sk_buff_head audit_retry_queue;
151/* queue msgs waiting for new auditd connection */
152static struct sk_buff_head audit_hold_queue;
153
154/* queue servicing thread */
155static struct task_struct *kauditd_task;
156static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
157
158/* waitqueue for callers who are blocked on the audit backlog */
159static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
160
161static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
162 .mask = -1,
163 .features = 0,
164 .lock = 0,};
165
166static char *audit_feature_names[2] = {
167 "only_unset_loginuid",
168 "loginuid_immutable",
169};
170
171/**
172 * struct audit_ctl_mutex - serialize requests from userspace
173 * @lock: the mutex used for locking
174 * @owner: the task which owns the lock
175 *
176 * Description:
177 * This is the lock struct used to ensure we only process userspace requests
178 * in an orderly fashion. We can't simply use a mutex/lock here because we
179 * need to track lock ownership so we don't end up blocking the lock owner in
180 * audit_log_start() or similar.
181 */
182static struct audit_ctl_mutex {
183 struct mutex lock;
184 void *owner;
185} audit_cmd_mutex;
186
187/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
188 * audit records. Since printk uses a 1024 byte buffer, this buffer
189 * should be at least that large. */
190#define AUDIT_BUFSIZ 1024
191
192/* The audit_buffer is used when formatting an audit record. The caller
193 * locks briefly to get the record off the freelist or to allocate the
194 * buffer, and locks briefly to send the buffer to the netlink layer or
195 * to place it on a transmit queue. Multiple audit_buffers can be in
196 * use simultaneously. */
197struct audit_buffer {
198 struct sk_buff *skb; /* formatted skb ready to send */
199 struct audit_context *ctx; /* NULL or associated context */
200 gfp_t gfp_mask;
201};
202
203struct audit_reply {
204 __u32 portid;
205 struct net *net;
206 struct sk_buff *skb;
207};
208
209/**
210 * auditd_test_task - Check to see if a given task is an audit daemon
211 * @task: the task to check
212 *
213 * Description:
214 * Return 1 if the task is a registered audit daemon, 0 otherwise.
215 */
216int auditd_test_task(struct task_struct *task)
217{
218 int rc;
219 struct auditd_connection *ac;
220
221 rcu_read_lock();
222 ac = rcu_dereference(auditd_conn);
223 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
224 rcu_read_unlock();
225
226 return rc;
227}
228
229/**
230 * audit_ctl_lock - Take the audit control lock
231 */
232void audit_ctl_lock(void)
233{
234 mutex_lock(&audit_cmd_mutex.lock);
235 audit_cmd_mutex.owner = current;
236}
237
238/**
239 * audit_ctl_unlock - Drop the audit control lock
240 */
241void audit_ctl_unlock(void)
242{
243 audit_cmd_mutex.owner = NULL;
244 mutex_unlock(&audit_cmd_mutex.lock);
245}
246
247/**
248 * audit_ctl_owner_current - Test to see if the current task owns the lock
249 *
250 * Description:
251 * Return true if the current task owns the audit control lock, false if it
252 * doesn't own the lock.
253 */
254static bool audit_ctl_owner_current(void)
255{
256 return (current == audit_cmd_mutex.owner);
257}
258
259/**
260 * auditd_pid_vnr - Return the auditd PID relative to the namespace
261 *
262 * Description:
263 * Returns the PID in relation to the namespace, 0 on failure.
264 */
265static pid_t auditd_pid_vnr(void)
266{
267 pid_t pid;
268 const struct auditd_connection *ac;
269
270 rcu_read_lock();
271 ac = rcu_dereference(auditd_conn);
272 if (!ac || !ac->pid)
273 pid = 0;
274 else
275 pid = pid_vnr(ac->pid);
276 rcu_read_unlock();
277
278 return pid;
279}
280
281/**
282 * audit_get_sk - Return the audit socket for the given network namespace
283 * @net: the destination network namespace
284 *
285 * Description:
286 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
287 * that a reference is held for the network namespace while the sock is in use.
288 */
289static struct sock *audit_get_sk(const struct net *net)
290{
291 struct audit_net *aunet;
292
293 if (!net)
294 return NULL;
295
296 aunet = net_generic(net, audit_net_id);
297 return aunet->sk;
298}
299
300void audit_panic(const char *message)
301{
302 switch (audit_failure) {
303 case AUDIT_FAIL_SILENT:
304 break;
305 case AUDIT_FAIL_PRINTK:
306 if (printk_ratelimit())
307 pr_err("%s\n", message);
308 break;
309 case AUDIT_FAIL_PANIC:
310 panic("audit: %s\n", message);
311 break;
312 }
313}
314
315static inline int audit_rate_check(void)
316{
317 static unsigned long last_check = 0;
318 static int messages = 0;
319 static DEFINE_SPINLOCK(lock);
320 unsigned long flags;
321 unsigned long now;
322 int retval = 0;
323
324 if (!audit_rate_limit)
325 return 1;
326
327 spin_lock_irqsave(&lock, flags);
328 if (++messages < audit_rate_limit) {
329 retval = 1;
330 } else {
331 now = jiffies;
332 if (time_after(now, last_check + HZ)) {
333 last_check = now;
334 messages = 0;
335 retval = 1;
336 }
337 }
338 spin_unlock_irqrestore(&lock, flags);
339
340 return retval;
341}
342
343/**
344 * audit_log_lost - conditionally log lost audit message event
345 * @message: the message stating reason for lost audit message
346 *
347 * Emit at least 1 message per second, even if audit_rate_check is
348 * throttling.
349 * Always increment the lost messages counter.
350*/
351void audit_log_lost(const char *message)
352{
353 static unsigned long last_msg = 0;
354 static DEFINE_SPINLOCK(lock);
355 unsigned long flags;
356 unsigned long now;
357 int print;
358
359 atomic_inc(&audit_lost);
360
361 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
362
363 if (!print) {
364 spin_lock_irqsave(&lock, flags);
365 now = jiffies;
366 if (time_after(now, last_msg + HZ)) {
367 print = 1;
368 last_msg = now;
369 }
370 spin_unlock_irqrestore(&lock, flags);
371 }
372
373 if (print) {
374 if (printk_ratelimit())
375 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
376 atomic_read(&audit_lost),
377 audit_rate_limit,
378 audit_backlog_limit);
379 audit_panic(message);
380 }
381}
382
383static int audit_log_config_change(char *function_name, u32 new, u32 old,
384 int allow_changes)
385{
386 struct audit_buffer *ab;
387 int rc = 0;
388
389 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
390 if (unlikely(!ab))
391 return rc;
392 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
393 audit_log_session_info(ab);
394 rc = audit_log_task_context(ab);
395 if (rc)
396 allow_changes = 0; /* Something weird, deny request */
397 audit_log_format(ab, " res=%d", allow_changes);
398 audit_log_end(ab);
399 return rc;
400}
401
402static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
403{
404 int allow_changes, rc = 0;
405 u32 old = *to_change;
406
407 /* check if we are locked */
408 if (audit_enabled == AUDIT_LOCKED)
409 allow_changes = 0;
410 else
411 allow_changes = 1;
412
413 if (audit_enabled != AUDIT_OFF) {
414 rc = audit_log_config_change(function_name, new, old, allow_changes);
415 if (rc)
416 allow_changes = 0;
417 }
418
419 /* If we are allowed, make the change */
420 if (allow_changes == 1)
421 *to_change = new;
422 /* Not allowed, update reason */
423 else if (rc == 0)
424 rc = -EPERM;
425 return rc;
426}
427
428static int audit_set_rate_limit(u32 limit)
429{
430 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
431}
432
433static int audit_set_backlog_limit(u32 limit)
434{
435 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
436}
437
438static int audit_set_backlog_wait_time(u32 timeout)
439{
440 return audit_do_config_change("audit_backlog_wait_time",
441 &audit_backlog_wait_time, timeout);
442}
443
444static int audit_set_enabled(u32 state)
445{
446 int rc;
447 if (state > AUDIT_LOCKED)
448 return -EINVAL;
449
450 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
451 if (!rc)
452 audit_ever_enabled |= !!state;
453
454 return rc;
455}
456
457static int audit_set_failure(u32 state)
458{
459 if (state != AUDIT_FAIL_SILENT
460 && state != AUDIT_FAIL_PRINTK
461 && state != AUDIT_FAIL_PANIC)
462 return -EINVAL;
463
464 return audit_do_config_change("audit_failure", &audit_failure, state);
465}
466
467/**
468 * auditd_conn_free - RCU helper to release an auditd connection struct
469 * @rcu: RCU head
470 *
471 * Description:
472 * Drop any references inside the auditd connection tracking struct and free
473 * the memory.
474 */
475static void auditd_conn_free(struct rcu_head *rcu)
476{
477 struct auditd_connection *ac;
478
479 ac = container_of(rcu, struct auditd_connection, rcu);
480 put_pid(ac->pid);
481 put_net(ac->net);
482 kfree(ac);
483}
484
485/**
486 * auditd_set - Set/Reset the auditd connection state
487 * @pid: auditd PID
488 * @portid: auditd netlink portid
489 * @net: auditd network namespace pointer
490 * @skb: the netlink command from the audit daemon
491 * @ack: netlink ack flag, cleared if ack'd here
492 *
493 * Description:
494 * This function will obtain and drop network namespace references as
495 * necessary. Returns zero on success, negative values on failure.
496 */
497static int auditd_set(struct pid *pid, u32 portid, struct net *net,
498 struct sk_buff *skb, bool *ack)
499{
500 unsigned long flags;
501 struct auditd_connection *ac_old, *ac_new;
502 struct nlmsghdr *nlh;
503
504 if (!pid || !net)
505 return -EINVAL;
506
507 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
508 if (!ac_new)
509 return -ENOMEM;
510 ac_new->pid = get_pid(pid);
511 ac_new->portid = portid;
512 ac_new->net = get_net(net);
513
514 /* send the ack now to avoid a race with the queue backlog */
515 if (*ack) {
516 nlh = nlmsg_hdr(skb);
517 netlink_ack(skb, nlh, 0, NULL);
518 *ack = false;
519 }
520
521 spin_lock_irqsave(&auditd_conn_lock, flags);
522 ac_old = rcu_dereference_protected(auditd_conn,
523 lockdep_is_held(&auditd_conn_lock));
524 rcu_assign_pointer(auditd_conn, ac_new);
525 spin_unlock_irqrestore(&auditd_conn_lock, flags);
526
527 if (ac_old)
528 call_rcu(&ac_old->rcu, auditd_conn_free);
529
530 return 0;
531}
532
533/**
534 * kauditd_printk_skb - Print the audit record to the ring buffer
535 * @skb: audit record
536 *
537 * Whatever the reason, this packet may not make it to the auditd connection
538 * so write it via printk so the information isn't completely lost.
539 */
540static void kauditd_printk_skb(struct sk_buff *skb)
541{
542 struct nlmsghdr *nlh = nlmsg_hdr(skb);
543 char *data = nlmsg_data(nlh);
544
545 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
546 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
547}
548
549/**
550 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
551 * @skb: audit record
552 * @error: error code (unused)
553 *
554 * Description:
555 * This should only be used by the kauditd_thread when it fails to flush the
556 * hold queue.
557 */
558static void kauditd_rehold_skb(struct sk_buff *skb, __always_unused int error)
559{
560 /* put the record back in the queue */
561 skb_queue_tail(&audit_hold_queue, skb);
562}
563
564/**
565 * kauditd_hold_skb - Queue an audit record, waiting for auditd
566 * @skb: audit record
567 * @error: error code
568 *
569 * Description:
570 * Queue the audit record, waiting for an instance of auditd. When this
571 * function is called we haven't given up yet on sending the record, but things
572 * are not looking good. The first thing we want to do is try to write the
573 * record via printk and then see if we want to try and hold on to the record
574 * and queue it, if we have room. If we want to hold on to the record, but we
575 * don't have room, record a record lost message.
576 */
577static void kauditd_hold_skb(struct sk_buff *skb, int error)
578{
579 /* at this point it is uncertain if we will ever send this to auditd so
580 * try to send the message via printk before we go any further */
581 kauditd_printk_skb(skb);
582
583 /* can we just silently drop the message? */
584 if (!audit_default)
585 goto drop;
586
587 /* the hold queue is only for when the daemon goes away completely,
588 * not -EAGAIN failures; if we are in a -EAGAIN state requeue the
589 * record on the retry queue unless it's full, in which case drop it
590 */
591 if (error == -EAGAIN) {
592 if (!audit_backlog_limit ||
593 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
594 skb_queue_tail(&audit_retry_queue, skb);
595 return;
596 }
597 audit_log_lost("kauditd retry queue overflow");
598 goto drop;
599 }
600
601 /* if we have room in the hold queue, queue the message */
602 if (!audit_backlog_limit ||
603 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
604 skb_queue_tail(&audit_hold_queue, skb);
605 return;
606 }
607
608 /* we have no other options - drop the message */
609 audit_log_lost("kauditd hold queue overflow");
610drop:
611 kfree_skb(skb);
612}
613
614/**
615 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
616 * @skb: audit record
617 * @error: error code (unused)
618 *
619 * Description:
620 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
621 * but for some reason we are having problems sending it audit records so
622 * queue the given record and attempt to resend.
623 */
624static void kauditd_retry_skb(struct sk_buff *skb, __always_unused int error)
625{
626 if (!audit_backlog_limit ||
627 skb_queue_len(&audit_retry_queue) < audit_backlog_limit) {
628 skb_queue_tail(&audit_retry_queue, skb);
629 return;
630 }
631
632 /* we have to drop the record, send it via printk as a last effort */
633 kauditd_printk_skb(skb);
634 audit_log_lost("kauditd retry queue overflow");
635 kfree_skb(skb);
636}
637
638/**
639 * auditd_reset - Disconnect the auditd connection
640 * @ac: auditd connection state
641 *
642 * Description:
643 * Break the auditd/kauditd connection and move all the queued records into the
644 * hold queue in case auditd reconnects. It is important to note that the @ac
645 * pointer should never be dereferenced inside this function as it may be NULL
646 * or invalid, you can only compare the memory address! If @ac is NULL then
647 * the connection will always be reset.
648 */
649static void auditd_reset(const struct auditd_connection *ac)
650{
651 unsigned long flags;
652 struct sk_buff *skb;
653 struct auditd_connection *ac_old;
654
655 /* if it isn't already broken, break the connection */
656 spin_lock_irqsave(&auditd_conn_lock, flags);
657 ac_old = rcu_dereference_protected(auditd_conn,
658 lockdep_is_held(&auditd_conn_lock));
659 if (ac && ac != ac_old) {
660 /* someone already registered a new auditd connection */
661 spin_unlock_irqrestore(&auditd_conn_lock, flags);
662 return;
663 }
664 rcu_assign_pointer(auditd_conn, NULL);
665 spin_unlock_irqrestore(&auditd_conn_lock, flags);
666
667 if (ac_old)
668 call_rcu(&ac_old->rcu, auditd_conn_free);
669
670 /* flush the retry queue to the hold queue, but don't touch the main
671 * queue since we need to process that normally for multicast */
672 while ((skb = skb_dequeue(&audit_retry_queue)))
673 kauditd_hold_skb(skb, -ECONNREFUSED);
674}
675
676/**
677 * auditd_send_unicast_skb - Send a record via unicast to auditd
678 * @skb: audit record
679 *
680 * Description:
681 * Send a skb to the audit daemon, returns positive/zero values on success and
682 * negative values on failure; in all cases the skb will be consumed by this
683 * function. If the send results in -ECONNREFUSED the connection with auditd
684 * will be reset. This function may sleep so callers should not hold any locks
685 * where this would cause a problem.
686 */
687static int auditd_send_unicast_skb(struct sk_buff *skb)
688{
689 int rc;
690 u32 portid;
691 struct net *net;
692 struct sock *sk;
693 struct auditd_connection *ac;
694
695 /* NOTE: we can't call netlink_unicast while in the RCU section so
696 * take a reference to the network namespace and grab local
697 * copies of the namespace, the sock, and the portid; the
698 * namespace and sock aren't going to go away while we hold a
699 * reference and if the portid does become invalid after the RCU
700 * section netlink_unicast() should safely return an error */
701
702 rcu_read_lock();
703 ac = rcu_dereference(auditd_conn);
704 if (!ac) {
705 rcu_read_unlock();
706 kfree_skb(skb);
707 rc = -ECONNREFUSED;
708 goto err;
709 }
710 net = get_net(ac->net);
711 sk = audit_get_sk(net);
712 portid = ac->portid;
713 rcu_read_unlock();
714
715 rc = netlink_unicast(sk, skb, portid, 0);
716 put_net(net);
717 if (rc < 0)
718 goto err;
719
720 return rc;
721
722err:
723 if (ac && rc == -ECONNREFUSED)
724 auditd_reset(ac);
725 return rc;
726}
727
728/**
729 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
730 * @sk: the sending sock
731 * @portid: the netlink destination
732 * @queue: the skb queue to process
733 * @retry_limit: limit on number of netlink unicast failures
734 * @skb_hook: per-skb hook for additional processing
735 * @err_hook: hook called if the skb fails the netlink unicast send
736 *
737 * Description:
738 * Run through the given queue and attempt to send the audit records to auditd,
739 * returns zero on success, negative values on failure. It is up to the caller
740 * to ensure that the @sk is valid for the duration of this function.
741 *
742 */
743static int kauditd_send_queue(struct sock *sk, u32 portid,
744 struct sk_buff_head *queue,
745 unsigned int retry_limit,
746 void (*skb_hook)(struct sk_buff *skb),
747 void (*err_hook)(struct sk_buff *skb, int error))
748{
749 int rc = 0;
750 struct sk_buff *skb = NULL;
751 struct sk_buff *skb_tail;
752 unsigned int failed = 0;
753
754 /* NOTE: kauditd_thread takes care of all our locking, we just use
755 * the netlink info passed to us (e.g. sk and portid) */
756
757 skb_tail = skb_peek_tail(queue);
758 while ((skb != skb_tail) && (skb = skb_dequeue(queue))) {
759 /* call the skb_hook for each skb we touch */
760 if (skb_hook)
761 (*skb_hook)(skb);
762
763 /* can we send to anyone via unicast? */
764 if (!sk) {
765 if (err_hook)
766 (*err_hook)(skb, -ECONNREFUSED);
767 continue;
768 }
769
770retry:
771 /* grab an extra skb reference in case of error */
772 skb_get(skb);
773 rc = netlink_unicast(sk, skb, portid, 0);
774 if (rc < 0) {
775 /* send failed - try a few times unless fatal error */
776 if (++failed >= retry_limit ||
777 rc == -ECONNREFUSED || rc == -EPERM) {
778 sk = NULL;
779 if (err_hook)
780 (*err_hook)(skb, rc);
781 if (rc == -EAGAIN)
782 rc = 0;
783 /* continue to drain the queue */
784 continue;
785 } else
786 goto retry;
787 } else {
788 /* skb sent - drop the extra reference and continue */
789 consume_skb(skb);
790 failed = 0;
791 }
792 }
793
794 return (rc >= 0 ? 0 : rc);
795}
796
797/*
798 * kauditd_send_multicast_skb - Send a record to any multicast listeners
799 * @skb: audit record
800 *
801 * Description:
802 * Write a multicast message to anyone listening in the initial network
803 * namespace. This function doesn't consume an skb as might be expected since
804 * it has to copy it anyways.
805 */
806static void kauditd_send_multicast_skb(struct sk_buff *skb)
807{
808 struct sk_buff *copy;
809 struct sock *sock = audit_get_sk(&init_net);
810 struct nlmsghdr *nlh;
811
812 /* NOTE: we are not taking an additional reference for init_net since
813 * we don't have to worry about it going away */
814
815 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
816 return;
817
818 /*
819 * The seemingly wasteful skb_copy() rather than bumping the refcount
820 * using skb_get() is necessary because non-standard mods are made to
821 * the skb by the original kaudit unicast socket send routine. The
822 * existing auditd daemon assumes this breakage. Fixing this would
823 * require co-ordinating a change in the established protocol between
824 * the kaudit kernel subsystem and the auditd userspace code. There is
825 * no reason for new multicast clients to continue with this
826 * non-compliance.
827 */
828 copy = skb_copy(skb, GFP_KERNEL);
829 if (!copy)
830 return;
831 nlh = nlmsg_hdr(copy);
832 nlh->nlmsg_len = skb->len;
833
834 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
835}
836
837/**
838 * kauditd_thread - Worker thread to send audit records to userspace
839 * @dummy: unused
840 */
841static int kauditd_thread(void *dummy)
842{
843 int rc;
844 u32 portid = 0;
845 struct net *net = NULL;
846 struct sock *sk = NULL;
847 struct auditd_connection *ac;
848
849#define UNICAST_RETRIES 5
850
851 set_freezable();
852 while (!kthread_should_stop()) {
853 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
854 rcu_read_lock();
855 ac = rcu_dereference(auditd_conn);
856 if (!ac) {
857 rcu_read_unlock();
858 goto main_queue;
859 }
860 net = get_net(ac->net);
861 sk = audit_get_sk(net);
862 portid = ac->portid;
863 rcu_read_unlock();
864
865 /* attempt to flush the hold queue */
866 rc = kauditd_send_queue(sk, portid,
867 &audit_hold_queue, UNICAST_RETRIES,
868 NULL, kauditd_rehold_skb);
869 if (rc < 0) {
870 sk = NULL;
871 auditd_reset(ac);
872 goto main_queue;
873 }
874
875 /* attempt to flush the retry queue */
876 rc = kauditd_send_queue(sk, portid,
877 &audit_retry_queue, UNICAST_RETRIES,
878 NULL, kauditd_hold_skb);
879 if (rc < 0) {
880 sk = NULL;
881 auditd_reset(ac);
882 goto main_queue;
883 }
884
885main_queue:
886 /* process the main queue - do the multicast send and attempt
887 * unicast, dump failed record sends to the retry queue; if
888 * sk == NULL due to previous failures we will just do the
889 * multicast send and move the record to the hold queue */
890 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
891 kauditd_send_multicast_skb,
892 (sk ?
893 kauditd_retry_skb : kauditd_hold_skb));
894 if (ac && rc < 0)
895 auditd_reset(ac);
896 sk = NULL;
897
898 /* drop our netns reference, no auditd sends past this line */
899 if (net) {
900 put_net(net);
901 net = NULL;
902 }
903
904 /* we have processed all the queues so wake everyone */
905 wake_up(&audit_backlog_wait);
906
907 /* NOTE: we want to wake up if there is anything on the queue,
908 * regardless of if an auditd is connected, as we need to
909 * do the multicast send and rotate records from the
910 * main queue to the retry/hold queues */
911 wait_event_freezable(kauditd_wait,
912 (skb_queue_len(&audit_queue) ? 1 : 0));
913 }
914
915 return 0;
916}
917
918int audit_send_list_thread(void *_dest)
919{
920 struct audit_netlink_list *dest = _dest;
921 struct sk_buff *skb;
922 struct sock *sk = audit_get_sk(dest->net);
923
924 /* wait for parent to finish and send an ACK */
925 audit_ctl_lock();
926 audit_ctl_unlock();
927
928 while ((skb = __skb_dequeue(&dest->q)) != NULL)
929 netlink_unicast(sk, skb, dest->portid, 0);
930
931 put_net(dest->net);
932 kfree(dest);
933
934 return 0;
935}
936
937struct sk_buff *audit_make_reply(int seq, int type, int done,
938 int multi, const void *payload, int size)
939{
940 struct sk_buff *skb;
941 struct nlmsghdr *nlh;
942 void *data;
943 int flags = multi ? NLM_F_MULTI : 0;
944 int t = done ? NLMSG_DONE : type;
945
946 skb = nlmsg_new(size, GFP_KERNEL);
947 if (!skb)
948 return NULL;
949
950 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
951 if (!nlh)
952 goto out_kfree_skb;
953 data = nlmsg_data(nlh);
954 memcpy(data, payload, size);
955 return skb;
956
957out_kfree_skb:
958 kfree_skb(skb);
959 return NULL;
960}
961
962static void audit_free_reply(struct audit_reply *reply)
963{
964 if (!reply)
965 return;
966
967 kfree_skb(reply->skb);
968 if (reply->net)
969 put_net(reply->net);
970 kfree(reply);
971}
972
973static int audit_send_reply_thread(void *arg)
974{
975 struct audit_reply *reply = (struct audit_reply *)arg;
976
977 audit_ctl_lock();
978 audit_ctl_unlock();
979
980 /* Ignore failure. It'll only happen if the sender goes away,
981 because our timeout is set to infinite. */
982 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
983 reply->skb = NULL;
984 audit_free_reply(reply);
985 return 0;
986}
987
988/**
989 * audit_send_reply - send an audit reply message via netlink
990 * @request_skb: skb of request we are replying to (used to target the reply)
991 * @seq: sequence number
992 * @type: audit message type
993 * @done: done (last) flag
994 * @multi: multi-part message flag
995 * @payload: payload data
996 * @size: payload size
997 *
998 * Allocates a skb, builds the netlink message, and sends it to the port id.
999 */
1000static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
1001 int multi, const void *payload, int size)
1002{
1003 struct task_struct *tsk;
1004 struct audit_reply *reply;
1005
1006 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
1007 if (!reply)
1008 return;
1009
1010 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
1011 if (!reply->skb)
1012 goto err;
1013 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1014 reply->portid = NETLINK_CB(request_skb).portid;
1015
1016 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
1017 if (IS_ERR(tsk))
1018 goto err;
1019
1020 return;
1021
1022err:
1023 audit_free_reply(reply);
1024}
1025
1026/*
1027 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
1028 * control messages.
1029 */
1030static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1031{
1032 int err = 0;
1033
1034 /* Only support initial user namespace for now. */
1035 /*
1036 * We return ECONNREFUSED because it tricks userspace into thinking
1037 * that audit was not configured into the kernel. Lots of users
1038 * configure their PAM stack (because that's what the distro does)
1039 * to reject login if unable to send messages to audit. If we return
1040 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1041 * configured in and will let login proceed. If we return EPERM
1042 * userspace will reject all logins. This should be removed when we
1043 * support non init namespaces!!
1044 */
1045 if (current_user_ns() != &init_user_ns)
1046 return -ECONNREFUSED;
1047
1048 switch (msg_type) {
1049 case AUDIT_LIST:
1050 case AUDIT_ADD:
1051 case AUDIT_DEL:
1052 return -EOPNOTSUPP;
1053 case AUDIT_GET:
1054 case AUDIT_SET:
1055 case AUDIT_GET_FEATURE:
1056 case AUDIT_SET_FEATURE:
1057 case AUDIT_LIST_RULES:
1058 case AUDIT_ADD_RULE:
1059 case AUDIT_DEL_RULE:
1060 case AUDIT_SIGNAL_INFO:
1061 case AUDIT_TTY_GET:
1062 case AUDIT_TTY_SET:
1063 case AUDIT_TRIM:
1064 case AUDIT_MAKE_EQUIV:
1065 /* Only support auditd and auditctl in initial pid namespace
1066 * for now. */
1067 if (task_active_pid_ns(current) != &init_pid_ns)
1068 return -EPERM;
1069
1070 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1071 err = -EPERM;
1072 break;
1073 case AUDIT_USER:
1074 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1075 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1076 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1077 err = -EPERM;
1078 break;
1079 default: /* bad msg */
1080 err = -EINVAL;
1081 }
1082
1083 return err;
1084}
1085
1086static void audit_log_common_recv_msg(struct audit_context *context,
1087 struct audit_buffer **ab, u16 msg_type)
1088{
1089 uid_t uid = from_kuid(&init_user_ns, current_uid());
1090 pid_t pid = task_tgid_nr(current);
1091
1092 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1093 *ab = NULL;
1094 return;
1095 }
1096
1097 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1098 if (unlikely(!*ab))
1099 return;
1100 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1101 audit_log_session_info(*ab);
1102 audit_log_task_context(*ab);
1103}
1104
1105static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1106 u16 msg_type)
1107{
1108 audit_log_common_recv_msg(NULL, ab, msg_type);
1109}
1110
1111static int is_audit_feature_set(int i)
1112{
1113 return af.features & AUDIT_FEATURE_TO_MASK(i);
1114}
1115
1116
1117static int audit_get_feature(struct sk_buff *skb)
1118{
1119 u32 seq;
1120
1121 seq = nlmsg_hdr(skb)->nlmsg_seq;
1122
1123 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1124
1125 return 0;
1126}
1127
1128static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1129 u32 old_lock, u32 new_lock, int res)
1130{
1131 struct audit_buffer *ab;
1132
1133 if (audit_enabled == AUDIT_OFF)
1134 return;
1135
1136 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1137 if (!ab)
1138 return;
1139 audit_log_task_info(ab);
1140 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1141 audit_feature_names[which], !!old_feature, !!new_feature,
1142 !!old_lock, !!new_lock, res);
1143 audit_log_end(ab);
1144}
1145
1146static int audit_set_feature(struct audit_features *uaf)
1147{
1148 int i;
1149
1150 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1151
1152 /* if there is ever a version 2 we should handle that here */
1153
1154 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1155 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1156 u32 old_feature, new_feature, old_lock, new_lock;
1157
1158 /* if we are not changing this feature, move along */
1159 if (!(feature & uaf->mask))
1160 continue;
1161
1162 old_feature = af.features & feature;
1163 new_feature = uaf->features & feature;
1164 new_lock = (uaf->lock | af.lock) & feature;
1165 old_lock = af.lock & feature;
1166
1167 /* are we changing a locked feature? */
1168 if (old_lock && (new_feature != old_feature)) {
1169 audit_log_feature_change(i, old_feature, new_feature,
1170 old_lock, new_lock, 0);
1171 return -EPERM;
1172 }
1173 }
1174 /* nothing invalid, do the changes */
1175 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1176 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1177 u32 old_feature, new_feature, old_lock, new_lock;
1178
1179 /* if we are not changing this feature, move along */
1180 if (!(feature & uaf->mask))
1181 continue;
1182
1183 old_feature = af.features & feature;
1184 new_feature = uaf->features & feature;
1185 old_lock = af.lock & feature;
1186 new_lock = (uaf->lock | af.lock) & feature;
1187
1188 if (new_feature != old_feature)
1189 audit_log_feature_change(i, old_feature, new_feature,
1190 old_lock, new_lock, 1);
1191
1192 if (new_feature)
1193 af.features |= feature;
1194 else
1195 af.features &= ~feature;
1196 af.lock |= new_lock;
1197 }
1198
1199 return 0;
1200}
1201
1202static int audit_replace(struct pid *pid)
1203{
1204 pid_t pvnr;
1205 struct sk_buff *skb;
1206
1207 pvnr = pid_vnr(pid);
1208 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1209 if (!skb)
1210 return -ENOMEM;
1211 return auditd_send_unicast_skb(skb);
1212}
1213
1214static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
1215 bool *ack)
1216{
1217 u32 seq;
1218 void *data;
1219 int data_len;
1220 int err;
1221 struct audit_buffer *ab;
1222 u16 msg_type = nlh->nlmsg_type;
1223 struct audit_sig_info *sig_data;
1224 char *ctx = NULL;
1225 u32 len;
1226
1227 err = audit_netlink_ok(skb, msg_type);
1228 if (err)
1229 return err;
1230
1231 seq = nlh->nlmsg_seq;
1232 data = nlmsg_data(nlh);
1233 data_len = nlmsg_len(nlh);
1234
1235 switch (msg_type) {
1236 case AUDIT_GET: {
1237 struct audit_status s;
1238 memset(&s, 0, sizeof(s));
1239 s.enabled = audit_enabled;
1240 s.failure = audit_failure;
1241 /* NOTE: use pid_vnr() so the PID is relative to the current
1242 * namespace */
1243 s.pid = auditd_pid_vnr();
1244 s.rate_limit = audit_rate_limit;
1245 s.backlog_limit = audit_backlog_limit;
1246 s.lost = atomic_read(&audit_lost);
1247 s.backlog = skb_queue_len(&audit_queue);
1248 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1249 s.backlog_wait_time = audit_backlog_wait_time;
1250 s.backlog_wait_time_actual = atomic_read(&audit_backlog_wait_time_actual);
1251 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1252 break;
1253 }
1254 case AUDIT_SET: {
1255 struct audit_status s;
1256 memset(&s, 0, sizeof(s));
1257 /* guard against past and future API changes */
1258 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1259 if (s.mask & AUDIT_STATUS_ENABLED) {
1260 err = audit_set_enabled(s.enabled);
1261 if (err < 0)
1262 return err;
1263 }
1264 if (s.mask & AUDIT_STATUS_FAILURE) {
1265 err = audit_set_failure(s.failure);
1266 if (err < 0)
1267 return err;
1268 }
1269 if (s.mask & AUDIT_STATUS_PID) {
1270 /* NOTE: we are using the vnr PID functions below
1271 * because the s.pid value is relative to the
1272 * namespace of the caller; at present this
1273 * doesn't matter much since you can really only
1274 * run auditd from the initial pid namespace, but
1275 * something to keep in mind if this changes */
1276 pid_t new_pid = s.pid;
1277 pid_t auditd_pid;
1278 struct pid *req_pid = task_tgid(current);
1279
1280 /* Sanity check - PID values must match. Setting
1281 * pid to 0 is how auditd ends auditing. */
1282 if (new_pid && (new_pid != pid_vnr(req_pid)))
1283 return -EINVAL;
1284
1285 /* test the auditd connection */
1286 audit_replace(req_pid);
1287
1288 auditd_pid = auditd_pid_vnr();
1289 if (auditd_pid) {
1290 /* replacing a healthy auditd is not allowed */
1291 if (new_pid) {
1292 audit_log_config_change("audit_pid",
1293 new_pid, auditd_pid, 0);
1294 return -EEXIST;
1295 }
1296 /* only current auditd can unregister itself */
1297 if (pid_vnr(req_pid) != auditd_pid) {
1298 audit_log_config_change("audit_pid",
1299 new_pid, auditd_pid, 0);
1300 return -EACCES;
1301 }
1302 }
1303
1304 if (new_pid) {
1305 /* register a new auditd connection */
1306 err = auditd_set(req_pid,
1307 NETLINK_CB(skb).portid,
1308 sock_net(NETLINK_CB(skb).sk),
1309 skb, ack);
1310 if (audit_enabled != AUDIT_OFF)
1311 audit_log_config_change("audit_pid",
1312 new_pid,
1313 auditd_pid,
1314 err ? 0 : 1);
1315 if (err)
1316 return err;
1317
1318 /* try to process any backlog */
1319 wake_up_interruptible(&kauditd_wait);
1320 } else {
1321 if (audit_enabled != AUDIT_OFF)
1322 audit_log_config_change("audit_pid",
1323 new_pid,
1324 auditd_pid, 1);
1325
1326 /* unregister the auditd connection */
1327 auditd_reset(NULL);
1328 }
1329 }
1330 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1331 err = audit_set_rate_limit(s.rate_limit);
1332 if (err < 0)
1333 return err;
1334 }
1335 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1336 err = audit_set_backlog_limit(s.backlog_limit);
1337 if (err < 0)
1338 return err;
1339 }
1340 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1341 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1342 return -EINVAL;
1343 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1344 return -EINVAL;
1345 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1346 if (err < 0)
1347 return err;
1348 }
1349 if (s.mask == AUDIT_STATUS_LOST) {
1350 u32 lost = atomic_xchg(&audit_lost, 0);
1351
1352 audit_log_config_change("lost", 0, lost, 1);
1353 return lost;
1354 }
1355 if (s.mask == AUDIT_STATUS_BACKLOG_WAIT_TIME_ACTUAL) {
1356 u32 actual = atomic_xchg(&audit_backlog_wait_time_actual, 0);
1357
1358 audit_log_config_change("backlog_wait_time_actual", 0, actual, 1);
1359 return actual;
1360 }
1361 break;
1362 }
1363 case AUDIT_GET_FEATURE:
1364 err = audit_get_feature(skb);
1365 if (err)
1366 return err;
1367 break;
1368 case AUDIT_SET_FEATURE:
1369 if (data_len < sizeof(struct audit_features))
1370 return -EINVAL;
1371 err = audit_set_feature(data);
1372 if (err)
1373 return err;
1374 break;
1375 case AUDIT_USER:
1376 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1377 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1378 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1379 return 0;
1380 /* exit early if there isn't at least one character to print */
1381 if (data_len < 2)
1382 return -EINVAL;
1383
1384 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1385 if (err == 1) { /* match or error */
1386 char *str = data;
1387
1388 err = 0;
1389 if (msg_type == AUDIT_USER_TTY) {
1390 err = tty_audit_push();
1391 if (err)
1392 break;
1393 }
1394 audit_log_user_recv_msg(&ab, msg_type);
1395 if (msg_type != AUDIT_USER_TTY) {
1396 /* ensure NULL termination */
1397 str[data_len - 1] = '\0';
1398 audit_log_format(ab, " msg='%.*s'",
1399 AUDIT_MESSAGE_TEXT_MAX,
1400 str);
1401 } else {
1402 audit_log_format(ab, " data=");
1403 if (str[data_len - 1] == '\0')
1404 data_len--;
1405 audit_log_n_untrustedstring(ab, str, data_len);
1406 }
1407 audit_log_end(ab);
1408 }
1409 break;
1410 case AUDIT_ADD_RULE:
1411 case AUDIT_DEL_RULE:
1412 if (data_len < sizeof(struct audit_rule_data))
1413 return -EINVAL;
1414 if (audit_enabled == AUDIT_LOCKED) {
1415 audit_log_common_recv_msg(audit_context(), &ab,
1416 AUDIT_CONFIG_CHANGE);
1417 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1418 msg_type == AUDIT_ADD_RULE ?
1419 "add_rule" : "remove_rule",
1420 audit_enabled);
1421 audit_log_end(ab);
1422 return -EPERM;
1423 }
1424 err = audit_rule_change(msg_type, seq, data, data_len);
1425 break;
1426 case AUDIT_LIST_RULES:
1427 err = audit_list_rules_send(skb, seq);
1428 break;
1429 case AUDIT_TRIM:
1430 audit_trim_trees();
1431 audit_log_common_recv_msg(audit_context(), &ab,
1432 AUDIT_CONFIG_CHANGE);
1433 audit_log_format(ab, " op=trim res=1");
1434 audit_log_end(ab);
1435 break;
1436 case AUDIT_MAKE_EQUIV: {
1437 void *bufp = data;
1438 u32 sizes[2];
1439 size_t msglen = data_len;
1440 char *old, *new;
1441
1442 err = -EINVAL;
1443 if (msglen < 2 * sizeof(u32))
1444 break;
1445 memcpy(sizes, bufp, 2 * sizeof(u32));
1446 bufp += 2 * sizeof(u32);
1447 msglen -= 2 * sizeof(u32);
1448 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1449 if (IS_ERR(old)) {
1450 err = PTR_ERR(old);
1451 break;
1452 }
1453 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1454 if (IS_ERR(new)) {
1455 err = PTR_ERR(new);
1456 kfree(old);
1457 break;
1458 }
1459 /* OK, here comes... */
1460 err = audit_tag_tree(old, new);
1461
1462 audit_log_common_recv_msg(audit_context(), &ab,
1463 AUDIT_CONFIG_CHANGE);
1464 audit_log_format(ab, " op=make_equiv old=");
1465 audit_log_untrustedstring(ab, old);
1466 audit_log_format(ab, " new=");
1467 audit_log_untrustedstring(ab, new);
1468 audit_log_format(ab, " res=%d", !err);
1469 audit_log_end(ab);
1470 kfree(old);
1471 kfree(new);
1472 break;
1473 }
1474 case AUDIT_SIGNAL_INFO:
1475 len = 0;
1476 if (lsmprop_is_set(&audit_sig_lsm)) {
1477 err = security_lsmprop_to_secctx(&audit_sig_lsm, &ctx,
1478 &len);
1479 if (err)
1480 return err;
1481 }
1482 sig_data = kmalloc(struct_size(sig_data, ctx, len), GFP_KERNEL);
1483 if (!sig_data) {
1484 if (lsmprop_is_set(&audit_sig_lsm))
1485 security_release_secctx(ctx, len);
1486 return -ENOMEM;
1487 }
1488 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1489 sig_data->pid = audit_sig_pid;
1490 if (lsmprop_is_set(&audit_sig_lsm)) {
1491 memcpy(sig_data->ctx, ctx, len);
1492 security_release_secctx(ctx, len);
1493 }
1494 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1495 sig_data, struct_size(sig_data, ctx, len));
1496 kfree(sig_data);
1497 break;
1498 case AUDIT_TTY_GET: {
1499 struct audit_tty_status s;
1500 unsigned int t;
1501
1502 t = READ_ONCE(current->signal->audit_tty);
1503 s.enabled = t & AUDIT_TTY_ENABLE;
1504 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1505
1506 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1507 break;
1508 }
1509 case AUDIT_TTY_SET: {
1510 struct audit_tty_status s, old;
1511 struct audit_buffer *ab;
1512 unsigned int t;
1513
1514 memset(&s, 0, sizeof(s));
1515 /* guard against past and future API changes */
1516 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1517 /* check if new data is valid */
1518 if ((s.enabled != 0 && s.enabled != 1) ||
1519 (s.log_passwd != 0 && s.log_passwd != 1))
1520 err = -EINVAL;
1521
1522 if (err)
1523 t = READ_ONCE(current->signal->audit_tty);
1524 else {
1525 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1526 t = xchg(¤t->signal->audit_tty, t);
1527 }
1528 old.enabled = t & AUDIT_TTY_ENABLE;
1529 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1530
1531 audit_log_common_recv_msg(audit_context(), &ab,
1532 AUDIT_CONFIG_CHANGE);
1533 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1534 " old-log_passwd=%d new-log_passwd=%d res=%d",
1535 old.enabled, s.enabled, old.log_passwd,
1536 s.log_passwd, !err);
1537 audit_log_end(ab);
1538 break;
1539 }
1540 default:
1541 err = -EINVAL;
1542 break;
1543 }
1544
1545 return err < 0 ? err : 0;
1546}
1547
1548/**
1549 * audit_receive - receive messages from a netlink control socket
1550 * @skb: the message buffer
1551 *
1552 * Parse the provided skb and deal with any messages that may be present,
1553 * malformed skbs are discarded.
1554 */
1555static void audit_receive(struct sk_buff *skb)
1556{
1557 struct nlmsghdr *nlh;
1558 bool ack;
1559 /*
1560 * len MUST be signed for nlmsg_next to be able to dec it below 0
1561 * if the nlmsg_len was not aligned
1562 */
1563 int len;
1564 int err;
1565
1566 nlh = nlmsg_hdr(skb);
1567 len = skb->len;
1568
1569 audit_ctl_lock();
1570 while (nlmsg_ok(nlh, len)) {
1571 ack = nlh->nlmsg_flags & NLM_F_ACK;
1572 err = audit_receive_msg(skb, nlh, &ack);
1573
1574 /* send an ack if the user asked for one and audit_receive_msg
1575 * didn't already do it, or if there was an error. */
1576 if (ack || err)
1577 netlink_ack(skb, nlh, err, NULL);
1578
1579 nlh = nlmsg_next(nlh, &len);
1580 }
1581 audit_ctl_unlock();
1582
1583 /* can't block with the ctrl lock, so penalize the sender now */
1584 if (audit_backlog_limit &&
1585 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1586 DECLARE_WAITQUEUE(wait, current);
1587
1588 /* wake kauditd to try and flush the queue */
1589 wake_up_interruptible(&kauditd_wait);
1590
1591 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1592 set_current_state(TASK_UNINTERRUPTIBLE);
1593 schedule_timeout(audit_backlog_wait_time);
1594 remove_wait_queue(&audit_backlog_wait, &wait);
1595 }
1596}
1597
1598/* Log information about who is connecting to the audit multicast socket */
1599static void audit_log_multicast(int group, const char *op, int err)
1600{
1601 const struct cred *cred;
1602 struct tty_struct *tty;
1603 char comm[sizeof(current->comm)];
1604 struct audit_buffer *ab;
1605
1606 if (!audit_enabled)
1607 return;
1608
1609 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_EVENT_LISTENER);
1610 if (!ab)
1611 return;
1612
1613 cred = current_cred();
1614 tty = audit_get_tty();
1615 audit_log_format(ab, "pid=%u uid=%u auid=%u tty=%s ses=%u",
1616 task_tgid_nr(current),
1617 from_kuid(&init_user_ns, cred->uid),
1618 from_kuid(&init_user_ns, audit_get_loginuid(current)),
1619 tty ? tty_name(tty) : "(none)",
1620 audit_get_sessionid(current));
1621 audit_put_tty(tty);
1622 audit_log_task_context(ab); /* subj= */
1623 audit_log_format(ab, " comm=");
1624 audit_log_untrustedstring(ab, get_task_comm(comm, current));
1625 audit_log_d_path_exe(ab, current->mm); /* exe= */
1626 audit_log_format(ab, " nl-mcgrp=%d op=%s res=%d", group, op, !err);
1627 audit_log_end(ab);
1628}
1629
1630/* Run custom bind function on netlink socket group connect or bind requests. */
1631static int audit_multicast_bind(struct net *net, int group)
1632{
1633 int err = 0;
1634
1635 if (!capable(CAP_AUDIT_READ))
1636 err = -EPERM;
1637 audit_log_multicast(group, "connect", err);
1638 return err;
1639}
1640
1641static void audit_multicast_unbind(struct net *net, int group)
1642{
1643 audit_log_multicast(group, "disconnect", 0);
1644}
1645
1646static int __net_init audit_net_init(struct net *net)
1647{
1648 struct netlink_kernel_cfg cfg = {
1649 .input = audit_receive,
1650 .bind = audit_multicast_bind,
1651 .unbind = audit_multicast_unbind,
1652 .flags = NL_CFG_F_NONROOT_RECV,
1653 .groups = AUDIT_NLGRP_MAX,
1654 };
1655
1656 struct audit_net *aunet = net_generic(net, audit_net_id);
1657
1658 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1659 if (aunet->sk == NULL) {
1660 audit_panic("cannot initialize netlink socket in namespace");
1661 return -ENOMEM;
1662 }
1663 /* limit the timeout in case auditd is blocked/stopped */
1664 aunet->sk->sk_sndtimeo = HZ / 10;
1665
1666 return 0;
1667}
1668
1669static void __net_exit audit_net_exit(struct net *net)
1670{
1671 struct audit_net *aunet = net_generic(net, audit_net_id);
1672
1673 /* NOTE: you would think that we would want to check the auditd
1674 * connection and potentially reset it here if it lives in this
1675 * namespace, but since the auditd connection tracking struct holds a
1676 * reference to this namespace (see auditd_set()) we are only ever
1677 * going to get here after that connection has been released */
1678
1679 netlink_kernel_release(aunet->sk);
1680}
1681
1682static struct pernet_operations audit_net_ops __net_initdata = {
1683 .init = audit_net_init,
1684 .exit = audit_net_exit,
1685 .id = &audit_net_id,
1686 .size = sizeof(struct audit_net),
1687};
1688
1689/* Initialize audit support at boot time. */
1690static int __init audit_init(void)
1691{
1692 int i;
1693
1694 if (audit_initialized == AUDIT_DISABLED)
1695 return 0;
1696
1697 audit_buffer_cache = KMEM_CACHE(audit_buffer, SLAB_PANIC);
1698
1699 skb_queue_head_init(&audit_queue);
1700 skb_queue_head_init(&audit_retry_queue);
1701 skb_queue_head_init(&audit_hold_queue);
1702
1703 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1704 INIT_LIST_HEAD(&audit_inode_hash[i]);
1705
1706 mutex_init(&audit_cmd_mutex.lock);
1707 audit_cmd_mutex.owner = NULL;
1708
1709 pr_info("initializing netlink subsys (%s)\n",
1710 str_enabled_disabled(audit_default));
1711 register_pernet_subsys(&audit_net_ops);
1712
1713 audit_initialized = AUDIT_INITIALIZED;
1714
1715 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1716 if (IS_ERR(kauditd_task)) {
1717 int err = PTR_ERR(kauditd_task);
1718 panic("audit: failed to start the kauditd thread (%d)\n", err);
1719 }
1720
1721 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1722 "state=initialized audit_enabled=%u res=1",
1723 audit_enabled);
1724
1725 return 0;
1726}
1727postcore_initcall(audit_init);
1728
1729/*
1730 * Process kernel command-line parameter at boot time.
1731 * audit={0|off} or audit={1|on}.
1732 */
1733static int __init audit_enable(char *str)
1734{
1735 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1736 audit_default = AUDIT_OFF;
1737 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1738 audit_default = AUDIT_ON;
1739 else {
1740 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1741 audit_default = AUDIT_ON;
1742 }
1743
1744 if (audit_default == AUDIT_OFF)
1745 audit_initialized = AUDIT_DISABLED;
1746 if (audit_set_enabled(audit_default))
1747 pr_err("audit: error setting audit state (%d)\n",
1748 audit_default);
1749
1750 pr_info("%s\n", audit_default ?
1751 "enabled (after initialization)" : "disabled (until reboot)");
1752
1753 return 1;
1754}
1755__setup("audit=", audit_enable);
1756
1757/* Process kernel command-line parameter at boot time.
1758 * audit_backlog_limit=<n> */
1759static int __init audit_backlog_limit_set(char *str)
1760{
1761 u32 audit_backlog_limit_arg;
1762
1763 pr_info("audit_backlog_limit: ");
1764 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1765 pr_cont("using default of %u, unable to parse %s\n",
1766 audit_backlog_limit, str);
1767 return 1;
1768 }
1769
1770 audit_backlog_limit = audit_backlog_limit_arg;
1771 pr_cont("%d\n", audit_backlog_limit);
1772
1773 return 1;
1774}
1775__setup("audit_backlog_limit=", audit_backlog_limit_set);
1776
1777static void audit_buffer_free(struct audit_buffer *ab)
1778{
1779 if (!ab)
1780 return;
1781
1782 kfree_skb(ab->skb);
1783 kmem_cache_free(audit_buffer_cache, ab);
1784}
1785
1786static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1787 gfp_t gfp_mask, int type)
1788{
1789 struct audit_buffer *ab;
1790
1791 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1792 if (!ab)
1793 return NULL;
1794
1795 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1796 if (!ab->skb)
1797 goto err;
1798 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1799 goto err;
1800
1801 ab->ctx = ctx;
1802 ab->gfp_mask = gfp_mask;
1803
1804 return ab;
1805
1806err:
1807 audit_buffer_free(ab);
1808 return NULL;
1809}
1810
1811/**
1812 * audit_serial - compute a serial number for the audit record
1813 *
1814 * Compute a serial number for the audit record. Audit records are
1815 * written to user-space as soon as they are generated, so a complete
1816 * audit record may be written in several pieces. The timestamp of the
1817 * record and this serial number are used by the user-space tools to
1818 * determine which pieces belong to the same audit record. The
1819 * (timestamp,serial) tuple is unique for each syscall and is live from
1820 * syscall entry to syscall exit.
1821 *
1822 * NOTE: Another possibility is to store the formatted records off the
1823 * audit context (for those records that have a context), and emit them
1824 * all at syscall exit. However, this could delay the reporting of
1825 * significant errors until syscall exit (or never, if the system
1826 * halts).
1827 */
1828unsigned int audit_serial(void)
1829{
1830 static atomic_t serial = ATOMIC_INIT(0);
1831
1832 return atomic_inc_return(&serial);
1833}
1834
1835static inline void audit_get_stamp(struct audit_context *ctx,
1836 struct timespec64 *t, unsigned int *serial)
1837{
1838 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1839 ktime_get_coarse_real_ts64(t);
1840 *serial = audit_serial();
1841 }
1842}
1843
1844/**
1845 * audit_log_start - obtain an audit buffer
1846 * @ctx: audit_context (may be NULL)
1847 * @gfp_mask: type of allocation
1848 * @type: audit message type
1849 *
1850 * Returns audit_buffer pointer on success or NULL on error.
1851 *
1852 * Obtain an audit buffer. This routine does locking to obtain the
1853 * audit buffer, but then no locking is required for calls to
1854 * audit_log_*format. If the task (ctx) is a task that is currently in a
1855 * syscall, then the syscall is marked as auditable and an audit record
1856 * will be written at syscall exit. If there is no associated task, then
1857 * task context (ctx) should be NULL.
1858 */
1859struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1860 int type)
1861{
1862 struct audit_buffer *ab;
1863 struct timespec64 t;
1864 unsigned int serial;
1865
1866 if (audit_initialized != AUDIT_INITIALIZED)
1867 return NULL;
1868
1869 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1870 return NULL;
1871
1872 /* NOTE: don't ever fail/sleep on these two conditions:
1873 * 1. auditd generated record - since we need auditd to drain the
1874 * queue; also, when we are checking for auditd, compare PIDs using
1875 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1876 * using a PID anchored in the caller's namespace
1877 * 2. generator holding the audit_cmd_mutex - we don't want to block
1878 * while holding the mutex, although we do penalize the sender
1879 * later in audit_receive() when it is safe to block
1880 */
1881 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1882 long stime = audit_backlog_wait_time;
1883
1884 while (audit_backlog_limit &&
1885 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1886 /* wake kauditd to try and flush the queue */
1887 wake_up_interruptible(&kauditd_wait);
1888
1889 /* sleep if we are allowed and we haven't exhausted our
1890 * backlog wait limit */
1891 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1892 long rtime = stime;
1893
1894 DECLARE_WAITQUEUE(wait, current);
1895
1896 add_wait_queue_exclusive(&audit_backlog_wait,
1897 &wait);
1898 set_current_state(TASK_UNINTERRUPTIBLE);
1899 stime = schedule_timeout(rtime);
1900 atomic_add(rtime - stime, &audit_backlog_wait_time_actual);
1901 remove_wait_queue(&audit_backlog_wait, &wait);
1902 } else {
1903 if (audit_rate_check() && printk_ratelimit())
1904 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1905 skb_queue_len(&audit_queue),
1906 audit_backlog_limit);
1907 audit_log_lost("backlog limit exceeded");
1908 return NULL;
1909 }
1910 }
1911 }
1912
1913 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1914 if (!ab) {
1915 audit_log_lost("out of memory in audit_log_start");
1916 return NULL;
1917 }
1918
1919 audit_get_stamp(ab->ctx, &t, &serial);
1920 /* cancel dummy context to enable supporting records */
1921 if (ctx)
1922 ctx->dummy = 0;
1923 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1924 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1925
1926 return ab;
1927}
1928
1929/**
1930 * audit_expand - expand skb in the audit buffer
1931 * @ab: audit_buffer
1932 * @extra: space to add at tail of the skb
1933 *
1934 * Returns 0 (no space) on failed expansion, or available space if
1935 * successful.
1936 */
1937static inline int audit_expand(struct audit_buffer *ab, int extra)
1938{
1939 struct sk_buff *skb = ab->skb;
1940 int oldtail = skb_tailroom(skb);
1941 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1942 int newtail = skb_tailroom(skb);
1943
1944 if (ret < 0) {
1945 audit_log_lost("out of memory in audit_expand");
1946 return 0;
1947 }
1948
1949 skb->truesize += newtail - oldtail;
1950 return newtail;
1951}
1952
1953/*
1954 * Format an audit message into the audit buffer. If there isn't enough
1955 * room in the audit buffer, more room will be allocated and vsnprint
1956 * will be called a second time. Currently, we assume that a printk
1957 * can't format message larger than 1024 bytes, so we don't either.
1958 */
1959static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1960 va_list args)
1961{
1962 int len, avail;
1963 struct sk_buff *skb;
1964 va_list args2;
1965
1966 if (!ab)
1967 return;
1968
1969 BUG_ON(!ab->skb);
1970 skb = ab->skb;
1971 avail = skb_tailroom(skb);
1972 if (avail == 0) {
1973 avail = audit_expand(ab, AUDIT_BUFSIZ);
1974 if (!avail)
1975 goto out;
1976 }
1977 va_copy(args2, args);
1978 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1979 if (len >= avail) {
1980 /* The printk buffer is 1024 bytes long, so if we get
1981 * here and AUDIT_BUFSIZ is at least 1024, then we can
1982 * log everything that printk could have logged. */
1983 avail = audit_expand(ab,
1984 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1985 if (!avail)
1986 goto out_va_end;
1987 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1988 }
1989 if (len > 0)
1990 skb_put(skb, len);
1991out_va_end:
1992 va_end(args2);
1993out:
1994 return;
1995}
1996
1997/**
1998 * audit_log_format - format a message into the audit buffer.
1999 * @ab: audit_buffer
2000 * @fmt: format string
2001 * @...: optional parameters matching @fmt string
2002 *
2003 * All the work is done in audit_log_vformat.
2004 */
2005void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
2006{
2007 va_list args;
2008
2009 if (!ab)
2010 return;
2011 va_start(args, fmt);
2012 audit_log_vformat(ab, fmt, args);
2013 va_end(args);
2014}
2015
2016/**
2017 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
2018 * @ab: the audit_buffer
2019 * @buf: buffer to convert to hex
2020 * @len: length of @buf to be converted
2021 *
2022 * No return value; failure to expand is silently ignored.
2023 *
2024 * This function will take the passed buf and convert it into a string of
2025 * ascii hex digits. The new string is placed onto the skb.
2026 */
2027void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
2028 size_t len)
2029{
2030 int i, avail, new_len;
2031 unsigned char *ptr;
2032 struct sk_buff *skb;
2033
2034 if (!ab)
2035 return;
2036
2037 BUG_ON(!ab->skb);
2038 skb = ab->skb;
2039 avail = skb_tailroom(skb);
2040 new_len = len<<1;
2041 if (new_len >= avail) {
2042 /* Round the buffer request up to the next multiple */
2043 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
2044 avail = audit_expand(ab, new_len);
2045 if (!avail)
2046 return;
2047 }
2048
2049 ptr = skb_tail_pointer(skb);
2050 for (i = 0; i < len; i++)
2051 ptr = hex_byte_pack_upper(ptr, buf[i]);
2052 *ptr = 0;
2053 skb_put(skb, len << 1); /* new string is twice the old string */
2054}
2055
2056/*
2057 * Format a string of no more than slen characters into the audit buffer,
2058 * enclosed in quote marks.
2059 */
2060void audit_log_n_string(struct audit_buffer *ab, const char *string,
2061 size_t slen)
2062{
2063 int avail, new_len;
2064 unsigned char *ptr;
2065 struct sk_buff *skb;
2066
2067 if (!ab)
2068 return;
2069
2070 BUG_ON(!ab->skb);
2071 skb = ab->skb;
2072 avail = skb_tailroom(skb);
2073 new_len = slen + 3; /* enclosing quotes + null terminator */
2074 if (new_len > avail) {
2075 avail = audit_expand(ab, new_len);
2076 if (!avail)
2077 return;
2078 }
2079 ptr = skb_tail_pointer(skb);
2080 *ptr++ = '"';
2081 memcpy(ptr, string, slen);
2082 ptr += slen;
2083 *ptr++ = '"';
2084 *ptr = 0;
2085 skb_put(skb, slen + 2); /* don't include null terminator */
2086}
2087
2088/**
2089 * audit_string_contains_control - does a string need to be logged in hex
2090 * @string: string to be checked
2091 * @len: max length of the string to check
2092 */
2093bool audit_string_contains_control(const char *string, size_t len)
2094{
2095 const unsigned char *p;
2096 for (p = string; p < (const unsigned char *)string + len; p++) {
2097 if (*p == '"' || *p < 0x21 || *p > 0x7e)
2098 return true;
2099 }
2100 return false;
2101}
2102
2103/**
2104 * audit_log_n_untrustedstring - log a string that may contain random characters
2105 * @ab: audit_buffer
2106 * @string: string to be logged
2107 * @len: length of string (not including trailing null)
2108 *
2109 * This code will escape a string that is passed to it if the string
2110 * contains a control character, unprintable character, double quote mark,
2111 * or a space. Unescaped strings will start and end with a double quote mark.
2112 * Strings that are escaped are printed in hex (2 digits per char).
2113 *
2114 * The caller specifies the number of characters in the string to log, which may
2115 * or may not be the entire string.
2116 */
2117void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2118 size_t len)
2119{
2120 if (audit_string_contains_control(string, len))
2121 audit_log_n_hex(ab, string, len);
2122 else
2123 audit_log_n_string(ab, string, len);
2124}
2125
2126/**
2127 * audit_log_untrustedstring - log a string that may contain random characters
2128 * @ab: audit_buffer
2129 * @string: string to be logged
2130 *
2131 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2132 * determine string length.
2133 */
2134void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2135{
2136 audit_log_n_untrustedstring(ab, string, strlen(string));
2137}
2138
2139/* This is a helper-function to print the escaped d_path */
2140void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2141 const struct path *path)
2142{
2143 char *p, *pathname;
2144
2145 if (prefix)
2146 audit_log_format(ab, "%s", prefix);
2147
2148 /* We will allow 11 spaces for ' (deleted)' to be appended */
2149 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2150 if (!pathname) {
2151 audit_log_format(ab, "\"<no_memory>\"");
2152 return;
2153 }
2154 p = d_path(path, pathname, PATH_MAX+11);
2155 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2156 /* FIXME: can we save some information here? */
2157 audit_log_format(ab, "\"<too_long>\"");
2158 } else
2159 audit_log_untrustedstring(ab, p);
2160 kfree(pathname);
2161}
2162
2163void audit_log_session_info(struct audit_buffer *ab)
2164{
2165 unsigned int sessionid = audit_get_sessionid(current);
2166 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2167
2168 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2169}
2170
2171void audit_log_key(struct audit_buffer *ab, char *key)
2172{
2173 audit_log_format(ab, " key=");
2174 if (key)
2175 audit_log_untrustedstring(ab, key);
2176 else
2177 audit_log_format(ab, "(null)");
2178}
2179
2180int audit_log_task_context(struct audit_buffer *ab)
2181{
2182 struct lsm_prop prop;
2183 char *ctx = NULL;
2184 unsigned len;
2185 int error;
2186
2187 security_current_getlsmprop_subj(&prop);
2188 if (!lsmprop_is_set(&prop))
2189 return 0;
2190
2191 error = security_lsmprop_to_secctx(&prop, &ctx, &len);
2192 if (error) {
2193 if (error != -EINVAL)
2194 goto error_path;
2195 return 0;
2196 }
2197
2198 audit_log_format(ab, " subj=%s", ctx);
2199 security_release_secctx(ctx, len);
2200 return 0;
2201
2202error_path:
2203 audit_panic("error in audit_log_task_context");
2204 return error;
2205}
2206EXPORT_SYMBOL(audit_log_task_context);
2207
2208void audit_log_d_path_exe(struct audit_buffer *ab,
2209 struct mm_struct *mm)
2210{
2211 struct file *exe_file;
2212
2213 if (!mm)
2214 goto out_null;
2215
2216 exe_file = get_mm_exe_file(mm);
2217 if (!exe_file)
2218 goto out_null;
2219
2220 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2221 fput(exe_file);
2222 return;
2223out_null:
2224 audit_log_format(ab, " exe=(null)");
2225}
2226
2227struct tty_struct *audit_get_tty(void)
2228{
2229 struct tty_struct *tty = NULL;
2230 unsigned long flags;
2231
2232 spin_lock_irqsave(¤t->sighand->siglock, flags);
2233 if (current->signal)
2234 tty = tty_kref_get(current->signal->tty);
2235 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
2236 return tty;
2237}
2238
2239void audit_put_tty(struct tty_struct *tty)
2240{
2241 tty_kref_put(tty);
2242}
2243
2244void audit_log_task_info(struct audit_buffer *ab)
2245{
2246 const struct cred *cred;
2247 char comm[sizeof(current->comm)];
2248 struct tty_struct *tty;
2249
2250 if (!ab)
2251 return;
2252
2253 cred = current_cred();
2254 tty = audit_get_tty();
2255 audit_log_format(ab,
2256 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2257 " euid=%u suid=%u fsuid=%u"
2258 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2259 task_ppid_nr(current),
2260 task_tgid_nr(current),
2261 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2262 from_kuid(&init_user_ns, cred->uid),
2263 from_kgid(&init_user_ns, cred->gid),
2264 from_kuid(&init_user_ns, cred->euid),
2265 from_kuid(&init_user_ns, cred->suid),
2266 from_kuid(&init_user_ns, cred->fsuid),
2267 from_kgid(&init_user_ns, cred->egid),
2268 from_kgid(&init_user_ns, cred->sgid),
2269 from_kgid(&init_user_ns, cred->fsgid),
2270 tty ? tty_name(tty) : "(none)",
2271 audit_get_sessionid(current));
2272 audit_put_tty(tty);
2273 audit_log_format(ab, " comm=");
2274 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2275 audit_log_d_path_exe(ab, current->mm);
2276 audit_log_task_context(ab);
2277}
2278EXPORT_SYMBOL(audit_log_task_info);
2279
2280/**
2281 * audit_log_path_denied - report a path restriction denial
2282 * @type: audit message type (AUDIT_ANOM_LINK, AUDIT_ANOM_CREAT, etc)
2283 * @operation: specific operation name
2284 */
2285void audit_log_path_denied(int type, const char *operation)
2286{
2287 struct audit_buffer *ab;
2288
2289 if (!audit_enabled || audit_dummy_context())
2290 return;
2291
2292 /* Generate log with subject, operation, outcome. */
2293 ab = audit_log_start(audit_context(), GFP_KERNEL, type);
2294 if (!ab)
2295 return;
2296 audit_log_format(ab, "op=%s", operation);
2297 audit_log_task_info(ab);
2298 audit_log_format(ab, " res=0");
2299 audit_log_end(ab);
2300}
2301
2302/* global counter which is incremented every time something logs in */
2303static atomic_t session_id = ATOMIC_INIT(0);
2304
2305static int audit_set_loginuid_perm(kuid_t loginuid)
2306{
2307 /* if we are unset, we don't need privs */
2308 if (!audit_loginuid_set(current))
2309 return 0;
2310 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2311 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2312 return -EPERM;
2313 /* it is set, you need permission */
2314 if (!capable(CAP_AUDIT_CONTROL))
2315 return -EPERM;
2316 /* reject if this is not an unset and we don't allow that */
2317 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2318 && uid_valid(loginuid))
2319 return -EPERM;
2320 return 0;
2321}
2322
2323static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2324 unsigned int oldsessionid,
2325 unsigned int sessionid, int rc)
2326{
2327 struct audit_buffer *ab;
2328 uid_t uid, oldloginuid, loginuid;
2329 struct tty_struct *tty;
2330
2331 if (!audit_enabled)
2332 return;
2333
2334 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2335 if (!ab)
2336 return;
2337
2338 uid = from_kuid(&init_user_ns, task_uid(current));
2339 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2340 loginuid = from_kuid(&init_user_ns, kloginuid);
2341 tty = audit_get_tty();
2342
2343 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2344 audit_log_task_context(ab);
2345 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2346 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2347 oldsessionid, sessionid, !rc);
2348 audit_put_tty(tty);
2349 audit_log_end(ab);
2350}
2351
2352/**
2353 * audit_set_loginuid - set current task's loginuid
2354 * @loginuid: loginuid value
2355 *
2356 * Returns 0.
2357 *
2358 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2359 */
2360int audit_set_loginuid(kuid_t loginuid)
2361{
2362 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2363 kuid_t oldloginuid;
2364 int rc;
2365
2366 oldloginuid = audit_get_loginuid(current);
2367 oldsessionid = audit_get_sessionid(current);
2368
2369 rc = audit_set_loginuid_perm(loginuid);
2370 if (rc)
2371 goto out;
2372
2373 /* are we setting or clearing? */
2374 if (uid_valid(loginuid)) {
2375 sessionid = (unsigned int)atomic_inc_return(&session_id);
2376 if (unlikely(sessionid == AUDIT_SID_UNSET))
2377 sessionid = (unsigned int)atomic_inc_return(&session_id);
2378 }
2379
2380 current->sessionid = sessionid;
2381 current->loginuid = loginuid;
2382out:
2383 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2384 return rc;
2385}
2386
2387/**
2388 * audit_signal_info - record signal info for shutting down audit subsystem
2389 * @sig: signal value
2390 * @t: task being signaled
2391 *
2392 * If the audit subsystem is being terminated, record the task (pid)
2393 * and uid that is doing that.
2394 */
2395int audit_signal_info(int sig, struct task_struct *t)
2396{
2397 kuid_t uid = current_uid(), auid;
2398
2399 if (auditd_test_task(t) &&
2400 (sig == SIGTERM || sig == SIGHUP ||
2401 sig == SIGUSR1 || sig == SIGUSR2)) {
2402 audit_sig_pid = task_tgid_nr(current);
2403 auid = audit_get_loginuid(current);
2404 if (uid_valid(auid))
2405 audit_sig_uid = auid;
2406 else
2407 audit_sig_uid = uid;
2408 security_current_getlsmprop_subj(&audit_sig_lsm);
2409 }
2410
2411 return audit_signal_info_syscall(t);
2412}
2413
2414/**
2415 * audit_log_end - end one audit record
2416 * @ab: the audit_buffer
2417 *
2418 * We can not do a netlink send inside an irq context because it blocks (last
2419 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2420 * queue and a kthread is scheduled to remove them from the queue outside the
2421 * irq context. May be called in any context.
2422 */
2423void audit_log_end(struct audit_buffer *ab)
2424{
2425 struct sk_buff *skb;
2426 struct nlmsghdr *nlh;
2427
2428 if (!ab)
2429 return;
2430
2431 if (audit_rate_check()) {
2432 skb = ab->skb;
2433 ab->skb = NULL;
2434
2435 /* setup the netlink header, see the comments in
2436 * kauditd_send_multicast_skb() for length quirks */
2437 nlh = nlmsg_hdr(skb);
2438 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2439
2440 /* queue the netlink packet and poke the kauditd thread */
2441 skb_queue_tail(&audit_queue, skb);
2442 wake_up_interruptible(&kauditd_wait);
2443 } else
2444 audit_log_lost("rate limit exceeded");
2445
2446 audit_buffer_free(ab);
2447}
2448
2449/**
2450 * audit_log - Log an audit record
2451 * @ctx: audit context
2452 * @gfp_mask: type of allocation
2453 * @type: audit message type
2454 * @fmt: format string to use
2455 * @...: variable parameters matching the format string
2456 *
2457 * This is a convenience function that calls audit_log_start,
2458 * audit_log_vformat, and audit_log_end. It may be called
2459 * in any context.
2460 */
2461void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2462 const char *fmt, ...)
2463{
2464 struct audit_buffer *ab;
2465 va_list args;
2466
2467 ab = audit_log_start(ctx, gfp_mask, type);
2468 if (ab) {
2469 va_start(args, fmt);
2470 audit_log_vformat(ab, fmt, args);
2471 va_end(args);
2472 audit_log_end(ab);
2473 }
2474}
2475
2476EXPORT_SYMBOL(audit_log_start);
2477EXPORT_SYMBOL(audit_log_end);
2478EXPORT_SYMBOL(audit_log_format);
2479EXPORT_SYMBOL(audit_log);