Loading...
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
34 *
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
43 *
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
54 */
55
56#include <linux/slab.h>
57#include <linux/pagemap.h>
58#include <linux/list_sort.h>
59#include "ubifs.h"
60
61/*
62 * GC may need to move more than one LEB to make progress. The below constants
63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64 * may move.
65 */
66#define SOFT_LEBS_LIMIT 4
67#define HARD_LEBS_LIMIT 32
68
69/**
70 * switch_gc_head - switch the garbage collection journal head.
71 * @c: UBIFS file-system description object
72 * @buf: buffer to write
73 * @len: length of the buffer to write
74 * @lnum: LEB number written is returned here
75 * @offs: offset written is returned here
76 *
77 * This function switch the GC head to the next LEB which is reserved in
78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
79 * and other negative error code in case of failures.
80 */
81static int switch_gc_head(struct ubifs_info *c)
82{
83 int err, gc_lnum = c->gc_lnum;
84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
85
86 ubifs_assert(gc_lnum != -1);
87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
89 c->leb_size - wbuf->offs - wbuf->used);
90
91 err = ubifs_wbuf_sync_nolock(wbuf);
92 if (err)
93 return err;
94
95 /*
96 * The GC write-buffer was synchronized, we may safely unmap
97 * 'c->gc_lnum'.
98 */
99 err = ubifs_leb_unmap(c, gc_lnum);
100 if (err)
101 return err;
102
103 err = ubifs_wbuf_sync_nolock(wbuf);
104 if (err)
105 return err;
106
107 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
108 if (err)
109 return err;
110
111 c->gc_lnum = -1;
112 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
113 return err;
114}
115
116/**
117 * data_nodes_cmp - compare 2 data nodes.
118 * @priv: UBIFS file-system description object
119 * @a: first data node
120 * @a: second data node
121 *
122 * This function compares data nodes @a and @b. Returns %1 if @a has greater
123 * inode or block number, and %-1 otherwise.
124 */
125static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
126{
127 ino_t inuma, inumb;
128 struct ubifs_info *c = priv;
129 struct ubifs_scan_node *sa, *sb;
130
131 cond_resched();
132 if (a == b)
133 return 0;
134
135 sa = list_entry(a, struct ubifs_scan_node, list);
136 sb = list_entry(b, struct ubifs_scan_node, list);
137
138 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
139 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
140 ubifs_assert(sa->type == UBIFS_DATA_NODE);
141 ubifs_assert(sb->type == UBIFS_DATA_NODE);
142
143 inuma = key_inum(c, &sa->key);
144 inumb = key_inum(c, &sb->key);
145
146 if (inuma == inumb) {
147 unsigned int blka = key_block(c, &sa->key);
148 unsigned int blkb = key_block(c, &sb->key);
149
150 if (blka <= blkb)
151 return -1;
152 } else if (inuma <= inumb)
153 return -1;
154
155 return 1;
156}
157
158/*
159 * nondata_nodes_cmp - compare 2 non-data nodes.
160 * @priv: UBIFS file-system description object
161 * @a: first node
162 * @a: second node
163 *
164 * This function compares nodes @a and @b. It makes sure that inode nodes go
165 * first and sorted by length in descending order. Directory entry nodes go
166 * after inode nodes and are sorted in ascending hash valuer order.
167 */
168static int nondata_nodes_cmp(void *priv, struct list_head *a,
169 struct list_head *b)
170{
171 ino_t inuma, inumb;
172 struct ubifs_info *c = priv;
173 struct ubifs_scan_node *sa, *sb;
174
175 cond_resched();
176 if (a == b)
177 return 0;
178
179 sa = list_entry(a, struct ubifs_scan_node, list);
180 sb = list_entry(b, struct ubifs_scan_node, list);
181
182 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
183 key_type(c, &sb->key) != UBIFS_DATA_KEY);
184 ubifs_assert(sa->type != UBIFS_DATA_NODE &&
185 sb->type != UBIFS_DATA_NODE);
186
187 /* Inodes go before directory entries */
188 if (sa->type == UBIFS_INO_NODE) {
189 if (sb->type == UBIFS_INO_NODE)
190 return sb->len - sa->len;
191 return -1;
192 }
193 if (sb->type == UBIFS_INO_NODE)
194 return 1;
195
196 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
197 key_type(c, &sa->key) == UBIFS_XENT_KEY);
198 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
199 key_type(c, &sb->key) == UBIFS_XENT_KEY);
200 ubifs_assert(sa->type == UBIFS_DENT_NODE ||
201 sa->type == UBIFS_XENT_NODE);
202 ubifs_assert(sb->type == UBIFS_DENT_NODE ||
203 sb->type == UBIFS_XENT_NODE);
204
205 inuma = key_inum(c, &sa->key);
206 inumb = key_inum(c, &sb->key);
207
208 if (inuma == inumb) {
209 uint32_t hasha = key_hash(c, &sa->key);
210 uint32_t hashb = key_hash(c, &sb->key);
211
212 if (hasha <= hashb)
213 return -1;
214 } else if (inuma <= inumb)
215 return -1;
216
217 return 1;
218}
219
220/**
221 * sort_nodes - sort nodes for GC.
222 * @c: UBIFS file-system description object
223 * @sleb: describes nodes to sort and contains the result on exit
224 * @nondata: contains non-data nodes on exit
225 * @min: minimum node size is returned here
226 *
227 * This function sorts the list of inodes to garbage collect. First of all, it
228 * kills obsolete nodes and separates data and non-data nodes to the
229 * @sleb->nodes and @nondata lists correspondingly.
230 *
231 * Data nodes are then sorted in block number order - this is important for
232 * bulk-read; data nodes with lower inode number go before data nodes with
233 * higher inode number, and data nodes with lower block number go before data
234 * nodes with higher block number;
235 *
236 * Non-data nodes are sorted as follows.
237 * o First go inode nodes - they are sorted in descending length order.
238 * o Then go directory entry nodes - they are sorted in hash order, which
239 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
240 * inode number go before direntry nodes with higher parent inode number,
241 * and direntry nodes with lower name hash values go before direntry nodes
242 * with higher name hash values.
243 *
244 * This function returns zero in case of success and a negative error code in
245 * case of failure.
246 */
247static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
248 struct list_head *nondata, int *min)
249{
250 int err;
251 struct ubifs_scan_node *snod, *tmp;
252
253 *min = INT_MAX;
254
255 /* Separate data nodes and non-data nodes */
256 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
257 ubifs_assert(snod->type == UBIFS_INO_NODE ||
258 snod->type == UBIFS_DATA_NODE ||
259 snod->type == UBIFS_DENT_NODE ||
260 snod->type == UBIFS_XENT_NODE ||
261 snod->type == UBIFS_TRUN_NODE);
262
263 if (snod->type != UBIFS_INO_NODE &&
264 snod->type != UBIFS_DATA_NODE &&
265 snod->type != UBIFS_DENT_NODE &&
266 snod->type != UBIFS_XENT_NODE) {
267 /* Probably truncation node, zap it */
268 list_del(&snod->list);
269 kfree(snod);
270 continue;
271 }
272
273 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
274 key_type(c, &snod->key) == UBIFS_INO_KEY ||
275 key_type(c, &snod->key) == UBIFS_DENT_KEY ||
276 key_type(c, &snod->key) == UBIFS_XENT_KEY);
277
278 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
279 snod->offs, 0);
280 if (err < 0)
281 return err;
282
283 if (!err) {
284 /* The node is obsolete, remove it from the list */
285 list_del(&snod->list);
286 kfree(snod);
287 continue;
288 }
289
290 if (snod->len < *min)
291 *min = snod->len;
292
293 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
294 list_move_tail(&snod->list, nondata);
295 }
296
297 /* Sort data and non-data nodes */
298 list_sort(c, &sleb->nodes, &data_nodes_cmp);
299 list_sort(c, nondata, &nondata_nodes_cmp);
300
301 err = dbg_check_data_nodes_order(c, &sleb->nodes);
302 if (err)
303 return err;
304 err = dbg_check_nondata_nodes_order(c, nondata);
305 if (err)
306 return err;
307 return 0;
308}
309
310/**
311 * move_node - move a node.
312 * @c: UBIFS file-system description object
313 * @sleb: describes the LEB to move nodes from
314 * @snod: the mode to move
315 * @wbuf: write-buffer to move node to
316 *
317 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
318 * destroys @snod. Returns zero in case of success and a negative error code in
319 * case of failure.
320 */
321static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
322 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
323{
324 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
325
326 cond_resched();
327 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
328 if (err)
329 return err;
330
331 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
332 snod->offs, new_lnum, new_offs,
333 snod->len);
334 list_del(&snod->list);
335 kfree(snod);
336 return err;
337}
338
339/**
340 * move_nodes - move nodes.
341 * @c: UBIFS file-system description object
342 * @sleb: describes the LEB to move nodes from
343 *
344 * This function moves valid nodes from data LEB described by @sleb to the GC
345 * journal head. This function returns zero in case of success, %-EAGAIN if
346 * commit is required, and other negative error codes in case of other
347 * failures.
348 */
349static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
350{
351 int err, min;
352 LIST_HEAD(nondata);
353 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
354
355 if (wbuf->lnum == -1) {
356 /*
357 * The GC journal head is not set, because it is the first GC
358 * invocation since mount.
359 */
360 err = switch_gc_head(c);
361 if (err)
362 return err;
363 }
364
365 err = sort_nodes(c, sleb, &nondata, &min);
366 if (err)
367 goto out;
368
369 /* Write nodes to their new location. Use the first-fit strategy */
370 while (1) {
371 int avail;
372 struct ubifs_scan_node *snod, *tmp;
373
374 /* Move data nodes */
375 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
376 avail = c->leb_size - wbuf->offs - wbuf->used;
377 if (snod->len > avail)
378 /*
379 * Do not skip data nodes in order to optimize
380 * bulk-read.
381 */
382 break;
383
384 err = move_node(c, sleb, snod, wbuf);
385 if (err)
386 goto out;
387 }
388
389 /* Move non-data nodes */
390 list_for_each_entry_safe(snod, tmp, &nondata, list) {
391 avail = c->leb_size - wbuf->offs - wbuf->used;
392 if (avail < min)
393 break;
394
395 if (snod->len > avail) {
396 /*
397 * Keep going only if this is an inode with
398 * some data. Otherwise stop and switch the GC
399 * head. IOW, we assume that data-less inode
400 * nodes and direntry nodes are roughly of the
401 * same size.
402 */
403 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
404 snod->len == UBIFS_INO_NODE_SZ)
405 break;
406 continue;
407 }
408
409 err = move_node(c, sleb, snod, wbuf);
410 if (err)
411 goto out;
412 }
413
414 if (list_empty(&sleb->nodes) && list_empty(&nondata))
415 break;
416
417 /*
418 * Waste the rest of the space in the LEB and switch to the
419 * next LEB.
420 */
421 err = switch_gc_head(c);
422 if (err)
423 goto out;
424 }
425
426 return 0;
427
428out:
429 list_splice_tail(&nondata, &sleb->nodes);
430 return err;
431}
432
433/**
434 * gc_sync_wbufs - sync write-buffers for GC.
435 * @c: UBIFS file-system description object
436 *
437 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
438 * be in a write-buffer instead. That is, a node could be written to a
439 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
440 * erased before the write-buffer is sync'd and then there is an unclean
441 * unmount, then an existing node is lost. To avoid this, we sync all
442 * write-buffers.
443 *
444 * This function returns %0 on success or a negative error code on failure.
445 */
446static int gc_sync_wbufs(struct ubifs_info *c)
447{
448 int err, i;
449
450 for (i = 0; i < c->jhead_cnt; i++) {
451 if (i == GCHD)
452 continue;
453 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
454 if (err)
455 return err;
456 }
457 return 0;
458}
459
460/**
461 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
462 * @c: UBIFS file-system description object
463 * @lp: describes the LEB to garbage collect
464 *
465 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
466 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
467 * required, and other negative error codes in case of failures.
468 */
469int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
470{
471 struct ubifs_scan_leb *sleb;
472 struct ubifs_scan_node *snod;
473 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
474 int err = 0, lnum = lp->lnum;
475
476 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
477 c->need_recovery);
478 ubifs_assert(c->gc_lnum != lnum);
479 ubifs_assert(wbuf->lnum != lnum);
480
481 if (lp->free + lp->dirty == c->leb_size) {
482 /* Special case - a free LEB */
483 dbg_gc("LEB %d is free, return it", lp->lnum);
484 ubifs_assert(!(lp->flags & LPROPS_INDEX));
485
486 if (lp->free != c->leb_size) {
487 /*
488 * Write buffers must be sync'd before unmapping
489 * freeable LEBs, because one of them may contain data
490 * which obsoletes something in 'lp->pnum'.
491 */
492 err = gc_sync_wbufs(c);
493 if (err)
494 return err;
495 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
496 0, 0, 0, 0);
497 if (err)
498 return err;
499 }
500 err = ubifs_leb_unmap(c, lp->lnum);
501 if (err)
502 return err;
503
504 if (c->gc_lnum == -1) {
505 c->gc_lnum = lnum;
506 return LEB_RETAINED;
507 }
508
509 return LEB_FREED;
510 }
511
512 /*
513 * We scan the entire LEB even though we only really need to scan up to
514 * (c->leb_size - lp->free).
515 */
516 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
517 if (IS_ERR(sleb))
518 return PTR_ERR(sleb);
519
520 ubifs_assert(!list_empty(&sleb->nodes));
521 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
522
523 if (snod->type == UBIFS_IDX_NODE) {
524 struct ubifs_gced_idx_leb *idx_gc;
525
526 dbg_gc("indexing LEB %d (free %d, dirty %d)",
527 lnum, lp->free, lp->dirty);
528 list_for_each_entry(snod, &sleb->nodes, list) {
529 struct ubifs_idx_node *idx = snod->node;
530 int level = le16_to_cpu(idx->level);
531
532 ubifs_assert(snod->type == UBIFS_IDX_NODE);
533 key_read(c, ubifs_idx_key(c, idx), &snod->key);
534 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
535 snod->offs);
536 if (err)
537 goto out;
538 }
539
540 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
541 if (!idx_gc) {
542 err = -ENOMEM;
543 goto out;
544 }
545
546 idx_gc->lnum = lnum;
547 idx_gc->unmap = 0;
548 list_add(&idx_gc->list, &c->idx_gc);
549
550 /*
551 * Don't release the LEB until after the next commit, because
552 * it may contain data which is needed for recovery. So
553 * although we freed this LEB, it will become usable only after
554 * the commit.
555 */
556 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
557 LPROPS_INDEX, 1);
558 if (err)
559 goto out;
560 err = LEB_FREED_IDX;
561 } else {
562 dbg_gc("data LEB %d (free %d, dirty %d)",
563 lnum, lp->free, lp->dirty);
564
565 err = move_nodes(c, sleb);
566 if (err)
567 goto out_inc_seq;
568
569 err = gc_sync_wbufs(c);
570 if (err)
571 goto out_inc_seq;
572
573 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
574 if (err)
575 goto out_inc_seq;
576
577 /* Allow for races with TNC */
578 c->gced_lnum = lnum;
579 smp_wmb();
580 c->gc_seq += 1;
581 smp_wmb();
582
583 if (c->gc_lnum == -1) {
584 c->gc_lnum = lnum;
585 err = LEB_RETAINED;
586 } else {
587 err = ubifs_wbuf_sync_nolock(wbuf);
588 if (err)
589 goto out;
590
591 err = ubifs_leb_unmap(c, lnum);
592 if (err)
593 goto out;
594
595 err = LEB_FREED;
596 }
597 }
598
599out:
600 ubifs_scan_destroy(sleb);
601 return err;
602
603out_inc_seq:
604 /* We may have moved at least some nodes so allow for races with TNC */
605 c->gced_lnum = lnum;
606 smp_wmb();
607 c->gc_seq += 1;
608 smp_wmb();
609 goto out;
610}
611
612/**
613 * ubifs_garbage_collect - UBIFS garbage collector.
614 * @c: UBIFS file-system description object
615 * @anyway: do GC even if there are free LEBs
616 *
617 * This function does out-of-place garbage collection. The return codes are:
618 * o positive LEB number if the LEB has been freed and may be used;
619 * o %-EAGAIN if the caller has to run commit;
620 * o %-ENOSPC if GC failed to make any progress;
621 * o other negative error codes in case of other errors.
622 *
623 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
624 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
625 * commit may be required. But commit cannot be run from inside GC, because the
626 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
627 * And this error code means that the caller has to run commit, and re-run GC
628 * if there is still no free space.
629 *
630 * There are many reasons why this function may return %-EAGAIN:
631 * o the log is full and there is no space to write an LEB reference for
632 * @c->gc_lnum;
633 * o the journal is too large and exceeds size limitations;
634 * o GC moved indexing LEBs, but they can be used only after the commit;
635 * o the shrinker fails to find clean znodes to free and requests the commit;
636 * o etc.
637 *
638 * Note, if the file-system is close to be full, this function may return
639 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
640 * the function. E.g., this happens if the limits on the journal size are too
641 * tough and GC writes too much to the journal before an LEB is freed. This
642 * might also mean that the journal is too large, and the TNC becomes to big,
643 * so that the shrinker is constantly called, finds not clean znodes to free,
644 * and requests commit. Well, this may also happen if the journal is all right,
645 * but another kernel process consumes too much memory. Anyway, infinite
646 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
647 */
648int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
649{
650 int i, err, ret, min_space = c->dead_wm;
651 struct ubifs_lprops lp;
652 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
653
654 ubifs_assert_cmt_locked(c);
655 ubifs_assert(!c->ro_media && !c->ro_mount);
656
657 if (ubifs_gc_should_commit(c))
658 return -EAGAIN;
659
660 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
661
662 if (c->ro_error) {
663 ret = -EROFS;
664 goto out_unlock;
665 }
666
667 /* We expect the write-buffer to be empty on entry */
668 ubifs_assert(!wbuf->used);
669
670 for (i = 0; ; i++) {
671 int space_before, space_after;
672
673 cond_resched();
674
675 /* Give the commit an opportunity to run */
676 if (ubifs_gc_should_commit(c)) {
677 ret = -EAGAIN;
678 break;
679 }
680
681 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
682 /*
683 * We've done enough iterations. Indexing LEBs were
684 * moved and will be available after the commit.
685 */
686 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
687 ubifs_commit_required(c);
688 ret = -EAGAIN;
689 break;
690 }
691
692 if (i > HARD_LEBS_LIMIT) {
693 /*
694 * We've moved too many LEBs and have not made
695 * progress, give up.
696 */
697 dbg_gc("hard limit, -ENOSPC");
698 ret = -ENOSPC;
699 break;
700 }
701
702 /*
703 * Empty and freeable LEBs can turn up while we waited for
704 * the wbuf lock, or while we have been running GC. In that
705 * case, we should just return one of those instead of
706 * continuing to GC dirty LEBs. Hence we request
707 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
708 */
709 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
710 if (ret) {
711 if (ret == -ENOSPC)
712 dbg_gc("no more dirty LEBs");
713 break;
714 }
715
716 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
717 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
718 min_space);
719
720 space_before = c->leb_size - wbuf->offs - wbuf->used;
721 if (wbuf->lnum == -1)
722 space_before = 0;
723
724 ret = ubifs_garbage_collect_leb(c, &lp);
725 if (ret < 0) {
726 if (ret == -EAGAIN) {
727 /*
728 * This is not error, so we have to return the
729 * LEB to lprops. But if 'ubifs_return_leb()'
730 * fails, its failure code is propagated to the
731 * caller instead of the original '-EAGAIN'.
732 */
733 err = ubifs_return_leb(c, lp.lnum);
734 if (err)
735 ret = err;
736 break;
737 }
738 goto out;
739 }
740
741 if (ret == LEB_FREED) {
742 /* An LEB has been freed and is ready for use */
743 dbg_gc("LEB %d freed, return", lp.lnum);
744 ret = lp.lnum;
745 break;
746 }
747
748 if (ret == LEB_FREED_IDX) {
749 /*
750 * This was an indexing LEB and it cannot be
751 * immediately used. And instead of requesting the
752 * commit straight away, we try to garbage collect some
753 * more.
754 */
755 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
756 continue;
757 }
758
759 ubifs_assert(ret == LEB_RETAINED);
760 space_after = c->leb_size - wbuf->offs - wbuf->used;
761 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
762 space_after - space_before);
763
764 if (space_after > space_before) {
765 /* GC makes progress, keep working */
766 min_space >>= 1;
767 if (min_space < c->dead_wm)
768 min_space = c->dead_wm;
769 continue;
770 }
771
772 dbg_gc("did not make progress");
773
774 /*
775 * GC moved an LEB bud have not done any progress. This means
776 * that the previous GC head LEB contained too few free space
777 * and the LEB which was GC'ed contained only large nodes which
778 * did not fit that space.
779 *
780 * We can do 2 things:
781 * 1. pick another LEB in a hope it'll contain a small node
782 * which will fit the space we have at the end of current GC
783 * head LEB, but there is no guarantee, so we try this out
784 * unless we have already been working for too long;
785 * 2. request an LEB with more dirty space, which will force
786 * 'ubifs_find_dirty_leb()' to start scanning the lprops
787 * table, instead of just picking one from the heap
788 * (previously it already picked the dirtiest LEB).
789 */
790 if (i < SOFT_LEBS_LIMIT) {
791 dbg_gc("try again");
792 continue;
793 }
794
795 min_space <<= 1;
796 if (min_space > c->dark_wm)
797 min_space = c->dark_wm;
798 dbg_gc("set min. space to %d", min_space);
799 }
800
801 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
802 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
803 ubifs_commit_required(c);
804 ret = -EAGAIN;
805 }
806
807 err = ubifs_wbuf_sync_nolock(wbuf);
808 if (!err)
809 err = ubifs_leb_unmap(c, c->gc_lnum);
810 if (err) {
811 ret = err;
812 goto out;
813 }
814out_unlock:
815 mutex_unlock(&wbuf->io_mutex);
816 return ret;
817
818out:
819 ubifs_assert(ret < 0);
820 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
821 ubifs_wbuf_sync_nolock(wbuf);
822 ubifs_ro_mode(c, ret);
823 mutex_unlock(&wbuf->io_mutex);
824 ubifs_return_leb(c, lp.lnum);
825 return ret;
826}
827
828/**
829 * ubifs_gc_start_commit - garbage collection at start of commit.
830 * @c: UBIFS file-system description object
831 *
832 * If a LEB has only dirty and free space, then we may safely unmap it and make
833 * it free. Note, we cannot do this with indexing LEBs because dirty space may
834 * correspond index nodes that are required for recovery. In that case, the
835 * LEB cannot be unmapped until after the next commit.
836 *
837 * This function returns %0 upon success and a negative error code upon failure.
838 */
839int ubifs_gc_start_commit(struct ubifs_info *c)
840{
841 struct ubifs_gced_idx_leb *idx_gc;
842 const struct ubifs_lprops *lp;
843 int err = 0, flags;
844
845 ubifs_get_lprops(c);
846
847 /*
848 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
849 * wbufs are sync'd before this, which is done in 'do_commit()'.
850 */
851 while (1) {
852 lp = ubifs_fast_find_freeable(c);
853 if (IS_ERR(lp)) {
854 err = PTR_ERR(lp);
855 goto out;
856 }
857 if (!lp)
858 break;
859 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
860 ubifs_assert(!(lp->flags & LPROPS_INDEX));
861 err = ubifs_leb_unmap(c, lp->lnum);
862 if (err)
863 goto out;
864 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
865 if (IS_ERR(lp)) {
866 err = PTR_ERR(lp);
867 goto out;
868 }
869 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
870 ubifs_assert(!(lp->flags & LPROPS_INDEX));
871 }
872
873 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
874 list_for_each_entry(idx_gc, &c->idx_gc, list)
875 idx_gc->unmap = 1;
876
877 /* Record index freeable LEBs for unmapping after commit */
878 while (1) {
879 lp = ubifs_fast_find_frdi_idx(c);
880 if (IS_ERR(lp)) {
881 err = PTR_ERR(lp);
882 goto out;
883 }
884 if (!lp)
885 break;
886 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
887 if (!idx_gc) {
888 err = -ENOMEM;
889 goto out;
890 }
891 ubifs_assert(!(lp->flags & LPROPS_TAKEN));
892 ubifs_assert(lp->flags & LPROPS_INDEX);
893 /* Don't release the LEB until after the next commit */
894 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
895 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
896 if (IS_ERR(lp)) {
897 err = PTR_ERR(lp);
898 kfree(idx_gc);
899 goto out;
900 }
901 ubifs_assert(lp->flags & LPROPS_TAKEN);
902 ubifs_assert(!(lp->flags & LPROPS_INDEX));
903 idx_gc->lnum = lp->lnum;
904 idx_gc->unmap = 1;
905 list_add(&idx_gc->list, &c->idx_gc);
906 }
907out:
908 ubifs_release_lprops(c);
909 return err;
910}
911
912/**
913 * ubifs_gc_end_commit - garbage collection at end of commit.
914 * @c: UBIFS file-system description object
915 *
916 * This function completes out-of-place garbage collection of index LEBs.
917 */
918int ubifs_gc_end_commit(struct ubifs_info *c)
919{
920 struct ubifs_gced_idx_leb *idx_gc, *tmp;
921 struct ubifs_wbuf *wbuf;
922 int err = 0;
923
924 wbuf = &c->jheads[GCHD].wbuf;
925 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
926 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
927 if (idx_gc->unmap) {
928 dbg_gc("LEB %d", idx_gc->lnum);
929 err = ubifs_leb_unmap(c, idx_gc->lnum);
930 if (err)
931 goto out;
932 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
933 LPROPS_NC, 0, LPROPS_TAKEN, -1);
934 if (err)
935 goto out;
936 list_del(&idx_gc->list);
937 kfree(idx_gc);
938 }
939out:
940 mutex_unlock(&wbuf->io_mutex);
941 return err;
942}
943
944/**
945 * ubifs_destroy_idx_gc - destroy idx_gc list.
946 * @c: UBIFS file-system description object
947 *
948 * This function destroys the @c->idx_gc list. It is called when unmounting
949 * so locks are not needed. Returns zero in case of success and a negative
950 * error code in case of failure.
951 */
952void ubifs_destroy_idx_gc(struct ubifs_info *c)
953{
954 while (!list_empty(&c->idx_gc)) {
955 struct ubifs_gced_idx_leb *idx_gc;
956
957 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
958 list);
959 c->idx_gc_cnt -= 1;
960 list_del(&idx_gc->list);
961 kfree(idx_gc);
962 }
963}
964
965/**
966 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
967 * @c: UBIFS file-system description object
968 *
969 * Called during start commit so locks are not needed.
970 */
971int ubifs_get_idx_gc_leb(struct ubifs_info *c)
972{
973 struct ubifs_gced_idx_leb *idx_gc;
974 int lnum;
975
976 if (list_empty(&c->idx_gc))
977 return -ENOSPC;
978 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
979 lnum = idx_gc->lnum;
980 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
981 list_del(&idx_gc->list);
982 kfree(idx_gc);
983 return lnum;
984}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements garbage collection. The procedure for garbage collection
13 * is different depending on whether a LEB as an index LEB (contains index
14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
16 * nodes to the journal, at which point the garbage-collected LEB is free to be
17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
19 * to be reused. Garbage collection will cause the number of dirty index nodes
20 * to grow, however sufficient space is reserved for the index to ensure the
21 * commit will never run out of space.
22 *
23 * Notes about dead watermark. At current UBIFS implementation we assume that
24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
27 * Garbage Collector has to synchronize the GC head's write buffer before
28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
29 * actually reclaim even very small pieces of dirty space by garbage collecting
30 * enough dirty LEBs, but we do not bother doing this at this implementation.
31 *
32 * Notes about dark watermark. The results of GC work depends on how big are
33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
35 * have to waste large pieces of free space at the end of LEB B, because nodes
36 * from LEB A would not fit. And the worst situation is when all nodes are of
37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
40 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
41 * good, and GC takes extra care when moving them.
42 */
43
44#include <linux/slab.h>
45#include <linux/pagemap.h>
46#include <linux/list_sort.h>
47#include "ubifs.h"
48
49/*
50 * GC may need to move more than one LEB to make progress. The below constants
51 * define "soft" and "hard" limits on the number of LEBs the garbage collector
52 * may move.
53 */
54#define SOFT_LEBS_LIMIT 4
55#define HARD_LEBS_LIMIT 32
56
57/**
58 * switch_gc_head - switch the garbage collection journal head.
59 * @c: UBIFS file-system description object
60 *
61 * This function switch the GC head to the next LEB which is reserved in
62 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
63 * and other negative error code in case of failures.
64 */
65static int switch_gc_head(struct ubifs_info *c)
66{
67 int err, gc_lnum = c->gc_lnum;
68 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
69
70 ubifs_assert(c, gc_lnum != -1);
71 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
72 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
73 c->leb_size - wbuf->offs - wbuf->used);
74
75 err = ubifs_wbuf_sync_nolock(wbuf);
76 if (err)
77 return err;
78
79 /*
80 * The GC write-buffer was synchronized, we may safely unmap
81 * 'c->gc_lnum'.
82 */
83 err = ubifs_leb_unmap(c, gc_lnum);
84 if (err)
85 return err;
86
87 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
88 if (err)
89 return err;
90
91 c->gc_lnum = -1;
92 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
93 return err;
94}
95
96/**
97 * data_nodes_cmp - compare 2 data nodes.
98 * @priv: UBIFS file-system description object
99 * @a: first data node
100 * @b: second data node
101 *
102 * This function compares data nodes @a and @b. Returns %1 if @a has greater
103 * inode or block number, and %-1 otherwise.
104 */
105static int data_nodes_cmp(void *priv, const struct list_head *a,
106 const struct list_head *b)
107{
108 ino_t inuma, inumb;
109 struct ubifs_info *c = priv;
110 struct ubifs_scan_node *sa, *sb;
111
112 cond_resched();
113 if (a == b)
114 return 0;
115
116 sa = list_entry(a, struct ubifs_scan_node, list);
117 sb = list_entry(b, struct ubifs_scan_node, list);
118
119 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY);
120 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY);
121 ubifs_assert(c, sa->type == UBIFS_DATA_NODE);
122 ubifs_assert(c, sb->type == UBIFS_DATA_NODE);
123
124 inuma = key_inum(c, &sa->key);
125 inumb = key_inum(c, &sb->key);
126
127 if (inuma == inumb) {
128 unsigned int blka = key_block(c, &sa->key);
129 unsigned int blkb = key_block(c, &sb->key);
130
131 if (blka <= blkb)
132 return -1;
133 } else if (inuma <= inumb)
134 return -1;
135
136 return 1;
137}
138
139/*
140 * nondata_nodes_cmp - compare 2 non-data nodes.
141 * @priv: UBIFS file-system description object
142 * @a: first node
143 * @a: second node
144 *
145 * This function compares nodes @a and @b. It makes sure that inode nodes go
146 * first and sorted by length in descending order. Directory entry nodes go
147 * after inode nodes and are sorted in ascending hash valuer order.
148 */
149static int nondata_nodes_cmp(void *priv, const struct list_head *a,
150 const struct list_head *b)
151{
152 ino_t inuma, inumb;
153 struct ubifs_info *c = priv;
154 struct ubifs_scan_node *sa, *sb;
155
156 cond_resched();
157 if (a == b)
158 return 0;
159
160 sa = list_entry(a, struct ubifs_scan_node, list);
161 sb = list_entry(b, struct ubifs_scan_node, list);
162
163 ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY &&
164 key_type(c, &sb->key) != UBIFS_DATA_KEY);
165 ubifs_assert(c, sa->type != UBIFS_DATA_NODE &&
166 sb->type != UBIFS_DATA_NODE);
167
168 /* Inodes go before directory entries */
169 if (sa->type == UBIFS_INO_NODE) {
170 if (sb->type == UBIFS_INO_NODE)
171 return sb->len - sa->len;
172 return -1;
173 }
174 if (sb->type == UBIFS_INO_NODE)
175 return 1;
176
177 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY ||
178 key_type(c, &sa->key) == UBIFS_XENT_KEY);
179 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY ||
180 key_type(c, &sb->key) == UBIFS_XENT_KEY);
181 ubifs_assert(c, sa->type == UBIFS_DENT_NODE ||
182 sa->type == UBIFS_XENT_NODE);
183 ubifs_assert(c, sb->type == UBIFS_DENT_NODE ||
184 sb->type == UBIFS_XENT_NODE);
185
186 inuma = key_inum(c, &sa->key);
187 inumb = key_inum(c, &sb->key);
188
189 if (inuma == inumb) {
190 uint32_t hasha = key_hash(c, &sa->key);
191 uint32_t hashb = key_hash(c, &sb->key);
192
193 if (hasha <= hashb)
194 return -1;
195 } else if (inuma <= inumb)
196 return -1;
197
198 return 1;
199}
200
201/**
202 * sort_nodes - sort nodes for GC.
203 * @c: UBIFS file-system description object
204 * @sleb: describes nodes to sort and contains the result on exit
205 * @nondata: contains non-data nodes on exit
206 * @min: minimum node size is returned here
207 *
208 * This function sorts the list of inodes to garbage collect. First of all, it
209 * kills obsolete nodes and separates data and non-data nodes to the
210 * @sleb->nodes and @nondata lists correspondingly.
211 *
212 * Data nodes are then sorted in block number order - this is important for
213 * bulk-read; data nodes with lower inode number go before data nodes with
214 * higher inode number, and data nodes with lower block number go before data
215 * nodes with higher block number;
216 *
217 * Non-data nodes are sorted as follows.
218 * o First go inode nodes - they are sorted in descending length order.
219 * o Then go directory entry nodes - they are sorted in hash order, which
220 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
221 * inode number go before direntry nodes with higher parent inode number,
222 * and direntry nodes with lower name hash values go before direntry nodes
223 * with higher name hash values.
224 *
225 * This function returns zero in case of success and a negative error code in
226 * case of failure.
227 */
228static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
229 struct list_head *nondata, int *min)
230{
231 int err;
232 struct ubifs_scan_node *snod, *tmp;
233
234 *min = INT_MAX;
235
236 /* Separate data nodes and non-data nodes */
237 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
238 ubifs_assert(c, snod->type == UBIFS_INO_NODE ||
239 snod->type == UBIFS_DATA_NODE ||
240 snod->type == UBIFS_DENT_NODE ||
241 snod->type == UBIFS_XENT_NODE ||
242 snod->type == UBIFS_TRUN_NODE ||
243 snod->type == UBIFS_AUTH_NODE);
244
245 if (snod->type != UBIFS_INO_NODE &&
246 snod->type != UBIFS_DATA_NODE &&
247 snod->type != UBIFS_DENT_NODE &&
248 snod->type != UBIFS_XENT_NODE) {
249 /* Probably truncation node, zap it */
250 list_del(&snod->list);
251 kfree(snod);
252 continue;
253 }
254
255 ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY ||
256 key_type(c, &snod->key) == UBIFS_INO_KEY ||
257 key_type(c, &snod->key) == UBIFS_DENT_KEY ||
258 key_type(c, &snod->key) == UBIFS_XENT_KEY);
259
260 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
261 snod->offs, 0);
262 if (err < 0)
263 return err;
264
265 if (!err) {
266 /* The node is obsolete, remove it from the list */
267 list_del(&snod->list);
268 kfree(snod);
269 continue;
270 }
271
272 if (snod->len < *min)
273 *min = snod->len;
274
275 if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
276 list_move_tail(&snod->list, nondata);
277 }
278
279 /* Sort data and non-data nodes */
280 list_sort(c, &sleb->nodes, &data_nodes_cmp);
281 list_sort(c, nondata, &nondata_nodes_cmp);
282
283 err = dbg_check_data_nodes_order(c, &sleb->nodes);
284 if (err)
285 return err;
286 err = dbg_check_nondata_nodes_order(c, nondata);
287 if (err)
288 return err;
289 return 0;
290}
291
292/**
293 * move_node - move a node.
294 * @c: UBIFS file-system description object
295 * @sleb: describes the LEB to move nodes from
296 * @snod: the mode to move
297 * @wbuf: write-buffer to move node to
298 *
299 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
300 * destroys @snod. Returns zero in case of success and a negative error code in
301 * case of failure.
302 */
303static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
304 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
305{
306 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
307
308 cond_resched();
309 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
310 if (err)
311 return err;
312
313 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
314 snod->offs, new_lnum, new_offs,
315 snod->len);
316 list_del(&snod->list);
317 kfree(snod);
318 return err;
319}
320
321/**
322 * move_nodes - move nodes.
323 * @c: UBIFS file-system description object
324 * @sleb: describes the LEB to move nodes from
325 *
326 * This function moves valid nodes from data LEB described by @sleb to the GC
327 * journal head. This function returns zero in case of success, %-EAGAIN if
328 * commit is required, and other negative error codes in case of other
329 * failures.
330 */
331static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
332{
333 int err, min;
334 LIST_HEAD(nondata);
335 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
336
337 if (wbuf->lnum == -1) {
338 /*
339 * The GC journal head is not set, because it is the first GC
340 * invocation since mount.
341 */
342 err = switch_gc_head(c);
343 if (err)
344 return err;
345 }
346
347 err = sort_nodes(c, sleb, &nondata, &min);
348 if (err)
349 goto out;
350
351 /* Write nodes to their new location. Use the first-fit strategy */
352 while (1) {
353 int avail, moved = 0;
354 struct ubifs_scan_node *snod, *tmp;
355
356 /* Move data nodes */
357 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
358 avail = c->leb_size - wbuf->offs - wbuf->used -
359 ubifs_auth_node_sz(c);
360 if (snod->len > avail)
361 /*
362 * Do not skip data nodes in order to optimize
363 * bulk-read.
364 */
365 break;
366
367 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
368 snod->node, snod->len);
369 if (err)
370 goto out;
371
372 err = move_node(c, sleb, snod, wbuf);
373 if (err)
374 goto out;
375 moved = 1;
376 }
377
378 /* Move non-data nodes */
379 list_for_each_entry_safe(snod, tmp, &nondata, list) {
380 avail = c->leb_size - wbuf->offs - wbuf->used -
381 ubifs_auth_node_sz(c);
382 if (avail < min)
383 break;
384
385 if (snod->len > avail) {
386 /*
387 * Keep going only if this is an inode with
388 * some data. Otherwise stop and switch the GC
389 * head. IOW, we assume that data-less inode
390 * nodes and direntry nodes are roughly of the
391 * same size.
392 */
393 if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
394 snod->len == UBIFS_INO_NODE_SZ)
395 break;
396 continue;
397 }
398
399 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
400 snod->node, snod->len);
401 if (err)
402 goto out;
403
404 err = move_node(c, sleb, snod, wbuf);
405 if (err)
406 goto out;
407 moved = 1;
408 }
409
410 if (ubifs_authenticated(c) && moved) {
411 struct ubifs_auth_node *auth;
412
413 auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS);
414 if (!auth) {
415 err = -ENOMEM;
416 goto out;
417 }
418
419 err = ubifs_prepare_auth_node(c, auth,
420 c->jheads[GCHD].log_hash);
421 if (err) {
422 kfree(auth);
423 goto out;
424 }
425
426 err = ubifs_wbuf_write_nolock(wbuf, auth,
427 ubifs_auth_node_sz(c));
428 if (err) {
429 kfree(auth);
430 goto out;
431 }
432
433 ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c));
434 }
435
436 if (list_empty(&sleb->nodes) && list_empty(&nondata))
437 break;
438
439 /*
440 * Waste the rest of the space in the LEB and switch to the
441 * next LEB.
442 */
443 err = switch_gc_head(c);
444 if (err)
445 goto out;
446 }
447
448 return 0;
449
450out:
451 list_splice_tail(&nondata, &sleb->nodes);
452 return err;
453}
454
455/**
456 * gc_sync_wbufs - sync write-buffers for GC.
457 * @c: UBIFS file-system description object
458 *
459 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
460 * be in a write-buffer instead. That is, a node could be written to a
461 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
462 * erased before the write-buffer is sync'd and then there is an unclean
463 * unmount, then an existing node is lost. To avoid this, we sync all
464 * write-buffers.
465 *
466 * This function returns %0 on success or a negative error code on failure.
467 */
468static int gc_sync_wbufs(struct ubifs_info *c)
469{
470 int err, i;
471
472 for (i = 0; i < c->jhead_cnt; i++) {
473 if (i == GCHD)
474 continue;
475 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
476 if (err)
477 return err;
478 }
479 return 0;
480}
481
482/**
483 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
484 * @c: UBIFS file-system description object
485 * @lp: describes the LEB to garbage collect
486 *
487 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
488 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
489 * required, and other negative error codes in case of failures.
490 */
491int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
492{
493 struct ubifs_scan_leb *sleb;
494 struct ubifs_scan_node *snod;
495 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
496 int err = 0, lnum = lp->lnum;
497
498 ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
499 c->need_recovery);
500 ubifs_assert(c, c->gc_lnum != lnum);
501 ubifs_assert(c, wbuf->lnum != lnum);
502
503 if (lp->free + lp->dirty == c->leb_size) {
504 /* Special case - a free LEB */
505 dbg_gc("LEB %d is free, return it", lp->lnum);
506 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
507
508 if (lp->free != c->leb_size) {
509 /*
510 * Write buffers must be sync'd before unmapping
511 * freeable LEBs, because one of them may contain data
512 * which obsoletes something in 'lp->lnum'.
513 */
514 err = gc_sync_wbufs(c);
515 if (err)
516 return err;
517 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
518 0, 0, 0, 0);
519 if (err)
520 return err;
521 }
522 err = ubifs_leb_unmap(c, lp->lnum);
523 if (err)
524 return err;
525
526 if (c->gc_lnum == -1) {
527 c->gc_lnum = lnum;
528 return LEB_RETAINED;
529 }
530
531 return LEB_FREED;
532 }
533
534 /*
535 * We scan the entire LEB even though we only really need to scan up to
536 * (c->leb_size - lp->free).
537 */
538 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
539 if (IS_ERR(sleb))
540 return PTR_ERR(sleb);
541
542 ubifs_assert(c, !list_empty(&sleb->nodes));
543 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
544
545 if (snod->type == UBIFS_IDX_NODE) {
546 struct ubifs_gced_idx_leb *idx_gc;
547
548 dbg_gc("indexing LEB %d (free %d, dirty %d)",
549 lnum, lp->free, lp->dirty);
550 list_for_each_entry(snod, &sleb->nodes, list) {
551 struct ubifs_idx_node *idx = snod->node;
552 int level = le16_to_cpu(idx->level);
553
554 ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
555 key_read(c, ubifs_idx_key(c, idx), &snod->key);
556 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
557 snod->offs);
558 if (err)
559 goto out;
560 }
561
562 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
563 if (!idx_gc) {
564 err = -ENOMEM;
565 goto out;
566 }
567
568 idx_gc->lnum = lnum;
569 idx_gc->unmap = 0;
570 list_add(&idx_gc->list, &c->idx_gc);
571
572 /*
573 * Don't release the LEB until after the next commit, because
574 * it may contain data which is needed for recovery. So
575 * although we freed this LEB, it will become usable only after
576 * the commit.
577 */
578 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
579 LPROPS_INDEX, 1);
580 if (err)
581 goto out;
582 err = LEB_FREED_IDX;
583 } else {
584 dbg_gc("data LEB %d (free %d, dirty %d)",
585 lnum, lp->free, lp->dirty);
586
587 err = move_nodes(c, sleb);
588 if (err)
589 goto out_inc_seq;
590
591 err = gc_sync_wbufs(c);
592 if (err)
593 goto out_inc_seq;
594
595 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
596 if (err)
597 goto out_inc_seq;
598
599 /* Allow for races with TNC */
600 c->gced_lnum = lnum;
601 smp_wmb();
602 c->gc_seq += 1;
603 smp_wmb();
604
605 if (c->gc_lnum == -1) {
606 c->gc_lnum = lnum;
607 err = LEB_RETAINED;
608 } else {
609 err = ubifs_wbuf_sync_nolock(wbuf);
610 if (err)
611 goto out;
612
613 err = ubifs_leb_unmap(c, lnum);
614 if (err)
615 goto out;
616
617 err = LEB_FREED;
618 }
619 }
620
621out:
622 ubifs_scan_destroy(sleb);
623 return err;
624
625out_inc_seq:
626 /* We may have moved at least some nodes so allow for races with TNC */
627 c->gced_lnum = lnum;
628 smp_wmb();
629 c->gc_seq += 1;
630 smp_wmb();
631 goto out;
632}
633
634/**
635 * ubifs_garbage_collect - UBIFS garbage collector.
636 * @c: UBIFS file-system description object
637 * @anyway: do GC even if there are free LEBs
638 *
639 * This function does out-of-place garbage collection. The return codes are:
640 * o positive LEB number if the LEB has been freed and may be used;
641 * o %-EAGAIN if the caller has to run commit;
642 * o %-ENOSPC if GC failed to make any progress;
643 * o other negative error codes in case of other errors.
644 *
645 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
646 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
647 * commit may be required. But commit cannot be run from inside GC, because the
648 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
649 * And this error code means that the caller has to run commit, and re-run GC
650 * if there is still no free space.
651 *
652 * There are many reasons why this function may return %-EAGAIN:
653 * o the log is full and there is no space to write an LEB reference for
654 * @c->gc_lnum;
655 * o the journal is too large and exceeds size limitations;
656 * o GC moved indexing LEBs, but they can be used only after the commit;
657 * o the shrinker fails to find clean znodes to free and requests the commit;
658 * o etc.
659 *
660 * Note, if the file-system is close to be full, this function may return
661 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
662 * the function. E.g., this happens if the limits on the journal size are too
663 * tough and GC writes too much to the journal before an LEB is freed. This
664 * might also mean that the journal is too large, and the TNC becomes to big,
665 * so that the shrinker is constantly called, finds not clean znodes to free,
666 * and requests commit. Well, this may also happen if the journal is all right,
667 * but another kernel process consumes too much memory. Anyway, infinite
668 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
669 */
670int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
671{
672 int i, err, ret, min_space = c->dead_wm;
673 struct ubifs_lprops lp;
674 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
675
676 ubifs_assert_cmt_locked(c);
677 ubifs_assert(c, !c->ro_media && !c->ro_mount);
678
679 if (ubifs_gc_should_commit(c))
680 return -EAGAIN;
681
682 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
683
684 if (c->ro_error) {
685 ret = -EROFS;
686 goto out_unlock;
687 }
688
689 /* We expect the write-buffer to be empty on entry */
690 ubifs_assert(c, !wbuf->used);
691
692 for (i = 0; ; i++) {
693 int space_before, space_after;
694
695 /* Maybe continue after find and break before find */
696 lp.lnum = -1;
697
698 cond_resched();
699
700 /* Give the commit an opportunity to run */
701 if (ubifs_gc_should_commit(c)) {
702 ret = -EAGAIN;
703 break;
704 }
705
706 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
707 /*
708 * We've done enough iterations. Indexing LEBs were
709 * moved and will be available after the commit.
710 */
711 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
712 ubifs_commit_required(c);
713 ret = -EAGAIN;
714 break;
715 }
716
717 if (i > HARD_LEBS_LIMIT) {
718 /*
719 * We've moved too many LEBs and have not made
720 * progress, give up.
721 */
722 dbg_gc("hard limit, -ENOSPC");
723 ret = -ENOSPC;
724 break;
725 }
726
727 /*
728 * Empty and freeable LEBs can turn up while we waited for
729 * the wbuf lock, or while we have been running GC. In that
730 * case, we should just return one of those instead of
731 * continuing to GC dirty LEBs. Hence we request
732 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
733 */
734 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
735 if (ret) {
736 if (ret == -ENOSPC)
737 dbg_gc("no more dirty LEBs");
738 break;
739 }
740
741 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
742 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
743 min_space);
744
745 space_before = c->leb_size - wbuf->offs - wbuf->used;
746 if (wbuf->lnum == -1)
747 space_before = 0;
748
749 ret = ubifs_garbage_collect_leb(c, &lp);
750 if (ret < 0) {
751 if (ret == -EAGAIN) {
752 /*
753 * This is not error, so we have to return the
754 * LEB to lprops. But if 'ubifs_return_leb()'
755 * fails, its failure code is propagated to the
756 * caller instead of the original '-EAGAIN'.
757 */
758 err = ubifs_return_leb(c, lp.lnum);
759 if (err) {
760 ret = err;
761 /*
762 * An LEB may always be "taken",
763 * so setting ubifs to read-only,
764 * and then executing sync wbuf will
765 * return -EROFS and enter the "out"
766 * error branch.
767 */
768 ubifs_ro_mode(c, ret);
769 }
770 /* Maybe double return LEB if goto out */
771 lp.lnum = -1;
772 break;
773 }
774 goto out;
775 }
776
777 if (ret == LEB_FREED) {
778 /* An LEB has been freed and is ready for use */
779 dbg_gc("LEB %d freed, return", lp.lnum);
780 ret = lp.lnum;
781 break;
782 }
783
784 if (ret == LEB_FREED_IDX) {
785 /*
786 * This was an indexing LEB and it cannot be
787 * immediately used. And instead of requesting the
788 * commit straight away, we try to garbage collect some
789 * more.
790 */
791 dbg_gc("indexing LEB %d freed, continue", lp.lnum);
792 continue;
793 }
794
795 ubifs_assert(c, ret == LEB_RETAINED);
796 space_after = c->leb_size - wbuf->offs - wbuf->used;
797 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
798 space_after - space_before);
799
800 if (space_after > space_before) {
801 /* GC makes progress, keep working */
802 min_space >>= 1;
803 if (min_space < c->dead_wm)
804 min_space = c->dead_wm;
805 continue;
806 }
807
808 dbg_gc("did not make progress");
809
810 /*
811 * GC moved an LEB bud have not done any progress. This means
812 * that the previous GC head LEB contained too few free space
813 * and the LEB which was GC'ed contained only large nodes which
814 * did not fit that space.
815 *
816 * We can do 2 things:
817 * 1. pick another LEB in a hope it'll contain a small node
818 * which will fit the space we have at the end of current GC
819 * head LEB, but there is no guarantee, so we try this out
820 * unless we have already been working for too long;
821 * 2. request an LEB with more dirty space, which will force
822 * 'ubifs_find_dirty_leb()' to start scanning the lprops
823 * table, instead of just picking one from the heap
824 * (previously it already picked the dirtiest LEB).
825 */
826 if (i < SOFT_LEBS_LIMIT) {
827 dbg_gc("try again");
828 continue;
829 }
830
831 min_space <<= 1;
832 if (min_space > c->dark_wm)
833 min_space = c->dark_wm;
834 dbg_gc("set min. space to %d", min_space);
835 }
836
837 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
838 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
839 ubifs_commit_required(c);
840 ret = -EAGAIN;
841 }
842
843 err = ubifs_wbuf_sync_nolock(wbuf);
844 if (!err)
845 err = ubifs_leb_unmap(c, c->gc_lnum);
846 if (err) {
847 ret = err;
848 goto out;
849 }
850out_unlock:
851 mutex_unlock(&wbuf->io_mutex);
852 return ret;
853
854out:
855 ubifs_assert(c, ret < 0);
856 ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN);
857 ubifs_wbuf_sync_nolock(wbuf);
858 ubifs_ro_mode(c, ret);
859 mutex_unlock(&wbuf->io_mutex);
860 if (lp.lnum != -1)
861 ubifs_return_leb(c, lp.lnum);
862 return ret;
863}
864
865/**
866 * ubifs_gc_start_commit - garbage collection at start of commit.
867 * @c: UBIFS file-system description object
868 *
869 * If a LEB has only dirty and free space, then we may safely unmap it and make
870 * it free. Note, we cannot do this with indexing LEBs because dirty space may
871 * correspond index nodes that are required for recovery. In that case, the
872 * LEB cannot be unmapped until after the next commit.
873 *
874 * This function returns %0 upon success and a negative error code upon failure.
875 */
876int ubifs_gc_start_commit(struct ubifs_info *c)
877{
878 struct ubifs_gced_idx_leb *idx_gc;
879 const struct ubifs_lprops *lp;
880 int err = 0, flags;
881
882 ubifs_get_lprops(c);
883
884 /*
885 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
886 * wbufs are sync'd before this, which is done in 'do_commit()'.
887 */
888 while (1) {
889 lp = ubifs_fast_find_freeable(c);
890 if (!lp)
891 break;
892 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
893 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
894 err = ubifs_leb_unmap(c, lp->lnum);
895 if (err)
896 goto out;
897 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
898 if (IS_ERR(lp)) {
899 err = PTR_ERR(lp);
900 goto out;
901 }
902 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
903 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
904 }
905
906 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
907 list_for_each_entry(idx_gc, &c->idx_gc, list)
908 idx_gc->unmap = 1;
909
910 /* Record index freeable LEBs for unmapping after commit */
911 while (1) {
912 lp = ubifs_fast_find_frdi_idx(c);
913 if (IS_ERR(lp)) {
914 err = PTR_ERR(lp);
915 goto out;
916 }
917 if (!lp)
918 break;
919 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
920 if (!idx_gc) {
921 err = -ENOMEM;
922 goto out;
923 }
924 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
925 ubifs_assert(c, lp->flags & LPROPS_INDEX);
926 /* Don't release the LEB until after the next commit */
927 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
928 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
929 if (IS_ERR(lp)) {
930 err = PTR_ERR(lp);
931 kfree(idx_gc);
932 goto out;
933 }
934 ubifs_assert(c, lp->flags & LPROPS_TAKEN);
935 ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
936 idx_gc->lnum = lp->lnum;
937 idx_gc->unmap = 1;
938 list_add(&idx_gc->list, &c->idx_gc);
939 }
940out:
941 ubifs_release_lprops(c);
942 return err;
943}
944
945/**
946 * ubifs_gc_end_commit - garbage collection at end of commit.
947 * @c: UBIFS file-system description object
948 *
949 * This function completes out-of-place garbage collection of index LEBs.
950 */
951int ubifs_gc_end_commit(struct ubifs_info *c)
952{
953 struct ubifs_gced_idx_leb *idx_gc, *tmp;
954 struct ubifs_wbuf *wbuf;
955 int err = 0;
956
957 wbuf = &c->jheads[GCHD].wbuf;
958 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
959 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
960 if (idx_gc->unmap) {
961 dbg_gc("LEB %d", idx_gc->lnum);
962 err = ubifs_leb_unmap(c, idx_gc->lnum);
963 if (err)
964 goto out;
965 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
966 LPROPS_NC, 0, LPROPS_TAKEN, -1);
967 if (err)
968 goto out;
969 list_del(&idx_gc->list);
970 kfree(idx_gc);
971 }
972out:
973 mutex_unlock(&wbuf->io_mutex);
974 return err;
975}
976
977/**
978 * ubifs_destroy_idx_gc - destroy idx_gc list.
979 * @c: UBIFS file-system description object
980 *
981 * This function destroys the @c->idx_gc list. It is called when unmounting
982 * so locks are not needed. Returns zero in case of success and a negative
983 * error code in case of failure.
984 */
985void ubifs_destroy_idx_gc(struct ubifs_info *c)
986{
987 while (!list_empty(&c->idx_gc)) {
988 struct ubifs_gced_idx_leb *idx_gc;
989
990 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
991 list);
992 c->idx_gc_cnt -= 1;
993 list_del(&idx_gc->list);
994 kfree(idx_gc);
995 }
996}
997
998/**
999 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1000 * @c: UBIFS file-system description object
1001 *
1002 * Called during start commit so locks are not needed.
1003 */
1004int ubifs_get_idx_gc_leb(struct ubifs_info *c)
1005{
1006 struct ubifs_gced_idx_leb *idx_gc;
1007 int lnum;
1008
1009 if (list_empty(&c->idx_gc))
1010 return -ENOSPC;
1011 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
1012 lnum = idx_gc->lnum;
1013 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
1014 list_del(&idx_gc->list);
1015 kfree(idx_gc);
1016 return lnum;
1017}