Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * This file is part of UBIFS.
  3 *
  4 * Copyright (C) 2006-2008 Nokia Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published by
  8 * the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc., 51
 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18 *
 19 * Authors: Adrian Hunter
 20 *          Artem Bityutskiy (Битюцкий Артём)
 21 */
 22
 23/*
 24 * This file implements garbage collection. The procedure for garbage collection
 25 * is different depending on whether a LEB as an index LEB (contains index
 26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
 27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
 28 * nodes to the journal, at which point the garbage-collected LEB is free to be
 29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
 30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
 31 * to be reused. Garbage collection will cause the number of dirty index nodes
 32 * to grow, however sufficient space is reserved for the index to ensure the
 33 * commit will never run out of space.
 34 *
 35 * Notes about dead watermark. At current UBIFS implementation we assume that
 36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
 37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
 38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
 39 * Garbage Collector has to synchronize the GC head's write buffer before
 40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
 41 * actually reclaim even very small pieces of dirty space by garbage collecting
 42 * enough dirty LEBs, but we do not bother doing this at this implementation.
 43 *
 44 * Notes about dark watermark. The results of GC work depends on how big are
 45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
 46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
 47 * have to waste large pieces of free space at the end of LEB B, because nodes
 48 * from LEB A would not fit. And the worst situation is when all nodes are of
 49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
 50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
 51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
 52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
 53 * good, and GC takes extra care when moving them.
 54 */
 55
 56#include <linux/slab.h>
 57#include <linux/pagemap.h>
 58#include <linux/list_sort.h>
 59#include "ubifs.h"
 60
 61/*
 62 * GC may need to move more than one LEB to make progress. The below constants
 63 * define "soft" and "hard" limits on the number of LEBs the garbage collector
 64 * may move.
 65 */
 66#define SOFT_LEBS_LIMIT 4
 67#define HARD_LEBS_LIMIT 32
 68
 69/**
 70 * switch_gc_head - switch the garbage collection journal head.
 71 * @c: UBIFS file-system description object
 72 * @buf: buffer to write
 73 * @len: length of the buffer to write
 74 * @lnum: LEB number written is returned here
 75 * @offs: offset written is returned here
 76 *
 77 * This function switch the GC head to the next LEB which is reserved in
 78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
 79 * and other negative error code in case of failures.
 80 */
 81static int switch_gc_head(struct ubifs_info *c)
 82{
 83	int err, gc_lnum = c->gc_lnum;
 84	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 85
 86	ubifs_assert(gc_lnum != -1);
 87	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
 88	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
 89	       c->leb_size - wbuf->offs - wbuf->used);
 90
 91	err = ubifs_wbuf_sync_nolock(wbuf);
 92	if (err)
 93		return err;
 94
 95	/*
 96	 * The GC write-buffer was synchronized, we may safely unmap
 97	 * 'c->gc_lnum'.
 98	 */
 99	err = ubifs_leb_unmap(c, gc_lnum);
100	if (err)
101		return err;
102
103	err = ubifs_wbuf_sync_nolock(wbuf);
104	if (err)
105		return err;
106
107	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
108	if (err)
109		return err;
110
111	c->gc_lnum = -1;
112	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
113	return err;
114}
115
116/**
117 * data_nodes_cmp - compare 2 data nodes.
118 * @priv: UBIFS file-system description object
119 * @a: first data node
120 * @a: second data node
121 *
122 * This function compares data nodes @a and @b. Returns %1 if @a has greater
123 * inode or block number, and %-1 otherwise.
124 */
125static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b)
 
126{
127	ino_t inuma, inumb;
128	struct ubifs_info *c = priv;
129	struct ubifs_scan_node *sa, *sb;
130
131	cond_resched();
132	if (a == b)
133		return 0;
134
135	sa = list_entry(a, struct ubifs_scan_node, list);
136	sb = list_entry(b, struct ubifs_scan_node, list);
137
138	ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY);
139	ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY);
140	ubifs_assert(sa->type == UBIFS_DATA_NODE);
141	ubifs_assert(sb->type == UBIFS_DATA_NODE);
142
143	inuma = key_inum(c, &sa->key);
144	inumb = key_inum(c, &sb->key);
145
146	if (inuma == inumb) {
147		unsigned int blka = key_block(c, &sa->key);
148		unsigned int blkb = key_block(c, &sb->key);
149
150		if (blka <= blkb)
151			return -1;
152	} else if (inuma <= inumb)
153		return -1;
154
155	return 1;
156}
157
158/*
159 * nondata_nodes_cmp - compare 2 non-data nodes.
160 * @priv: UBIFS file-system description object
161 * @a: first node
162 * @a: second node
163 *
164 * This function compares nodes @a and @b. It makes sure that inode nodes go
165 * first and sorted by length in descending order. Directory entry nodes go
166 * after inode nodes and are sorted in ascending hash valuer order.
167 */
168static int nondata_nodes_cmp(void *priv, struct list_head *a,
169			     struct list_head *b)
170{
171	ino_t inuma, inumb;
172	struct ubifs_info *c = priv;
173	struct ubifs_scan_node *sa, *sb;
174
175	cond_resched();
176	if (a == b)
177		return 0;
178
179	sa = list_entry(a, struct ubifs_scan_node, list);
180	sb = list_entry(b, struct ubifs_scan_node, list);
181
182	ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY &&
183		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
184	ubifs_assert(sa->type != UBIFS_DATA_NODE &&
185		     sb->type != UBIFS_DATA_NODE);
186
187	/* Inodes go before directory entries */
188	if (sa->type == UBIFS_INO_NODE) {
189		if (sb->type == UBIFS_INO_NODE)
190			return sb->len - sa->len;
191		return -1;
192	}
193	if (sb->type == UBIFS_INO_NODE)
194		return 1;
195
196	ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY ||
197		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
198	ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY ||
199		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
200	ubifs_assert(sa->type == UBIFS_DENT_NODE ||
201		     sa->type == UBIFS_XENT_NODE);
202	ubifs_assert(sb->type == UBIFS_DENT_NODE ||
203		     sb->type == UBIFS_XENT_NODE);
204
205	inuma = key_inum(c, &sa->key);
206	inumb = key_inum(c, &sb->key);
207
208	if (inuma == inumb) {
209		uint32_t hasha = key_hash(c, &sa->key);
210		uint32_t hashb = key_hash(c, &sb->key);
211
212		if (hasha <= hashb)
213			return -1;
214	} else if (inuma <= inumb)
215		return -1;
216
217	return 1;
218}
219
220/**
221 * sort_nodes - sort nodes for GC.
222 * @c: UBIFS file-system description object
223 * @sleb: describes nodes to sort and contains the result on exit
224 * @nondata: contains non-data nodes on exit
225 * @min: minimum node size is returned here
226 *
227 * This function sorts the list of inodes to garbage collect. First of all, it
228 * kills obsolete nodes and separates data and non-data nodes to the
229 * @sleb->nodes and @nondata lists correspondingly.
230 *
231 * Data nodes are then sorted in block number order - this is important for
232 * bulk-read; data nodes with lower inode number go before data nodes with
233 * higher inode number, and data nodes with lower block number go before data
234 * nodes with higher block number;
235 *
236 * Non-data nodes are sorted as follows.
237 *   o First go inode nodes - they are sorted in descending length order.
238 *   o Then go directory entry nodes - they are sorted in hash order, which
239 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
240 *     inode number go before direntry nodes with higher parent inode number,
241 *     and direntry nodes with lower name hash values go before direntry nodes
242 *     with higher name hash values.
243 *
244 * This function returns zero in case of success and a negative error code in
245 * case of failure.
246 */
247static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
248		      struct list_head *nondata, int *min)
249{
250	int err;
251	struct ubifs_scan_node *snod, *tmp;
252
253	*min = INT_MAX;
254
255	/* Separate data nodes and non-data nodes */
256	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
257		ubifs_assert(snod->type == UBIFS_INO_NODE  ||
258			     snod->type == UBIFS_DATA_NODE ||
259			     snod->type == UBIFS_DENT_NODE ||
260			     snod->type == UBIFS_XENT_NODE ||
261			     snod->type == UBIFS_TRUN_NODE);
 
262
263		if (snod->type != UBIFS_INO_NODE  &&
264		    snod->type != UBIFS_DATA_NODE &&
265		    snod->type != UBIFS_DENT_NODE &&
266		    snod->type != UBIFS_XENT_NODE) {
267			/* Probably truncation node, zap it */
268			list_del(&snod->list);
269			kfree(snod);
270			continue;
271		}
272
273		ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY ||
274			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
275			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
276			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
277
278		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
279					 snod->offs, 0);
280		if (err < 0)
281			return err;
282
283		if (!err) {
284			/* The node is obsolete, remove it from the list */
285			list_del(&snod->list);
286			kfree(snod);
287			continue;
288		}
289
290		if (snod->len < *min)
291			*min = snod->len;
292
293		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
294			list_move_tail(&snod->list, nondata);
295	}
296
297	/* Sort data and non-data nodes */
298	list_sort(c, &sleb->nodes, &data_nodes_cmp);
299	list_sort(c, nondata, &nondata_nodes_cmp);
300
301	err = dbg_check_data_nodes_order(c, &sleb->nodes);
302	if (err)
303		return err;
304	err = dbg_check_nondata_nodes_order(c, nondata);
305	if (err)
306		return err;
307	return 0;
308}
309
310/**
311 * move_node - move a node.
312 * @c: UBIFS file-system description object
313 * @sleb: describes the LEB to move nodes from
314 * @snod: the mode to move
315 * @wbuf: write-buffer to move node to
316 *
317 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
318 * destroys @snod. Returns zero in case of success and a negative error code in
319 * case of failure.
320 */
321static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
322		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
323{
324	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
325
326	cond_resched();
327	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
328	if (err)
329		return err;
330
331	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
332				snod->offs, new_lnum, new_offs,
333				snod->len);
334	list_del(&snod->list);
335	kfree(snod);
336	return err;
337}
338
339/**
340 * move_nodes - move nodes.
341 * @c: UBIFS file-system description object
342 * @sleb: describes the LEB to move nodes from
343 *
344 * This function moves valid nodes from data LEB described by @sleb to the GC
345 * journal head. This function returns zero in case of success, %-EAGAIN if
346 * commit is required, and other negative error codes in case of other
347 * failures.
348 */
349static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
350{
351	int err, min;
352	LIST_HEAD(nondata);
353	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
354
355	if (wbuf->lnum == -1) {
356		/*
357		 * The GC journal head is not set, because it is the first GC
358		 * invocation since mount.
359		 */
360		err = switch_gc_head(c);
361		if (err)
362			return err;
363	}
364
365	err = sort_nodes(c, sleb, &nondata, &min);
366	if (err)
367		goto out;
368
369	/* Write nodes to their new location. Use the first-fit strategy */
370	while (1) {
371		int avail;
372		struct ubifs_scan_node *snod, *tmp;
373
374		/* Move data nodes */
375		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
376			avail = c->leb_size - wbuf->offs - wbuf->used;
 
377			if  (snod->len > avail)
378				/*
379				 * Do not skip data nodes in order to optimize
380				 * bulk-read.
381				 */
382				break;
383
 
 
 
 
 
384			err = move_node(c, sleb, snod, wbuf);
385			if (err)
386				goto out;
 
387		}
388
389		/* Move non-data nodes */
390		list_for_each_entry_safe(snod, tmp, &nondata, list) {
391			avail = c->leb_size - wbuf->offs - wbuf->used;
 
392			if (avail < min)
393				break;
394
395			if  (snod->len > avail) {
396				/*
397				 * Keep going only if this is an inode with
398				 * some data. Otherwise stop and switch the GC
399				 * head. IOW, we assume that data-less inode
400				 * nodes and direntry nodes are roughly of the
401				 * same size.
402				 */
403				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
404				    snod->len == UBIFS_INO_NODE_SZ)
405					break;
406				continue;
407			}
408
 
 
 
 
 
409			err = move_node(c, sleb, snod, wbuf);
410			if (err)
411				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
412		}
413
414		if (list_empty(&sleb->nodes) && list_empty(&nondata))
415			break;
416
417		/*
418		 * Waste the rest of the space in the LEB and switch to the
419		 * next LEB.
420		 */
421		err = switch_gc_head(c);
422		if (err)
423			goto out;
424	}
425
426	return 0;
427
428out:
429	list_splice_tail(&nondata, &sleb->nodes);
430	return err;
431}
432
433/**
434 * gc_sync_wbufs - sync write-buffers for GC.
435 * @c: UBIFS file-system description object
436 *
437 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
438 * be in a write-buffer instead. That is, a node could be written to a
439 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
440 * erased before the write-buffer is sync'd and then there is an unclean
441 * unmount, then an existing node is lost. To avoid this, we sync all
442 * write-buffers.
443 *
444 * This function returns %0 on success or a negative error code on failure.
445 */
446static int gc_sync_wbufs(struct ubifs_info *c)
447{
448	int err, i;
449
450	for (i = 0; i < c->jhead_cnt; i++) {
451		if (i == GCHD)
452			continue;
453		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
454		if (err)
455			return err;
456	}
457	return 0;
458}
459
460/**
461 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
462 * @c: UBIFS file-system description object
463 * @lp: describes the LEB to garbage collect
464 *
465 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
466 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
467 * required, and other negative error codes in case of failures.
468 */
469int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
470{
471	struct ubifs_scan_leb *sleb;
472	struct ubifs_scan_node *snod;
473	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
474	int err = 0, lnum = lp->lnum;
475
476	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
477		     c->need_recovery);
478	ubifs_assert(c->gc_lnum != lnum);
479	ubifs_assert(wbuf->lnum != lnum);
480
481	if (lp->free + lp->dirty == c->leb_size) {
482		/* Special case - a free LEB  */
483		dbg_gc("LEB %d is free, return it", lp->lnum);
484		ubifs_assert(!(lp->flags & LPROPS_INDEX));
485
486		if (lp->free != c->leb_size) {
487			/*
488			 * Write buffers must be sync'd before unmapping
489			 * freeable LEBs, because one of them may contain data
490			 * which obsoletes something in 'lp->pnum'.
491			 */
492			err = gc_sync_wbufs(c);
493			if (err)
494				return err;
495			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
496						  0, 0, 0, 0);
497			if (err)
498				return err;
499		}
500		err = ubifs_leb_unmap(c, lp->lnum);
501		if (err)
502			return err;
503
504		if (c->gc_lnum == -1) {
505			c->gc_lnum = lnum;
506			return LEB_RETAINED;
507		}
508
509		return LEB_FREED;
510	}
511
512	/*
513	 * We scan the entire LEB even though we only really need to scan up to
514	 * (c->leb_size - lp->free).
515	 */
516	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
517	if (IS_ERR(sleb))
518		return PTR_ERR(sleb);
519
520	ubifs_assert(!list_empty(&sleb->nodes));
521	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
522
523	if (snod->type == UBIFS_IDX_NODE) {
524		struct ubifs_gced_idx_leb *idx_gc;
525
526		dbg_gc("indexing LEB %d (free %d, dirty %d)",
527		       lnum, lp->free, lp->dirty);
528		list_for_each_entry(snod, &sleb->nodes, list) {
529			struct ubifs_idx_node *idx = snod->node;
530			int level = le16_to_cpu(idx->level);
531
532			ubifs_assert(snod->type == UBIFS_IDX_NODE);
533			key_read(c, ubifs_idx_key(c, idx), &snod->key);
534			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
535						   snod->offs);
536			if (err)
537				goto out;
538		}
539
540		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
541		if (!idx_gc) {
542			err = -ENOMEM;
543			goto out;
544		}
545
546		idx_gc->lnum = lnum;
547		idx_gc->unmap = 0;
548		list_add(&idx_gc->list, &c->idx_gc);
549
550		/*
551		 * Don't release the LEB until after the next commit, because
552		 * it may contain data which is needed for recovery. So
553		 * although we freed this LEB, it will become usable only after
554		 * the commit.
555		 */
556		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
557					  LPROPS_INDEX, 1);
558		if (err)
559			goto out;
560		err = LEB_FREED_IDX;
561	} else {
562		dbg_gc("data LEB %d (free %d, dirty %d)",
563		       lnum, lp->free, lp->dirty);
564
565		err = move_nodes(c, sleb);
566		if (err)
567			goto out_inc_seq;
568
569		err = gc_sync_wbufs(c);
570		if (err)
571			goto out_inc_seq;
572
573		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
574		if (err)
575			goto out_inc_seq;
576
577		/* Allow for races with TNC */
578		c->gced_lnum = lnum;
579		smp_wmb();
580		c->gc_seq += 1;
581		smp_wmb();
582
583		if (c->gc_lnum == -1) {
584			c->gc_lnum = lnum;
585			err = LEB_RETAINED;
586		} else {
587			err = ubifs_wbuf_sync_nolock(wbuf);
588			if (err)
589				goto out;
590
591			err = ubifs_leb_unmap(c, lnum);
592			if (err)
593				goto out;
594
595			err = LEB_FREED;
596		}
597	}
598
599out:
600	ubifs_scan_destroy(sleb);
601	return err;
602
603out_inc_seq:
604	/* We may have moved at least some nodes so allow for races with TNC */
605	c->gced_lnum = lnum;
606	smp_wmb();
607	c->gc_seq += 1;
608	smp_wmb();
609	goto out;
610}
611
612/**
613 * ubifs_garbage_collect - UBIFS garbage collector.
614 * @c: UBIFS file-system description object
615 * @anyway: do GC even if there are free LEBs
616 *
617 * This function does out-of-place garbage collection. The return codes are:
618 *   o positive LEB number if the LEB has been freed and may be used;
619 *   o %-EAGAIN if the caller has to run commit;
620 *   o %-ENOSPC if GC failed to make any progress;
621 *   o other negative error codes in case of other errors.
622 *
623 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
624 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
625 * commit may be required. But commit cannot be run from inside GC, because the
626 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
627 * And this error code means that the caller has to run commit, and re-run GC
628 * if there is still no free space.
629 *
630 * There are many reasons why this function may return %-EAGAIN:
631 * o the log is full and there is no space to write an LEB reference for
632 *   @c->gc_lnum;
633 * o the journal is too large and exceeds size limitations;
634 * o GC moved indexing LEBs, but they can be used only after the commit;
635 * o the shrinker fails to find clean znodes to free and requests the commit;
636 * o etc.
637 *
638 * Note, if the file-system is close to be full, this function may return
639 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
640 * the function. E.g., this happens if the limits on the journal size are too
641 * tough and GC writes too much to the journal before an LEB is freed. This
642 * might also mean that the journal is too large, and the TNC becomes to big,
643 * so that the shrinker is constantly called, finds not clean znodes to free,
644 * and requests commit. Well, this may also happen if the journal is all right,
645 * but another kernel process consumes too much memory. Anyway, infinite
646 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
647 */
648int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
649{
650	int i, err, ret, min_space = c->dead_wm;
651	struct ubifs_lprops lp;
652	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
653
654	ubifs_assert_cmt_locked(c);
655	ubifs_assert(!c->ro_media && !c->ro_mount);
656
657	if (ubifs_gc_should_commit(c))
658		return -EAGAIN;
659
660	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
661
662	if (c->ro_error) {
663		ret = -EROFS;
664		goto out_unlock;
665	}
666
667	/* We expect the write-buffer to be empty on entry */
668	ubifs_assert(!wbuf->used);
669
670	for (i = 0; ; i++) {
671		int space_before, space_after;
672
 
 
 
673		cond_resched();
674
675		/* Give the commit an opportunity to run */
676		if (ubifs_gc_should_commit(c)) {
677			ret = -EAGAIN;
678			break;
679		}
680
681		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
682			/*
683			 * We've done enough iterations. Indexing LEBs were
684			 * moved and will be available after the commit.
685			 */
686			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
687			ubifs_commit_required(c);
688			ret = -EAGAIN;
689			break;
690		}
691
692		if (i > HARD_LEBS_LIMIT) {
693			/*
694			 * We've moved too many LEBs and have not made
695			 * progress, give up.
696			 */
697			dbg_gc("hard limit, -ENOSPC");
698			ret = -ENOSPC;
699			break;
700		}
701
702		/*
703		 * Empty and freeable LEBs can turn up while we waited for
704		 * the wbuf lock, or while we have been running GC. In that
705		 * case, we should just return one of those instead of
706		 * continuing to GC dirty LEBs. Hence we request
707		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
708		 */
709		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
710		if (ret) {
711			if (ret == -ENOSPC)
712				dbg_gc("no more dirty LEBs");
713			break;
714		}
715
716		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
717		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
718		       min_space);
719
720		space_before = c->leb_size - wbuf->offs - wbuf->used;
721		if (wbuf->lnum == -1)
722			space_before = 0;
723
724		ret = ubifs_garbage_collect_leb(c, &lp);
725		if (ret < 0) {
726			if (ret == -EAGAIN) {
727				/*
728				 * This is not error, so we have to return the
729				 * LEB to lprops. But if 'ubifs_return_leb()'
730				 * fails, its failure code is propagated to the
731				 * caller instead of the original '-EAGAIN'.
732				 */
733				err = ubifs_return_leb(c, lp.lnum);
734				if (err)
735					ret = err;
 
 
 
 
 
 
 
 
 
 
 
736				break;
737			}
738			goto out;
739		}
740
741		if (ret == LEB_FREED) {
742			/* An LEB has been freed and is ready for use */
743			dbg_gc("LEB %d freed, return", lp.lnum);
744			ret = lp.lnum;
745			break;
746		}
747
748		if (ret == LEB_FREED_IDX) {
749			/*
750			 * This was an indexing LEB and it cannot be
751			 * immediately used. And instead of requesting the
752			 * commit straight away, we try to garbage collect some
753			 * more.
754			 */
755			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
756			continue;
757		}
758
759		ubifs_assert(ret == LEB_RETAINED);
760		space_after = c->leb_size - wbuf->offs - wbuf->used;
761		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
762		       space_after - space_before);
763
764		if (space_after > space_before) {
765			/* GC makes progress, keep working */
766			min_space >>= 1;
767			if (min_space < c->dead_wm)
768				min_space = c->dead_wm;
769			continue;
770		}
771
772		dbg_gc("did not make progress");
773
774		/*
775		 * GC moved an LEB bud have not done any progress. This means
776		 * that the previous GC head LEB contained too few free space
777		 * and the LEB which was GC'ed contained only large nodes which
778		 * did not fit that space.
779		 *
780		 * We can do 2 things:
781		 * 1. pick another LEB in a hope it'll contain a small node
782		 *    which will fit the space we have at the end of current GC
783		 *    head LEB, but there is no guarantee, so we try this out
784		 *    unless we have already been working for too long;
785		 * 2. request an LEB with more dirty space, which will force
786		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
787		 *    table, instead of just picking one from the heap
788		 *    (previously it already picked the dirtiest LEB).
789		 */
790		if (i < SOFT_LEBS_LIMIT) {
791			dbg_gc("try again");
792			continue;
793		}
794
795		min_space <<= 1;
796		if (min_space > c->dark_wm)
797			min_space = c->dark_wm;
798		dbg_gc("set min. space to %d", min_space);
799	}
800
801	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
802		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
803		ubifs_commit_required(c);
804		ret = -EAGAIN;
805	}
806
807	err = ubifs_wbuf_sync_nolock(wbuf);
808	if (!err)
809		err = ubifs_leb_unmap(c, c->gc_lnum);
810	if (err) {
811		ret = err;
812		goto out;
813	}
814out_unlock:
815	mutex_unlock(&wbuf->io_mutex);
816	return ret;
817
818out:
819	ubifs_assert(ret < 0);
820	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
821	ubifs_wbuf_sync_nolock(wbuf);
822	ubifs_ro_mode(c, ret);
823	mutex_unlock(&wbuf->io_mutex);
824	ubifs_return_leb(c, lp.lnum);
 
825	return ret;
826}
827
828/**
829 * ubifs_gc_start_commit - garbage collection at start of commit.
830 * @c: UBIFS file-system description object
831 *
832 * If a LEB has only dirty and free space, then we may safely unmap it and make
833 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
834 * correspond index nodes that are required for recovery.  In that case, the
835 * LEB cannot be unmapped until after the next commit.
836 *
837 * This function returns %0 upon success and a negative error code upon failure.
838 */
839int ubifs_gc_start_commit(struct ubifs_info *c)
840{
841	struct ubifs_gced_idx_leb *idx_gc;
842	const struct ubifs_lprops *lp;
843	int err = 0, flags;
844
845	ubifs_get_lprops(c);
846
847	/*
848	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
849	 * wbufs are sync'd before this, which is done in 'do_commit()'.
850	 */
851	while (1) {
852		lp = ubifs_fast_find_freeable(c);
853		if (IS_ERR(lp)) {
854			err = PTR_ERR(lp);
855			goto out;
856		}
857		if (!lp)
858			break;
859		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
860		ubifs_assert(!(lp->flags & LPROPS_INDEX));
861		err = ubifs_leb_unmap(c, lp->lnum);
862		if (err)
863			goto out;
864		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
865		if (IS_ERR(lp)) {
866			err = PTR_ERR(lp);
867			goto out;
868		}
869		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
870		ubifs_assert(!(lp->flags & LPROPS_INDEX));
871	}
872
873	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
874	list_for_each_entry(idx_gc, &c->idx_gc, list)
875		idx_gc->unmap = 1;
876
877	/* Record index freeable LEBs for unmapping after commit */
878	while (1) {
879		lp = ubifs_fast_find_frdi_idx(c);
880		if (IS_ERR(lp)) {
881			err = PTR_ERR(lp);
882			goto out;
883		}
884		if (!lp)
885			break;
886		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
887		if (!idx_gc) {
888			err = -ENOMEM;
889			goto out;
890		}
891		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
892		ubifs_assert(lp->flags & LPROPS_INDEX);
893		/* Don't release the LEB until after the next commit */
894		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
895		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
896		if (IS_ERR(lp)) {
897			err = PTR_ERR(lp);
898			kfree(idx_gc);
899			goto out;
900		}
901		ubifs_assert(lp->flags & LPROPS_TAKEN);
902		ubifs_assert(!(lp->flags & LPROPS_INDEX));
903		idx_gc->lnum = lp->lnum;
904		idx_gc->unmap = 1;
905		list_add(&idx_gc->list, &c->idx_gc);
906	}
907out:
908	ubifs_release_lprops(c);
909	return err;
910}
911
912/**
913 * ubifs_gc_end_commit - garbage collection at end of commit.
914 * @c: UBIFS file-system description object
915 *
916 * This function completes out-of-place garbage collection of index LEBs.
917 */
918int ubifs_gc_end_commit(struct ubifs_info *c)
919{
920	struct ubifs_gced_idx_leb *idx_gc, *tmp;
921	struct ubifs_wbuf *wbuf;
922	int err = 0;
923
924	wbuf = &c->jheads[GCHD].wbuf;
925	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
926	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
927		if (idx_gc->unmap) {
928			dbg_gc("LEB %d", idx_gc->lnum);
929			err = ubifs_leb_unmap(c, idx_gc->lnum);
930			if (err)
931				goto out;
932			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
933					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
934			if (err)
935				goto out;
936			list_del(&idx_gc->list);
937			kfree(idx_gc);
938		}
939out:
940	mutex_unlock(&wbuf->io_mutex);
941	return err;
942}
943
944/**
945 * ubifs_destroy_idx_gc - destroy idx_gc list.
946 * @c: UBIFS file-system description object
947 *
948 * This function destroys the @c->idx_gc list. It is called when unmounting
949 * so locks are not needed. Returns zero in case of success and a negative
950 * error code in case of failure.
951 */
952void ubifs_destroy_idx_gc(struct ubifs_info *c)
953{
954	while (!list_empty(&c->idx_gc)) {
955		struct ubifs_gced_idx_leb *idx_gc;
956
957		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
958				    list);
959		c->idx_gc_cnt -= 1;
960		list_del(&idx_gc->list);
961		kfree(idx_gc);
962	}
963}
964
965/**
966 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
967 * @c: UBIFS file-system description object
968 *
969 * Called during start commit so locks are not needed.
970 */
971int ubifs_get_idx_gc_leb(struct ubifs_info *c)
972{
973	struct ubifs_gced_idx_leb *idx_gc;
974	int lnum;
975
976	if (list_empty(&c->idx_gc))
977		return -ENOSPC;
978	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
979	lnum = idx_gc->lnum;
980	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
981	list_del(&idx_gc->list);
982	kfree(idx_gc);
983	return lnum;
984}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * This file is part of UBIFS.
   4 *
   5 * Copyright (C) 2006-2008 Nokia Corporation.
   6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
   7 * Authors: Adrian Hunter
   8 *          Artem Bityutskiy (Битюцкий Артём)
   9 */
  10
  11/*
  12 * This file implements garbage collection. The procedure for garbage collection
  13 * is different depending on whether a LEB as an index LEB (contains index
  14 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
  15 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
  16 * nodes to the journal, at which point the garbage-collected LEB is free to be
  17 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
  18 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
  19 * to be reused. Garbage collection will cause the number of dirty index nodes
  20 * to grow, however sufficient space is reserved for the index to ensure the
  21 * commit will never run out of space.
  22 *
  23 * Notes about dead watermark. At current UBIFS implementation we assume that
  24 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
  25 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
  26 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
  27 * Garbage Collector has to synchronize the GC head's write buffer before
  28 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
  29 * actually reclaim even very small pieces of dirty space by garbage collecting
  30 * enough dirty LEBs, but we do not bother doing this at this implementation.
  31 *
  32 * Notes about dark watermark. The results of GC work depends on how big are
  33 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
  34 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
  35 * have to waste large pieces of free space at the end of LEB B, because nodes
  36 * from LEB A would not fit. And the worst situation is when all nodes are of
  37 * maximum size. So dark watermark is the amount of free + dirty space in LEB
  38 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
  39 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
  40 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so
  41 * good, and GC takes extra care when moving them.
  42 */
  43
  44#include <linux/slab.h>
  45#include <linux/pagemap.h>
  46#include <linux/list_sort.h>
  47#include "ubifs.h"
  48
  49/*
  50 * GC may need to move more than one LEB to make progress. The below constants
  51 * define "soft" and "hard" limits on the number of LEBs the garbage collector
  52 * may move.
  53 */
  54#define SOFT_LEBS_LIMIT 4
  55#define HARD_LEBS_LIMIT 32
  56
  57/**
  58 * switch_gc_head - switch the garbage collection journal head.
  59 * @c: UBIFS file-system description object
 
 
 
 
  60 *
  61 * This function switch the GC head to the next LEB which is reserved in
  62 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
  63 * and other negative error code in case of failures.
  64 */
  65static int switch_gc_head(struct ubifs_info *c)
  66{
  67	int err, gc_lnum = c->gc_lnum;
  68	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
  69
  70	ubifs_assert(c, gc_lnum != -1);
  71	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
  72	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
  73	       c->leb_size - wbuf->offs - wbuf->used);
  74
  75	err = ubifs_wbuf_sync_nolock(wbuf);
  76	if (err)
  77		return err;
  78
  79	/*
  80	 * The GC write-buffer was synchronized, we may safely unmap
  81	 * 'c->gc_lnum'.
  82	 */
  83	err = ubifs_leb_unmap(c, gc_lnum);
  84	if (err)
  85		return err;
  86
 
 
 
 
  87	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
  88	if (err)
  89		return err;
  90
  91	c->gc_lnum = -1;
  92	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0);
  93	return err;
  94}
  95
  96/**
  97 * data_nodes_cmp - compare 2 data nodes.
  98 * @priv: UBIFS file-system description object
  99 * @a: first data node
 100 * @b: second data node
 101 *
 102 * This function compares data nodes @a and @b. Returns %1 if @a has greater
 103 * inode or block number, and %-1 otherwise.
 104 */
 105static int data_nodes_cmp(void *priv, const struct list_head *a,
 106			  const struct list_head *b)
 107{
 108	ino_t inuma, inumb;
 109	struct ubifs_info *c = priv;
 110	struct ubifs_scan_node *sa, *sb;
 111
 112	cond_resched();
 113	if (a == b)
 114		return 0;
 115
 116	sa = list_entry(a, struct ubifs_scan_node, list);
 117	sb = list_entry(b, struct ubifs_scan_node, list);
 118
 119	ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY);
 120	ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY);
 121	ubifs_assert(c, sa->type == UBIFS_DATA_NODE);
 122	ubifs_assert(c, sb->type == UBIFS_DATA_NODE);
 123
 124	inuma = key_inum(c, &sa->key);
 125	inumb = key_inum(c, &sb->key);
 126
 127	if (inuma == inumb) {
 128		unsigned int blka = key_block(c, &sa->key);
 129		unsigned int blkb = key_block(c, &sb->key);
 130
 131		if (blka <= blkb)
 132			return -1;
 133	} else if (inuma <= inumb)
 134		return -1;
 135
 136	return 1;
 137}
 138
 139/*
 140 * nondata_nodes_cmp - compare 2 non-data nodes.
 141 * @priv: UBIFS file-system description object
 142 * @a: first node
 143 * @a: second node
 144 *
 145 * This function compares nodes @a and @b. It makes sure that inode nodes go
 146 * first and sorted by length in descending order. Directory entry nodes go
 147 * after inode nodes and are sorted in ascending hash valuer order.
 148 */
 149static int nondata_nodes_cmp(void *priv, const struct list_head *a,
 150			     const struct list_head *b)
 151{
 152	ino_t inuma, inumb;
 153	struct ubifs_info *c = priv;
 154	struct ubifs_scan_node *sa, *sb;
 155
 156	cond_resched();
 157	if (a == b)
 158		return 0;
 159
 160	sa = list_entry(a, struct ubifs_scan_node, list);
 161	sb = list_entry(b, struct ubifs_scan_node, list);
 162
 163	ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY &&
 164		     key_type(c, &sb->key) != UBIFS_DATA_KEY);
 165	ubifs_assert(c, sa->type != UBIFS_DATA_NODE &&
 166		     sb->type != UBIFS_DATA_NODE);
 167
 168	/* Inodes go before directory entries */
 169	if (sa->type == UBIFS_INO_NODE) {
 170		if (sb->type == UBIFS_INO_NODE)
 171			return sb->len - sa->len;
 172		return -1;
 173	}
 174	if (sb->type == UBIFS_INO_NODE)
 175		return 1;
 176
 177	ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY ||
 178		     key_type(c, &sa->key) == UBIFS_XENT_KEY);
 179	ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY ||
 180		     key_type(c, &sb->key) == UBIFS_XENT_KEY);
 181	ubifs_assert(c, sa->type == UBIFS_DENT_NODE ||
 182		     sa->type == UBIFS_XENT_NODE);
 183	ubifs_assert(c, sb->type == UBIFS_DENT_NODE ||
 184		     sb->type == UBIFS_XENT_NODE);
 185
 186	inuma = key_inum(c, &sa->key);
 187	inumb = key_inum(c, &sb->key);
 188
 189	if (inuma == inumb) {
 190		uint32_t hasha = key_hash(c, &sa->key);
 191		uint32_t hashb = key_hash(c, &sb->key);
 192
 193		if (hasha <= hashb)
 194			return -1;
 195	} else if (inuma <= inumb)
 196		return -1;
 197
 198	return 1;
 199}
 200
 201/**
 202 * sort_nodes - sort nodes for GC.
 203 * @c: UBIFS file-system description object
 204 * @sleb: describes nodes to sort and contains the result on exit
 205 * @nondata: contains non-data nodes on exit
 206 * @min: minimum node size is returned here
 207 *
 208 * This function sorts the list of inodes to garbage collect. First of all, it
 209 * kills obsolete nodes and separates data and non-data nodes to the
 210 * @sleb->nodes and @nondata lists correspondingly.
 211 *
 212 * Data nodes are then sorted in block number order - this is important for
 213 * bulk-read; data nodes with lower inode number go before data nodes with
 214 * higher inode number, and data nodes with lower block number go before data
 215 * nodes with higher block number;
 216 *
 217 * Non-data nodes are sorted as follows.
 218 *   o First go inode nodes - they are sorted in descending length order.
 219 *   o Then go directory entry nodes - they are sorted in hash order, which
 220 *     should supposedly optimize 'readdir()'. Direntry nodes with lower parent
 221 *     inode number go before direntry nodes with higher parent inode number,
 222 *     and direntry nodes with lower name hash values go before direntry nodes
 223 *     with higher name hash values.
 224 *
 225 * This function returns zero in case of success and a negative error code in
 226 * case of failure.
 227 */
 228static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 229		      struct list_head *nondata, int *min)
 230{
 231	int err;
 232	struct ubifs_scan_node *snod, *tmp;
 233
 234	*min = INT_MAX;
 235
 236	/* Separate data nodes and non-data nodes */
 237	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 238		ubifs_assert(c, snod->type == UBIFS_INO_NODE  ||
 239			     snod->type == UBIFS_DATA_NODE ||
 240			     snod->type == UBIFS_DENT_NODE ||
 241			     snod->type == UBIFS_XENT_NODE ||
 242			     snod->type == UBIFS_TRUN_NODE ||
 243			     snod->type == UBIFS_AUTH_NODE);
 244
 245		if (snod->type != UBIFS_INO_NODE  &&
 246		    snod->type != UBIFS_DATA_NODE &&
 247		    snod->type != UBIFS_DENT_NODE &&
 248		    snod->type != UBIFS_XENT_NODE) {
 249			/* Probably truncation node, zap it */
 250			list_del(&snod->list);
 251			kfree(snod);
 252			continue;
 253		}
 254
 255		ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY ||
 256			     key_type(c, &snod->key) == UBIFS_INO_KEY  ||
 257			     key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 258			     key_type(c, &snod->key) == UBIFS_XENT_KEY);
 259
 260		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
 261					 snod->offs, 0);
 262		if (err < 0)
 263			return err;
 264
 265		if (!err) {
 266			/* The node is obsolete, remove it from the list */
 267			list_del(&snod->list);
 268			kfree(snod);
 269			continue;
 270		}
 271
 272		if (snod->len < *min)
 273			*min = snod->len;
 274
 275		if (key_type(c, &snod->key) != UBIFS_DATA_KEY)
 276			list_move_tail(&snod->list, nondata);
 277	}
 278
 279	/* Sort data and non-data nodes */
 280	list_sort(c, &sleb->nodes, &data_nodes_cmp);
 281	list_sort(c, nondata, &nondata_nodes_cmp);
 282
 283	err = dbg_check_data_nodes_order(c, &sleb->nodes);
 284	if (err)
 285		return err;
 286	err = dbg_check_nondata_nodes_order(c, nondata);
 287	if (err)
 288		return err;
 289	return 0;
 290}
 291
 292/**
 293 * move_node - move a node.
 294 * @c: UBIFS file-system description object
 295 * @sleb: describes the LEB to move nodes from
 296 * @snod: the mode to move
 297 * @wbuf: write-buffer to move node to
 298 *
 299 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
 300 * destroys @snod. Returns zero in case of success and a negative error code in
 301 * case of failure.
 302 */
 303static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
 304		     struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf)
 305{
 306	int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used;
 307
 308	cond_resched();
 309	err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len);
 310	if (err)
 311		return err;
 312
 313	err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
 314				snod->offs, new_lnum, new_offs,
 315				snod->len);
 316	list_del(&snod->list);
 317	kfree(snod);
 318	return err;
 319}
 320
 321/**
 322 * move_nodes - move nodes.
 323 * @c: UBIFS file-system description object
 324 * @sleb: describes the LEB to move nodes from
 325 *
 326 * This function moves valid nodes from data LEB described by @sleb to the GC
 327 * journal head. This function returns zero in case of success, %-EAGAIN if
 328 * commit is required, and other negative error codes in case of other
 329 * failures.
 330 */
 331static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
 332{
 333	int err, min;
 334	LIST_HEAD(nondata);
 335	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 336
 337	if (wbuf->lnum == -1) {
 338		/*
 339		 * The GC journal head is not set, because it is the first GC
 340		 * invocation since mount.
 341		 */
 342		err = switch_gc_head(c);
 343		if (err)
 344			return err;
 345	}
 346
 347	err = sort_nodes(c, sleb, &nondata, &min);
 348	if (err)
 349		goto out;
 350
 351	/* Write nodes to their new location. Use the first-fit strategy */
 352	while (1) {
 353		int avail, moved = 0;
 354		struct ubifs_scan_node *snod, *tmp;
 355
 356		/* Move data nodes */
 357		list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
 358			avail = c->leb_size - wbuf->offs - wbuf->used -
 359					ubifs_auth_node_sz(c);
 360			if  (snod->len > avail)
 361				/*
 362				 * Do not skip data nodes in order to optimize
 363				 * bulk-read.
 364				 */
 365				break;
 366
 367			err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
 368						 snod->node, snod->len);
 369			if (err)
 370				goto out;
 371
 372			err = move_node(c, sleb, snod, wbuf);
 373			if (err)
 374				goto out;
 375			moved = 1;
 376		}
 377
 378		/* Move non-data nodes */
 379		list_for_each_entry_safe(snod, tmp, &nondata, list) {
 380			avail = c->leb_size - wbuf->offs - wbuf->used -
 381					ubifs_auth_node_sz(c);
 382			if (avail < min)
 383				break;
 384
 385			if  (snod->len > avail) {
 386				/*
 387				 * Keep going only if this is an inode with
 388				 * some data. Otherwise stop and switch the GC
 389				 * head. IOW, we assume that data-less inode
 390				 * nodes and direntry nodes are roughly of the
 391				 * same size.
 392				 */
 393				if (key_type(c, &snod->key) == UBIFS_DENT_KEY ||
 394				    snod->len == UBIFS_INO_NODE_SZ)
 395					break;
 396				continue;
 397			}
 398
 399			err = ubifs_shash_update(c, c->jheads[GCHD].log_hash,
 400						 snod->node, snod->len);
 401			if (err)
 402				goto out;
 403
 404			err = move_node(c, sleb, snod, wbuf);
 405			if (err)
 406				goto out;
 407			moved = 1;
 408		}
 409
 410		if (ubifs_authenticated(c) && moved) {
 411			struct ubifs_auth_node *auth;
 412
 413			auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS);
 414			if (!auth) {
 415				err = -ENOMEM;
 416				goto out;
 417			}
 418
 419			err = ubifs_prepare_auth_node(c, auth,
 420						c->jheads[GCHD].log_hash);
 421			if (err) {
 422				kfree(auth);
 423				goto out;
 424			}
 425
 426			err = ubifs_wbuf_write_nolock(wbuf, auth,
 427						      ubifs_auth_node_sz(c));
 428			if (err) {
 429				kfree(auth);
 430				goto out;
 431			}
 432
 433			ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c));
 434		}
 435
 436		if (list_empty(&sleb->nodes) && list_empty(&nondata))
 437			break;
 438
 439		/*
 440		 * Waste the rest of the space in the LEB and switch to the
 441		 * next LEB.
 442		 */
 443		err = switch_gc_head(c);
 444		if (err)
 445			goto out;
 446	}
 447
 448	return 0;
 449
 450out:
 451	list_splice_tail(&nondata, &sleb->nodes);
 452	return err;
 453}
 454
 455/**
 456 * gc_sync_wbufs - sync write-buffers for GC.
 457 * @c: UBIFS file-system description object
 458 *
 459 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
 460 * be in a write-buffer instead. That is, a node could be written to a
 461 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
 462 * erased before the write-buffer is sync'd and then there is an unclean
 463 * unmount, then an existing node is lost. To avoid this, we sync all
 464 * write-buffers.
 465 *
 466 * This function returns %0 on success or a negative error code on failure.
 467 */
 468static int gc_sync_wbufs(struct ubifs_info *c)
 469{
 470	int err, i;
 471
 472	for (i = 0; i < c->jhead_cnt; i++) {
 473		if (i == GCHD)
 474			continue;
 475		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
 476		if (err)
 477			return err;
 478	}
 479	return 0;
 480}
 481
 482/**
 483 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
 484 * @c: UBIFS file-system description object
 485 * @lp: describes the LEB to garbage collect
 486 *
 487 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
 488 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
 489 * required, and other negative error codes in case of failures.
 490 */
 491int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
 492{
 493	struct ubifs_scan_leb *sleb;
 494	struct ubifs_scan_node *snod;
 495	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 496	int err = 0, lnum = lp->lnum;
 497
 498	ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
 499		     c->need_recovery);
 500	ubifs_assert(c, c->gc_lnum != lnum);
 501	ubifs_assert(c, wbuf->lnum != lnum);
 502
 503	if (lp->free + lp->dirty == c->leb_size) {
 504		/* Special case - a free LEB  */
 505		dbg_gc("LEB %d is free, return it", lp->lnum);
 506		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
 507
 508		if (lp->free != c->leb_size) {
 509			/*
 510			 * Write buffers must be sync'd before unmapping
 511			 * freeable LEBs, because one of them may contain data
 512			 * which obsoletes something in 'lp->lnum'.
 513			 */
 514			err = gc_sync_wbufs(c);
 515			if (err)
 516				return err;
 517			err = ubifs_change_one_lp(c, lp->lnum, c->leb_size,
 518						  0, 0, 0, 0);
 519			if (err)
 520				return err;
 521		}
 522		err = ubifs_leb_unmap(c, lp->lnum);
 523		if (err)
 524			return err;
 525
 526		if (c->gc_lnum == -1) {
 527			c->gc_lnum = lnum;
 528			return LEB_RETAINED;
 529		}
 530
 531		return LEB_FREED;
 532	}
 533
 534	/*
 535	 * We scan the entire LEB even though we only really need to scan up to
 536	 * (c->leb_size - lp->free).
 537	 */
 538	sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0);
 539	if (IS_ERR(sleb))
 540		return PTR_ERR(sleb);
 541
 542	ubifs_assert(c, !list_empty(&sleb->nodes));
 543	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
 544
 545	if (snod->type == UBIFS_IDX_NODE) {
 546		struct ubifs_gced_idx_leb *idx_gc;
 547
 548		dbg_gc("indexing LEB %d (free %d, dirty %d)",
 549		       lnum, lp->free, lp->dirty);
 550		list_for_each_entry(snod, &sleb->nodes, list) {
 551			struct ubifs_idx_node *idx = snod->node;
 552			int level = le16_to_cpu(idx->level);
 553
 554			ubifs_assert(c, snod->type == UBIFS_IDX_NODE);
 555			key_read(c, ubifs_idx_key(c, idx), &snod->key);
 556			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
 557						   snod->offs);
 558			if (err)
 559				goto out;
 560		}
 561
 562		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 563		if (!idx_gc) {
 564			err = -ENOMEM;
 565			goto out;
 566		}
 567
 568		idx_gc->lnum = lnum;
 569		idx_gc->unmap = 0;
 570		list_add(&idx_gc->list, &c->idx_gc);
 571
 572		/*
 573		 * Don't release the LEB until after the next commit, because
 574		 * it may contain data which is needed for recovery. So
 575		 * although we freed this LEB, it will become usable only after
 576		 * the commit.
 577		 */
 578		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
 579					  LPROPS_INDEX, 1);
 580		if (err)
 581			goto out;
 582		err = LEB_FREED_IDX;
 583	} else {
 584		dbg_gc("data LEB %d (free %d, dirty %d)",
 585		       lnum, lp->free, lp->dirty);
 586
 587		err = move_nodes(c, sleb);
 588		if (err)
 589			goto out_inc_seq;
 590
 591		err = gc_sync_wbufs(c);
 592		if (err)
 593			goto out_inc_seq;
 594
 595		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
 596		if (err)
 597			goto out_inc_seq;
 598
 599		/* Allow for races with TNC */
 600		c->gced_lnum = lnum;
 601		smp_wmb();
 602		c->gc_seq += 1;
 603		smp_wmb();
 604
 605		if (c->gc_lnum == -1) {
 606			c->gc_lnum = lnum;
 607			err = LEB_RETAINED;
 608		} else {
 609			err = ubifs_wbuf_sync_nolock(wbuf);
 610			if (err)
 611				goto out;
 612
 613			err = ubifs_leb_unmap(c, lnum);
 614			if (err)
 615				goto out;
 616
 617			err = LEB_FREED;
 618		}
 619	}
 620
 621out:
 622	ubifs_scan_destroy(sleb);
 623	return err;
 624
 625out_inc_seq:
 626	/* We may have moved at least some nodes so allow for races with TNC */
 627	c->gced_lnum = lnum;
 628	smp_wmb();
 629	c->gc_seq += 1;
 630	smp_wmb();
 631	goto out;
 632}
 633
 634/**
 635 * ubifs_garbage_collect - UBIFS garbage collector.
 636 * @c: UBIFS file-system description object
 637 * @anyway: do GC even if there are free LEBs
 638 *
 639 * This function does out-of-place garbage collection. The return codes are:
 640 *   o positive LEB number if the LEB has been freed and may be used;
 641 *   o %-EAGAIN if the caller has to run commit;
 642 *   o %-ENOSPC if GC failed to make any progress;
 643 *   o other negative error codes in case of other errors.
 644 *
 645 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
 646 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
 647 * commit may be required. But commit cannot be run from inside GC, because the
 648 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
 649 * And this error code means that the caller has to run commit, and re-run GC
 650 * if there is still no free space.
 651 *
 652 * There are many reasons why this function may return %-EAGAIN:
 653 * o the log is full and there is no space to write an LEB reference for
 654 *   @c->gc_lnum;
 655 * o the journal is too large and exceeds size limitations;
 656 * o GC moved indexing LEBs, but they can be used only after the commit;
 657 * o the shrinker fails to find clean znodes to free and requests the commit;
 658 * o etc.
 659 *
 660 * Note, if the file-system is close to be full, this function may return
 661 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
 662 * the function. E.g., this happens if the limits on the journal size are too
 663 * tough and GC writes too much to the journal before an LEB is freed. This
 664 * might also mean that the journal is too large, and the TNC becomes to big,
 665 * so that the shrinker is constantly called, finds not clean znodes to free,
 666 * and requests commit. Well, this may also happen if the journal is all right,
 667 * but another kernel process consumes too much memory. Anyway, infinite
 668 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
 669 */
 670int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
 671{
 672	int i, err, ret, min_space = c->dead_wm;
 673	struct ubifs_lprops lp;
 674	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
 675
 676	ubifs_assert_cmt_locked(c);
 677	ubifs_assert(c, !c->ro_media && !c->ro_mount);
 678
 679	if (ubifs_gc_should_commit(c))
 680		return -EAGAIN;
 681
 682	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 683
 684	if (c->ro_error) {
 685		ret = -EROFS;
 686		goto out_unlock;
 687	}
 688
 689	/* We expect the write-buffer to be empty on entry */
 690	ubifs_assert(c, !wbuf->used);
 691
 692	for (i = 0; ; i++) {
 693		int space_before, space_after;
 694
 695		/* Maybe continue after find and break before find */
 696		lp.lnum = -1;
 697
 698		cond_resched();
 699
 700		/* Give the commit an opportunity to run */
 701		if (ubifs_gc_should_commit(c)) {
 702			ret = -EAGAIN;
 703			break;
 704		}
 705
 706		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
 707			/*
 708			 * We've done enough iterations. Indexing LEBs were
 709			 * moved and will be available after the commit.
 710			 */
 711			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
 712			ubifs_commit_required(c);
 713			ret = -EAGAIN;
 714			break;
 715		}
 716
 717		if (i > HARD_LEBS_LIMIT) {
 718			/*
 719			 * We've moved too many LEBs and have not made
 720			 * progress, give up.
 721			 */
 722			dbg_gc("hard limit, -ENOSPC");
 723			ret = -ENOSPC;
 724			break;
 725		}
 726
 727		/*
 728		 * Empty and freeable LEBs can turn up while we waited for
 729		 * the wbuf lock, or while we have been running GC. In that
 730		 * case, we should just return one of those instead of
 731		 * continuing to GC dirty LEBs. Hence we request
 732		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
 733		 */
 734		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
 735		if (ret) {
 736			if (ret == -ENOSPC)
 737				dbg_gc("no more dirty LEBs");
 738			break;
 739		}
 740
 741		dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)",
 742		       lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty,
 743		       min_space);
 744
 745		space_before = c->leb_size - wbuf->offs - wbuf->used;
 746		if (wbuf->lnum == -1)
 747			space_before = 0;
 748
 749		ret = ubifs_garbage_collect_leb(c, &lp);
 750		if (ret < 0) {
 751			if (ret == -EAGAIN) {
 752				/*
 753				 * This is not error, so we have to return the
 754				 * LEB to lprops. But if 'ubifs_return_leb()'
 755				 * fails, its failure code is propagated to the
 756				 * caller instead of the original '-EAGAIN'.
 757				 */
 758				err = ubifs_return_leb(c, lp.lnum);
 759				if (err) {
 760					ret = err;
 761					/*
 762					 * An LEB may always be "taken",
 763					 * so setting ubifs to read-only,
 764					 * and then executing sync wbuf will
 765					 * return -EROFS and enter the "out"
 766					 * error branch.
 767					 */
 768					ubifs_ro_mode(c, ret);
 769				}
 770				/*  Maybe double return LEB if goto out */
 771				lp.lnum = -1;
 772				break;
 773			}
 774			goto out;
 775		}
 776
 777		if (ret == LEB_FREED) {
 778			/* An LEB has been freed and is ready for use */
 779			dbg_gc("LEB %d freed, return", lp.lnum);
 780			ret = lp.lnum;
 781			break;
 782		}
 783
 784		if (ret == LEB_FREED_IDX) {
 785			/*
 786			 * This was an indexing LEB and it cannot be
 787			 * immediately used. And instead of requesting the
 788			 * commit straight away, we try to garbage collect some
 789			 * more.
 790			 */
 791			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
 792			continue;
 793		}
 794
 795		ubifs_assert(c, ret == LEB_RETAINED);
 796		space_after = c->leb_size - wbuf->offs - wbuf->used;
 797		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
 798		       space_after - space_before);
 799
 800		if (space_after > space_before) {
 801			/* GC makes progress, keep working */
 802			min_space >>= 1;
 803			if (min_space < c->dead_wm)
 804				min_space = c->dead_wm;
 805			continue;
 806		}
 807
 808		dbg_gc("did not make progress");
 809
 810		/*
 811		 * GC moved an LEB bud have not done any progress. This means
 812		 * that the previous GC head LEB contained too few free space
 813		 * and the LEB which was GC'ed contained only large nodes which
 814		 * did not fit that space.
 815		 *
 816		 * We can do 2 things:
 817		 * 1. pick another LEB in a hope it'll contain a small node
 818		 *    which will fit the space we have at the end of current GC
 819		 *    head LEB, but there is no guarantee, so we try this out
 820		 *    unless we have already been working for too long;
 821		 * 2. request an LEB with more dirty space, which will force
 822		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
 823		 *    table, instead of just picking one from the heap
 824		 *    (previously it already picked the dirtiest LEB).
 825		 */
 826		if (i < SOFT_LEBS_LIMIT) {
 827			dbg_gc("try again");
 828			continue;
 829		}
 830
 831		min_space <<= 1;
 832		if (min_space > c->dark_wm)
 833			min_space = c->dark_wm;
 834		dbg_gc("set min. space to %d", min_space);
 835	}
 836
 837	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
 838		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
 839		ubifs_commit_required(c);
 840		ret = -EAGAIN;
 841	}
 842
 843	err = ubifs_wbuf_sync_nolock(wbuf);
 844	if (!err)
 845		err = ubifs_leb_unmap(c, c->gc_lnum);
 846	if (err) {
 847		ret = err;
 848		goto out;
 849	}
 850out_unlock:
 851	mutex_unlock(&wbuf->io_mutex);
 852	return ret;
 853
 854out:
 855	ubifs_assert(c, ret < 0);
 856	ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN);
 857	ubifs_wbuf_sync_nolock(wbuf);
 858	ubifs_ro_mode(c, ret);
 859	mutex_unlock(&wbuf->io_mutex);
 860	if (lp.lnum != -1)
 861		ubifs_return_leb(c, lp.lnum);
 862	return ret;
 863}
 864
 865/**
 866 * ubifs_gc_start_commit - garbage collection at start of commit.
 867 * @c: UBIFS file-system description object
 868 *
 869 * If a LEB has only dirty and free space, then we may safely unmap it and make
 870 * it free.  Note, we cannot do this with indexing LEBs because dirty space may
 871 * correspond index nodes that are required for recovery.  In that case, the
 872 * LEB cannot be unmapped until after the next commit.
 873 *
 874 * This function returns %0 upon success and a negative error code upon failure.
 875 */
 876int ubifs_gc_start_commit(struct ubifs_info *c)
 877{
 878	struct ubifs_gced_idx_leb *idx_gc;
 879	const struct ubifs_lprops *lp;
 880	int err = 0, flags;
 881
 882	ubifs_get_lprops(c);
 883
 884	/*
 885	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
 886	 * wbufs are sync'd before this, which is done in 'do_commit()'.
 887	 */
 888	while (1) {
 889		lp = ubifs_fast_find_freeable(c);
 
 
 
 
 890		if (!lp)
 891			break;
 892		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
 893		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
 894		err = ubifs_leb_unmap(c, lp->lnum);
 895		if (err)
 896			goto out;
 897		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
 898		if (IS_ERR(lp)) {
 899			err = PTR_ERR(lp);
 900			goto out;
 901		}
 902		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
 903		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
 904	}
 905
 906	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
 907	list_for_each_entry(idx_gc, &c->idx_gc, list)
 908		idx_gc->unmap = 1;
 909
 910	/* Record index freeable LEBs for unmapping after commit */
 911	while (1) {
 912		lp = ubifs_fast_find_frdi_idx(c);
 913		if (IS_ERR(lp)) {
 914			err = PTR_ERR(lp);
 915			goto out;
 916		}
 917		if (!lp)
 918			break;
 919		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
 920		if (!idx_gc) {
 921			err = -ENOMEM;
 922			goto out;
 923		}
 924		ubifs_assert(c, !(lp->flags & LPROPS_TAKEN));
 925		ubifs_assert(c, lp->flags & LPROPS_INDEX);
 926		/* Don't release the LEB until after the next commit */
 927		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
 928		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
 929		if (IS_ERR(lp)) {
 930			err = PTR_ERR(lp);
 931			kfree(idx_gc);
 932			goto out;
 933		}
 934		ubifs_assert(c, lp->flags & LPROPS_TAKEN);
 935		ubifs_assert(c, !(lp->flags & LPROPS_INDEX));
 936		idx_gc->lnum = lp->lnum;
 937		idx_gc->unmap = 1;
 938		list_add(&idx_gc->list, &c->idx_gc);
 939	}
 940out:
 941	ubifs_release_lprops(c);
 942	return err;
 943}
 944
 945/**
 946 * ubifs_gc_end_commit - garbage collection at end of commit.
 947 * @c: UBIFS file-system description object
 948 *
 949 * This function completes out-of-place garbage collection of index LEBs.
 950 */
 951int ubifs_gc_end_commit(struct ubifs_info *c)
 952{
 953	struct ubifs_gced_idx_leb *idx_gc, *tmp;
 954	struct ubifs_wbuf *wbuf;
 955	int err = 0;
 956
 957	wbuf = &c->jheads[GCHD].wbuf;
 958	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 959	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
 960		if (idx_gc->unmap) {
 961			dbg_gc("LEB %d", idx_gc->lnum);
 962			err = ubifs_leb_unmap(c, idx_gc->lnum);
 963			if (err)
 964				goto out;
 965			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
 966					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
 967			if (err)
 968				goto out;
 969			list_del(&idx_gc->list);
 970			kfree(idx_gc);
 971		}
 972out:
 973	mutex_unlock(&wbuf->io_mutex);
 974	return err;
 975}
 976
 977/**
 978 * ubifs_destroy_idx_gc - destroy idx_gc list.
 979 * @c: UBIFS file-system description object
 980 *
 981 * This function destroys the @c->idx_gc list. It is called when unmounting
 982 * so locks are not needed. Returns zero in case of success and a negative
 983 * error code in case of failure.
 984 */
 985void ubifs_destroy_idx_gc(struct ubifs_info *c)
 986{
 987	while (!list_empty(&c->idx_gc)) {
 988		struct ubifs_gced_idx_leb *idx_gc;
 989
 990		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
 991				    list);
 992		c->idx_gc_cnt -= 1;
 993		list_del(&idx_gc->list);
 994		kfree(idx_gc);
 995	}
 996}
 997
 998/**
 999 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1000 * @c: UBIFS file-system description object
1001 *
1002 * Called during start commit so locks are not needed.
1003 */
1004int ubifs_get_idx_gc_leb(struct ubifs_info *c)
1005{
1006	struct ubifs_gced_idx_leb *idx_gc;
1007	int lnum;
1008
1009	if (list_empty(&c->idx_gc))
1010		return -ENOSPC;
1011	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
1012	lnum = idx_gc->lnum;
1013	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
1014	list_del(&idx_gc->list);
1015	kfree(idx_gc);
1016	return lnum;
1017}