Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * This file is part of UBIFS.
  3 *
  4 * Copyright (C) 2006-2008 Nokia Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify it
  7 * under the terms of the GNU General Public License version 2 as published by
  8 * the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful, but WITHOUT
 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 13 * more details.
 14 *
 15 * You should have received a copy of the GNU General Public License along with
 16 * this program; if not, write to the Free Software Foundation, Inc., 51
 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 18 *
 19 * Authors: Adrian Hunter
 20 *          Artem Bityutskiy (Битюцкий Артём)
 21 */
 22
 23/*
 24 * This file implements functions that manage the running of the commit process.
 25 * Each affected module has its own functions to accomplish their part in the
 26 * commit and those functions are called here.
 27 *
 28 * The commit is the process whereby all updates to the index and LEB properties
 29 * are written out together and the journal becomes empty. This keeps the
 30 * file system consistent - at all times the state can be recreated by reading
 31 * the index and LEB properties and then replaying the journal.
 32 *
 33 * The commit is split into two parts named "commit start" and "commit end".
 34 * During commit start, the commit process has exclusive access to the journal
 35 * by holding the commit semaphore down for writing. As few I/O operations as
 36 * possible are performed during commit start, instead the nodes that are to be
 37 * written are merely identified. During commit end, the commit semaphore is no
 38 * longer held and the journal is again in operation, allowing users to continue
 39 * to use the file system while the bulk of the commit I/O is performed. The
 40 * purpose of this two-step approach is to prevent the commit from causing any
 41 * latency blips. Note that in any case, the commit does not prevent lookups
 42 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 43 * cache.
 44 */
 45
 46#include <linux/freezer.h>
 47#include <linux/kthread.h>
 48#include <linux/slab.h>
 49#include "ubifs.h"
 50
 51/*
 52 * nothing_to_commit - check if there is nothing to commit.
 53 * @c: UBIFS file-system description object
 54 *
 55 * This is a helper function which checks if there is anything to commit. It is
 56 * used as an optimization to avoid starting the commit if it is not really
 57 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
 58 * writing the commit start node to the log), and it is better to avoid doing
 59 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
 60 * nothing to commit, it is more optimal to avoid any flash I/O.
 61 *
 62 * This function has to be called with @c->commit_sem locked for writing -
 63 * this function does not take LPT/TNC locks because the @c->commit_sem
 64 * guarantees that we have exclusive access to the TNC and LPT data structures.
 65 *
 66 * This function returns %1 if there is nothing to commit and %0 otherwise.
 67 */
 68static int nothing_to_commit(struct ubifs_info *c)
 69{
 70	/*
 71	 * During mounting or remounting from R/O mode to R/W mode we may
 72	 * commit for various recovery-related reasons.
 73	 */
 74	if (c->mounting || c->remounting_rw)
 75		return 0;
 76
 77	/*
 78	 * If the root TNC node is dirty, we definitely have something to
 79	 * commit.
 80	 */
 81	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
 82		return 0;
 83
 84	/*
 
 
 
 
 
 
 
 
 85	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
 86	 * example, this may happen if the budgeting subsystem invoked GC to
 87	 * make some free space, and the GC found an LEB with only dirty and
 88	 * free space. In this case GC would just change the lprops of this
 89	 * LEB (by turning all space into free space) and unmap it.
 90	 */
 91	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
 
 92		return 0;
 
 93
 94	ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
 95	ubifs_assert(c->dirty_pn_cnt == 0);
 96	ubifs_assert(c->dirty_nn_cnt == 0);
 
 97
 98	return 1;
 99}
100
101/**
102 * do_commit - commit the journal.
103 * @c: UBIFS file-system description object
104 *
105 * This function implements UBIFS commit. It has to be called with commit lock
106 * locked. Returns zero in case of success and a negative error code in case of
107 * failure.
108 */
109static int do_commit(struct ubifs_info *c)
110{
111	int err, new_ltail_lnum, old_ltail_lnum, i;
112	struct ubifs_zbranch zroot;
113	struct ubifs_lp_stats lst;
114
115	dbg_cmt("start");
116	ubifs_assert(!c->ro_media && !c->ro_mount);
117
118	if (c->ro_error) {
119		err = -EROFS;
120		goto out_up;
121	}
122
123	if (nothing_to_commit(c)) {
124		up_write(&c->commit_sem);
125		err = 0;
126		goto out_cancel;
127	}
128
129	/* Sync all write buffers (necessary for recovery) */
130	for (i = 0; i < c->jhead_cnt; i++) {
131		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
132		if (err)
133			goto out_up;
134	}
135
136	c->cmt_no += 1;
137	err = ubifs_gc_start_commit(c);
138	if (err)
139		goto out_up;
140	err = dbg_check_lprops(c);
141	if (err)
142		goto out_up;
143	err = ubifs_log_start_commit(c, &new_ltail_lnum);
144	if (err)
145		goto out_up;
146	err = ubifs_tnc_start_commit(c, &zroot);
147	if (err)
148		goto out_up;
149	err = ubifs_lpt_start_commit(c);
150	if (err)
151		goto out_up;
152	err = ubifs_orphan_start_commit(c);
153	if (err)
154		goto out_up;
155
156	ubifs_get_lp_stats(c, &lst);
157
158	up_write(&c->commit_sem);
159
160	err = ubifs_tnc_end_commit(c);
161	if (err)
162		goto out;
163	err = ubifs_lpt_end_commit(c);
164	if (err)
165		goto out;
166	err = ubifs_orphan_end_commit(c);
167	if (err)
168		goto out;
169	err = dbg_check_old_index(c, &zroot);
170	if (err)
171		goto out;
172
173	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
174	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
175	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
176	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
177	c->mst_node->root_len    = cpu_to_le32(zroot.len);
178	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
179	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
180	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
181	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
182	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
183	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
184	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
185	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
186	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
187	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
188	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
189	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
190	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
191	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
192	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
193	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
194	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
195	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
196	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
197	if (c->no_orphs)
198		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
199	else
200		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
201
202	old_ltail_lnum = c->ltail_lnum;
203	err = ubifs_log_end_commit(c, new_ltail_lnum);
204	if (err)
205		goto out;
206
207	err = ubifs_log_post_commit(c, old_ltail_lnum);
208	if (err)
209		goto out;
210	err = ubifs_gc_end_commit(c);
211	if (err)
212		goto out;
213	err = ubifs_lpt_post_commit(c);
214	if (err)
215		goto out;
216
217out_cancel:
218	spin_lock(&c->cs_lock);
219	c->cmt_state = COMMIT_RESTING;
220	wake_up(&c->cmt_wq);
221	dbg_cmt("commit end");
222	spin_unlock(&c->cs_lock);
223	return 0;
224
225out_up:
226	up_write(&c->commit_sem);
227out:
228	ubifs_err(c, "commit failed, error %d", err);
229	spin_lock(&c->cs_lock);
230	c->cmt_state = COMMIT_BROKEN;
231	wake_up(&c->cmt_wq);
232	spin_unlock(&c->cs_lock);
233	ubifs_ro_mode(c, err);
234	return err;
235}
236
237/**
238 * run_bg_commit - run background commit if it is needed.
239 * @c: UBIFS file-system description object
240 *
241 * This function runs background commit if it is needed. Returns zero in case
242 * of success and a negative error code in case of failure.
243 */
244static int run_bg_commit(struct ubifs_info *c)
245{
246	spin_lock(&c->cs_lock);
247	/*
248	 * Run background commit only if background commit was requested or if
249	 * commit is required.
250	 */
251	if (c->cmt_state != COMMIT_BACKGROUND &&
252	    c->cmt_state != COMMIT_REQUIRED)
253		goto out;
254	spin_unlock(&c->cs_lock);
255
256	down_write(&c->commit_sem);
257	spin_lock(&c->cs_lock);
258	if (c->cmt_state == COMMIT_REQUIRED)
259		c->cmt_state = COMMIT_RUNNING_REQUIRED;
260	else if (c->cmt_state == COMMIT_BACKGROUND)
261		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
262	else
263		goto out_cmt_unlock;
264	spin_unlock(&c->cs_lock);
265
266	return do_commit(c);
267
268out_cmt_unlock:
269	up_write(&c->commit_sem);
270out:
271	spin_unlock(&c->cs_lock);
272	return 0;
273}
274
275/**
276 * ubifs_bg_thread - UBIFS background thread function.
277 * @info: points to the file-system description object
278 *
279 * This function implements various file-system background activities:
280 * o when a write-buffer timer expires it synchronizes the appropriate
281 *   write-buffer;
282 * o when the journal is about to be full, it starts in-advance commit.
283 *
284 * Note, other stuff like background garbage collection may be added here in
285 * future.
286 */
287int ubifs_bg_thread(void *info)
288{
289	int err;
290	struct ubifs_info *c = info;
291
292	ubifs_msg(c, "background thread \"%s\" started, PID %d",
293		  c->bgt_name, current->pid);
294	set_freezable();
295
296	while (1) {
297		if (kthread_should_stop())
298			break;
299
300		if (try_to_freeze())
301			continue;
302
303		set_current_state(TASK_INTERRUPTIBLE);
304		/* Check if there is something to do */
305		if (!c->need_bgt) {
306			/*
307			 * Nothing prevents us from going sleep now and
308			 * be never woken up and block the task which
309			 * could wait in 'kthread_stop()' forever.
310			 */
311			if (kthread_should_stop())
312				break;
313			schedule();
314			continue;
315		} else
316			__set_current_state(TASK_RUNNING);
317
318		c->need_bgt = 0;
319		err = ubifs_bg_wbufs_sync(c);
320		if (err)
321			ubifs_ro_mode(c, err);
322
323		run_bg_commit(c);
324		cond_resched();
325	}
326
327	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
328	return 0;
329}
330
331/**
332 * ubifs_commit_required - set commit state to "required".
333 * @c: UBIFS file-system description object
334 *
335 * This function is called if a commit is required but cannot be done from the
336 * calling function, so it is just flagged instead.
337 */
338void ubifs_commit_required(struct ubifs_info *c)
339{
340	spin_lock(&c->cs_lock);
341	switch (c->cmt_state) {
342	case COMMIT_RESTING:
343	case COMMIT_BACKGROUND:
344		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
345			dbg_cstate(COMMIT_REQUIRED));
346		c->cmt_state = COMMIT_REQUIRED;
347		break;
348	case COMMIT_RUNNING_BACKGROUND:
349		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
350			dbg_cstate(COMMIT_RUNNING_REQUIRED));
351		c->cmt_state = COMMIT_RUNNING_REQUIRED;
352		break;
353	case COMMIT_REQUIRED:
354	case COMMIT_RUNNING_REQUIRED:
355	case COMMIT_BROKEN:
356		break;
357	}
358	spin_unlock(&c->cs_lock);
359}
360
361/**
362 * ubifs_request_bg_commit - notify the background thread to do a commit.
363 * @c: UBIFS file-system description object
364 *
365 * This function is called if the journal is full enough to make a commit
366 * worthwhile, so background thread is kicked to start it.
367 */
368void ubifs_request_bg_commit(struct ubifs_info *c)
369{
370	spin_lock(&c->cs_lock);
371	if (c->cmt_state == COMMIT_RESTING) {
372		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
373			dbg_cstate(COMMIT_BACKGROUND));
374		c->cmt_state = COMMIT_BACKGROUND;
375		spin_unlock(&c->cs_lock);
376		ubifs_wake_up_bgt(c);
377	} else
378		spin_unlock(&c->cs_lock);
379}
380
381/**
382 * wait_for_commit - wait for commit.
383 * @c: UBIFS file-system description object
384 *
385 * This function sleeps until the commit operation is no longer running.
386 */
387static int wait_for_commit(struct ubifs_info *c)
388{
389	dbg_cmt("pid %d goes sleep", current->pid);
390
391	/*
392	 * The following sleeps if the condition is false, and will be woken
393	 * when the commit ends. It is possible, although very unlikely, that we
394	 * will wake up and see the subsequent commit running, rather than the
395	 * one we were waiting for, and go back to sleep.  However, we will be
396	 * woken again, so there is no danger of sleeping forever.
397	 */
398	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
399			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
400	dbg_cmt("commit finished, pid %d woke up", current->pid);
401	return 0;
402}
403
404/**
405 * ubifs_run_commit - run or wait for commit.
406 * @c: UBIFS file-system description object
407 *
408 * This function runs commit and returns zero in case of success and a negative
409 * error code in case of failure.
410 */
411int ubifs_run_commit(struct ubifs_info *c)
412{
413	int err = 0;
414
415	spin_lock(&c->cs_lock);
416	if (c->cmt_state == COMMIT_BROKEN) {
417		err = -EROFS;
418		goto out;
419	}
420
421	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
422		/*
423		 * We set the commit state to 'running required' to indicate
424		 * that we want it to complete as quickly as possible.
425		 */
426		c->cmt_state = COMMIT_RUNNING_REQUIRED;
427
428	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
429		spin_unlock(&c->cs_lock);
430		return wait_for_commit(c);
431	}
432	spin_unlock(&c->cs_lock);
433
434	/* Ok, the commit is indeed needed */
435
436	down_write(&c->commit_sem);
437	spin_lock(&c->cs_lock);
438	/*
439	 * Since we unlocked 'c->cs_lock', the state may have changed, so
440	 * re-check it.
441	 */
442	if (c->cmt_state == COMMIT_BROKEN) {
443		err = -EROFS;
444		goto out_cmt_unlock;
445	}
446
447	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
448		c->cmt_state = COMMIT_RUNNING_REQUIRED;
449
450	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
451		up_write(&c->commit_sem);
452		spin_unlock(&c->cs_lock);
453		return wait_for_commit(c);
454	}
455	c->cmt_state = COMMIT_RUNNING_REQUIRED;
456	spin_unlock(&c->cs_lock);
457
458	err = do_commit(c);
459	return err;
460
461out_cmt_unlock:
462	up_write(&c->commit_sem);
463out:
464	spin_unlock(&c->cs_lock);
465	return err;
466}
467
468/**
469 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
470 * @c: UBIFS file-system description object
471 *
472 * This function is called by garbage collection to determine if commit should
473 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
474 * is full enough to start commit, this function returns true. It is not
475 * absolutely necessary to commit yet, but it feels like this should be better
476 * then to keep doing GC. This function returns %1 if GC has to initiate commit
477 * and %0 if not.
478 */
479int ubifs_gc_should_commit(struct ubifs_info *c)
480{
481	int ret = 0;
482
483	spin_lock(&c->cs_lock);
484	if (c->cmt_state == COMMIT_BACKGROUND) {
485		dbg_cmt("commit required now");
486		c->cmt_state = COMMIT_REQUIRED;
487	} else
488		dbg_cmt("commit not requested");
489	if (c->cmt_state == COMMIT_REQUIRED)
490		ret = 1;
491	spin_unlock(&c->cs_lock);
492	return ret;
493}
494
495/*
496 * Everything below is related to debugging.
497 */
498
499/**
500 * struct idx_node - hold index nodes during index tree traversal.
501 * @list: list
502 * @iip: index in parent (slot number of this indexing node in the parent
503 *       indexing node)
504 * @upper_key: all keys in this indexing node have to be less or equivalent to
505 *             this key
506 * @idx: index node (8-byte aligned because all node structures must be 8-byte
507 *       aligned)
508 */
509struct idx_node {
510	struct list_head list;
511	int iip;
512	union ubifs_key upper_key;
513	struct ubifs_idx_node idx __aligned(8);
514};
515
516/**
517 * dbg_old_index_check_init - get information for the next old index check.
518 * @c: UBIFS file-system description object
519 * @zroot: root of the index
520 *
521 * This function records information about the index that will be needed for the
522 * next old index check i.e. 'dbg_check_old_index()'.
523 *
524 * This function returns %0 on success and a negative error code on failure.
525 */
526int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
527{
528	struct ubifs_idx_node *idx;
529	int lnum, offs, len, err = 0;
530	struct ubifs_debug_info *d = c->dbg;
531
532	d->old_zroot = *zroot;
533	lnum = d->old_zroot.lnum;
534	offs = d->old_zroot.offs;
535	len = d->old_zroot.len;
536
537	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
538	if (!idx)
539		return -ENOMEM;
540
541	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
542	if (err)
543		goto out;
544
545	d->old_zroot_level = le16_to_cpu(idx->level);
546	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
547out:
548	kfree(idx);
549	return err;
550}
551
552/**
553 * dbg_check_old_index - check the old copy of the index.
554 * @c: UBIFS file-system description object
555 * @zroot: root of the new index
556 *
557 * In order to be able to recover from an unclean unmount, a complete copy of
558 * the index must exist on flash. This is the "old" index. The commit process
559 * must write the "new" index to flash without overwriting or destroying any
560 * part of the old index. This function is run at commit end in order to check
561 * that the old index does indeed exist completely intact.
562 *
563 * This function returns %0 on success and a negative error code on failure.
564 */
565int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
566{
567	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
568	int first = 1, iip;
569	struct ubifs_debug_info *d = c->dbg;
570	union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
571	unsigned long long uninitialized_var(last_sqnum);
572	struct ubifs_idx_node *idx;
573	struct list_head list;
574	struct idx_node *i;
575	size_t sz;
576
577	if (!dbg_is_chk_index(c))
578		return 0;
579
580	INIT_LIST_HEAD(&list);
581
582	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
583	     UBIFS_IDX_NODE_SZ;
584
585	/* Start at the old zroot */
586	lnum = d->old_zroot.lnum;
587	offs = d->old_zroot.offs;
588	len = d->old_zroot.len;
589	iip = 0;
590
591	/*
592	 * Traverse the index tree preorder depth-first i.e. do a node and then
593	 * its subtrees from left to right.
594	 */
595	while (1) {
596		struct ubifs_branch *br;
597
598		/* Get the next index node */
599		i = kmalloc(sz, GFP_NOFS);
600		if (!i) {
601			err = -ENOMEM;
602			goto out_free;
603		}
604		i->iip = iip;
605		/* Keep the index nodes on our path in a linked list */
606		list_add_tail(&i->list, &list);
607		/* Read the index node */
608		idx = &i->idx;
609		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
610		if (err)
611			goto out_free;
612		/* Validate index node */
613		child_cnt = le16_to_cpu(idx->child_cnt);
614		if (child_cnt < 1 || child_cnt > c->fanout) {
615			err = 1;
616			goto out_dump;
617		}
618		if (first) {
619			first = 0;
620			/* Check root level and sqnum */
621			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
622				err = 2;
623				goto out_dump;
624			}
625			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
626				err = 3;
627				goto out_dump;
628			}
629			/* Set last values as though root had a parent */
630			last_level = le16_to_cpu(idx->level) + 1;
631			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
632			key_read(c, ubifs_idx_key(c, idx), &lower_key);
633			highest_ino_key(c, &upper_key, INUM_WATERMARK);
634		}
635		key_copy(c, &upper_key, &i->upper_key);
636		if (le16_to_cpu(idx->level) != last_level - 1) {
637			err = 3;
638			goto out_dump;
639		}
640		/*
641		 * The index is always written bottom up hence a child's sqnum
642		 * is always less than the parents.
643		 */
644		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
645			err = 4;
646			goto out_dump;
647		}
648		/* Check key range */
649		key_read(c, ubifs_idx_key(c, idx), &l_key);
650		br = ubifs_idx_branch(c, idx, child_cnt - 1);
651		key_read(c, &br->key, &u_key);
652		if (keys_cmp(c, &lower_key, &l_key) > 0) {
653			err = 5;
654			goto out_dump;
655		}
656		if (keys_cmp(c, &upper_key, &u_key) < 0) {
657			err = 6;
658			goto out_dump;
659		}
660		if (keys_cmp(c, &upper_key, &u_key) == 0)
661			if (!is_hash_key(c, &u_key)) {
662				err = 7;
663				goto out_dump;
664			}
665		/* Go to next index node */
666		if (le16_to_cpu(idx->level) == 0) {
667			/* At the bottom, so go up until can go right */
668			while (1) {
669				/* Drop the bottom of the list */
670				list_del(&i->list);
671				kfree(i);
672				/* No more list means we are done */
673				if (list_empty(&list))
674					goto out;
675				/* Look at the new bottom */
676				i = list_entry(list.prev, struct idx_node,
677					       list);
678				idx = &i->idx;
679				/* Can we go right */
680				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
681					iip = iip + 1;
682					break;
683				} else
684					/* Nope, so go up again */
685					iip = i->iip;
686			}
687		} else
688			/* Go down left */
689			iip = 0;
690		/*
691		 * We have the parent in 'idx' and now we set up for reading the
692		 * child pointed to by slot 'iip'.
693		 */
694		last_level = le16_to_cpu(idx->level);
695		last_sqnum = le64_to_cpu(idx->ch.sqnum);
696		br = ubifs_idx_branch(c, idx, iip);
697		lnum = le32_to_cpu(br->lnum);
698		offs = le32_to_cpu(br->offs);
699		len = le32_to_cpu(br->len);
700		key_read(c, &br->key, &lower_key);
701		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
702			br = ubifs_idx_branch(c, idx, iip + 1);
703			key_read(c, &br->key, &upper_key);
704		} else
705			key_copy(c, &i->upper_key, &upper_key);
706	}
707out:
708	err = dbg_old_index_check_init(c, zroot);
709	if (err)
710		goto out_free;
711
712	return 0;
713
714out_dump:
715	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
716	ubifs_dump_node(c, idx);
717	list_del(&i->list);
718	kfree(i);
719	if (!list_empty(&list)) {
720		i = list_entry(list.prev, struct idx_node, list);
721		ubifs_err(c, "dumping parent index node");
722		ubifs_dump_node(c, &i->idx);
723	}
724out_free:
725	while (!list_empty(&list)) {
726		i = list_entry(list.next, struct idx_node, list);
727		list_del(&i->list);
728		kfree(i);
729	}
730	ubifs_err(c, "failed, error %d", err);
731	if (err > 0)
732		err = -EINVAL;
733	return err;
734}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This file is part of UBIFS.
  4 *
  5 * Copyright (C) 2006-2008 Nokia Corporation.
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Authors: Adrian Hunter
  8 *          Artem Bityutskiy (Битюцкий Артём)
  9 */
 10
 11/*
 12 * This file implements functions that manage the running of the commit process.
 13 * Each affected module has its own functions to accomplish their part in the
 14 * commit and those functions are called here.
 15 *
 16 * The commit is the process whereby all updates to the index and LEB properties
 17 * are written out together and the journal becomes empty. This keeps the
 18 * file system consistent - at all times the state can be recreated by reading
 19 * the index and LEB properties and then replaying the journal.
 20 *
 21 * The commit is split into two parts named "commit start" and "commit end".
 22 * During commit start, the commit process has exclusive access to the journal
 23 * by holding the commit semaphore down for writing. As few I/O operations as
 24 * possible are performed during commit start, instead the nodes that are to be
 25 * written are merely identified. During commit end, the commit semaphore is no
 26 * longer held and the journal is again in operation, allowing users to continue
 27 * to use the file system while the bulk of the commit I/O is performed. The
 28 * purpose of this two-step approach is to prevent the commit from causing any
 29 * latency blips. Note that in any case, the commit does not prevent lookups
 30 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 31 * cache.
 32 */
 33
 34#include <linux/freezer.h>
 35#include <linux/kthread.h>
 36#include <linux/slab.h>
 37#include "ubifs.h"
 38
 39/*
 40 * nothing_to_commit - check if there is nothing to commit.
 41 * @c: UBIFS file-system description object
 42 *
 43 * This is a helper function which checks if there is anything to commit. It is
 44 * used as an optimization to avoid starting the commit if it is not really
 45 * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
 46 * writing the commit start node to the log), and it is better to avoid doing
 47 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
 48 * nothing to commit, it is more optimal to avoid any flash I/O.
 49 *
 50 * This function has to be called with @c->commit_sem locked for writing -
 51 * this function does not take LPT/TNC locks because the @c->commit_sem
 52 * guarantees that we have exclusive access to the TNC and LPT data structures.
 53 *
 54 * This function returns %1 if there is nothing to commit and %0 otherwise.
 55 */
 56static int nothing_to_commit(struct ubifs_info *c)
 57{
 58	/*
 59	 * During mounting or remounting from R/O mode to R/W mode we may
 60	 * commit for various recovery-related reasons.
 61	 */
 62	if (c->mounting || c->remounting_rw)
 63		return 0;
 64
 65	/*
 66	 * If the root TNC node is dirty, we definitely have something to
 67	 * commit.
 68	 */
 69	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
 70		return 0;
 71
 72	/*
 73	 * Increasing @c->dirty_pn_cnt/@c->dirty_nn_cnt and marking
 74	 * nnodes/pnodes as dirty in run_gc() could race with following
 75	 * checking, which leads inconsistent states between @c->nroot
 76	 * and @c->dirty_pn_cnt/@c->dirty_nn_cnt, holding @c->lp_mutex
 77	 * to avoid that.
 78	 */
 79	mutex_lock(&c->lp_mutex);
 80	/*
 81	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
 82	 * example, this may happen if the budgeting subsystem invoked GC to
 83	 * make some free space, and the GC found an LEB with only dirty and
 84	 * free space. In this case GC would just change the lprops of this
 85	 * LEB (by turning all space into free space) and unmap it.
 86	 */
 87	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) {
 88		mutex_unlock(&c->lp_mutex);
 89		return 0;
 90	}
 91
 92	ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0);
 93	ubifs_assert(c, c->dirty_pn_cnt == 0);
 94	ubifs_assert(c, c->dirty_nn_cnt == 0);
 95	mutex_unlock(&c->lp_mutex);
 96
 97	return 1;
 98}
 99
100/**
101 * do_commit - commit the journal.
102 * @c: UBIFS file-system description object
103 *
104 * This function implements UBIFS commit. It has to be called with commit lock
105 * locked. Returns zero in case of success and a negative error code in case of
106 * failure.
107 */
108static int do_commit(struct ubifs_info *c)
109{
110	int err, new_ltail_lnum, old_ltail_lnum, i;
111	struct ubifs_zbranch zroot;
112	struct ubifs_lp_stats lst;
113
114	dbg_cmt("start");
115	ubifs_assert(c, !c->ro_media && !c->ro_mount);
116
117	if (c->ro_error) {
118		err = -EROFS;
119		goto out_up;
120	}
121
122	if (nothing_to_commit(c)) {
123		up_write(&c->commit_sem);
124		err = 0;
125		goto out_cancel;
126	}
127
128	/* Sync all write buffers (necessary for recovery) */
129	for (i = 0; i < c->jhead_cnt; i++) {
130		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
131		if (err)
132			goto out_up;
133	}
134
135	c->cmt_no += 1;
136	err = ubifs_gc_start_commit(c);
137	if (err)
138		goto out_up;
139	err = dbg_check_lprops(c);
140	if (err)
141		goto out_up;
142	err = ubifs_log_start_commit(c, &new_ltail_lnum);
143	if (err)
144		goto out_up;
145	err = ubifs_tnc_start_commit(c, &zroot);
146	if (err)
147		goto out_up;
148	err = ubifs_lpt_start_commit(c);
149	if (err)
150		goto out_up;
151	err = ubifs_orphan_start_commit(c);
152	if (err)
153		goto out_up;
154
155	ubifs_get_lp_stats(c, &lst);
156
157	up_write(&c->commit_sem);
158
159	err = ubifs_tnc_end_commit(c);
160	if (err)
161		goto out;
162	err = ubifs_lpt_end_commit(c);
163	if (err)
164		goto out;
165	err = ubifs_orphan_end_commit(c);
166	if (err)
167		goto out;
168	err = dbg_check_old_index(c, &zroot);
169	if (err)
170		goto out;
171
172	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
173	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
174	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
175	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
176	c->mst_node->root_len    = cpu_to_le32(zroot.len);
177	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
178	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
179	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
180	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
181	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
182	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
183	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
184	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
185	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
186	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
187	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
188	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
189	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
190	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
191	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
192	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
193	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
194	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
195	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
196	if (c->no_orphs)
197		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
198	else
199		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
200
201	old_ltail_lnum = c->ltail_lnum;
202	err = ubifs_log_end_commit(c, new_ltail_lnum);
203	if (err)
204		goto out;
205
206	err = ubifs_log_post_commit(c, old_ltail_lnum);
207	if (err)
208		goto out;
209	err = ubifs_gc_end_commit(c);
210	if (err)
211		goto out;
212	err = ubifs_lpt_post_commit(c);
213	if (err)
214		goto out;
215
216out_cancel:
217	spin_lock(&c->cs_lock);
218	c->cmt_state = COMMIT_RESTING;
219	wake_up(&c->cmt_wq);
220	dbg_cmt("commit end");
221	spin_unlock(&c->cs_lock);
222	return 0;
223
224out_up:
225	up_write(&c->commit_sem);
226out:
227	ubifs_err(c, "commit failed, error %d", err);
228	spin_lock(&c->cs_lock);
229	c->cmt_state = COMMIT_BROKEN;
230	wake_up(&c->cmt_wq);
231	spin_unlock(&c->cs_lock);
232	ubifs_ro_mode(c, err);
233	return err;
234}
235
236/**
237 * run_bg_commit - run background commit if it is needed.
238 * @c: UBIFS file-system description object
239 *
240 * This function runs background commit if it is needed. Returns zero in case
241 * of success and a negative error code in case of failure.
242 */
243static int run_bg_commit(struct ubifs_info *c)
244{
245	spin_lock(&c->cs_lock);
246	/*
247	 * Run background commit only if background commit was requested or if
248	 * commit is required.
249	 */
250	if (c->cmt_state != COMMIT_BACKGROUND &&
251	    c->cmt_state != COMMIT_REQUIRED)
252		goto out;
253	spin_unlock(&c->cs_lock);
254
255	down_write(&c->commit_sem);
256	spin_lock(&c->cs_lock);
257	if (c->cmt_state == COMMIT_REQUIRED)
258		c->cmt_state = COMMIT_RUNNING_REQUIRED;
259	else if (c->cmt_state == COMMIT_BACKGROUND)
260		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
261	else
262		goto out_cmt_unlock;
263	spin_unlock(&c->cs_lock);
264
265	return do_commit(c);
266
267out_cmt_unlock:
268	up_write(&c->commit_sem);
269out:
270	spin_unlock(&c->cs_lock);
271	return 0;
272}
273
274/**
275 * ubifs_bg_thread - UBIFS background thread function.
276 * @info: points to the file-system description object
277 *
278 * This function implements various file-system background activities:
279 * o when a write-buffer timer expires it synchronizes the appropriate
280 *   write-buffer;
281 * o when the journal is about to be full, it starts in-advance commit.
282 *
283 * Note, other stuff like background garbage collection may be added here in
284 * future.
285 */
286int ubifs_bg_thread(void *info)
287{
288	int err;
289	struct ubifs_info *c = info;
290
291	ubifs_msg(c, "background thread \"%s\" started, PID %d",
292		  c->bgt_name, current->pid);
293	set_freezable();
294
295	while (1) {
296		if (kthread_should_stop())
297			break;
298
299		if (try_to_freeze())
300			continue;
301
302		set_current_state(TASK_INTERRUPTIBLE);
303		/* Check if there is something to do */
304		if (!c->need_bgt) {
305			/*
306			 * Nothing prevents us from going sleep now and
307			 * be never woken up and block the task which
308			 * could wait in 'kthread_stop()' forever.
309			 */
310			if (kthread_should_stop())
311				break;
312			schedule();
313			continue;
314		} else
315			__set_current_state(TASK_RUNNING);
316
317		c->need_bgt = 0;
318		err = ubifs_bg_wbufs_sync(c);
319		if (err)
320			ubifs_ro_mode(c, err);
321
322		run_bg_commit(c);
323		cond_resched();
324	}
325
326	ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name);
327	return 0;
328}
329
330/**
331 * ubifs_commit_required - set commit state to "required".
332 * @c: UBIFS file-system description object
333 *
334 * This function is called if a commit is required but cannot be done from the
335 * calling function, so it is just flagged instead.
336 */
337void ubifs_commit_required(struct ubifs_info *c)
338{
339	spin_lock(&c->cs_lock);
340	switch (c->cmt_state) {
341	case COMMIT_RESTING:
342	case COMMIT_BACKGROUND:
343		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
344			dbg_cstate(COMMIT_REQUIRED));
345		c->cmt_state = COMMIT_REQUIRED;
346		break;
347	case COMMIT_RUNNING_BACKGROUND:
348		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
349			dbg_cstate(COMMIT_RUNNING_REQUIRED));
350		c->cmt_state = COMMIT_RUNNING_REQUIRED;
351		break;
352	case COMMIT_REQUIRED:
353	case COMMIT_RUNNING_REQUIRED:
354	case COMMIT_BROKEN:
355		break;
356	}
357	spin_unlock(&c->cs_lock);
358}
359
360/**
361 * ubifs_request_bg_commit - notify the background thread to do a commit.
362 * @c: UBIFS file-system description object
363 *
364 * This function is called if the journal is full enough to make a commit
365 * worthwhile, so background thread is kicked to start it.
366 */
367void ubifs_request_bg_commit(struct ubifs_info *c)
368{
369	spin_lock(&c->cs_lock);
370	if (c->cmt_state == COMMIT_RESTING) {
371		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
372			dbg_cstate(COMMIT_BACKGROUND));
373		c->cmt_state = COMMIT_BACKGROUND;
374		spin_unlock(&c->cs_lock);
375		ubifs_wake_up_bgt(c);
376	} else
377		spin_unlock(&c->cs_lock);
378}
379
380/**
381 * wait_for_commit - wait for commit.
382 * @c: UBIFS file-system description object
383 *
384 * This function sleeps until the commit operation is no longer running.
385 */
386static int wait_for_commit(struct ubifs_info *c)
387{
388	dbg_cmt("pid %d goes sleep", current->pid);
389
390	/*
391	 * The following sleeps if the condition is false, and will be woken
392	 * when the commit ends. It is possible, although very unlikely, that we
393	 * will wake up and see the subsequent commit running, rather than the
394	 * one we were waiting for, and go back to sleep.  However, we will be
395	 * woken again, so there is no danger of sleeping forever.
396	 */
397	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
398			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
399	dbg_cmt("commit finished, pid %d woke up", current->pid);
400	return 0;
401}
402
403/**
404 * ubifs_run_commit - run or wait for commit.
405 * @c: UBIFS file-system description object
406 *
407 * This function runs commit and returns zero in case of success and a negative
408 * error code in case of failure.
409 */
410int ubifs_run_commit(struct ubifs_info *c)
411{
412	int err = 0;
413
414	spin_lock(&c->cs_lock);
415	if (c->cmt_state == COMMIT_BROKEN) {
416		err = -EROFS;
417		goto out;
418	}
419
420	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
421		/*
422		 * We set the commit state to 'running required' to indicate
423		 * that we want it to complete as quickly as possible.
424		 */
425		c->cmt_state = COMMIT_RUNNING_REQUIRED;
426
427	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
428		spin_unlock(&c->cs_lock);
429		return wait_for_commit(c);
430	}
431	spin_unlock(&c->cs_lock);
432
433	/* Ok, the commit is indeed needed */
434
435	down_write(&c->commit_sem);
436	spin_lock(&c->cs_lock);
437	/*
438	 * Since we unlocked 'c->cs_lock', the state may have changed, so
439	 * re-check it.
440	 */
441	if (c->cmt_state == COMMIT_BROKEN) {
442		err = -EROFS;
443		goto out_cmt_unlock;
444	}
445
446	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
447		c->cmt_state = COMMIT_RUNNING_REQUIRED;
448
449	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
450		up_write(&c->commit_sem);
451		spin_unlock(&c->cs_lock);
452		return wait_for_commit(c);
453	}
454	c->cmt_state = COMMIT_RUNNING_REQUIRED;
455	spin_unlock(&c->cs_lock);
456
457	err = do_commit(c);
458	return err;
459
460out_cmt_unlock:
461	up_write(&c->commit_sem);
462out:
463	spin_unlock(&c->cs_lock);
464	return err;
465}
466
467/**
468 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
469 * @c: UBIFS file-system description object
470 *
471 * This function is called by garbage collection to determine if commit should
472 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
473 * is full enough to start commit, this function returns true. It is not
474 * absolutely necessary to commit yet, but it feels like this should be better
475 * then to keep doing GC. This function returns %1 if GC has to initiate commit
476 * and %0 if not.
477 */
478int ubifs_gc_should_commit(struct ubifs_info *c)
479{
480	int ret = 0;
481
482	spin_lock(&c->cs_lock);
483	if (c->cmt_state == COMMIT_BACKGROUND) {
484		dbg_cmt("commit required now");
485		c->cmt_state = COMMIT_REQUIRED;
486	} else
487		dbg_cmt("commit not requested");
488	if (c->cmt_state == COMMIT_REQUIRED)
489		ret = 1;
490	spin_unlock(&c->cs_lock);
491	return ret;
492}
493
494/*
495 * Everything below is related to debugging.
496 */
497
498/**
499 * struct idx_node - hold index nodes during index tree traversal.
500 * @list: list
501 * @iip: index in parent (slot number of this indexing node in the parent
502 *       indexing node)
503 * @upper_key: all keys in this indexing node have to be less or equivalent to
504 *             this key
505 * @idx: index node (8-byte aligned because all node structures must be 8-byte
506 *       aligned)
507 */
508struct idx_node {
509	struct list_head list;
510	int iip;
511	union ubifs_key upper_key;
512	struct ubifs_idx_node idx __aligned(8);
513};
514
515/**
516 * dbg_old_index_check_init - get information for the next old index check.
517 * @c: UBIFS file-system description object
518 * @zroot: root of the index
519 *
520 * This function records information about the index that will be needed for the
521 * next old index check i.e. 'dbg_check_old_index()'.
522 *
523 * This function returns %0 on success and a negative error code on failure.
524 */
525int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
526{
527	struct ubifs_idx_node *idx;
528	int lnum, offs, len, err = 0;
529	struct ubifs_debug_info *d = c->dbg;
530
531	d->old_zroot = *zroot;
532	lnum = d->old_zroot.lnum;
533	offs = d->old_zroot.offs;
534	len = d->old_zroot.len;
535
536	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
537	if (!idx)
538		return -ENOMEM;
539
540	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
541	if (err)
542		goto out;
543
544	d->old_zroot_level = le16_to_cpu(idx->level);
545	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
546out:
547	kfree(idx);
548	return err;
549}
550
551/**
552 * dbg_check_old_index - check the old copy of the index.
553 * @c: UBIFS file-system description object
554 * @zroot: root of the new index
555 *
556 * In order to be able to recover from an unclean unmount, a complete copy of
557 * the index must exist on flash. This is the "old" index. The commit process
558 * must write the "new" index to flash without overwriting or destroying any
559 * part of the old index. This function is run at commit end in order to check
560 * that the old index does indeed exist completely intact.
561 *
562 * This function returns %0 on success and a negative error code on failure.
563 */
564int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
565{
566	int lnum, offs, len, err = 0, last_level, child_cnt;
567	int first = 1, iip;
568	struct ubifs_debug_info *d = c->dbg;
569	union ubifs_key lower_key, upper_key, l_key, u_key;
570	unsigned long long last_sqnum;
571	struct ubifs_idx_node *idx;
572	struct list_head list;
573	struct idx_node *i;
574	size_t sz;
575
576	if (!dbg_is_chk_index(c))
577		return 0;
578
579	INIT_LIST_HEAD(&list);
580
581	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
582	     UBIFS_IDX_NODE_SZ;
583
584	/* Start at the old zroot */
585	lnum = d->old_zroot.lnum;
586	offs = d->old_zroot.offs;
587	len = d->old_zroot.len;
588	iip = 0;
589
590	/*
591	 * Traverse the index tree preorder depth-first i.e. do a node and then
592	 * its subtrees from left to right.
593	 */
594	while (1) {
595		struct ubifs_branch *br;
596
597		/* Get the next index node */
598		i = kmalloc(sz, GFP_NOFS);
599		if (!i) {
600			err = -ENOMEM;
601			goto out_free;
602		}
603		i->iip = iip;
604		/* Keep the index nodes on our path in a linked list */
605		list_add_tail(&i->list, &list);
606		/* Read the index node */
607		idx = &i->idx;
608		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
609		if (err)
610			goto out_free;
611		/* Validate index node */
612		child_cnt = le16_to_cpu(idx->child_cnt);
613		if (child_cnt < 1 || child_cnt > c->fanout) {
614			err = 1;
615			goto out_dump;
616		}
617		if (first) {
618			first = 0;
619			/* Check root level and sqnum */
620			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
621				err = 2;
622				goto out_dump;
623			}
624			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
625				err = 3;
626				goto out_dump;
627			}
628			/* Set last values as though root had a parent */
629			last_level = le16_to_cpu(idx->level) + 1;
630			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
631			key_read(c, ubifs_idx_key(c, idx), &lower_key);
632			highest_ino_key(c, &upper_key, INUM_WATERMARK);
633		}
634		key_copy(c, &upper_key, &i->upper_key);
635		if (le16_to_cpu(idx->level) != last_level - 1) {
636			err = 3;
637			goto out_dump;
638		}
639		/*
640		 * The index is always written bottom up hence a child's sqnum
641		 * is always less than the parents.
642		 */
643		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
644			err = 4;
645			goto out_dump;
646		}
647		/* Check key range */
648		key_read(c, ubifs_idx_key(c, idx), &l_key);
649		br = ubifs_idx_branch(c, idx, child_cnt - 1);
650		key_read(c, &br->key, &u_key);
651		if (keys_cmp(c, &lower_key, &l_key) > 0) {
652			err = 5;
653			goto out_dump;
654		}
655		if (keys_cmp(c, &upper_key, &u_key) < 0) {
656			err = 6;
657			goto out_dump;
658		}
659		if (keys_cmp(c, &upper_key, &u_key) == 0)
660			if (!is_hash_key(c, &u_key)) {
661				err = 7;
662				goto out_dump;
663			}
664		/* Go to next index node */
665		if (le16_to_cpu(idx->level) == 0) {
666			/* At the bottom, so go up until can go right */
667			while (1) {
668				/* Drop the bottom of the list */
669				list_del(&i->list);
670				kfree(i);
671				/* No more list means we are done */
672				if (list_empty(&list))
673					goto out;
674				/* Look at the new bottom */
675				i = list_entry(list.prev, struct idx_node,
676					       list);
677				idx = &i->idx;
678				/* Can we go right */
679				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
680					iip = iip + 1;
681					break;
682				} else
683					/* Nope, so go up again */
684					iip = i->iip;
685			}
686		} else
687			/* Go down left */
688			iip = 0;
689		/*
690		 * We have the parent in 'idx' and now we set up for reading the
691		 * child pointed to by slot 'iip'.
692		 */
693		last_level = le16_to_cpu(idx->level);
694		last_sqnum = le64_to_cpu(idx->ch.sqnum);
695		br = ubifs_idx_branch(c, idx, iip);
696		lnum = le32_to_cpu(br->lnum);
697		offs = le32_to_cpu(br->offs);
698		len = le32_to_cpu(br->len);
699		key_read(c, &br->key, &lower_key);
700		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
701			br = ubifs_idx_branch(c, idx, iip + 1);
702			key_read(c, &br->key, &upper_key);
703		} else
704			key_copy(c, &i->upper_key, &upper_key);
705	}
706out:
707	err = dbg_old_index_check_init(c, zroot);
708	if (err)
709		goto out_free;
710
711	return 0;
712
713out_dump:
714	ubifs_err(c, "dumping index node (iip=%d)", i->iip);
715	ubifs_dump_node(c, idx, ubifs_idx_node_sz(c, c->fanout));
716	list_del(&i->list);
717	kfree(i);
718	if (!list_empty(&list)) {
719		i = list_entry(list.prev, struct idx_node, list);
720		ubifs_err(c, "dumping parent index node");
721		ubifs_dump_node(c, &i->idx, ubifs_idx_node_sz(c, c->fanout));
722	}
723out_free:
724	while (!list_empty(&list)) {
725		i = list_entry(list.next, struct idx_node, list);
726		list_del(&i->list);
727		kfree(i);
728	}
729	ubifs_err(c, "failed, error %d", err);
730	if (err > 0)
731		err = -EINVAL;
732	return err;
733}