Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * linux/fs/jbd2/journal.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   5 *
   6 * Copyright 1998 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Generic filesystem journal-writing code; part of the ext2fs
  13 * journaling system.
  14 *
  15 * This file manages journals: areas of disk reserved for logging
  16 * transactional updates.  This includes the kernel journaling thread
  17 * which is responsible for scheduling updates to the log.
  18 *
  19 * We do not actually manage the physical storage of the journal in this
  20 * file: that is left to a per-journal policy function, which allows us
  21 * to store the journal within a filesystem-specified area for ext2
  22 * journaling (ext2 can use a reserved inode for storing the log).
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/time.h>
  27#include <linux/fs.h>
  28#include <linux/jbd2.h>
  29#include <linux/errno.h>
  30#include <linux/slab.h>
  31#include <linux/init.h>
  32#include <linux/mm.h>
  33#include <linux/freezer.h>
  34#include <linux/pagemap.h>
  35#include <linux/kthread.h>
  36#include <linux/poison.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/math64.h>
  40#include <linux/hash.h>
  41#include <linux/log2.h>
  42#include <linux/vmalloc.h>
  43#include <linux/backing-dev.h>
  44#include <linux/bitops.h>
  45#include <linux/ratelimit.h>
 
  46
  47#define CREATE_TRACE_POINTS
  48#include <trace/events/jbd2.h>
  49
  50#include <asm/uaccess.h>
  51#include <asm/page.h>
  52
  53#ifdef CONFIG_JBD2_DEBUG
  54ushort jbd2_journal_enable_debug __read_mostly;
  55EXPORT_SYMBOL(jbd2_journal_enable_debug);
  56
  57module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  58MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  59#endif
  60
  61EXPORT_SYMBOL(jbd2_journal_extend);
  62EXPORT_SYMBOL(jbd2_journal_stop);
  63EXPORT_SYMBOL(jbd2_journal_lock_updates);
  64EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  65EXPORT_SYMBOL(jbd2_journal_get_write_access);
  66EXPORT_SYMBOL(jbd2_journal_get_create_access);
  67EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  68EXPORT_SYMBOL(jbd2_journal_set_triggers);
  69EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  70EXPORT_SYMBOL(jbd2_journal_forget);
  71#if 0
  72EXPORT_SYMBOL(journal_sync_buffer);
  73#endif
  74EXPORT_SYMBOL(jbd2_journal_flush);
  75EXPORT_SYMBOL(jbd2_journal_revoke);
  76
  77EXPORT_SYMBOL(jbd2_journal_init_dev);
  78EXPORT_SYMBOL(jbd2_journal_init_inode);
  79EXPORT_SYMBOL(jbd2_journal_check_used_features);
  80EXPORT_SYMBOL(jbd2_journal_check_available_features);
  81EXPORT_SYMBOL(jbd2_journal_set_features);
  82EXPORT_SYMBOL(jbd2_journal_load);
  83EXPORT_SYMBOL(jbd2_journal_destroy);
  84EXPORT_SYMBOL(jbd2_journal_abort);
  85EXPORT_SYMBOL(jbd2_journal_errno);
  86EXPORT_SYMBOL(jbd2_journal_ack_err);
  87EXPORT_SYMBOL(jbd2_journal_clear_err);
  88EXPORT_SYMBOL(jbd2_log_wait_commit);
  89EXPORT_SYMBOL(jbd2_log_start_commit);
  90EXPORT_SYMBOL(jbd2_journal_start_commit);
  91EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  92EXPORT_SYMBOL(jbd2_journal_wipe);
  93EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  94EXPORT_SYMBOL(jbd2_journal_invalidatepage);
  95EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  96EXPORT_SYMBOL(jbd2_journal_force_commit);
  97EXPORT_SYMBOL(jbd2_journal_file_inode);
 
 
  98EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  99EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
 100EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
 101EXPORT_SYMBOL(jbd2_inode_cache);
 102
 103static void __journal_abort_soft (journal_t *journal, int errno);
 104static int jbd2_journal_create_slab(size_t slab_size);
 105
 106#ifdef CONFIG_JBD2_DEBUG
 107void __jbd2_debug(int level, const char *file, const char *func,
 108		  unsigned int line, const char *fmt, ...)
 109{
 110	struct va_format vaf;
 111	va_list args;
 112
 113	if (level > jbd2_journal_enable_debug)
 114		return;
 115	va_start(args, fmt);
 116	vaf.fmt = fmt;
 117	vaf.va = &args;
 118	printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
 119	va_end(args);
 120}
 121EXPORT_SYMBOL(__jbd2_debug);
 122#endif
 123
 124/* Checksumming functions */
 125static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
 126{
 127	if (!jbd2_journal_has_csum_v2or3_feature(j))
 128		return 1;
 129
 130	return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
 131}
 132
 133static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 134{
 135	__u32 csum;
 136	__be32 old_csum;
 137
 138	old_csum = sb->s_checksum;
 139	sb->s_checksum = 0;
 140	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 141	sb->s_checksum = old_csum;
 142
 143	return cpu_to_be32(csum);
 144}
 145
 146static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
 147{
 148	if (!jbd2_journal_has_csum_v2or3(j))
 149		return 1;
 150
 151	return sb->s_checksum == jbd2_superblock_csum(j, sb);
 152}
 153
 154static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
 155{
 156	if (!jbd2_journal_has_csum_v2or3(j))
 157		return;
 158
 159	sb->s_checksum = jbd2_superblock_csum(j, sb);
 160}
 161
 162/*
 163 * Helper function used to manage commit timeouts
 164 */
 165
 166static void commit_timeout(unsigned long __data)
 167{
 168	struct task_struct * p = (struct task_struct *) __data;
 169
 170	wake_up_process(p);
 171}
 172
 173/*
 174 * kjournald2: The main thread function used to manage a logging device
 175 * journal.
 176 *
 177 * This kernel thread is responsible for two things:
 178 *
 179 * 1) COMMIT:  Every so often we need to commit the current state of the
 180 *    filesystem to disk.  The journal thread is responsible for writing
 181 *    all of the metadata buffers to disk.
 
 
 182 *
 183 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 184 *    of the data in that part of the log has been rewritten elsewhere on
 185 *    the disk.  Flushing these old buffers to reclaim space in the log is
 186 *    known as checkpointing, and this thread is responsible for that job.
 187 */
 188
 189static int kjournald2(void *arg)
 190{
 191	journal_t *journal = arg;
 192	transaction_t *transaction;
 193
 194	/*
 195	 * Set up an interval timer which can be used to trigger a commit wakeup
 196	 * after the commit interval expires
 197	 */
 198	setup_timer(&journal->j_commit_timer, commit_timeout,
 199			(unsigned long)current);
 200
 201	set_freezable();
 202
 203	/* Record that the journal thread is running */
 204	journal->j_task = current;
 205	wake_up(&journal->j_wait_done_commit);
 206
 207	/*
 
 
 
 
 
 
 
 
 208	 * And now, wait forever for commit wakeup events.
 209	 */
 210	write_lock(&journal->j_state_lock);
 211
 212loop:
 213	if (journal->j_flags & JBD2_UNMOUNT)
 214		goto end_loop;
 215
 216	jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
 217		journal->j_commit_sequence, journal->j_commit_request);
 218
 219	if (journal->j_commit_sequence != journal->j_commit_request) {
 220		jbd_debug(1, "OK, requests differ\n");
 221		write_unlock(&journal->j_state_lock);
 222		del_timer_sync(&journal->j_commit_timer);
 223		jbd2_journal_commit_transaction(journal);
 224		write_lock(&journal->j_state_lock);
 225		goto loop;
 226	}
 227
 228	wake_up(&journal->j_wait_done_commit);
 229	if (freezing(current)) {
 230		/*
 231		 * The simpler the better. Flushing journal isn't a
 232		 * good idea, because that depends on threads that may
 233		 * be already stopped.
 234		 */
 235		jbd_debug(1, "Now suspending kjournald2\n");
 236		write_unlock(&journal->j_state_lock);
 237		try_to_freeze();
 238		write_lock(&journal->j_state_lock);
 239	} else {
 240		/*
 241		 * We assume on resume that commits are already there,
 242		 * so we don't sleep
 243		 */
 244		DEFINE_WAIT(wait);
 245		int should_sleep = 1;
 246
 247		prepare_to_wait(&journal->j_wait_commit, &wait,
 248				TASK_INTERRUPTIBLE);
 249		if (journal->j_commit_sequence != journal->j_commit_request)
 250			should_sleep = 0;
 251		transaction = journal->j_running_transaction;
 252		if (transaction && time_after_eq(jiffies,
 253						transaction->t_expires))
 254			should_sleep = 0;
 255		if (journal->j_flags & JBD2_UNMOUNT)
 256			should_sleep = 0;
 257		if (should_sleep) {
 258			write_unlock(&journal->j_state_lock);
 259			schedule();
 260			write_lock(&journal->j_state_lock);
 261		}
 262		finish_wait(&journal->j_wait_commit, &wait);
 263	}
 264
 265	jbd_debug(1, "kjournald2 wakes\n");
 266
 267	/*
 268	 * Were we woken up by a commit wakeup event?
 269	 */
 270	transaction = journal->j_running_transaction;
 271	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 272		journal->j_commit_request = transaction->t_tid;
 273		jbd_debug(1, "woke because of timeout\n");
 274	}
 275	goto loop;
 276
 277end_loop:
 278	write_unlock(&journal->j_state_lock);
 279	del_timer_sync(&journal->j_commit_timer);
 280	journal->j_task = NULL;
 281	wake_up(&journal->j_wait_done_commit);
 282	jbd_debug(1, "Journal thread exiting.\n");
 
 283	return 0;
 284}
 285
 286static int jbd2_journal_start_thread(journal_t *journal)
 287{
 288	struct task_struct *t;
 289
 290	t = kthread_run(kjournald2, journal, "jbd2/%s",
 291			journal->j_devname);
 292	if (IS_ERR(t))
 293		return PTR_ERR(t);
 294
 295	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 296	return 0;
 297}
 298
 299static void journal_kill_thread(journal_t *journal)
 300{
 301	write_lock(&journal->j_state_lock);
 302	journal->j_flags |= JBD2_UNMOUNT;
 303
 304	while (journal->j_task) {
 305		write_unlock(&journal->j_state_lock);
 306		wake_up(&journal->j_wait_commit);
 307		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 308		write_lock(&journal->j_state_lock);
 309	}
 310	write_unlock(&journal->j_state_lock);
 311}
 312
 
 
 
 
 
 
 
 
 
 
 313/*
 314 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 315 *
 316 * Writes a metadata buffer to a given disk block.  The actual IO is not
 317 * performed but a new buffer_head is constructed which labels the data
 318 * to be written with the correct destination disk block.
 319 *
 320 * Any magic-number escaping which needs to be done will cause a
 321 * copy-out here.  If the buffer happens to start with the
 322 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 323 * magic number is only written to the log for descripter blocks.  In
 324 * this case, we copy the data and replace the first word with 0, and we
 325 * return a result code which indicates that this buffer needs to be
 326 * marked as an escaped buffer in the corresponding log descriptor
 327 * block.  The missing word can then be restored when the block is read
 328 * during recovery.
 329 *
 330 * If the source buffer has already been modified by a new transaction
 331 * since we took the last commit snapshot, we use the frozen copy of
 332 * that data for IO. If we end up using the existing buffer_head's data
 333 * for the write, then we have to make sure nobody modifies it while the
 334 * IO is in progress. do_get_write_access() handles this.
 335 *
 336 * The function returns a pointer to the buffer_head to be used for IO.
 337 * 
 338 *
 339 * Return value:
 340 *  <0: Error
 341 * >=0: Finished OK
 342 *
 343 * On success:
 344 * Bit 0 set == escape performed on the data
 345 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
 346 */
 347
 348int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 349				  struct journal_head  *jh_in,
 350				  struct buffer_head **bh_out,
 351				  sector_t blocknr)
 352{
 353	int need_copy_out = 0;
 354	int done_copy_out = 0;
 355	int do_escape = 0;
 356	char *mapped_data;
 357	struct buffer_head *new_bh;
 358	struct page *new_page;
 359	unsigned int new_offset;
 360	struct buffer_head *bh_in = jh2bh(jh_in);
 361	journal_t *journal = transaction->t_journal;
 362
 363	/*
 364	 * The buffer really shouldn't be locked: only the current committing
 365	 * transaction is allowed to write it, so nobody else is allowed
 366	 * to do any IO.
 367	 *
 368	 * akpm: except if we're journalling data, and write() output is
 369	 * also part of a shared mapping, and another thread has
 370	 * decided to launch a writepage() against this buffer.
 371	 */
 372	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 373
 374	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 375
 376	/* keep subsequent assertions sane */
 377	atomic_set(&new_bh->b_count, 1);
 378
 379	jbd_lock_bh_state(bh_in);
 380repeat:
 381	/*
 382	 * If a new transaction has already done a buffer copy-out, then
 383	 * we use that version of the data for the commit.
 384	 */
 385	if (jh_in->b_frozen_data) {
 386		done_copy_out = 1;
 387		new_page = virt_to_page(jh_in->b_frozen_data);
 388		new_offset = offset_in_page(jh_in->b_frozen_data);
 
 
 389	} else {
 390		new_page = jh2bh(jh_in)->b_page;
 391		new_offset = offset_in_page(jh2bh(jh_in)->b_data);
 392	}
 393
 394	mapped_data = kmap_atomic(new_page);
 395	/*
 396	 * Fire data frozen trigger if data already wasn't frozen.  Do this
 397	 * before checking for escaping, as the trigger may modify the magic
 398	 * offset.  If a copy-out happens afterwards, it will have the correct
 399	 * data in the buffer.
 400	 */
 401	if (!done_copy_out)
 402		jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
 
 403					   jh_in->b_triggers);
 
 
 
 
 
 
 
 404
 405	/*
 406	 * Check for escaping
 407	 */
 408	if (*((__be32 *)(mapped_data + new_offset)) ==
 409				cpu_to_be32(JBD2_MAGIC_NUMBER)) {
 410		need_copy_out = 1;
 411		do_escape = 1;
 412	}
 413	kunmap_atomic(mapped_data);
 414
 415	/*
 416	 * Do we need to do a data copy?
 417	 */
 418	if (need_copy_out && !done_copy_out) {
 419		char *tmp;
 420
 421		jbd_unlock_bh_state(bh_in);
 422		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
 423		if (!tmp) {
 424			brelse(new_bh);
 425			return -ENOMEM;
 426		}
 427		jbd_lock_bh_state(bh_in);
 428		if (jh_in->b_frozen_data) {
 429			jbd2_free(tmp, bh_in->b_size);
 430			goto repeat;
 431		}
 432
 433		jh_in->b_frozen_data = tmp;
 434		mapped_data = kmap_atomic(new_page);
 435		memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
 436		kunmap_atomic(mapped_data);
 437
 438		new_page = virt_to_page(tmp);
 439		new_offset = offset_in_page(tmp);
 440		done_copy_out = 1;
 441
 442		/*
 443		 * This isn't strictly necessary, as we're using frozen
 444		 * data for the escaping, but it keeps consistency with
 445		 * b_frozen_data usage.
 446		 */
 447		jh_in->b_frozen_triggers = jh_in->b_triggers;
 448	}
 449
 450	/*
 451	 * Did we need to do an escaping?  Now we've done all the
 452	 * copying, we can finally do so.
 453	 */
 454	if (do_escape) {
 455		mapped_data = kmap_atomic(new_page);
 456		*((unsigned int *)(mapped_data + new_offset)) = 0;
 457		kunmap_atomic(mapped_data);
 458	}
 459
 460	set_bh_page(new_bh, new_page, new_offset);
 
 461	new_bh->b_size = bh_in->b_size;
 462	new_bh->b_bdev = journal->j_dev;
 463	new_bh->b_blocknr = blocknr;
 464	new_bh->b_private = bh_in;
 465	set_buffer_mapped(new_bh);
 466	set_buffer_dirty(new_bh);
 467
 468	*bh_out = new_bh;
 469
 470	/*
 471	 * The to-be-written buffer needs to get moved to the io queue,
 472	 * and the original buffer whose contents we are shadowing or
 473	 * copying is moved to the transaction's shadow queue.
 474	 */
 475	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 476	spin_lock(&journal->j_list_lock);
 477	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 478	spin_unlock(&journal->j_list_lock);
 479	set_buffer_shadow(bh_in);
 480	jbd_unlock_bh_state(bh_in);
 481
 482	return do_escape | (done_copy_out << 1);
 483}
 484
 485/*
 486 * Allocation code for the journal file.  Manage the space left in the
 487 * journal, so that we can begin checkpointing when appropriate.
 488 */
 489
 490/*
 491 * Called with j_state_lock locked for writing.
 492 * Returns true if a transaction commit was started.
 493 */
 494int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 495{
 496	/* Return if the txn has already requested to be committed */
 497	if (journal->j_commit_request == target)
 498		return 0;
 499
 500	/*
 501	 * The only transaction we can possibly wait upon is the
 502	 * currently running transaction (if it exists).  Otherwise,
 503	 * the target tid must be an old one.
 504	 */
 505	if (journal->j_running_transaction &&
 506	    journal->j_running_transaction->t_tid == target) {
 507		/*
 508		 * We want a new commit: OK, mark the request and wakeup the
 509		 * commit thread.  We do _not_ do the commit ourselves.
 510		 */
 511
 512		journal->j_commit_request = target;
 513		jbd_debug(1, "JBD2: requesting commit %d/%d\n",
 514			  journal->j_commit_request,
 515			  journal->j_commit_sequence);
 516		journal->j_running_transaction->t_requested = jiffies;
 517		wake_up(&journal->j_wait_commit);
 518		return 1;
 519	} else if (!tid_geq(journal->j_commit_request, target))
 520		/* This should never happen, but if it does, preserve
 521		   the evidence before kjournald goes into a loop and
 522		   increments j_commit_sequence beyond all recognition. */
 523		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 524			  journal->j_commit_request,
 525			  journal->j_commit_sequence,
 526			  target, journal->j_running_transaction ? 
 527			  journal->j_running_transaction->t_tid : 0);
 528	return 0;
 529}
 530
 531int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 532{
 533	int ret;
 534
 535	write_lock(&journal->j_state_lock);
 536	ret = __jbd2_log_start_commit(journal, tid);
 537	write_unlock(&journal->j_state_lock);
 538	return ret;
 539}
 540
 541/*
 542 * Force and wait any uncommitted transactions.  We can only force the running
 543 * transaction if we don't have an active handle, otherwise, we will deadlock.
 544 * Returns: <0 in case of error,
 545 *           0 if nothing to commit,
 546 *           1 if transaction was successfully committed.
 547 */
 548static int __jbd2_journal_force_commit(journal_t *journal)
 549{
 550	transaction_t *transaction = NULL;
 551	tid_t tid;
 552	int need_to_start = 0, ret = 0;
 553
 554	read_lock(&journal->j_state_lock);
 555	if (journal->j_running_transaction && !current->journal_info) {
 556		transaction = journal->j_running_transaction;
 557		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 558			need_to_start = 1;
 559	} else if (journal->j_committing_transaction)
 560		transaction = journal->j_committing_transaction;
 561
 562	if (!transaction) {
 563		/* Nothing to commit */
 564		read_unlock(&journal->j_state_lock);
 565		return 0;
 566	}
 567	tid = transaction->t_tid;
 568	read_unlock(&journal->j_state_lock);
 569	if (need_to_start)
 570		jbd2_log_start_commit(journal, tid);
 571	ret = jbd2_log_wait_commit(journal, tid);
 572	if (!ret)
 573		ret = 1;
 574
 575	return ret;
 576}
 577
 578/**
 579 * Force and wait upon a commit if the calling process is not within
 580 * transaction.  This is used for forcing out undo-protected data which contains
 581 * bitmaps, when the fs is running out of space.
 582 *
 583 * @journal: journal to force
 584 * Returns true if progress was made.
 
 
 
 585 */
 586int jbd2_journal_force_commit_nested(journal_t *journal)
 587{
 588	int ret;
 589
 590	ret = __jbd2_journal_force_commit(journal);
 591	return ret > 0;
 592}
 593
 594/**
 595 * int journal_force_commit() - force any uncommitted transactions
 596 * @journal: journal to force
 597 *
 598 * Caller want unconditional commit. We can only force the running transaction
 599 * if we don't have an active handle, otherwise, we will deadlock.
 600 */
 601int jbd2_journal_force_commit(journal_t *journal)
 602{
 603	int ret;
 604
 605	J_ASSERT(!current->journal_info);
 606	ret = __jbd2_journal_force_commit(journal);
 607	if (ret > 0)
 608		ret = 0;
 609	return ret;
 610}
 611
 612/*
 613 * Start a commit of the current running transaction (if any).  Returns true
 614 * if a transaction is going to be committed (or is currently already
 615 * committing), and fills its tid in at *ptid
 616 */
 617int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 618{
 619	int ret = 0;
 620
 621	write_lock(&journal->j_state_lock);
 622	if (journal->j_running_transaction) {
 623		tid_t tid = journal->j_running_transaction->t_tid;
 624
 625		__jbd2_log_start_commit(journal, tid);
 626		/* There's a running transaction and we've just made sure
 627		 * it's commit has been scheduled. */
 628		if (ptid)
 629			*ptid = tid;
 630		ret = 1;
 631	} else if (journal->j_committing_transaction) {
 632		/*
 633		 * If commit has been started, then we have to wait for
 634		 * completion of that transaction.
 635		 */
 636		if (ptid)
 637			*ptid = journal->j_committing_transaction->t_tid;
 638		ret = 1;
 639	}
 640	write_unlock(&journal->j_state_lock);
 641	return ret;
 642}
 643
 644/*
 645 * Return 1 if a given transaction has not yet sent barrier request
 646 * connected with a transaction commit. If 0 is returned, transaction
 647 * may or may not have sent the barrier. Used to avoid sending barrier
 648 * twice in common cases.
 649 */
 650int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 651{
 652	int ret = 0;
 653	transaction_t *commit_trans;
 654
 655	if (!(journal->j_flags & JBD2_BARRIER))
 656		return 0;
 657	read_lock(&journal->j_state_lock);
 658	/* Transaction already committed? */
 659	if (tid_geq(journal->j_commit_sequence, tid))
 660		goto out;
 661	commit_trans = journal->j_committing_transaction;
 662	if (!commit_trans || commit_trans->t_tid != tid) {
 663		ret = 1;
 664		goto out;
 665	}
 666	/*
 667	 * Transaction is being committed and we already proceeded to
 668	 * submitting a flush to fs partition?
 669	 */
 670	if (journal->j_fs_dev != journal->j_dev) {
 671		if (!commit_trans->t_need_data_flush ||
 672		    commit_trans->t_state >= T_COMMIT_DFLUSH)
 673			goto out;
 674	} else {
 675		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 676			goto out;
 677	}
 678	ret = 1;
 679out:
 680	read_unlock(&journal->j_state_lock);
 681	return ret;
 682}
 683EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 684
 685/*
 686 * Wait for a specified commit to complete.
 687 * The caller may not hold the journal lock.
 688 */
 689int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 690{
 691	int err = 0;
 692
 693	read_lock(&journal->j_state_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 694#ifdef CONFIG_JBD2_DEBUG
 695	if (!tid_geq(journal->j_commit_request, tid)) {
 696		printk(KERN_ERR
 697		       "%s: error: j_commit_request=%d, tid=%d\n",
 698		       __func__, journal->j_commit_request, tid);
 699	}
 700#endif
 701	while (tid_gt(tid, journal->j_commit_sequence)) {
 702		jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
 703				  tid, journal->j_commit_sequence);
 704		read_unlock(&journal->j_state_lock);
 705		wake_up(&journal->j_wait_commit);
 706		wait_event(journal->j_wait_done_commit,
 707				!tid_gt(tid, journal->j_commit_sequence));
 708		read_lock(&journal->j_state_lock);
 709	}
 710	read_unlock(&journal->j_state_lock);
 711
 712	if (unlikely(is_journal_aborted(journal)))
 713		err = -EIO;
 714	return err;
 715}
 716
 717/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 718 * When this function returns the transaction corresponding to tid
 719 * will be completed.  If the transaction has currently running, start
 720 * committing that transaction before waiting for it to complete.  If
 721 * the transaction id is stale, it is by definition already completed,
 722 * so just return SUCCESS.
 723 */
 724int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 725{
 726	int	need_to_wait = 1;
 727
 728	read_lock(&journal->j_state_lock);
 729	if (journal->j_running_transaction &&
 730	    journal->j_running_transaction->t_tid == tid) {
 731		if (journal->j_commit_request != tid) {
 732			/* transaction not yet started, so request it */
 733			read_unlock(&journal->j_state_lock);
 734			jbd2_log_start_commit(journal, tid);
 735			goto wait_commit;
 736		}
 737	} else if (!(journal->j_committing_transaction &&
 738		     journal->j_committing_transaction->t_tid == tid))
 739		need_to_wait = 0;
 740	read_unlock(&journal->j_state_lock);
 741	if (!need_to_wait)
 742		return 0;
 743wait_commit:
 744	return jbd2_log_wait_commit(journal, tid);
 745}
 746EXPORT_SYMBOL(jbd2_complete_transaction);
 747
 748/*
 749 * Log buffer allocation routines:
 750 */
 751
 752int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 753{
 754	unsigned long blocknr;
 755
 756	write_lock(&journal->j_state_lock);
 757	J_ASSERT(journal->j_free > 1);
 758
 759	blocknr = journal->j_head;
 760	journal->j_head++;
 761	journal->j_free--;
 762	if (journal->j_head == journal->j_last)
 763		journal->j_head = journal->j_first;
 764	write_unlock(&journal->j_state_lock);
 765	return jbd2_journal_bmap(journal, blocknr, retp);
 766}
 767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768/*
 769 * Conversion of logical to physical block numbers for the journal
 770 *
 771 * On external journals the journal blocks are identity-mapped, so
 772 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 773 * ready.
 774 */
 775int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 776		 unsigned long long *retp)
 777{
 778	int err = 0;
 779	unsigned long long ret;
 
 780
 781	if (journal->j_inode) {
 782		ret = bmap(journal->j_inode, blocknr);
 783		if (ret)
 784			*retp = ret;
 785		else {
 
 
 
 786			printk(KERN_ALERT "%s: journal block not found "
 787					"at offset %lu on %s\n",
 788			       __func__, blocknr, journal->j_devname);
 789			err = -EIO;
 790			__journal_abort_soft(journal, err);
 
 
 791		}
 
 792	} else {
 793		*retp = blocknr; /* +journal->j_blk_offset */
 794	}
 795	return err;
 796}
 797
 798/*
 799 * We play buffer_head aliasing tricks to write data/metadata blocks to
 800 * the journal without copying their contents, but for journal
 801 * descriptor blocks we do need to generate bona fide buffers.
 802 *
 803 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 804 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 805 * But we don't bother doing that, so there will be coherency problems with
 806 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 807 */
 808struct buffer_head *
 809jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 810{
 811	journal_t *journal = transaction->t_journal;
 812	struct buffer_head *bh;
 813	unsigned long long blocknr;
 814	journal_header_t *header;
 815	int err;
 816
 817	err = jbd2_journal_next_log_block(journal, &blocknr);
 818
 819	if (err)
 820		return NULL;
 821
 822	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 823	if (!bh)
 824		return NULL;
 
 825	lock_buffer(bh);
 826	memset(bh->b_data, 0, journal->j_blocksize);
 827	header = (journal_header_t *)bh->b_data;
 828	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 829	header->h_blocktype = cpu_to_be32(type);
 830	header->h_sequence = cpu_to_be32(transaction->t_tid);
 831	set_buffer_uptodate(bh);
 832	unlock_buffer(bh);
 833	BUFFER_TRACE(bh, "return this buffer");
 834	return bh;
 835}
 836
 837void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 838{
 839	struct jbd2_journal_block_tail *tail;
 840	__u32 csum;
 841
 842	if (!jbd2_journal_has_csum_v2or3(j))
 843		return;
 844
 845	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 846			sizeof(struct jbd2_journal_block_tail));
 847	tail->t_checksum = 0;
 848	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 849	tail->t_checksum = cpu_to_be32(csum);
 850}
 851
 852/*
 853 * Return tid of the oldest transaction in the journal and block in the journal
 854 * where the transaction starts.
 855 *
 856 * If the journal is now empty, return which will be the next transaction ID
 857 * we will write and where will that transaction start.
 858 *
 859 * The return value is 0 if journal tail cannot be pushed any further, 1 if
 860 * it can.
 861 */
 862int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
 863			      unsigned long *block)
 864{
 865	transaction_t *transaction;
 866	int ret;
 867
 868	read_lock(&journal->j_state_lock);
 869	spin_lock(&journal->j_list_lock);
 870	transaction = journal->j_checkpoint_transactions;
 871	if (transaction) {
 872		*tid = transaction->t_tid;
 873		*block = transaction->t_log_start;
 874	} else if ((transaction = journal->j_committing_transaction) != NULL) {
 875		*tid = transaction->t_tid;
 876		*block = transaction->t_log_start;
 877	} else if ((transaction = journal->j_running_transaction) != NULL) {
 878		*tid = transaction->t_tid;
 879		*block = journal->j_head;
 880	} else {
 881		*tid = journal->j_transaction_sequence;
 882		*block = journal->j_head;
 883	}
 884	ret = tid_gt(*tid, journal->j_tail_sequence);
 885	spin_unlock(&journal->j_list_lock);
 886	read_unlock(&journal->j_state_lock);
 887
 888	return ret;
 889}
 890
 891/*
 892 * Update information in journal structure and in on disk journal superblock
 893 * about log tail. This function does not check whether information passed in
 894 * really pushes log tail further. It's responsibility of the caller to make
 895 * sure provided log tail information is valid (e.g. by holding
 896 * j_checkpoint_mutex all the time between computing log tail and calling this
 897 * function as is the case with jbd2_cleanup_journal_tail()).
 898 *
 899 * Requires j_checkpoint_mutex
 900 */
 901int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 902{
 903	unsigned long freed;
 904	int ret;
 905
 906	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
 907
 908	/*
 909	 * We cannot afford for write to remain in drive's caches since as
 910	 * soon as we update j_tail, next transaction can start reusing journal
 911	 * space and if we lose sb update during power failure we'd replay
 912	 * old transaction with possibly newly overwritten data.
 913	 */
 914	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, WRITE_FUA);
 915	if (ret)
 916		goto out;
 917
 918	write_lock(&journal->j_state_lock);
 919	freed = block - journal->j_tail;
 920	if (block < journal->j_tail)
 921		freed += journal->j_last - journal->j_first;
 922
 923	trace_jbd2_update_log_tail(journal, tid, block, freed);
 924	jbd_debug(1,
 925		  "Cleaning journal tail from %d to %d (offset %lu), "
 926		  "freeing %lu\n",
 927		  journal->j_tail_sequence, tid, block, freed);
 928
 929	journal->j_free += freed;
 930	journal->j_tail_sequence = tid;
 931	journal->j_tail = block;
 932	write_unlock(&journal->j_state_lock);
 933
 934out:
 935	return ret;
 936}
 937
 938/*
 939 * This is a variaon of __jbd2_update_log_tail which checks for validity of
 940 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
 941 * with other threads updating log tail.
 942 */
 943void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
 944{
 945	mutex_lock(&journal->j_checkpoint_mutex);
 946	if (tid_gt(tid, journal->j_tail_sequence))
 947		__jbd2_update_log_tail(journal, tid, block);
 948	mutex_unlock(&journal->j_checkpoint_mutex);
 949}
 950
 951struct jbd2_stats_proc_session {
 952	journal_t *journal;
 953	struct transaction_stats_s *stats;
 954	int start;
 955	int max;
 956};
 957
 958static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
 959{
 960	return *pos ? NULL : SEQ_START_TOKEN;
 961}
 962
 963static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
 964{
 
 965	return NULL;
 966}
 967
 968static int jbd2_seq_info_show(struct seq_file *seq, void *v)
 969{
 970	struct jbd2_stats_proc_session *s = seq->private;
 971
 972	if (v != SEQ_START_TOKEN)
 973		return 0;
 974	seq_printf(seq, "%lu transactions (%lu requested), "
 975		   "each up to %u blocks\n",
 976		   s->stats->ts_tid, s->stats->ts_requested,
 977		   s->journal->j_max_transaction_buffers);
 978	if (s->stats->ts_tid == 0)
 979		return 0;
 980	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
 981	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
 982	seq_printf(seq, "  %ums request delay\n",
 983	    (s->stats->ts_requested == 0) ? 0 :
 984	    jiffies_to_msecs(s->stats->run.rs_request_delay /
 985			     s->stats->ts_requested));
 986	seq_printf(seq, "  %ums running transaction\n",
 987	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
 988	seq_printf(seq, "  %ums transaction was being locked\n",
 989	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
 990	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
 991	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
 992	seq_printf(seq, "  %ums logging transaction\n",
 993	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
 994	seq_printf(seq, "  %lluus average transaction commit time\n",
 995		   div_u64(s->journal->j_average_commit_time, 1000));
 996	seq_printf(seq, "  %lu handles per transaction\n",
 997	    s->stats->run.rs_handle_count / s->stats->ts_tid);
 998	seq_printf(seq, "  %lu blocks per transaction\n",
 999	    s->stats->run.rs_blocks / s->stats->ts_tid);
1000	seq_printf(seq, "  %lu logged blocks per transaction\n",
1001	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1002	return 0;
1003}
1004
1005static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1006{
1007}
1008
1009static const struct seq_operations jbd2_seq_info_ops = {
1010	.start  = jbd2_seq_info_start,
1011	.next   = jbd2_seq_info_next,
1012	.stop   = jbd2_seq_info_stop,
1013	.show   = jbd2_seq_info_show,
1014};
1015
1016static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1017{
1018	journal_t *journal = PDE_DATA(inode);
1019	struct jbd2_stats_proc_session *s;
1020	int rc, size;
1021
1022	s = kmalloc(sizeof(*s), GFP_KERNEL);
1023	if (s == NULL)
1024		return -ENOMEM;
1025	size = sizeof(struct transaction_stats_s);
1026	s->stats = kmalloc(size, GFP_KERNEL);
1027	if (s->stats == NULL) {
1028		kfree(s);
1029		return -ENOMEM;
1030	}
1031	spin_lock(&journal->j_history_lock);
1032	memcpy(s->stats, &journal->j_stats, size);
1033	s->journal = journal;
1034	spin_unlock(&journal->j_history_lock);
1035
1036	rc = seq_open(file, &jbd2_seq_info_ops);
1037	if (rc == 0) {
1038		struct seq_file *m = file->private_data;
1039		m->private = s;
1040	} else {
1041		kfree(s->stats);
1042		kfree(s);
1043	}
1044	return rc;
1045
1046}
1047
1048static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1049{
1050	struct seq_file *seq = file->private_data;
1051	struct jbd2_stats_proc_session *s = seq->private;
1052	kfree(s->stats);
1053	kfree(s);
1054	return seq_release(inode, file);
1055}
1056
1057static const struct file_operations jbd2_seq_info_fops = {
1058	.owner		= THIS_MODULE,
1059	.open           = jbd2_seq_info_open,
1060	.read           = seq_read,
1061	.llseek         = seq_lseek,
1062	.release        = jbd2_seq_info_release,
1063};
1064
1065static struct proc_dir_entry *proc_jbd2_stats;
1066
1067static void jbd2_stats_proc_init(journal_t *journal)
1068{
1069	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1070	if (journal->j_proc_entry) {
1071		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1072				 &jbd2_seq_info_fops, journal);
1073	}
1074}
1075
1076static void jbd2_stats_proc_exit(journal_t *journal)
1077{
1078	remove_proc_entry("info", journal->j_proc_entry);
1079	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1080}
1081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082/*
1083 * Management for journal control blocks: functions to create and
1084 * destroy journal_t structures, and to initialise and read existing
1085 * journal blocks from disk.  */
1086
1087/* First: create and setup a journal_t object in memory.  We initialise
1088 * very few fields yet: that has to wait until we have created the
1089 * journal structures from from scratch, or loaded them from disk. */
 
1090
1091static journal_t * journal_init_common (void)
 
 
1092{
 
1093	journal_t *journal;
1094	int err;
 
1095
1096	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1097	if (!journal)
1098		return NULL;
 
 
 
 
 
 
 
 
 
 
 
1099
1100	init_waitqueue_head(&journal->j_wait_transaction_locked);
1101	init_waitqueue_head(&journal->j_wait_done_commit);
1102	init_waitqueue_head(&journal->j_wait_commit);
1103	init_waitqueue_head(&journal->j_wait_updates);
1104	init_waitqueue_head(&journal->j_wait_reserved);
 
 
1105	mutex_init(&journal->j_barrier);
1106	mutex_init(&journal->j_checkpoint_mutex);
1107	spin_lock_init(&journal->j_revoke_lock);
1108	spin_lock_init(&journal->j_list_lock);
 
1109	rwlock_init(&journal->j_state_lock);
1110
1111	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1112	journal->j_min_batch_time = 0;
1113	journal->j_max_batch_time = 15000; /* 15ms */
1114	atomic_set(&journal->j_reserved_credits, 0);
 
 
1115
1116	/* The journal is marked for error until we succeed with recovery! */
1117	journal->j_flags = JBD2_ABORT;
1118
1119	/* Set up a default-sized revoke table for the new mount. */
1120	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1121	if (err) {
1122		kfree(journal);
1123		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124	}
1125
1126	spin_lock_init(&journal->j_history_lock);
 
 
 
 
1127
1128	return journal;
 
 
 
 
 
 
 
 
 
 
1129}
1130
1131/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1132 *
1133 * Create a journal structure assigned some fixed set of disk blocks to
1134 * the journal.  We don't actually touch those disk blocks yet, but we
1135 * need to set up all of the mapping information to tell the journaling
1136 * system where the journal blocks are.
1137 *
1138 */
1139
1140/**
1141 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1142 *  @bdev: Block device on which to create the journal
1143 *  @fs_dev: Device which hold journalled filesystem for this journal.
1144 *  @start: Block nr Start of journal.
1145 *  @len:  Length of the journal in blocks.
1146 *  @blocksize: blocksize of journalling device
1147 *
1148 *  Returns: a newly created journal_t *
1149 *
1150 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1151 *  range of blocks on an arbitrary block device.
1152 *
1153 */
1154journal_t * jbd2_journal_init_dev(struct block_device *bdev,
1155			struct block_device *fs_dev,
1156			unsigned long long start, int len, int blocksize)
1157{
1158	journal_t *journal = journal_init_common();
1159	struct buffer_head *bh;
1160	int n;
1161
1162	if (!journal)
1163		return NULL;
 
1164
1165	/* journal descriptor can store up to n blocks -bzzz */
1166	journal->j_blocksize = blocksize;
1167	journal->j_dev = bdev;
1168	journal->j_fs_dev = fs_dev;
1169	journal->j_blk_offset = start;
1170	journal->j_maxlen = len;
1171	bdevname(journal->j_dev, journal->j_devname);
1172	strreplace(journal->j_devname, '/', '!');
1173	jbd2_stats_proc_init(journal);
1174	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1175	journal->j_wbufsize = n;
1176	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1177	if (!journal->j_wbuf) {
1178		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1179			__func__);
1180		goto out_err;
1181	}
1182
1183	bh = __getblk(journal->j_dev, start, journal->j_blocksize);
1184	if (!bh) {
1185		printk(KERN_ERR
1186		       "%s: Cannot get buffer for journal superblock\n",
1187		       __func__);
1188		goto out_err;
1189	}
1190	journal->j_sb_buffer = bh;
1191	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1192
1193	return journal;
1194out_err:
1195	kfree(journal->j_wbuf);
1196	jbd2_stats_proc_exit(journal);
1197	kfree(journal);
1198	return NULL;
1199}
1200
1201/**
1202 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1203 *  @inode: An inode to create the journal in
1204 *
1205 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1206 * the journal.  The inode must exist already, must support bmap() and
1207 * must have all data blocks preallocated.
1208 */
1209journal_t * jbd2_journal_init_inode (struct inode *inode)
1210{
1211	struct buffer_head *bh;
1212	journal_t *journal = journal_init_common();
1213	char *p;
1214	int err;
1215	int n;
1216	unsigned long long blocknr;
1217
1218	if (!journal)
1219		return NULL;
 
 
 
 
1220
1221	journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
1222	journal->j_inode = inode;
1223	bdevname(journal->j_dev, journal->j_devname);
1224	p = strreplace(journal->j_devname, '/', '!');
1225	sprintf(p, "-%lu", journal->j_inode->i_ino);
1226	jbd_debug(1,
1227		  "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
1228		  journal, inode->i_sb->s_id, inode->i_ino,
1229		  (long long) inode->i_size,
1230		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1231
1232	journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
1233	journal->j_blocksize = inode->i_sb->s_blocksize;
1234	jbd2_stats_proc_init(journal);
1235
1236	/* journal descriptor can store up to n blocks -bzzz */
1237	n = journal->j_blocksize / sizeof(journal_block_tag_t);
1238	journal->j_wbufsize = n;
1239	journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
1240	if (!journal->j_wbuf) {
1241		printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
1242			__func__);
1243		goto out_err;
1244	}
1245
1246	err = jbd2_journal_bmap(journal, 0, &blocknr);
1247	/* If that failed, give up */
1248	if (err) {
1249		printk(KERN_ERR "%s: Cannot locate journal superblock\n",
1250		       __func__);
1251		goto out_err;
1252	}
1253
1254	bh = getblk_unmovable(journal->j_dev, blocknr, journal->j_blocksize);
1255	if (!bh) {
1256		printk(KERN_ERR
1257		       "%s: Cannot get buffer for journal superblock\n",
1258		       __func__);
1259		goto out_err;
1260	}
1261	journal->j_sb_buffer = bh;
1262	journal->j_superblock = (journal_superblock_t *)bh->b_data;
1263
1264	return journal;
1265out_err:
1266	kfree(journal->j_wbuf);
1267	jbd2_stats_proc_exit(journal);
1268	kfree(journal);
1269	return NULL;
1270}
1271
1272/*
1273 * If the journal init or create aborts, we need to mark the journal
1274 * superblock as being NULL to prevent the journal destroy from writing
1275 * back a bogus superblock.
1276 */
1277static void journal_fail_superblock (journal_t *journal)
1278{
1279	struct buffer_head *bh = journal->j_sb_buffer;
1280	brelse(bh);
1281	journal->j_sb_buffer = NULL;
1282}
1283
1284/*
1285 * Given a journal_t structure, initialise the various fields for
1286 * startup of a new journaling session.  We use this both when creating
1287 * a journal, and after recovering an old journal to reset it for
1288 * subsequent use.
1289 */
1290
1291static int journal_reset(journal_t *journal)
1292{
1293	journal_superblock_t *sb = journal->j_superblock;
1294	unsigned long long first, last;
1295
1296	first = be32_to_cpu(sb->s_first);
1297	last = be32_to_cpu(sb->s_maxlen);
1298	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1299		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1300		       first, last);
1301		journal_fail_superblock(journal);
1302		return -EINVAL;
1303	}
1304
1305	journal->j_first = first;
1306	journal->j_last = last;
1307
1308	journal->j_head = first;
1309	journal->j_tail = first;
1310	journal->j_free = last - first;
 
 
 
 
 
 
 
 
 
 
 
 
 
1311
1312	journal->j_tail_sequence = journal->j_transaction_sequence;
1313	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1314	journal->j_commit_request = journal->j_commit_sequence;
1315
1316	journal->j_max_transaction_buffers = journal->j_maxlen / 4;
 
 
 
 
 
1317
1318	/*
1319	 * As a special case, if the on-disk copy is already marked as needing
1320	 * no recovery (s_start == 0), then we can safely defer the superblock
1321	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1322	 * attempting a write to a potential-readonly device.
1323	 */
1324	if (sb->s_start == 0) {
1325		jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1326			"(start %ld, seq %d, errno %d)\n",
1327			journal->j_tail, journal->j_tail_sequence,
1328			journal->j_errno);
1329		journal->j_flags |= JBD2_FLUSHED;
1330	} else {
1331		/* Lock here to make assertions happy... */
1332		mutex_lock(&journal->j_checkpoint_mutex);
1333		/*
1334		 * Update log tail information. We use WRITE_FUA since new
1335		 * transaction will start reusing journal space and so we
1336		 * must make sure information about current log tail is on
1337		 * disk before that.
1338		 */
1339		jbd2_journal_update_sb_log_tail(journal,
1340						journal->j_tail_sequence,
1341						journal->j_tail,
1342						WRITE_FUA);
1343		mutex_unlock(&journal->j_checkpoint_mutex);
1344	}
1345	return jbd2_journal_start_thread(journal);
1346}
1347
1348static int jbd2_write_superblock(journal_t *journal, int write_op)
 
 
 
 
1349{
1350	struct buffer_head *bh = journal->j_sb_buffer;
1351	journal_superblock_t *sb = journal->j_superblock;
1352	int ret;
 
 
 
 
 
 
1353
1354	trace_jbd2_write_superblock(journal, write_op);
 
 
 
 
1355	if (!(journal->j_flags & JBD2_BARRIER))
1356		write_op &= ~(REQ_FUA | REQ_FLUSH);
1357	lock_buffer(bh);
 
 
1358	if (buffer_write_io_error(bh)) {
1359		/*
1360		 * Oh, dear.  A previous attempt to write the journal
1361		 * superblock failed.  This could happen because the
1362		 * USB device was yanked out.  Or it could happen to
1363		 * be a transient write error and maybe the block will
1364		 * be remapped.  Nothing we can do but to retry the
1365		 * write and hope for the best.
1366		 */
1367		printk(KERN_ERR "JBD2: previous I/O error detected "
1368		       "for journal superblock update for %s.\n",
1369		       journal->j_devname);
1370		clear_buffer_write_io_error(bh);
1371		set_buffer_uptodate(bh);
1372	}
1373	jbd2_superblock_csum_set(journal, sb);
 
1374	get_bh(bh);
1375	bh->b_end_io = end_buffer_write_sync;
1376	ret = submit_bh(write_op, bh);
1377	wait_on_buffer(bh);
1378	if (buffer_write_io_error(bh)) {
1379		clear_buffer_write_io_error(bh);
1380		set_buffer_uptodate(bh);
1381		ret = -EIO;
1382	}
1383	if (ret) {
1384		printk(KERN_ERR "JBD2: Error %d detected when updating "
1385		       "journal superblock for %s.\n", ret,
1386		       journal->j_devname);
1387		jbd2_journal_abort(journal, ret);
1388	}
1389
1390	return ret;
1391}
1392
1393/**
1394 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1395 * @journal: The journal to update.
1396 * @tail_tid: TID of the new transaction at the tail of the log
1397 * @tail_block: The first block of the transaction at the tail of the log
1398 * @write_op: With which operation should we write the journal sb
1399 *
1400 * Update a journal's superblock information about log tail and write it to
1401 * disk, waiting for the IO to complete.
1402 */
1403int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1404				     unsigned long tail_block, int write_op)
 
1405{
1406	journal_superblock_t *sb = journal->j_superblock;
1407	int ret;
1408
 
 
 
 
 
 
 
1409	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1410	jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1411		  tail_block, tail_tid);
1412
 
1413	sb->s_sequence = cpu_to_be32(tail_tid);
1414	sb->s_start    = cpu_to_be32(tail_block);
1415
1416	ret = jbd2_write_superblock(journal, write_op);
1417	if (ret)
1418		goto out;
1419
1420	/* Log is no longer empty */
1421	write_lock(&journal->j_state_lock);
1422	WARN_ON(!sb->s_sequence);
1423	journal->j_flags &= ~JBD2_FLUSHED;
1424	write_unlock(&journal->j_state_lock);
1425
1426out:
1427	return ret;
1428}
1429
1430/**
1431 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1432 * @journal: The journal to update.
1433 * @write_op: With which operation should we write the journal sb
1434 *
1435 * Update a journal's dynamic superblock fields to show that journal is empty.
1436 * Write updated superblock to disk waiting for IO to complete.
1437 */
1438static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1439{
1440	journal_superblock_t *sb = journal->j_superblock;
 
1441
1442	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1443	read_lock(&journal->j_state_lock);
1444	/* Is it already empty? */
1445	if (sb->s_start == 0) {
1446		read_unlock(&journal->j_state_lock);
1447		return;
1448	}
1449	jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
 
1450		  journal->j_tail_sequence);
1451
1452	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1453	sb->s_start    = cpu_to_be32(0);
1454	read_unlock(&journal->j_state_lock);
 
 
 
 
 
 
 
 
1455
1456	jbd2_write_superblock(journal, write_op);
1457
1458	/* Log is no longer empty */
 
 
 
1459	write_lock(&journal->j_state_lock);
1460	journal->j_flags |= JBD2_FLUSHED;
1461	write_unlock(&journal->j_state_lock);
1462}
1463
1464
1465/**
1466 * jbd2_journal_update_sb_errno() - Update error in the journal.
1467 * @journal: The journal to update.
1468 *
1469 * Update a journal's errno.  Write updated superblock to disk waiting for IO
1470 * to complete.
 
 
 
 
 
1471 */
1472void jbd2_journal_update_sb_errno(journal_t *journal)
1473{
1474	journal_superblock_t *sb = journal->j_superblock;
1475
1476	read_lock(&journal->j_state_lock);
1477	jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1478		  journal->j_errno);
1479	sb->s_errno    = cpu_to_be32(journal->j_errno);
1480	read_unlock(&journal->j_state_lock);
1481
1482	jbd2_write_superblock(journal, WRITE_FUA);
1483}
1484EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1485
1486/*
1487 * Read the superblock for a given journal, performing initial
1488 * validation of the format.
1489 */
1490static int journal_get_superblock(journal_t *journal)
1491{
1492	struct buffer_head *bh;
1493	journal_superblock_t *sb;
1494	int err = -EIO;
1495
1496	bh = journal->j_sb_buffer;
 
 
1497
1498	J_ASSERT(bh != NULL);
1499	if (!buffer_uptodate(bh)) {
1500		ll_rw_block(READ, 1, &bh);
1501		wait_on_buffer(bh);
1502		if (!buffer_uptodate(bh)) {
1503			printk(KERN_ERR
1504				"JBD2: IO error reading journal superblock\n");
1505			goto out;
 
 
 
1506		}
1507	}
1508
1509	if (buffer_verified(bh))
1510		return 0;
1511
1512	sb = journal->j_superblock;
1513
1514	err = -EINVAL;
1515
1516	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1517	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1518		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1519		goto out;
1520	}
1521
1522	switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1523	case JBD2_SUPERBLOCK_V1:
1524		journal->j_format_version = 1;
1525		break;
1526	case JBD2_SUPERBLOCK_V2:
1527		journal->j_format_version = 2;
1528		break;
1529	default:
1530		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1531		goto out;
1532	}
1533
1534	if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1535		journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1536	else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1537		printk(KERN_WARNING "JBD2: journal file too short\n");
1538		goto out;
1539	}
1540
1541	if (be32_to_cpu(sb->s_first) == 0 ||
1542	    be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1543		printk(KERN_WARNING
1544			"JBD2: Invalid start block of journal: %u\n",
1545			be32_to_cpu(sb->s_first));
1546		goto out;
1547	}
1548
1549	if (jbd2_has_feature_csum2(journal) &&
1550	    jbd2_has_feature_csum3(journal)) {
1551		/* Can't have checksum v2 and v3 at the same time! */
1552		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1553		       "at the same time!\n");
1554		goto out;
1555	}
1556
1557	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1558	    jbd2_has_feature_checksum(journal)) {
1559		/* Can't have checksum v1 and v2 on at the same time! */
1560		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1561		       "at the same time!\n");
1562		goto out;
1563	}
 
 
 
 
 
 
 
 
 
 
1564
1565	if (!jbd2_verify_csum_type(journal, sb)) {
1566		printk(KERN_ERR "JBD2: Unknown checksum type\n");
1567		goto out;
1568	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1569
1570	/* Load the checksum driver */
1571	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1572		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1573		if (IS_ERR(journal->j_chksum_driver)) {
1574			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1575			err = PTR_ERR(journal->j_chksum_driver);
1576			journal->j_chksum_driver = NULL;
1577			goto out;
1578		}
1579	}
1580
1581	/* Check superblock checksum */
1582	if (!jbd2_superblock_csum_verify(journal, sb)) {
1583		printk(KERN_ERR "JBD2: journal checksum error\n");
1584		err = -EFSBADCRC;
1585		goto out;
1586	}
1587
1588	/* Precompute checksum seed for all metadata */
1589	if (jbd2_journal_has_csum_v2or3(journal))
1590		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1591						   sizeof(sb->s_uuid));
1592
1593	set_buffer_verified(bh);
1594
1595	return 0;
1596
1597out:
1598	journal_fail_superblock(journal);
1599	return err;
1600}
1601
1602/*
1603 * Load the on-disk journal superblock and read the key fields into the
1604 * journal_t.
 
 
 
1605 */
1606
1607static int load_superblock(journal_t *journal)
1608{
1609	int err;
1610	journal_superblock_t *sb;
1611
1612	err = journal_get_superblock(journal);
1613	if (err)
1614		return err;
1615
1616	sb = journal->j_superblock;
 
 
 
 
 
1617
1618	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1619	journal->j_tail = be32_to_cpu(sb->s_start);
1620	journal->j_first = be32_to_cpu(sb->s_first);
1621	journal->j_last = be32_to_cpu(sb->s_maxlen);
1622	journal->j_errno = be32_to_cpu(sb->s_errno);
1623
1624	return 0;
1625}
1626
1627
1628/**
1629 * int jbd2_journal_load() - Read journal from disk.
1630 * @journal: Journal to act on.
1631 *
1632 * Given a journal_t structure which tells us which disk blocks contain
1633 * a journal, read the journal from disk to initialise the in-memory
1634 * structures.
1635 */
1636int jbd2_journal_load(journal_t *journal)
1637{
1638	int err;
1639	journal_superblock_t *sb;
1640
1641	err = load_superblock(journal);
1642	if (err)
1643		return err;
1644
1645	sb = journal->j_superblock;
1646	/* If this is a V2 superblock, then we have to check the
1647	 * features flags on it. */
1648
1649	if (journal->j_format_version >= 2) {
1650		if ((sb->s_feature_ro_compat &
1651		     ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1652		    (sb->s_feature_incompat &
1653		     ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1654			printk(KERN_WARNING
1655				"JBD2: Unrecognised features on journal\n");
1656			return -EINVAL;
1657		}
1658	}
1659
1660	/*
1661	 * Create a slab for this blocksize
1662	 */
1663	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1664	if (err)
1665		return err;
1666
1667	/* Let the recovery code check whether it needs to recover any
1668	 * data from the journal. */
1669	if (jbd2_journal_recover(journal))
1670		goto recovery_error;
 
 
 
1671
1672	if (journal->j_failed_commit) {
1673		printk(KERN_ERR "JBD2: journal transaction %u on %s "
1674		       "is corrupt.\n", journal->j_failed_commit,
1675		       journal->j_devname);
1676		return -EFSCORRUPTED;
1677	}
 
 
 
 
 
1678
1679	/* OK, we've finished with the dynamic journal bits:
1680	 * reinitialise the dynamic contents of the superblock in memory
1681	 * and reset them on disk. */
1682	if (journal_reset(journal))
1683		goto recovery_error;
 
 
 
1684
1685	journal->j_flags &= ~JBD2_ABORT;
1686	journal->j_flags |= JBD2_LOADED;
1687	return 0;
1688
1689recovery_error:
1690	printk(KERN_WARNING "JBD2: recovery failed\n");
1691	return -EIO;
1692}
1693
1694/**
1695 * void jbd2_journal_destroy() - Release a journal_t structure.
1696 * @journal: Journal to act on.
1697 *
1698 * Release a journal_t structure once it is no longer in use by the
1699 * journaled object.
1700 * Return <0 if we couldn't clean up the journal.
1701 */
1702int jbd2_journal_destroy(journal_t *journal)
1703{
1704	int err = 0;
1705
1706	/* Wait for the commit thread to wake up and die. */
1707	journal_kill_thread(journal);
1708
1709	/* Force a final log commit */
1710	if (journal->j_running_transaction)
1711		jbd2_journal_commit_transaction(journal);
1712
1713	/* Force any old transactions to disk */
1714
1715	/* Totally anal locking here... */
1716	spin_lock(&journal->j_list_lock);
1717	while (journal->j_checkpoint_transactions != NULL) {
1718		spin_unlock(&journal->j_list_lock);
1719		mutex_lock(&journal->j_checkpoint_mutex);
1720		err = jbd2_log_do_checkpoint(journal);
1721		mutex_unlock(&journal->j_checkpoint_mutex);
1722		/*
1723		 * If checkpointing failed, just free the buffers to avoid
1724		 * looping forever
1725		 */
1726		if (err) {
1727			jbd2_journal_destroy_checkpoint(journal);
1728			spin_lock(&journal->j_list_lock);
1729			break;
1730		}
1731		spin_lock(&journal->j_list_lock);
1732	}
1733
1734	J_ASSERT(journal->j_running_transaction == NULL);
1735	J_ASSERT(journal->j_committing_transaction == NULL);
1736	J_ASSERT(journal->j_checkpoint_transactions == NULL);
1737	spin_unlock(&journal->j_list_lock);
1738
 
 
 
 
 
 
 
 
 
 
1739	if (journal->j_sb_buffer) {
1740		if (!is_journal_aborted(journal)) {
1741			mutex_lock(&journal->j_checkpoint_mutex);
1742
1743			write_lock(&journal->j_state_lock);
1744			journal->j_tail_sequence =
1745				++journal->j_transaction_sequence;
1746			write_unlock(&journal->j_state_lock);
1747
1748			jbd2_mark_journal_empty(journal, WRITE_FLUSH_FUA);
1749			mutex_unlock(&journal->j_checkpoint_mutex);
1750		} else
1751			err = -EIO;
1752		brelse(journal->j_sb_buffer);
1753	}
1754
 
 
 
 
1755	if (journal->j_proc_entry)
1756		jbd2_stats_proc_exit(journal);
1757	iput(journal->j_inode);
1758	if (journal->j_revoke)
1759		jbd2_journal_destroy_revoke(journal);
1760	if (journal->j_chksum_driver)
1761		crypto_free_shash(journal->j_chksum_driver);
 
1762	kfree(journal->j_wbuf);
1763	kfree(journal);
1764
1765	return err;
1766}
1767
1768
1769/**
1770 *int jbd2_journal_check_used_features () - Check if features specified are used.
1771 * @journal: Journal to check.
1772 * @compat: bitmask of compatible features
1773 * @ro: bitmask of features that force read-only mount
1774 * @incompat: bitmask of incompatible features
1775 *
1776 * Check whether the journal uses all of a given set of
1777 * features.  Return true (non-zero) if it does.
1778 **/
1779
1780int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1781				 unsigned long ro, unsigned long incompat)
1782{
1783	journal_superblock_t *sb;
1784
1785	if (!compat && !ro && !incompat)
1786		return 1;
1787	/* Load journal superblock if it is not loaded yet. */
1788	if (journal->j_format_version == 0 &&
1789	    journal_get_superblock(journal) != 0)
1790		return 0;
1791	if (journal->j_format_version == 1)
1792		return 0;
1793
1794	sb = journal->j_superblock;
1795
1796	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1797	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1798	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1799		return 1;
1800
1801	return 0;
1802}
1803
1804/**
1805 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1806 * @journal: Journal to check.
1807 * @compat: bitmask of compatible features
1808 * @ro: bitmask of features that force read-only mount
1809 * @incompat: bitmask of incompatible features
1810 *
1811 * Check whether the journaling code supports the use of
1812 * all of a given set of features on this journal.  Return true
1813 * (non-zero) if it can. */
1814
1815int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1816				      unsigned long ro, unsigned long incompat)
1817{
1818	if (!compat && !ro && !incompat)
1819		return 1;
1820
1821	/* We can support any known requested features iff the
1822	 * superblock is in version 2.  Otherwise we fail to support any
1823	 * extended sb features. */
1824
1825	if (journal->j_format_version != 2)
1826		return 0;
1827
1828	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1829	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1830	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1831		return 1;
1832
1833	return 0;
1834}
1835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836/**
1837 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1838 * @journal: Journal to act on.
1839 * @compat: bitmask of compatible features
1840 * @ro: bitmask of features that force read-only mount
1841 * @incompat: bitmask of incompatible features
1842 *
1843 * Mark a given journal feature as present on the
1844 * superblock.  Returns true if the requested features could be set.
1845 *
1846 */
1847
1848int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1849			  unsigned long ro, unsigned long incompat)
1850{
1851#define INCOMPAT_FEATURE_ON(f) \
1852		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1853#define COMPAT_FEATURE_ON(f) \
1854		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1855	journal_superblock_t *sb;
1856
1857	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1858		return 1;
1859
1860	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1861		return 0;
1862
1863	/* If enabling v2 checksums, turn on v3 instead */
1864	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1865		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1866		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1867	}
1868
1869	/* Asking for checksumming v3 and v1?  Only give them v3. */
1870	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1871	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1872		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1873
1874	jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1875		  compat, ro, incompat);
1876
1877	sb = journal->j_superblock;
1878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879	/* If enabling v3 checksums, update superblock */
1880	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1881		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1882		sb->s_feature_compat &=
1883			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1884
1885		/* Load the checksum driver */
1886		if (journal->j_chksum_driver == NULL) {
1887			journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1888								      0, 0);
1889			if (IS_ERR(journal->j_chksum_driver)) {
1890				printk(KERN_ERR "JBD2: Cannot load crc32c "
1891				       "driver.\n");
1892				journal->j_chksum_driver = NULL;
1893				return 0;
1894			}
1895
1896			/* Precompute checksum seed for all metadata */
1897			journal->j_csum_seed = jbd2_chksum(journal, ~0,
1898							   sb->s_uuid,
1899							   sizeof(sb->s_uuid));
1900		}
1901	}
1902
1903	/* If enabling v1 checksums, downgrade superblock */
1904	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1905		sb->s_feature_incompat &=
1906			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1907				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
1908
1909	sb->s_feature_compat    |= cpu_to_be32(compat);
1910	sb->s_feature_ro_compat |= cpu_to_be32(ro);
1911	sb->s_feature_incompat  |= cpu_to_be32(incompat);
 
 
1912
1913	return 1;
1914#undef COMPAT_FEATURE_ON
1915#undef INCOMPAT_FEATURE_ON
1916}
1917
1918/*
1919 * jbd2_journal_clear_features () - Clear a given journal feature in the
1920 * 				    superblock
1921 * @journal: Journal to act on.
1922 * @compat: bitmask of compatible features
1923 * @ro: bitmask of features that force read-only mount
1924 * @incompat: bitmask of incompatible features
1925 *
1926 * Clear a given journal feature as present on the
1927 * superblock.
1928 */
1929void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1930				unsigned long ro, unsigned long incompat)
1931{
1932	journal_superblock_t *sb;
1933
1934	jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1935		  compat, ro, incompat);
1936
1937	sb = journal->j_superblock;
1938
1939	sb->s_feature_compat    &= ~cpu_to_be32(compat);
1940	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1941	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
 
1942}
1943EXPORT_SYMBOL(jbd2_journal_clear_features);
1944
1945/**
1946 * int jbd2_journal_flush () - Flush journal
1947 * @journal: Journal to act on.
 
1948 *
1949 * Flush all data for a given journal to disk and empty the journal.
1950 * Filesystems can use this when remounting readonly to ensure that
1951 * recovery does not need to happen on remount.
 
 
 
 
 
1952 */
1953
1954int jbd2_journal_flush(journal_t *journal)
1955{
1956	int err = 0;
1957	transaction_t *transaction = NULL;
1958
1959	write_lock(&journal->j_state_lock);
1960
1961	/* Force everything buffered to the log... */
1962	if (journal->j_running_transaction) {
1963		transaction = journal->j_running_transaction;
1964		__jbd2_log_start_commit(journal, transaction->t_tid);
1965	} else if (journal->j_committing_transaction)
1966		transaction = journal->j_committing_transaction;
1967
1968	/* Wait for the log commit to complete... */
1969	if (transaction) {
1970		tid_t tid = transaction->t_tid;
1971
1972		write_unlock(&journal->j_state_lock);
1973		jbd2_log_wait_commit(journal, tid);
1974	} else {
1975		write_unlock(&journal->j_state_lock);
1976	}
1977
1978	/* ...and flush everything in the log out to disk. */
1979	spin_lock(&journal->j_list_lock);
1980	while (!err && journal->j_checkpoint_transactions != NULL) {
1981		spin_unlock(&journal->j_list_lock);
1982		mutex_lock(&journal->j_checkpoint_mutex);
1983		err = jbd2_log_do_checkpoint(journal);
1984		mutex_unlock(&journal->j_checkpoint_mutex);
1985		spin_lock(&journal->j_list_lock);
1986	}
1987	spin_unlock(&journal->j_list_lock);
1988
1989	if (is_journal_aborted(journal))
1990		return -EIO;
1991
1992	mutex_lock(&journal->j_checkpoint_mutex);
1993	if (!err) {
1994		err = jbd2_cleanup_journal_tail(journal);
1995		if (err < 0) {
1996			mutex_unlock(&journal->j_checkpoint_mutex);
1997			goto out;
1998		}
1999		err = 0;
2000	}
2001
2002	/* Finally, mark the journal as really needing no recovery.
2003	 * This sets s_start==0 in the underlying superblock, which is
2004	 * the magic code for a fully-recovered superblock.  Any future
2005	 * commits of data to the journal will restore the current
2006	 * s_start value. */
2007	jbd2_mark_journal_empty(journal, WRITE_FUA);
 
 
 
 
2008	mutex_unlock(&journal->j_checkpoint_mutex);
2009	write_lock(&journal->j_state_lock);
2010	J_ASSERT(!journal->j_running_transaction);
2011	J_ASSERT(!journal->j_committing_transaction);
2012	J_ASSERT(!journal->j_checkpoint_transactions);
2013	J_ASSERT(journal->j_head == journal->j_tail);
2014	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2015	write_unlock(&journal->j_state_lock);
2016out:
2017	return err;
2018}
2019
2020/**
2021 * int jbd2_journal_wipe() - Wipe journal contents
2022 * @journal: Journal to act on.
2023 * @write: flag (see below)
2024 *
2025 * Wipe out all of the contents of a journal, safely.  This will produce
2026 * a warning if the journal contains any valid recovery information.
2027 * Must be called between journal_init_*() and jbd2_journal_load().
2028 *
2029 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2030 * we merely suppress recovery.
2031 */
2032
2033int jbd2_journal_wipe(journal_t *journal, int write)
2034{
2035	int err = 0;
2036
2037	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2038
2039	err = load_superblock(journal);
2040	if (err)
2041		return err;
2042
2043	if (!journal->j_tail)
2044		goto no_recovery;
2045
2046	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2047		write ? "Clearing" : "Ignoring");
2048
2049	err = jbd2_journal_skip_recovery(journal);
2050	if (write) {
2051		/* Lock to make assertions happy... */
2052		mutex_lock(&journal->j_checkpoint_mutex);
2053		jbd2_mark_journal_empty(journal, WRITE_FUA);
2054		mutex_unlock(&journal->j_checkpoint_mutex);
2055	}
2056
2057 no_recovery:
2058	return err;
2059}
2060
2061/*
2062 * Journal abort has very specific semantics, which we describe
2063 * for journal abort.
2064 *
2065 * Two internal functions, which provide abort to the jbd layer
2066 * itself are here.
2067 */
2068
2069/*
2070 * Quick version for internal journal use (doesn't lock the journal).
2071 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2072 * and don't attempt to make any other journal updates.
2073 */
2074void __jbd2_journal_abort_hard(journal_t *journal)
2075{
2076	transaction_t *transaction;
2077
2078	if (journal->j_flags & JBD2_ABORT)
2079		return;
2080
2081	printk(KERN_ERR "Aborting journal on device %s.\n",
2082	       journal->j_devname);
2083
2084	write_lock(&journal->j_state_lock);
2085	journal->j_flags |= JBD2_ABORT;
2086	transaction = journal->j_running_transaction;
2087	if (transaction)
2088		__jbd2_log_start_commit(journal, transaction->t_tid);
2089	write_unlock(&journal->j_state_lock);
2090}
2091
2092/* Soft abort: record the abort error status in the journal superblock,
2093 * but don't do any other IO. */
2094static void __journal_abort_soft (journal_t *journal, int errno)
2095{
2096	if (journal->j_flags & JBD2_ABORT)
2097		return;
2098
2099	if (!journal->j_errno)
2100		journal->j_errno = errno;
2101
2102	__jbd2_journal_abort_hard(journal);
2103
2104	if (errno) {
2105		jbd2_journal_update_sb_errno(journal);
2106		write_lock(&journal->j_state_lock);
2107		journal->j_flags |= JBD2_REC_ERR;
2108		write_unlock(&journal->j_state_lock);
2109	}
2110}
2111
2112/**
2113 * void jbd2_journal_abort () - Shutdown the journal immediately.
2114 * @journal: the journal to shutdown.
2115 * @errno:   an error number to record in the journal indicating
2116 *           the reason for the shutdown.
2117 *
2118 * Perform a complete, immediate shutdown of the ENTIRE
2119 * journal (not of a single transaction).  This operation cannot be
2120 * undone without closing and reopening the journal.
2121 *
2122 * The jbd2_journal_abort function is intended to support higher level error
2123 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2124 * mode.
2125 *
2126 * Journal abort has very specific semantics.  Any existing dirty,
2127 * unjournaled buffers in the main filesystem will still be written to
2128 * disk by bdflush, but the journaling mechanism will be suspended
2129 * immediately and no further transaction commits will be honoured.
2130 *
2131 * Any dirty, journaled buffers will be written back to disk without
2132 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2133 * filesystem, but we _do_ attempt to leave as much data as possible
2134 * behind for fsck to use for cleanup.
2135 *
2136 * Any attempt to get a new transaction handle on a journal which is in
2137 * ABORT state will just result in an -EROFS error return.  A
2138 * jbd2_journal_stop on an existing handle will return -EIO if we have
2139 * entered abort state during the update.
2140 *
2141 * Recursive transactions are not disturbed by journal abort until the
2142 * final jbd2_journal_stop, which will receive the -EIO error.
2143 *
2144 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2145 * which will be recorded (if possible) in the journal superblock.  This
2146 * allows a client to record failure conditions in the middle of a
2147 * transaction without having to complete the transaction to record the
2148 * failure to disk.  ext3_error, for example, now uses this
2149 * functionality.
2150 *
2151 * Errors which originate from within the journaling layer will NOT
2152 * supply an errno; a null errno implies that absolutely no further
2153 * writes are done to the journal (unless there are any already in
2154 * progress).
2155 *
2156 */
2157
2158void jbd2_journal_abort(journal_t *journal, int errno)
2159{
2160	__journal_abort_soft(journal, errno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161}
2162
2163/**
2164 * int jbd2_journal_errno () - returns the journal's error state.
2165 * @journal: journal to examine.
2166 *
2167 * This is the errno number set with jbd2_journal_abort(), the last
2168 * time the journal was mounted - if the journal was stopped
2169 * without calling abort this will be 0.
2170 *
2171 * If the journal has been aborted on this mount time -EROFS will
2172 * be returned.
2173 */
2174int jbd2_journal_errno(journal_t *journal)
2175{
2176	int err;
2177
2178	read_lock(&journal->j_state_lock);
2179	if (journal->j_flags & JBD2_ABORT)
2180		err = -EROFS;
2181	else
2182		err = journal->j_errno;
2183	read_unlock(&journal->j_state_lock);
2184	return err;
2185}
2186
2187/**
2188 * int jbd2_journal_clear_err () - clears the journal's error state
2189 * @journal: journal to act on.
2190 *
2191 * An error must be cleared or acked to take a FS out of readonly
2192 * mode.
2193 */
2194int jbd2_journal_clear_err(journal_t *journal)
2195{
2196	int err = 0;
2197
2198	write_lock(&journal->j_state_lock);
2199	if (journal->j_flags & JBD2_ABORT)
2200		err = -EROFS;
2201	else
2202		journal->j_errno = 0;
2203	write_unlock(&journal->j_state_lock);
2204	return err;
2205}
2206
2207/**
2208 * void jbd2_journal_ack_err() - Ack journal err.
2209 * @journal: journal to act on.
2210 *
2211 * An error must be cleared or acked to take a FS out of readonly
2212 * mode.
2213 */
2214void jbd2_journal_ack_err(journal_t *journal)
2215{
2216	write_lock(&journal->j_state_lock);
2217	if (journal->j_errno)
2218		journal->j_flags |= JBD2_ACK_ERR;
2219	write_unlock(&journal->j_state_lock);
2220}
2221
2222int jbd2_journal_blocks_per_page(struct inode *inode)
2223{
2224	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2225}
2226
2227/*
2228 * helper functions to deal with 32 or 64bit block numbers.
2229 */
2230size_t journal_tag_bytes(journal_t *journal)
2231{
2232	size_t sz;
2233
2234	if (jbd2_has_feature_csum3(journal))
2235		return sizeof(journal_block_tag3_t);
2236
2237	sz = sizeof(journal_block_tag_t);
2238
2239	if (jbd2_has_feature_csum2(journal))
2240		sz += sizeof(__u16);
2241
2242	if (jbd2_has_feature_64bit(journal))
2243		return sz;
2244	else
2245		return sz - sizeof(__u32);
2246}
2247
2248/*
2249 * JBD memory management
2250 *
2251 * These functions are used to allocate block-sized chunks of memory
2252 * used for making copies of buffer_head data.  Very often it will be
2253 * page-sized chunks of data, but sometimes it will be in
2254 * sub-page-size chunks.  (For example, 16k pages on Power systems
2255 * with a 4k block file system.)  For blocks smaller than a page, we
2256 * use a SLAB allocator.  There are slab caches for each block size,
2257 * which are allocated at mount time, if necessary, and we only free
2258 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2259 * this reason we don't need to a mutex to protect access to
2260 * jbd2_slab[] allocating or releasing memory; only in
2261 * jbd2_journal_create_slab().
2262 */
2263#define JBD2_MAX_SLABS 8
2264static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2265
2266static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2267	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2268	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2269};
2270
2271
2272static void jbd2_journal_destroy_slabs(void)
2273{
2274	int i;
2275
2276	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2277		if (jbd2_slab[i])
2278			kmem_cache_destroy(jbd2_slab[i]);
2279		jbd2_slab[i] = NULL;
2280	}
2281}
2282
2283static int jbd2_journal_create_slab(size_t size)
2284{
2285	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2286	int i = order_base_2(size) - 10;
2287	size_t slab_size;
2288
2289	if (size == PAGE_SIZE)
2290		return 0;
2291
2292	if (i >= JBD2_MAX_SLABS)
2293		return -EINVAL;
2294
2295	if (unlikely(i < 0))
2296		i = 0;
2297	mutex_lock(&jbd2_slab_create_mutex);
2298	if (jbd2_slab[i]) {
2299		mutex_unlock(&jbd2_slab_create_mutex);
2300		return 0;	/* Already created */
2301	}
2302
2303	slab_size = 1 << (i+10);
2304	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2305					 slab_size, 0, NULL);
2306	mutex_unlock(&jbd2_slab_create_mutex);
2307	if (!jbd2_slab[i]) {
2308		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2309		return -ENOMEM;
2310	}
2311	return 0;
2312}
2313
2314static struct kmem_cache *get_slab(size_t size)
2315{
2316	int i = order_base_2(size) - 10;
2317
2318	BUG_ON(i >= JBD2_MAX_SLABS);
2319	if (unlikely(i < 0))
2320		i = 0;
2321	BUG_ON(jbd2_slab[i] == NULL);
2322	return jbd2_slab[i];
2323}
2324
2325void *jbd2_alloc(size_t size, gfp_t flags)
2326{
2327	void *ptr;
2328
2329	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2330
2331	flags |= __GFP_REPEAT;
2332	if (size == PAGE_SIZE)
2333		ptr = (void *)__get_free_pages(flags, 0);
2334	else if (size > PAGE_SIZE) {
2335		int order = get_order(size);
2336
2337		if (order < 3)
2338			ptr = (void *)__get_free_pages(flags, order);
2339		else
2340			ptr = vmalloc(size);
2341	} else
2342		ptr = kmem_cache_alloc(get_slab(size), flags);
 
 
2343
2344	/* Check alignment; SLUB has gotten this wrong in the past,
2345	 * and this can lead to user data corruption! */
2346	BUG_ON(((unsigned long) ptr) & (size-1));
2347
2348	return ptr;
2349}
2350
2351void jbd2_free(void *ptr, size_t size)
2352{
2353	if (size == PAGE_SIZE) {
2354		free_pages((unsigned long)ptr, 0);
2355		return;
2356	}
2357	if (size > PAGE_SIZE) {
2358		int order = get_order(size);
2359
2360		if (order < 3)
2361			free_pages((unsigned long)ptr, order);
2362		else
2363			vfree(ptr);
2364		return;
2365	}
2366	kmem_cache_free(get_slab(size), ptr);
2367};
2368
2369/*
2370 * Journal_head storage management
2371 */
2372static struct kmem_cache *jbd2_journal_head_cache;
2373#ifdef CONFIG_JBD2_DEBUG
2374static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2375#endif
2376
2377static int jbd2_journal_init_journal_head_cache(void)
2378{
2379	int retval;
2380
2381	J_ASSERT(jbd2_journal_head_cache == NULL);
2382	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2383				sizeof(struct journal_head),
2384				0,		/* offset */
2385				SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2386				NULL);		/* ctor */
2387	retval = 0;
2388	if (!jbd2_journal_head_cache) {
2389		retval = -ENOMEM;
2390		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
 
2391	}
2392	return retval;
2393}
2394
2395static void jbd2_journal_destroy_journal_head_cache(void)
2396{
2397	if (jbd2_journal_head_cache) {
2398		kmem_cache_destroy(jbd2_journal_head_cache);
2399		jbd2_journal_head_cache = NULL;
2400	}
2401}
2402
2403/*
2404 * journal_head splicing and dicing
2405 */
2406static struct journal_head *journal_alloc_journal_head(void)
2407{
2408	struct journal_head *ret;
2409
2410#ifdef CONFIG_JBD2_DEBUG
2411	atomic_inc(&nr_journal_heads);
2412#endif
2413	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2414	if (!ret) {
2415		jbd_debug(1, "out of memory for journal_head\n");
2416		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2417		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2418				GFP_NOFS | __GFP_NOFAIL);
2419	}
 
2420	return ret;
2421}
2422
2423static void journal_free_journal_head(struct journal_head *jh)
2424{
2425#ifdef CONFIG_JBD2_DEBUG
2426	atomic_dec(&nr_journal_heads);
2427	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2428#endif
2429	kmem_cache_free(jbd2_journal_head_cache, jh);
2430}
2431
2432/*
2433 * A journal_head is attached to a buffer_head whenever JBD has an
2434 * interest in the buffer.
2435 *
2436 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2437 * is set.  This bit is tested in core kernel code where we need to take
2438 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2439 * there.
2440 *
2441 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2442 *
2443 * When a buffer has its BH_JBD bit set it is immune from being released by
2444 * core kernel code, mainly via ->b_count.
2445 *
2446 * A journal_head is detached from its buffer_head when the journal_head's
2447 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2448 * transaction (b_cp_transaction) hold their references to b_jcount.
2449 *
2450 * Various places in the kernel want to attach a journal_head to a buffer_head
2451 * _before_ attaching the journal_head to a transaction.  To protect the
2452 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2453 * journal_head's b_jcount refcount by one.  The caller must call
2454 * jbd2_journal_put_journal_head() to undo this.
2455 *
2456 * So the typical usage would be:
2457 *
2458 *	(Attach a journal_head if needed.  Increments b_jcount)
2459 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2460 *	...
2461 *      (Get another reference for transaction)
2462 *	jbd2_journal_grab_journal_head(bh);
2463 *	jh->b_transaction = xxx;
2464 *	(Put original reference)
2465 *	jbd2_journal_put_journal_head(jh);
2466 */
2467
2468/*
2469 * Give a buffer_head a journal_head.
2470 *
2471 * May sleep.
2472 */
2473struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2474{
2475	struct journal_head *jh;
2476	struct journal_head *new_jh = NULL;
2477
2478repeat:
2479	if (!buffer_jbd(bh))
2480		new_jh = journal_alloc_journal_head();
2481
2482	jbd_lock_bh_journal_head(bh);
2483	if (buffer_jbd(bh)) {
2484		jh = bh2jh(bh);
2485	} else {
2486		J_ASSERT_BH(bh,
2487			(atomic_read(&bh->b_count) > 0) ||
2488			(bh->b_page && bh->b_page->mapping));
2489
2490		if (!new_jh) {
2491			jbd_unlock_bh_journal_head(bh);
2492			goto repeat;
2493		}
2494
2495		jh = new_jh;
2496		new_jh = NULL;		/* We consumed it */
2497		set_buffer_jbd(bh);
2498		bh->b_private = jh;
2499		jh->b_bh = bh;
2500		get_bh(bh);
2501		BUFFER_TRACE(bh, "added journal_head");
2502	}
2503	jh->b_jcount++;
2504	jbd_unlock_bh_journal_head(bh);
2505	if (new_jh)
2506		journal_free_journal_head(new_jh);
2507	return bh->b_private;
2508}
2509
2510/*
2511 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2512 * having a journal_head, return NULL
2513 */
2514struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2515{
2516	struct journal_head *jh = NULL;
2517
2518	jbd_lock_bh_journal_head(bh);
2519	if (buffer_jbd(bh)) {
2520		jh = bh2jh(bh);
2521		jh->b_jcount++;
2522	}
2523	jbd_unlock_bh_journal_head(bh);
2524	return jh;
2525}
 
2526
2527static void __journal_remove_journal_head(struct buffer_head *bh)
2528{
2529	struct journal_head *jh = bh2jh(bh);
2530
2531	J_ASSERT_JH(jh, jh->b_jcount >= 0);
2532	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2533	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2534	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2535	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2536	J_ASSERT_BH(bh, buffer_jbd(bh));
2537	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2538	BUFFER_TRACE(bh, "remove journal_head");
 
 
 
 
 
 
 
 
 
2539	if (jh->b_frozen_data) {
2540		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2541		jbd2_free(jh->b_frozen_data, bh->b_size);
2542	}
2543	if (jh->b_committed_data) {
2544		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2545		jbd2_free(jh->b_committed_data, bh->b_size);
2546	}
2547	bh->b_private = NULL;
2548	jh->b_bh = NULL;	/* debug, really */
2549	clear_buffer_jbd(bh);
2550	journal_free_journal_head(jh);
2551}
2552
2553/*
2554 * Drop a reference on the passed journal_head.  If it fell to zero then
2555 * release the journal_head from the buffer_head.
2556 */
2557void jbd2_journal_put_journal_head(struct journal_head *jh)
2558{
2559	struct buffer_head *bh = jh2bh(jh);
2560
2561	jbd_lock_bh_journal_head(bh);
2562	J_ASSERT_JH(jh, jh->b_jcount > 0);
2563	--jh->b_jcount;
2564	if (!jh->b_jcount) {
2565		__journal_remove_journal_head(bh);
2566		jbd_unlock_bh_journal_head(bh);
 
2567		__brelse(bh);
2568	} else
2569		jbd_unlock_bh_journal_head(bh);
 
2570}
 
2571
2572/*
2573 * Initialize jbd inode head
2574 */
2575void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2576{
2577	jinode->i_transaction = NULL;
2578	jinode->i_next_transaction = NULL;
2579	jinode->i_vfs_inode = inode;
2580	jinode->i_flags = 0;
 
 
2581	INIT_LIST_HEAD(&jinode->i_list);
2582}
2583
2584/*
2585 * Function to be called before we start removing inode from memory (i.e.,
2586 * clear_inode() is a fine place to be called from). It removes inode from
2587 * transaction's lists.
2588 */
2589void jbd2_journal_release_jbd_inode(journal_t *journal,
2590				    struct jbd2_inode *jinode)
2591{
2592	if (!journal)
2593		return;
2594restart:
2595	spin_lock(&journal->j_list_lock);
2596	/* Is commit writing out inode - we have to wait */
2597	if (jinode->i_flags & JI_COMMIT_RUNNING) {
2598		wait_queue_head_t *wq;
2599		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2600		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2601		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2602		spin_unlock(&journal->j_list_lock);
2603		schedule();
2604		finish_wait(wq, &wait.wait);
2605		goto restart;
2606	}
2607
2608	if (jinode->i_transaction) {
2609		list_del(&jinode->i_list);
2610		jinode->i_transaction = NULL;
2611	}
2612	spin_unlock(&journal->j_list_lock);
2613}
2614
2615
2616#ifdef CONFIG_PROC_FS
2617
2618#define JBD2_STATS_PROC_NAME "fs/jbd2"
2619
2620static void __init jbd2_create_jbd_stats_proc_entry(void)
2621{
2622	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2623}
2624
2625static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2626{
2627	if (proc_jbd2_stats)
2628		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2629}
2630
2631#else
2632
2633#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2634#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2635
2636#endif
2637
2638struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2639
 
 
 
 
 
 
 
 
 
 
 
2640static int __init jbd2_journal_init_handle_cache(void)
2641{
 
2642	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2643	if (jbd2_handle_cache == NULL) {
2644		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2645		return -ENOMEM;
2646	}
2647	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2648	if (jbd2_inode_cache == NULL) {
2649		printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2650		kmem_cache_destroy(jbd2_handle_cache);
2651		return -ENOMEM;
2652	}
2653	return 0;
2654}
2655
2656static void jbd2_journal_destroy_handle_cache(void)
2657{
2658	if (jbd2_handle_cache)
2659		kmem_cache_destroy(jbd2_handle_cache);
2660	if (jbd2_inode_cache)
2661		kmem_cache_destroy(jbd2_inode_cache);
2662
 
 
 
 
2663}
2664
2665/*
2666 * Module startup and shutdown
2667 */
2668
2669static int __init journal_init_caches(void)
2670{
2671	int ret;
2672
2673	ret = jbd2_journal_init_revoke_caches();
 
 
2674	if (ret == 0)
2675		ret = jbd2_journal_init_journal_head_cache();
2676	if (ret == 0)
2677		ret = jbd2_journal_init_handle_cache();
2678	if (ret == 0)
 
 
2679		ret = jbd2_journal_init_transaction_cache();
2680	return ret;
2681}
2682
2683static void jbd2_journal_destroy_caches(void)
2684{
2685	jbd2_journal_destroy_revoke_caches();
 
2686	jbd2_journal_destroy_journal_head_cache();
2687	jbd2_journal_destroy_handle_cache();
 
2688	jbd2_journal_destroy_transaction_cache();
2689	jbd2_journal_destroy_slabs();
2690}
2691
2692static int __init journal_init(void)
2693{
2694	int ret;
2695
2696	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2697
2698	ret = journal_init_caches();
2699	if (ret == 0) {
2700		jbd2_create_jbd_stats_proc_entry();
2701	} else {
2702		jbd2_journal_destroy_caches();
2703	}
2704	return ret;
2705}
2706
2707static void __exit journal_exit(void)
2708{
2709#ifdef CONFIG_JBD2_DEBUG
2710	int n = atomic_read(&nr_journal_heads);
2711	if (n)
2712		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2713#endif
2714	jbd2_remove_jbd_stats_proc_entry();
2715	jbd2_journal_destroy_caches();
2716}
2717
 
2718MODULE_LICENSE("GPL");
2719module_init(journal_init);
2720module_exit(journal_exit);
2721
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * linux/fs/jbd2/journal.c
   4 *
   5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
   6 *
   7 * Copyright 1998 Red Hat corp --- All Rights Reserved
   8 *
 
 
 
 
   9 * Generic filesystem journal-writing code; part of the ext2fs
  10 * journaling system.
  11 *
  12 * This file manages journals: areas of disk reserved for logging
  13 * transactional updates.  This includes the kernel journaling thread
  14 * which is responsible for scheduling updates to the log.
  15 *
  16 * We do not actually manage the physical storage of the journal in this
  17 * file: that is left to a per-journal policy function, which allows us
  18 * to store the journal within a filesystem-specified area for ext2
  19 * journaling (ext2 can use a reserved inode for storing the log).
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/time.h>
  24#include <linux/fs.h>
  25#include <linux/jbd2.h>
  26#include <linux/errno.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/mm.h>
  30#include <linux/freezer.h>
  31#include <linux/pagemap.h>
  32#include <linux/kthread.h>
  33#include <linux/poison.h>
  34#include <linux/proc_fs.h>
  35#include <linux/seq_file.h>
  36#include <linux/math64.h>
  37#include <linux/hash.h>
  38#include <linux/log2.h>
  39#include <linux/vmalloc.h>
  40#include <linux/backing-dev.h>
  41#include <linux/bitops.h>
  42#include <linux/ratelimit.h>
  43#include <linux/sched/mm.h>
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/jbd2.h>
  47
  48#include <linux/uaccess.h>
  49#include <asm/page.h>
  50
  51#ifdef CONFIG_JBD2_DEBUG
  52static ushort jbd2_journal_enable_debug __read_mostly;
 
  53
  54module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
  55MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
  56#endif
  57
  58EXPORT_SYMBOL(jbd2_journal_extend);
  59EXPORT_SYMBOL(jbd2_journal_stop);
  60EXPORT_SYMBOL(jbd2_journal_lock_updates);
  61EXPORT_SYMBOL(jbd2_journal_unlock_updates);
  62EXPORT_SYMBOL(jbd2_journal_get_write_access);
  63EXPORT_SYMBOL(jbd2_journal_get_create_access);
  64EXPORT_SYMBOL(jbd2_journal_get_undo_access);
  65EXPORT_SYMBOL(jbd2_journal_set_triggers);
  66EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
  67EXPORT_SYMBOL(jbd2_journal_forget);
 
 
 
  68EXPORT_SYMBOL(jbd2_journal_flush);
  69EXPORT_SYMBOL(jbd2_journal_revoke);
  70
  71EXPORT_SYMBOL(jbd2_journal_init_dev);
  72EXPORT_SYMBOL(jbd2_journal_init_inode);
  73EXPORT_SYMBOL(jbd2_journal_check_used_features);
  74EXPORT_SYMBOL(jbd2_journal_check_available_features);
  75EXPORT_SYMBOL(jbd2_journal_set_features);
  76EXPORT_SYMBOL(jbd2_journal_load);
  77EXPORT_SYMBOL(jbd2_journal_destroy);
  78EXPORT_SYMBOL(jbd2_journal_abort);
  79EXPORT_SYMBOL(jbd2_journal_errno);
  80EXPORT_SYMBOL(jbd2_journal_ack_err);
  81EXPORT_SYMBOL(jbd2_journal_clear_err);
  82EXPORT_SYMBOL(jbd2_log_wait_commit);
 
  83EXPORT_SYMBOL(jbd2_journal_start_commit);
  84EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
  85EXPORT_SYMBOL(jbd2_journal_wipe);
  86EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
  87EXPORT_SYMBOL(jbd2_journal_invalidate_folio);
  88EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
  89EXPORT_SYMBOL(jbd2_journal_force_commit);
  90EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
  91EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
  92EXPORT_SYMBOL(jbd2_journal_finish_inode_data_buffers);
  93EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
  94EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
  95EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
  96EXPORT_SYMBOL(jbd2_inode_cache);
  97
 
  98static int jbd2_journal_create_slab(size_t slab_size);
  99
 100#ifdef CONFIG_JBD2_DEBUG
 101void __jbd2_debug(int level, const char *file, const char *func,
 102		  unsigned int line, const char *fmt, ...)
 103{
 104	struct va_format vaf;
 105	va_list args;
 106
 107	if (level > jbd2_journal_enable_debug)
 108		return;
 109	va_start(args, fmt);
 110	vaf.fmt = fmt;
 111	vaf.va = &args;
 112	printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
 113	va_end(args);
 114}
 
 115#endif
 116
 117/* Checksumming functions */
 
 
 
 
 
 
 
 
 118static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
 119{
 120	__u32 csum;
 121	__be32 old_csum;
 122
 123	old_csum = sb->s_checksum;
 124	sb->s_checksum = 0;
 125	csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
 126	sb->s_checksum = old_csum;
 127
 128	return cpu_to_be32(csum);
 129}
 130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 131/*
 132 * Helper function used to manage commit timeouts
 133 */
 134
 135static void commit_timeout(struct timer_list *t)
 136{
 137	journal_t *journal = from_timer(journal, t, j_commit_timer);
 138
 139	wake_up_process(journal->j_task);
 140}
 141
 142/*
 143 * kjournald2: The main thread function used to manage a logging device
 144 * journal.
 145 *
 146 * This kernel thread is responsible for two things:
 147 *
 148 * 1) COMMIT:  Every so often we need to commit the current state of the
 149 *    filesystem to disk.  The journal thread is responsible for writing
 150 *    all of the metadata buffers to disk. If a fast commit is ongoing
 151 *    journal thread waits until it's done and then continues from
 152 *    there on.
 153 *
 154 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
 155 *    of the data in that part of the log has been rewritten elsewhere on
 156 *    the disk.  Flushing these old buffers to reclaim space in the log is
 157 *    known as checkpointing, and this thread is responsible for that job.
 158 */
 159
 160static int kjournald2(void *arg)
 161{
 162	journal_t *journal = arg;
 163	transaction_t *transaction;
 164
 165	/*
 166	 * Set up an interval timer which can be used to trigger a commit wakeup
 167	 * after the commit interval expires
 168	 */
 169	timer_setup(&journal->j_commit_timer, commit_timeout, 0);
 
 170
 171	set_freezable();
 172
 173	/* Record that the journal thread is running */
 174	journal->j_task = current;
 175	wake_up(&journal->j_wait_done_commit);
 176
 177	/*
 178	 * Make sure that no allocations from this kernel thread will ever
 179	 * recurse to the fs layer because we are responsible for the
 180	 * transaction commit and any fs involvement might get stuck waiting for
 181	 * the trasn. commit.
 182	 */
 183	memalloc_nofs_save();
 184
 185	/*
 186	 * And now, wait forever for commit wakeup events.
 187	 */
 188	write_lock(&journal->j_state_lock);
 189
 190loop:
 191	if (journal->j_flags & JBD2_UNMOUNT)
 192		goto end_loop;
 193
 194	jbd2_debug(1, "commit_sequence=%u, commit_request=%u\n",
 195		journal->j_commit_sequence, journal->j_commit_request);
 196
 197	if (journal->j_commit_sequence != journal->j_commit_request) {
 198		jbd2_debug(1, "OK, requests differ\n");
 199		write_unlock(&journal->j_state_lock);
 200		del_timer_sync(&journal->j_commit_timer);
 201		jbd2_journal_commit_transaction(journal);
 202		write_lock(&journal->j_state_lock);
 203		goto loop;
 204	}
 205
 206	wake_up(&journal->j_wait_done_commit);
 207	if (freezing(current)) {
 208		/*
 209		 * The simpler the better. Flushing journal isn't a
 210		 * good idea, because that depends on threads that may
 211		 * be already stopped.
 212		 */
 213		jbd2_debug(1, "Now suspending kjournald2\n");
 214		write_unlock(&journal->j_state_lock);
 215		try_to_freeze();
 216		write_lock(&journal->j_state_lock);
 217	} else {
 218		/*
 219		 * We assume on resume that commits are already there,
 220		 * so we don't sleep
 221		 */
 222		DEFINE_WAIT(wait);
 
 223
 224		prepare_to_wait(&journal->j_wait_commit, &wait,
 225				TASK_INTERRUPTIBLE);
 
 
 226		transaction = journal->j_running_transaction;
 227		if (transaction == NULL ||
 228		    time_before(jiffies, transaction->t_expires)) {
 
 
 
 
 229			write_unlock(&journal->j_state_lock);
 230			schedule();
 231			write_lock(&journal->j_state_lock);
 232		}
 233		finish_wait(&journal->j_wait_commit, &wait);
 234	}
 235
 236	jbd2_debug(1, "kjournald2 wakes\n");
 237
 238	/*
 239	 * Were we woken up by a commit wakeup event?
 240	 */
 241	transaction = journal->j_running_transaction;
 242	if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
 243		journal->j_commit_request = transaction->t_tid;
 244		jbd2_debug(1, "woke because of timeout\n");
 245	}
 246	goto loop;
 247
 248end_loop:
 
 249	del_timer_sync(&journal->j_commit_timer);
 250	journal->j_task = NULL;
 251	wake_up(&journal->j_wait_done_commit);
 252	jbd2_debug(1, "Journal thread exiting.\n");
 253	write_unlock(&journal->j_state_lock);
 254	return 0;
 255}
 256
 257static int jbd2_journal_start_thread(journal_t *journal)
 258{
 259	struct task_struct *t;
 260
 261	t = kthread_run(kjournald2, journal, "jbd2/%s",
 262			journal->j_devname);
 263	if (IS_ERR(t))
 264		return PTR_ERR(t);
 265
 266	wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
 267	return 0;
 268}
 269
 270static void journal_kill_thread(journal_t *journal)
 271{
 272	write_lock(&journal->j_state_lock);
 273	journal->j_flags |= JBD2_UNMOUNT;
 274
 275	while (journal->j_task) {
 276		write_unlock(&journal->j_state_lock);
 277		wake_up(&journal->j_wait_commit);
 278		wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
 279		write_lock(&journal->j_state_lock);
 280	}
 281	write_unlock(&journal->j_state_lock);
 282}
 283
 284static inline bool jbd2_data_needs_escaping(char *data)
 285{
 286	return *((__be32 *)data) == cpu_to_be32(JBD2_MAGIC_NUMBER);
 287}
 288
 289static inline void jbd2_data_do_escape(char *data)
 290{
 291	*((unsigned int *)data) = 0;
 292}
 293
 294/*
 295 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
 296 *
 297 * Writes a metadata buffer to a given disk block.  The actual IO is not
 298 * performed but a new buffer_head is constructed which labels the data
 299 * to be written with the correct destination disk block.
 300 *
 301 * Any magic-number escaping which needs to be done will cause a
 302 * copy-out here.  If the buffer happens to start with the
 303 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
 304 * magic number is only written to the log for descripter blocks.  In
 305 * this case, we copy the data and replace the first word with 0, and we
 306 * return a result code which indicates that this buffer needs to be
 307 * marked as an escaped buffer in the corresponding log descriptor
 308 * block.  The missing word can then be restored when the block is read
 309 * during recovery.
 310 *
 311 * If the source buffer has already been modified by a new transaction
 312 * since we took the last commit snapshot, we use the frozen copy of
 313 * that data for IO. If we end up using the existing buffer_head's data
 314 * for the write, then we have to make sure nobody modifies it while the
 315 * IO is in progress. do_get_write_access() handles this.
 316 *
 317 * The function returns a pointer to the buffer_head to be used for IO.
 
 318 *
 
 
 
 319 *
 320 * Return value:
 321 *  =0: Finished OK without escape
 322 *  =1: Finished OK with escape
 323 */
 324
 325int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
 326				  struct journal_head  *jh_in,
 327				  struct buffer_head **bh_out,
 328				  sector_t blocknr)
 329{
 
 
 330	int do_escape = 0;
 
 331	struct buffer_head *new_bh;
 332	struct folio *new_folio;
 333	unsigned int new_offset;
 334	struct buffer_head *bh_in = jh2bh(jh_in);
 335	journal_t *journal = transaction->t_journal;
 336
 337	/*
 338	 * The buffer really shouldn't be locked: only the current committing
 339	 * transaction is allowed to write it, so nobody else is allowed
 340	 * to do any IO.
 341	 *
 342	 * akpm: except if we're journalling data, and write() output is
 343	 * also part of a shared mapping, and another thread has
 344	 * decided to launch a writepage() against this buffer.
 345	 */
 346	J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
 347
 348	new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
 349
 350	/* keep subsequent assertions sane */
 351	atomic_set(&new_bh->b_count, 1);
 352
 353	spin_lock(&jh_in->b_state_lock);
 
 354	/*
 355	 * If a new transaction has already done a buffer copy-out, then
 356	 * we use that version of the data for the commit.
 357	 */
 358	if (jh_in->b_frozen_data) {
 359		new_folio = virt_to_folio(jh_in->b_frozen_data);
 360		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
 361		do_escape = jbd2_data_needs_escaping(jh_in->b_frozen_data);
 362		if (do_escape)
 363			jbd2_data_do_escape(jh_in->b_frozen_data);
 364	} else {
 365		char *tmp;
 366		char *mapped_data;
 
 367
 368		new_folio = bh_in->b_folio;
 369		new_offset = offset_in_folio(new_folio, bh_in->b_data);
 370		mapped_data = kmap_local_folio(new_folio, new_offset);
 371		/*
 372		 * Fire data frozen trigger if data already wasn't frozen. Do
 373		 * this before checking for escaping, as the trigger may modify
 374		 * the magic offset.  If a copy-out happens afterwards, it will
 375		 * have the correct data in the buffer.
 376		 */
 377		jbd2_buffer_frozen_trigger(jh_in, mapped_data,
 378					   jh_in->b_triggers);
 379		do_escape = jbd2_data_needs_escaping(mapped_data);
 380		kunmap_local(mapped_data);
 381		/*
 382		 * Do we need to do a data copy?
 383		 */
 384		if (!do_escape)
 385			goto escape_done;
 386
 387		spin_unlock(&jh_in->b_state_lock);
 388		tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS | __GFP_NOFAIL);
 389		spin_lock(&jh_in->b_state_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390		if (jh_in->b_frozen_data) {
 391			jbd2_free(tmp, bh_in->b_size);
 392			goto copy_done;
 393		}
 394
 395		jh_in->b_frozen_data = tmp;
 396		memcpy_from_folio(tmp, new_folio, new_offset, bh_in->b_size);
 
 
 
 
 
 
 
 397		/*
 398		 * This isn't strictly necessary, as we're using frozen
 399		 * data for the escaping, but it keeps consistency with
 400		 * b_frozen_data usage.
 401		 */
 402		jh_in->b_frozen_triggers = jh_in->b_triggers;
 
 403
 404copy_done:
 405		new_folio = virt_to_folio(jh_in->b_frozen_data);
 406		new_offset = offset_in_folio(new_folio, jh_in->b_frozen_data);
 407		jbd2_data_do_escape(jh_in->b_frozen_data);
 
 
 
 
 408	}
 409
 410escape_done:
 411	folio_set_bh(new_bh, new_folio, new_offset);
 412	new_bh->b_size = bh_in->b_size;
 413	new_bh->b_bdev = journal->j_dev;
 414	new_bh->b_blocknr = blocknr;
 415	new_bh->b_private = bh_in;
 416	set_buffer_mapped(new_bh);
 417	set_buffer_dirty(new_bh);
 418
 419	*bh_out = new_bh;
 420
 421	/*
 422	 * The to-be-written buffer needs to get moved to the io queue,
 423	 * and the original buffer whose contents we are shadowing or
 424	 * copying is moved to the transaction's shadow queue.
 425	 */
 426	JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
 427	spin_lock(&journal->j_list_lock);
 428	__jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
 429	spin_unlock(&journal->j_list_lock);
 430	set_buffer_shadow(bh_in);
 431	spin_unlock(&jh_in->b_state_lock);
 432
 433	return do_escape;
 434}
 435
 436/*
 437 * Allocation code for the journal file.  Manage the space left in the
 438 * journal, so that we can begin checkpointing when appropriate.
 439 */
 440
 441/*
 442 * Called with j_state_lock locked for writing.
 443 * Returns true if a transaction commit was started.
 444 */
 445static int __jbd2_log_start_commit(journal_t *journal, tid_t target)
 446{
 447	/* Return if the txn has already requested to be committed */
 448	if (journal->j_commit_request == target)
 449		return 0;
 450
 451	/*
 452	 * The only transaction we can possibly wait upon is the
 453	 * currently running transaction (if it exists).  Otherwise,
 454	 * the target tid must be an old one.
 455	 */
 456	if (journal->j_running_transaction &&
 457	    journal->j_running_transaction->t_tid == target) {
 458		/*
 459		 * We want a new commit: OK, mark the request and wakeup the
 460		 * commit thread.  We do _not_ do the commit ourselves.
 461		 */
 462
 463		journal->j_commit_request = target;
 464		jbd2_debug(1, "JBD2: requesting commit %u/%u\n",
 465			  journal->j_commit_request,
 466			  journal->j_commit_sequence);
 467		journal->j_running_transaction->t_requested = jiffies;
 468		wake_up(&journal->j_wait_commit);
 469		return 1;
 470	} else if (!tid_geq(journal->j_commit_request, target))
 471		/* This should never happen, but if it does, preserve
 472		   the evidence before kjournald goes into a loop and
 473		   increments j_commit_sequence beyond all recognition. */
 474		WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
 475			  journal->j_commit_request,
 476			  journal->j_commit_sequence,
 477			  target, journal->j_running_transaction ?
 478			  journal->j_running_transaction->t_tid : 0);
 479	return 0;
 480}
 481
 482int jbd2_log_start_commit(journal_t *journal, tid_t tid)
 483{
 484	int ret;
 485
 486	write_lock(&journal->j_state_lock);
 487	ret = __jbd2_log_start_commit(journal, tid);
 488	write_unlock(&journal->j_state_lock);
 489	return ret;
 490}
 491
 492/*
 493 * Force and wait any uncommitted transactions.  We can only force the running
 494 * transaction if we don't have an active handle, otherwise, we will deadlock.
 495 * Returns: <0 in case of error,
 496 *           0 if nothing to commit,
 497 *           1 if transaction was successfully committed.
 498 */
 499static int __jbd2_journal_force_commit(journal_t *journal)
 500{
 501	transaction_t *transaction = NULL;
 502	tid_t tid;
 503	int need_to_start = 0, ret = 0;
 504
 505	read_lock(&journal->j_state_lock);
 506	if (journal->j_running_transaction && !current->journal_info) {
 507		transaction = journal->j_running_transaction;
 508		if (!tid_geq(journal->j_commit_request, transaction->t_tid))
 509			need_to_start = 1;
 510	} else if (journal->j_committing_transaction)
 511		transaction = journal->j_committing_transaction;
 512
 513	if (!transaction) {
 514		/* Nothing to commit */
 515		read_unlock(&journal->j_state_lock);
 516		return 0;
 517	}
 518	tid = transaction->t_tid;
 519	read_unlock(&journal->j_state_lock);
 520	if (need_to_start)
 521		jbd2_log_start_commit(journal, tid);
 522	ret = jbd2_log_wait_commit(journal, tid);
 523	if (!ret)
 524		ret = 1;
 525
 526	return ret;
 527}
 528
 529/**
 530 * jbd2_journal_force_commit_nested - Force and wait upon a commit if the
 531 * calling process is not within transaction.
 
 532 *
 533 * @journal: journal to force
 534 * Returns true if progress was made.
 535 *
 536 * This is used for forcing out undo-protected data which contains
 537 * bitmaps, when the fs is running out of space.
 538 */
 539int jbd2_journal_force_commit_nested(journal_t *journal)
 540{
 541	int ret;
 542
 543	ret = __jbd2_journal_force_commit(journal);
 544	return ret > 0;
 545}
 546
 547/**
 548 * jbd2_journal_force_commit() - force any uncommitted transactions
 549 * @journal: journal to force
 550 *
 551 * Caller want unconditional commit. We can only force the running transaction
 552 * if we don't have an active handle, otherwise, we will deadlock.
 553 */
 554int jbd2_journal_force_commit(journal_t *journal)
 555{
 556	int ret;
 557
 558	J_ASSERT(!current->journal_info);
 559	ret = __jbd2_journal_force_commit(journal);
 560	if (ret > 0)
 561		ret = 0;
 562	return ret;
 563}
 564
 565/*
 566 * Start a commit of the current running transaction (if any).  Returns true
 567 * if a transaction is going to be committed (or is currently already
 568 * committing), and fills its tid in at *ptid
 569 */
 570int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
 571{
 572	int ret = 0;
 573
 574	write_lock(&journal->j_state_lock);
 575	if (journal->j_running_transaction) {
 576		tid_t tid = journal->j_running_transaction->t_tid;
 577
 578		__jbd2_log_start_commit(journal, tid);
 579		/* There's a running transaction and we've just made sure
 580		 * it's commit has been scheduled. */
 581		if (ptid)
 582			*ptid = tid;
 583		ret = 1;
 584	} else if (journal->j_committing_transaction) {
 585		/*
 586		 * If commit has been started, then we have to wait for
 587		 * completion of that transaction.
 588		 */
 589		if (ptid)
 590			*ptid = journal->j_committing_transaction->t_tid;
 591		ret = 1;
 592	}
 593	write_unlock(&journal->j_state_lock);
 594	return ret;
 595}
 596
 597/*
 598 * Return 1 if a given transaction has not yet sent barrier request
 599 * connected with a transaction commit. If 0 is returned, transaction
 600 * may or may not have sent the barrier. Used to avoid sending barrier
 601 * twice in common cases.
 602 */
 603int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
 604{
 605	int ret = 0;
 606	transaction_t *commit_trans;
 607
 608	if (!(journal->j_flags & JBD2_BARRIER))
 609		return 0;
 610	read_lock(&journal->j_state_lock);
 611	/* Transaction already committed? */
 612	if (tid_geq(journal->j_commit_sequence, tid))
 613		goto out;
 614	commit_trans = journal->j_committing_transaction;
 615	if (!commit_trans || commit_trans->t_tid != tid) {
 616		ret = 1;
 617		goto out;
 618	}
 619	/*
 620	 * Transaction is being committed and we already proceeded to
 621	 * submitting a flush to fs partition?
 622	 */
 623	if (journal->j_fs_dev != journal->j_dev) {
 624		if (!commit_trans->t_need_data_flush ||
 625		    commit_trans->t_state >= T_COMMIT_DFLUSH)
 626			goto out;
 627	} else {
 628		if (commit_trans->t_state >= T_COMMIT_JFLUSH)
 629			goto out;
 630	}
 631	ret = 1;
 632out:
 633	read_unlock(&journal->j_state_lock);
 634	return ret;
 635}
 636EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
 637
 638/*
 639 * Wait for a specified commit to complete.
 640 * The caller may not hold the journal lock.
 641 */
 642int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
 643{
 644	int err = 0;
 645
 646	read_lock(&journal->j_state_lock);
 647#ifdef CONFIG_PROVE_LOCKING
 648	/*
 649	 * Some callers make sure transaction is already committing and in that
 650	 * case we cannot block on open handles anymore. So don't warn in that
 651	 * case.
 652	 */
 653	if (tid_gt(tid, journal->j_commit_sequence) &&
 654	    (!journal->j_committing_transaction ||
 655	     journal->j_committing_transaction->t_tid != tid)) {
 656		read_unlock(&journal->j_state_lock);
 657		jbd2_might_wait_for_commit(journal);
 658		read_lock(&journal->j_state_lock);
 659	}
 660#endif
 661#ifdef CONFIG_JBD2_DEBUG
 662	if (!tid_geq(journal->j_commit_request, tid)) {
 663		printk(KERN_ERR
 664		       "%s: error: j_commit_request=%u, tid=%u\n",
 665		       __func__, journal->j_commit_request, tid);
 666	}
 667#endif
 668	while (tid_gt(tid, journal->j_commit_sequence)) {
 669		jbd2_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
 670				  tid, journal->j_commit_sequence);
 671		read_unlock(&journal->j_state_lock);
 672		wake_up(&journal->j_wait_commit);
 673		wait_event(journal->j_wait_done_commit,
 674				!tid_gt(tid, journal->j_commit_sequence));
 675		read_lock(&journal->j_state_lock);
 676	}
 677	read_unlock(&journal->j_state_lock);
 678
 679	if (unlikely(is_journal_aborted(journal)))
 680		err = -EIO;
 681	return err;
 682}
 683
 684/*
 685 * Start a fast commit. If there's an ongoing fast or full commit wait for
 686 * it to complete. Returns 0 if a new fast commit was started. Returns -EALREADY
 687 * if a fast commit is not needed, either because there's an already a commit
 688 * going on or this tid has already been committed. Returns -EINVAL if no jbd2
 689 * commit has yet been performed.
 690 */
 691int jbd2_fc_begin_commit(journal_t *journal, tid_t tid)
 692{
 693	if (unlikely(is_journal_aborted(journal)))
 694		return -EIO;
 695	/*
 696	 * Fast commits only allowed if at least one full commit has
 697	 * been processed.
 698	 */
 699	if (!journal->j_stats.ts_tid)
 700		return -EINVAL;
 701
 702	write_lock(&journal->j_state_lock);
 703	if (tid_geq(journal->j_commit_sequence, tid)) {
 704		write_unlock(&journal->j_state_lock);
 705		return -EALREADY;
 706	}
 707
 708	if (journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
 709	    (journal->j_flags & JBD2_FAST_COMMIT_ONGOING)) {
 710		DEFINE_WAIT(wait);
 711
 712		prepare_to_wait(&journal->j_fc_wait, &wait,
 713				TASK_UNINTERRUPTIBLE);
 714		write_unlock(&journal->j_state_lock);
 715		schedule();
 716		finish_wait(&journal->j_fc_wait, &wait);
 717		return -EALREADY;
 718	}
 719	journal->j_flags |= JBD2_FAST_COMMIT_ONGOING;
 720	write_unlock(&journal->j_state_lock);
 721	jbd2_journal_lock_updates(journal);
 722
 723	return 0;
 724}
 725EXPORT_SYMBOL(jbd2_fc_begin_commit);
 726
 727/*
 728 * Stop a fast commit. If fallback is set, this function starts commit of
 729 * TID tid before any other fast commit can start.
 730 */
 731static int __jbd2_fc_end_commit(journal_t *journal, tid_t tid, bool fallback)
 732{
 733	if (journal->j_fc_cleanup_callback)
 734		journal->j_fc_cleanup_callback(journal, 0, tid);
 735	jbd2_journal_unlock_updates(journal);
 736	write_lock(&journal->j_state_lock);
 737	journal->j_flags &= ~JBD2_FAST_COMMIT_ONGOING;
 738	if (fallback)
 739		journal->j_flags |= JBD2_FULL_COMMIT_ONGOING;
 740	write_unlock(&journal->j_state_lock);
 741	wake_up(&journal->j_fc_wait);
 742	if (fallback)
 743		return jbd2_complete_transaction(journal, tid);
 744	return 0;
 745}
 746
 747int jbd2_fc_end_commit(journal_t *journal)
 748{
 749	return __jbd2_fc_end_commit(journal, 0, false);
 750}
 751EXPORT_SYMBOL(jbd2_fc_end_commit);
 752
 753int jbd2_fc_end_commit_fallback(journal_t *journal)
 754{
 755	tid_t tid;
 756
 757	read_lock(&journal->j_state_lock);
 758	tid = journal->j_running_transaction ?
 759		journal->j_running_transaction->t_tid : 0;
 760	read_unlock(&journal->j_state_lock);
 761	return __jbd2_fc_end_commit(journal, tid, true);
 762}
 763EXPORT_SYMBOL(jbd2_fc_end_commit_fallback);
 764
 765/* Return 1 when transaction with given tid has already committed. */
 766int jbd2_transaction_committed(journal_t *journal, tid_t tid)
 767{
 768	return tid_geq(READ_ONCE(journal->j_commit_sequence), tid);
 769}
 770EXPORT_SYMBOL(jbd2_transaction_committed);
 771
 772/*
 773 * When this function returns the transaction corresponding to tid
 774 * will be completed.  If the transaction has currently running, start
 775 * committing that transaction before waiting for it to complete.  If
 776 * the transaction id is stale, it is by definition already completed,
 777 * so just return SUCCESS.
 778 */
 779int jbd2_complete_transaction(journal_t *journal, tid_t tid)
 780{
 781	int	need_to_wait = 1;
 782
 783	read_lock(&journal->j_state_lock);
 784	if (journal->j_running_transaction &&
 785	    journal->j_running_transaction->t_tid == tid) {
 786		if (journal->j_commit_request != tid) {
 787			/* transaction not yet started, so request it */
 788			read_unlock(&journal->j_state_lock);
 789			jbd2_log_start_commit(journal, tid);
 790			goto wait_commit;
 791		}
 792	} else if (!(journal->j_committing_transaction &&
 793		     journal->j_committing_transaction->t_tid == tid))
 794		need_to_wait = 0;
 795	read_unlock(&journal->j_state_lock);
 796	if (!need_to_wait)
 797		return 0;
 798wait_commit:
 799	return jbd2_log_wait_commit(journal, tid);
 800}
 801EXPORT_SYMBOL(jbd2_complete_transaction);
 802
 803/*
 804 * Log buffer allocation routines:
 805 */
 806
 807int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
 808{
 809	unsigned long blocknr;
 810
 811	write_lock(&journal->j_state_lock);
 812	J_ASSERT(journal->j_free > 1);
 813
 814	blocknr = journal->j_head;
 815	journal->j_head++;
 816	journal->j_free--;
 817	if (journal->j_head == journal->j_last)
 818		journal->j_head = journal->j_first;
 819	write_unlock(&journal->j_state_lock);
 820	return jbd2_journal_bmap(journal, blocknr, retp);
 821}
 822
 823/* Map one fast commit buffer for use by the file system */
 824int jbd2_fc_get_buf(journal_t *journal, struct buffer_head **bh_out)
 825{
 826	unsigned long long pblock;
 827	unsigned long blocknr;
 828	int ret = 0;
 829	struct buffer_head *bh;
 830	int fc_off;
 831
 832	*bh_out = NULL;
 833
 834	if (journal->j_fc_off + journal->j_fc_first >= journal->j_fc_last)
 835		return -EINVAL;
 836
 837	fc_off = journal->j_fc_off;
 838	blocknr = journal->j_fc_first + fc_off;
 839	journal->j_fc_off++;
 840	ret = jbd2_journal_bmap(journal, blocknr, &pblock);
 841	if (ret)
 842		return ret;
 843
 844	bh = __getblk(journal->j_dev, pblock, journal->j_blocksize);
 845	if (!bh)
 846		return -ENOMEM;
 847
 848	journal->j_fc_wbuf[fc_off] = bh;
 849
 850	*bh_out = bh;
 851
 852	return 0;
 853}
 854EXPORT_SYMBOL(jbd2_fc_get_buf);
 855
 856/*
 857 * Wait on fast commit buffers that were allocated by jbd2_fc_get_buf
 858 * for completion.
 859 */
 860int jbd2_fc_wait_bufs(journal_t *journal, int num_blks)
 861{
 862	struct buffer_head *bh;
 863	int i, j_fc_off;
 864
 865	j_fc_off = journal->j_fc_off;
 866
 867	/*
 868	 * Wait in reverse order to minimize chances of us being woken up before
 869	 * all IOs have completed
 870	 */
 871	for (i = j_fc_off - 1; i >= j_fc_off - num_blks; i--) {
 872		bh = journal->j_fc_wbuf[i];
 873		wait_on_buffer(bh);
 874		/*
 875		 * Update j_fc_off so jbd2_fc_release_bufs can release remain
 876		 * buffer head.
 877		 */
 878		if (unlikely(!buffer_uptodate(bh))) {
 879			journal->j_fc_off = i + 1;
 880			return -EIO;
 881		}
 882		put_bh(bh);
 883		journal->j_fc_wbuf[i] = NULL;
 884	}
 885
 886	return 0;
 887}
 888EXPORT_SYMBOL(jbd2_fc_wait_bufs);
 889
 890void jbd2_fc_release_bufs(journal_t *journal)
 891{
 892	struct buffer_head *bh;
 893	int i, j_fc_off;
 894
 895	j_fc_off = journal->j_fc_off;
 896
 897	for (i = j_fc_off - 1; i >= 0; i--) {
 898		bh = journal->j_fc_wbuf[i];
 899		if (!bh)
 900			break;
 901		put_bh(bh);
 902		journal->j_fc_wbuf[i] = NULL;
 903	}
 904}
 905EXPORT_SYMBOL(jbd2_fc_release_bufs);
 906
 907/*
 908 * Conversion of logical to physical block numbers for the journal
 909 *
 910 * On external journals the journal blocks are identity-mapped, so
 911 * this is a no-op.  If needed, we can use j_blk_offset - everything is
 912 * ready.
 913 */
 914int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
 915		 unsigned long long *retp)
 916{
 917	int err = 0;
 918	unsigned long long ret;
 919	sector_t block = blocknr;
 920
 921	if (journal->j_bmap) {
 922		err = journal->j_bmap(journal, &block);
 923		if (err == 0)
 924			*retp = block;
 925	} else if (journal->j_inode) {
 926		ret = bmap(journal->j_inode, &block);
 927
 928		if (ret || !block) {
 929			printk(KERN_ALERT "%s: journal block not found "
 930					"at offset %lu on %s\n",
 931			       __func__, blocknr, journal->j_devname);
 932			err = -EIO;
 933			jbd2_journal_abort(journal, err);
 934		} else {
 935			*retp = block;
 936		}
 937
 938	} else {
 939		*retp = blocknr; /* +journal->j_blk_offset */
 940	}
 941	return err;
 942}
 943
 944/*
 945 * We play buffer_head aliasing tricks to write data/metadata blocks to
 946 * the journal without copying their contents, but for journal
 947 * descriptor blocks we do need to generate bona fide buffers.
 948 *
 949 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
 950 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
 951 * But we don't bother doing that, so there will be coherency problems with
 952 * mmaps of blockdevs which hold live JBD-controlled filesystems.
 953 */
 954struct buffer_head *
 955jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
 956{
 957	journal_t *journal = transaction->t_journal;
 958	struct buffer_head *bh;
 959	unsigned long long blocknr;
 960	journal_header_t *header;
 961	int err;
 962
 963	err = jbd2_journal_next_log_block(journal, &blocknr);
 964
 965	if (err)
 966		return NULL;
 967
 968	bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
 969	if (!bh)
 970		return NULL;
 971	atomic_dec(&transaction->t_outstanding_credits);
 972	lock_buffer(bh);
 973	memset(bh->b_data, 0, journal->j_blocksize);
 974	header = (journal_header_t *)bh->b_data;
 975	header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
 976	header->h_blocktype = cpu_to_be32(type);
 977	header->h_sequence = cpu_to_be32(transaction->t_tid);
 978	set_buffer_uptodate(bh);
 979	unlock_buffer(bh);
 980	BUFFER_TRACE(bh, "return this buffer");
 981	return bh;
 982}
 983
 984void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
 985{
 986	struct jbd2_journal_block_tail *tail;
 987	__u32 csum;
 988
 989	if (!jbd2_journal_has_csum_v2or3(j))
 990		return;
 991
 992	tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
 993			sizeof(struct jbd2_journal_block_tail));
 994	tail->t_checksum = 0;
 995	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
 996	tail->t_checksum = cpu_to_be32(csum);
 997}
 998
 999/*
1000 * Return tid of the oldest transaction in the journal and block in the journal
1001 * where the transaction starts.
1002 *
1003 * If the journal is now empty, return which will be the next transaction ID
1004 * we will write and where will that transaction start.
1005 *
1006 * The return value is 0 if journal tail cannot be pushed any further, 1 if
1007 * it can.
1008 */
1009int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
1010			      unsigned long *block)
1011{
1012	transaction_t *transaction;
1013	int ret;
1014
1015	read_lock(&journal->j_state_lock);
1016	spin_lock(&journal->j_list_lock);
1017	transaction = journal->j_checkpoint_transactions;
1018	if (transaction) {
1019		*tid = transaction->t_tid;
1020		*block = transaction->t_log_start;
1021	} else if ((transaction = journal->j_committing_transaction) != NULL) {
1022		*tid = transaction->t_tid;
1023		*block = transaction->t_log_start;
1024	} else if ((transaction = journal->j_running_transaction) != NULL) {
1025		*tid = transaction->t_tid;
1026		*block = journal->j_head;
1027	} else {
1028		*tid = journal->j_transaction_sequence;
1029		*block = journal->j_head;
1030	}
1031	ret = tid_gt(*tid, journal->j_tail_sequence);
1032	spin_unlock(&journal->j_list_lock);
1033	read_unlock(&journal->j_state_lock);
1034
1035	return ret;
1036}
1037
1038/*
1039 * Update information in journal structure and in on disk journal superblock
1040 * about log tail. This function does not check whether information passed in
1041 * really pushes log tail further. It's responsibility of the caller to make
1042 * sure provided log tail information is valid (e.g. by holding
1043 * j_checkpoint_mutex all the time between computing log tail and calling this
1044 * function as is the case with jbd2_cleanup_journal_tail()).
1045 *
1046 * Requires j_checkpoint_mutex
1047 */
1048int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1049{
1050	unsigned long freed;
1051	int ret;
1052
1053	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1054
1055	/*
1056	 * We cannot afford for write to remain in drive's caches since as
1057	 * soon as we update j_tail, next transaction can start reusing journal
1058	 * space and if we lose sb update during power failure we'd replay
1059	 * old transaction with possibly newly overwritten data.
1060	 */
1061	ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
1062	if (ret)
1063		goto out;
1064
1065	write_lock(&journal->j_state_lock);
1066	freed = block - journal->j_tail;
1067	if (block < journal->j_tail)
1068		freed += journal->j_last - journal->j_first;
1069
1070	trace_jbd2_update_log_tail(journal, tid, block, freed);
1071	jbd2_debug(1,
1072		  "Cleaning journal tail from %u to %u (offset %lu), "
1073		  "freeing %lu\n",
1074		  journal->j_tail_sequence, tid, block, freed);
1075
1076	journal->j_free += freed;
1077	journal->j_tail_sequence = tid;
1078	journal->j_tail = block;
1079	write_unlock(&journal->j_state_lock);
1080
1081out:
1082	return ret;
1083}
1084
1085/*
1086 * This is a variation of __jbd2_update_log_tail which checks for validity of
1087 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
1088 * with other threads updating log tail.
1089 */
1090void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
1091{
1092	mutex_lock_io(&journal->j_checkpoint_mutex);
1093	if (tid_gt(tid, journal->j_tail_sequence))
1094		__jbd2_update_log_tail(journal, tid, block);
1095	mutex_unlock(&journal->j_checkpoint_mutex);
1096}
1097
1098struct jbd2_stats_proc_session {
1099	journal_t *journal;
1100	struct transaction_stats_s *stats;
1101	int start;
1102	int max;
1103};
1104
1105static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1106{
1107	return *pos ? NULL : SEQ_START_TOKEN;
1108}
1109
1110static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1111{
1112	(*pos)++;
1113	return NULL;
1114}
1115
1116static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1117{
1118	struct jbd2_stats_proc_session *s = seq->private;
1119
1120	if (v != SEQ_START_TOKEN)
1121		return 0;
1122	seq_printf(seq, "%lu transactions (%lu requested), "
1123		   "each up to %u blocks\n",
1124		   s->stats->ts_tid, s->stats->ts_requested,
1125		   s->journal->j_max_transaction_buffers);
1126	if (s->stats->ts_tid == 0)
1127		return 0;
1128	seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1129	    jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1130	seq_printf(seq, "  %ums request delay\n",
1131	    (s->stats->ts_requested == 0) ? 0 :
1132	    jiffies_to_msecs(s->stats->run.rs_request_delay /
1133			     s->stats->ts_requested));
1134	seq_printf(seq, "  %ums running transaction\n",
1135	    jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1136	seq_printf(seq, "  %ums transaction was being locked\n",
1137	    jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1138	seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1139	    jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1140	seq_printf(seq, "  %ums logging transaction\n",
1141	    jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1142	seq_printf(seq, "  %lluus average transaction commit time\n",
1143		   div_u64(s->journal->j_average_commit_time, 1000));
1144	seq_printf(seq, "  %lu handles per transaction\n",
1145	    s->stats->run.rs_handle_count / s->stats->ts_tid);
1146	seq_printf(seq, "  %lu blocks per transaction\n",
1147	    s->stats->run.rs_blocks / s->stats->ts_tid);
1148	seq_printf(seq, "  %lu logged blocks per transaction\n",
1149	    s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1150	return 0;
1151}
1152
1153static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1154{
1155}
1156
1157static const struct seq_operations jbd2_seq_info_ops = {
1158	.start  = jbd2_seq_info_start,
1159	.next   = jbd2_seq_info_next,
1160	.stop   = jbd2_seq_info_stop,
1161	.show   = jbd2_seq_info_show,
1162};
1163
1164static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1165{
1166	journal_t *journal = pde_data(inode);
1167	struct jbd2_stats_proc_session *s;
1168	int rc, size;
1169
1170	s = kmalloc(sizeof(*s), GFP_KERNEL);
1171	if (s == NULL)
1172		return -ENOMEM;
1173	size = sizeof(struct transaction_stats_s);
1174	s->stats = kmalloc(size, GFP_KERNEL);
1175	if (s->stats == NULL) {
1176		kfree(s);
1177		return -ENOMEM;
1178	}
1179	spin_lock(&journal->j_history_lock);
1180	memcpy(s->stats, &journal->j_stats, size);
1181	s->journal = journal;
1182	spin_unlock(&journal->j_history_lock);
1183
1184	rc = seq_open(file, &jbd2_seq_info_ops);
1185	if (rc == 0) {
1186		struct seq_file *m = file->private_data;
1187		m->private = s;
1188	} else {
1189		kfree(s->stats);
1190		kfree(s);
1191	}
1192	return rc;
1193
1194}
1195
1196static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1197{
1198	struct seq_file *seq = file->private_data;
1199	struct jbd2_stats_proc_session *s = seq->private;
1200	kfree(s->stats);
1201	kfree(s);
1202	return seq_release(inode, file);
1203}
1204
1205static const struct proc_ops jbd2_info_proc_ops = {
1206	.proc_open	= jbd2_seq_info_open,
1207	.proc_read	= seq_read,
1208	.proc_lseek	= seq_lseek,
1209	.proc_release	= jbd2_seq_info_release,
 
1210};
1211
1212static struct proc_dir_entry *proc_jbd2_stats;
1213
1214static void jbd2_stats_proc_init(journal_t *journal)
1215{
1216	journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1217	if (journal->j_proc_entry) {
1218		proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1219				 &jbd2_info_proc_ops, journal);
1220	}
1221}
1222
1223static void jbd2_stats_proc_exit(journal_t *journal)
1224{
1225	remove_proc_entry("info", journal->j_proc_entry);
1226	remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1227}
1228
1229/* Minimum size of descriptor tag */
1230static int jbd2_min_tag_size(void)
1231{
1232	/*
1233	 * Tag with 32-bit block numbers does not use last four bytes of the
1234	 * structure
1235	 */
1236	return sizeof(journal_block_tag_t) - 4;
1237}
1238
1239/**
1240 * jbd2_journal_shrink_scan()
1241 * @shrink: shrinker to work on
1242 * @sc: reclaim request to process
1243 *
1244 * Scan the checkpointed buffer on the checkpoint list and release the
1245 * journal_head.
1246 */
1247static unsigned long jbd2_journal_shrink_scan(struct shrinker *shrink,
1248					      struct shrink_control *sc)
1249{
1250	journal_t *journal = shrink->private_data;
1251	unsigned long nr_to_scan = sc->nr_to_scan;
1252	unsigned long nr_shrunk;
1253	unsigned long count;
1254
1255	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1256	trace_jbd2_shrink_scan_enter(journal, sc->nr_to_scan, count);
1257
1258	nr_shrunk = jbd2_journal_shrink_checkpoint_list(journal, &nr_to_scan);
1259
1260	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1261	trace_jbd2_shrink_scan_exit(journal, nr_to_scan, nr_shrunk, count);
1262
1263	return nr_shrunk;
1264}
1265
1266/**
1267 * jbd2_journal_shrink_count()
1268 * @shrink: shrinker to work on
1269 * @sc: reclaim request to process
1270 *
1271 * Count the number of checkpoint buffers on the checkpoint list.
1272 */
1273static unsigned long jbd2_journal_shrink_count(struct shrinker *shrink,
1274					       struct shrink_control *sc)
1275{
1276	journal_t *journal = shrink->private_data;
1277	unsigned long count;
1278
1279	count = percpu_counter_read_positive(&journal->j_checkpoint_jh_count);
1280	trace_jbd2_shrink_count(journal, sc->nr_to_scan, count);
1281
1282	return count;
1283}
1284
1285/*
1286 * If the journal init or create aborts, we need to mark the journal
1287 * superblock as being NULL to prevent the journal destroy from writing
1288 * back a bogus superblock.
1289 */
1290static void journal_fail_superblock(journal_t *journal)
1291{
1292	struct buffer_head *bh = journal->j_sb_buffer;
1293	brelse(bh);
1294	journal->j_sb_buffer = NULL;
1295}
1296
1297/*
1298 * Check the superblock for a given journal, performing initial
1299 * validation of the format.
1300 */
1301static int journal_check_superblock(journal_t *journal)
1302{
1303	journal_superblock_t *sb = journal->j_superblock;
1304	int num_fc_blks;
1305	int err = -EINVAL;
1306
1307	if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1308	    sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1309		printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1310		return err;
1311	}
1312
1313	if (be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V1 &&
1314	    be32_to_cpu(sb->s_header.h_blocktype) != JBD2_SUPERBLOCK_V2) {
1315		printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1316		return err;
1317	}
1318
1319	if (be32_to_cpu(sb->s_maxlen) > journal->j_total_len) {
1320		printk(KERN_WARNING "JBD2: journal file too short\n");
1321		return err;
1322	}
1323
1324	if (be32_to_cpu(sb->s_first) == 0 ||
1325	    be32_to_cpu(sb->s_first) >= journal->j_total_len) {
1326		printk(KERN_WARNING
1327			"JBD2: Invalid start block of journal: %u\n",
1328			be32_to_cpu(sb->s_first));
1329		return err;
1330	}
1331
1332	/*
1333	 * If this is a V2 superblock, then we have to check the
1334	 * features flags on it.
1335	 */
1336	if (!jbd2_format_support_feature(journal))
1337		return 0;
1338
1339	if ((sb->s_feature_ro_compat &
1340			~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1341	    (sb->s_feature_incompat &
1342			~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1343		printk(KERN_WARNING "JBD2: Unrecognised features on journal\n");
1344		return err;
1345	}
1346
1347	num_fc_blks = jbd2_has_feature_fast_commit(journal) ?
1348				jbd2_journal_get_num_fc_blks(sb) : 0;
1349	if (be32_to_cpu(sb->s_maxlen) < JBD2_MIN_JOURNAL_BLOCKS ||
1350	    be32_to_cpu(sb->s_maxlen) - JBD2_MIN_JOURNAL_BLOCKS < num_fc_blks) {
1351		printk(KERN_ERR "JBD2: journal file too short %u,%d\n",
1352		       be32_to_cpu(sb->s_maxlen), num_fc_blks);
1353		return err;
1354	}
1355
1356	if (jbd2_has_feature_csum2(journal) &&
1357	    jbd2_has_feature_csum3(journal)) {
1358		/* Can't have checksum v2 and v3 at the same time! */
1359		printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1360		       "at the same time!\n");
1361		return err;
1362	}
1363
1364	if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1365	    jbd2_has_feature_checksum(journal)) {
1366		/* Can't have checksum v1 and v2 on at the same time! */
1367		printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1368		       "at the same time!\n");
1369		return err;
1370	}
1371
1372	/* Load the checksum driver */
1373	if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1374		if (sb->s_checksum_type != JBD2_CRC32C_CHKSUM) {
1375			printk(KERN_ERR "JBD2: Unknown checksum type\n");
1376			return err;
1377		}
1378
1379		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1380		if (IS_ERR(journal->j_chksum_driver)) {
1381			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1382			err = PTR_ERR(journal->j_chksum_driver);
1383			journal->j_chksum_driver = NULL;
1384			return err;
1385		}
1386		/* Check superblock checksum */
1387		if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1388			printk(KERN_ERR "JBD2: journal checksum error\n");
1389			err = -EFSBADCRC;
1390			return err;
1391		}
1392	}
1393
1394	return 0;
1395}
1396
1397static int journal_revoke_records_per_block(journal_t *journal)
1398{
1399	int record_size;
1400	int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1401
1402	if (jbd2_has_feature_64bit(journal))
1403		record_size = 8;
1404	else
1405		record_size = 4;
1406
1407	if (jbd2_journal_has_csum_v2or3(journal))
1408		space -= sizeof(struct jbd2_journal_block_tail);
1409	return space / record_size;
1410}
1411
1412static int jbd2_journal_get_max_txn_bufs(journal_t *journal)
1413{
1414	return (journal->j_total_len - journal->j_fc_wbufsize) / 3;
1415}
1416
1417/*
1418 * Base amount of descriptor blocks we reserve for each transaction.
1419 */
1420static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
1421{
1422	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
1423	int tags_per_block;
1424
1425	/* Subtract UUID */
1426	tag_space -= 16;
1427	if (jbd2_journal_has_csum_v2or3(journal))
1428		tag_space -= sizeof(struct jbd2_journal_block_tail);
1429	/* Commit code leaves a slack space of 16 bytes at the end of block */
1430	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
1431	/*
1432	 * Revoke descriptors are accounted separately so we need to reserve
1433	 * space for commit block and normal transaction descriptor blocks.
1434	 */
1435	return 1 + DIV_ROUND_UP(jbd2_journal_get_max_txn_bufs(journal),
1436				tags_per_block);
1437}
1438
1439/*
1440 * Initialize number of blocks each transaction reserves for its bookkeeping
1441 * and maximum number of blocks a transaction can use. This needs to be called
1442 * after the journal size and the fastcommit area size are initialized.
1443 */
1444static void jbd2_journal_init_transaction_limits(journal_t *journal)
1445{
1446	journal->j_revoke_records_per_block =
1447				journal_revoke_records_per_block(journal);
1448	journal->j_transaction_overhead_buffers =
1449				jbd2_descriptor_blocks_per_trans(journal);
1450	journal->j_max_transaction_buffers =
1451				jbd2_journal_get_max_txn_bufs(journal);
1452}
1453
1454/*
1455 * Load the on-disk journal superblock and read the key fields into the
1456 * journal_t.
1457 */
1458static int journal_load_superblock(journal_t *journal)
1459{
1460	int err;
1461	struct buffer_head *bh;
1462	journal_superblock_t *sb;
1463
1464	bh = getblk_unmovable(journal->j_dev, journal->j_blk_offset,
1465			      journal->j_blocksize);
1466	if (bh)
1467		err = bh_read(bh, 0);
1468	if (!bh || err < 0) {
1469		pr_err("%s: Cannot read journal superblock\n", __func__);
1470		brelse(bh);
1471		return -EIO;
1472	}
1473
1474	journal->j_sb_buffer = bh;
1475	sb = (journal_superblock_t *)bh->b_data;
1476	journal->j_superblock = sb;
1477	err = journal_check_superblock(journal);
1478	if (err) {
1479		journal_fail_superblock(journal);
1480		return err;
1481	}
1482
1483	journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1484	journal->j_tail = be32_to_cpu(sb->s_start);
1485	journal->j_first = be32_to_cpu(sb->s_first);
1486	journal->j_errno = be32_to_cpu(sb->s_errno);
1487	journal->j_last = be32_to_cpu(sb->s_maxlen);
1488
1489	if (be32_to_cpu(sb->s_maxlen) < journal->j_total_len)
1490		journal->j_total_len = be32_to_cpu(sb->s_maxlen);
1491	/* Precompute checksum seed for all metadata */
1492	if (jbd2_journal_has_csum_v2or3(journal))
1493		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1494						   sizeof(sb->s_uuid));
1495	/* After journal features are set, we can compute transaction limits */
1496	jbd2_journal_init_transaction_limits(journal);
1497
1498	if (jbd2_has_feature_fast_commit(journal)) {
1499		journal->j_fc_last = be32_to_cpu(sb->s_maxlen);
1500		journal->j_last = journal->j_fc_last -
1501				  jbd2_journal_get_num_fc_blks(sb);
1502		journal->j_fc_first = journal->j_last + 1;
1503		journal->j_fc_off = 0;
1504	}
1505
1506	return 0;
1507}
1508
1509
1510/*
1511 * Management for journal control blocks: functions to create and
1512 * destroy journal_t structures, and to initialise and read existing
1513 * journal blocks from disk.  */
1514
1515/* The journal_init_common() function creates and fills a journal_t object
1516 * in memory. It calls journal_load_superblock() to load the on-disk journal
1517 * superblock and initialize the journal_t object.
1518 */
1519
1520static journal_t *journal_init_common(struct block_device *bdev,
1521			struct block_device *fs_dev,
1522			unsigned long long start, int len, int blocksize)
1523{
1524	static struct lock_class_key jbd2_trans_commit_key;
1525	journal_t *journal;
1526	int err;
1527	int n;
1528
1529	journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1530	if (!journal)
1531		return ERR_PTR(-ENOMEM);
1532
1533	journal->j_blocksize = blocksize;
1534	journal->j_dev = bdev;
1535	journal->j_fs_dev = fs_dev;
1536	journal->j_blk_offset = start;
1537	journal->j_total_len = len;
1538	jbd2_init_fs_dev_write_error(journal);
1539
1540	err = journal_load_superblock(journal);
1541	if (err)
1542		goto err_cleanup;
1543
1544	init_waitqueue_head(&journal->j_wait_transaction_locked);
1545	init_waitqueue_head(&journal->j_wait_done_commit);
1546	init_waitqueue_head(&journal->j_wait_commit);
1547	init_waitqueue_head(&journal->j_wait_updates);
1548	init_waitqueue_head(&journal->j_wait_reserved);
1549	init_waitqueue_head(&journal->j_fc_wait);
1550	mutex_init(&journal->j_abort_mutex);
1551	mutex_init(&journal->j_barrier);
1552	mutex_init(&journal->j_checkpoint_mutex);
1553	spin_lock_init(&journal->j_revoke_lock);
1554	spin_lock_init(&journal->j_list_lock);
1555	spin_lock_init(&journal->j_history_lock);
1556	rwlock_init(&journal->j_state_lock);
1557
1558	journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1559	journal->j_min_batch_time = 0;
1560	journal->j_max_batch_time = 15000; /* 15ms */
1561	atomic_set(&journal->j_reserved_credits, 0);
1562	lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1563			 &jbd2_trans_commit_key, 0);
1564
1565	/* The journal is marked for error until we succeed with recovery! */
1566	journal->j_flags = JBD2_ABORT;
1567
1568	/* Set up a default-sized revoke table for the new mount. */
1569	err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1570	if (err)
1571		goto err_cleanup;
1572
1573	/*
1574	 * journal descriptor can store up to n blocks, we need enough
1575	 * buffers to write out full descriptor block.
1576	 */
1577	err = -ENOMEM;
1578	n = journal->j_blocksize / jbd2_min_tag_size();
1579	journal->j_wbufsize = n;
1580	journal->j_fc_wbuf = NULL;
1581	journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1582					GFP_KERNEL);
1583	if (!journal->j_wbuf)
1584		goto err_cleanup;
1585
1586	err = percpu_counter_init(&journal->j_checkpoint_jh_count, 0,
1587				  GFP_KERNEL);
1588	if (err)
1589		goto err_cleanup;
1590
1591	journal->j_shrink_transaction = NULL;
1592
1593	journal->j_shrinker = shrinker_alloc(0, "jbd2-journal:(%u:%u)",
1594					     MAJOR(bdev->bd_dev),
1595					     MINOR(bdev->bd_dev));
1596	if (!journal->j_shrinker) {
1597		err = -ENOMEM;
1598		goto err_cleanup;
1599	}
1600
1601	journal->j_shrinker->scan_objects = jbd2_journal_shrink_scan;
1602	journal->j_shrinker->count_objects = jbd2_journal_shrink_count;
1603	journal->j_shrinker->private_data = journal;
1604
1605	shrinker_register(journal->j_shrinker);
1606
1607	return journal;
1608
1609err_cleanup:
1610	percpu_counter_destroy(&journal->j_checkpoint_jh_count);
1611	if (journal->j_chksum_driver)
1612		crypto_free_shash(journal->j_chksum_driver);
1613	kfree(journal->j_wbuf);
1614	jbd2_journal_destroy_revoke(journal);
1615	journal_fail_superblock(journal);
1616	kfree(journal);
1617	return ERR_PTR(err);
1618}
1619
1620/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1621 *
1622 * Create a journal structure assigned some fixed set of disk blocks to
1623 * the journal.  We don't actually touch those disk blocks yet, but we
1624 * need to set up all of the mapping information to tell the journaling
1625 * system where the journal blocks are.
1626 *
1627 */
1628
1629/**
1630 *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1631 *  @bdev: Block device on which to create the journal
1632 *  @fs_dev: Device which hold journalled filesystem for this journal.
1633 *  @start: Block nr Start of journal.
1634 *  @len:  Length of the journal in blocks.
1635 *  @blocksize: blocksize of journalling device
1636 *
1637 *  Returns: a newly created journal_t *
1638 *
1639 *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1640 *  range of blocks on an arbitrary block device.
1641 *
1642 */
1643journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1644			struct block_device *fs_dev,
1645			unsigned long long start, int len, int blocksize)
1646{
1647	journal_t *journal;
 
 
1648
1649	journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1650	if (IS_ERR(journal))
1651		return ERR_CAST(journal);
1652
1653	snprintf(journal->j_devname, sizeof(journal->j_devname),
1654		 "%pg", journal->j_dev);
 
 
 
 
 
1655	strreplace(journal->j_devname, '/', '!');
1656	jbd2_stats_proc_init(journal);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657
1658	return journal;
 
 
 
 
 
1659}
1660
1661/**
1662 *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1663 *  @inode: An inode to create the journal in
1664 *
1665 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1666 * the journal.  The inode must exist already, must support bmap() and
1667 * must have all data blocks preallocated.
1668 */
1669journal_t *jbd2_journal_init_inode(struct inode *inode)
1670{
1671	journal_t *journal;
1672	sector_t blocknr;
1673	int err = 0;
 
 
 
1674
1675	blocknr = 0;
1676	err = bmap(inode, &blocknr);
1677	if (err || !blocknr) {
1678		pr_err("%s: Cannot locate journal superblock\n", __func__);
1679		return err ? ERR_PTR(err) : ERR_PTR(-EINVAL);
1680	}
1681
1682	jbd2_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1683		  inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
 
 
 
 
 
 
 
1684		  inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1685
1686	journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1687			blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1688			inode->i_sb->s_blocksize);
1689	if (IS_ERR(journal))
1690		return ERR_CAST(journal);
 
 
 
 
 
 
 
 
1691
1692	journal->j_inode = inode;
1693	snprintf(journal->j_devname, sizeof(journal->j_devname),
1694		 "%pg-%lu", journal->j_dev, journal->j_inode->i_ino);
1695	strreplace(journal->j_devname, '/', '!');
1696	jbd2_stats_proc_init(journal);
 
 
 
 
 
 
 
 
 
 
 
 
1697
1698	return journal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699}
1700
1701/*
1702 * Given a journal_t structure, initialise the various fields for
1703 * startup of a new journaling session.  We use this both when creating
1704 * a journal, and after recovering an old journal to reset it for
1705 * subsequent use.
1706 */
1707
1708static int journal_reset(journal_t *journal)
1709{
1710	journal_superblock_t *sb = journal->j_superblock;
1711	unsigned long long first, last;
1712
1713	first = be32_to_cpu(sb->s_first);
1714	last = be32_to_cpu(sb->s_maxlen);
1715	if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1716		printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1717		       first, last);
1718		journal_fail_superblock(journal);
1719		return -EINVAL;
1720	}
1721
1722	journal->j_first = first;
1723	journal->j_last = last;
1724
1725	if (journal->j_head != 0 && journal->j_flags & JBD2_CYCLE_RECORD) {
1726		/*
1727		 * Disable the cycled recording mode if the journal head block
1728		 * number is not correct.
1729		 */
1730		if (journal->j_head < first || journal->j_head >= last) {
1731			printk(KERN_WARNING "JBD2: Incorrect Journal head block %lu, "
1732			       "disable journal_cycle_record\n",
1733			       journal->j_head);
1734			journal->j_head = journal->j_first;
1735		}
1736	} else {
1737		journal->j_head = journal->j_first;
1738	}
1739	journal->j_tail = journal->j_head;
1740	journal->j_free = journal->j_last - journal->j_first;
1741
1742	journal->j_tail_sequence = journal->j_transaction_sequence;
1743	journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1744	journal->j_commit_request = journal->j_commit_sequence;
1745
1746	/*
1747	 * Now that journal recovery is done, turn fast commits off here. This
1748	 * way, if fast commit was enabled before the crash but if now FS has
1749	 * disabled it, we don't enable fast commits.
1750	 */
1751	jbd2_clear_feature_fast_commit(journal);
1752
1753	/*
1754	 * As a special case, if the on-disk copy is already marked as needing
1755	 * no recovery (s_start == 0), then we can safely defer the superblock
1756	 * update until the next commit by setting JBD2_FLUSHED.  This avoids
1757	 * attempting a write to a potential-readonly device.
1758	 */
1759	if (sb->s_start == 0) {
1760		jbd2_debug(1, "JBD2: Skipping superblock update on recovered sb "
1761			"(start %ld, seq %u, errno %d)\n",
1762			journal->j_tail, journal->j_tail_sequence,
1763			journal->j_errno);
1764		journal->j_flags |= JBD2_FLUSHED;
1765	} else {
1766		/* Lock here to make assertions happy... */
1767		mutex_lock_io(&journal->j_checkpoint_mutex);
1768		/*
1769		 * Update log tail information. We use REQ_FUA since new
1770		 * transaction will start reusing journal space and so we
1771		 * must make sure information about current log tail is on
1772		 * disk before that.
1773		 */
1774		jbd2_journal_update_sb_log_tail(journal,
1775						journal->j_tail_sequence,
1776						journal->j_tail, REQ_FUA);
 
1777		mutex_unlock(&journal->j_checkpoint_mutex);
1778	}
1779	return jbd2_journal_start_thread(journal);
1780}
1781
1782/*
1783 * This function expects that the caller will have locked the journal
1784 * buffer head, and will return with it unlocked
1785 */
1786static int jbd2_write_superblock(journal_t *journal, blk_opf_t write_flags)
1787{
1788	struct buffer_head *bh = journal->j_sb_buffer;
1789	journal_superblock_t *sb = journal->j_superblock;
1790	int ret = 0;
1791
1792	/* Buffer got discarded which means block device got invalidated */
1793	if (!buffer_mapped(bh)) {
1794		unlock_buffer(bh);
1795		return -EIO;
1796	}
1797
1798	/*
1799	 * Always set high priority flags to exempt from block layer's
1800	 * QOS policies, e.g. writeback throttle.
1801	 */
1802	write_flags |= JBD2_JOURNAL_REQ_FLAGS;
1803	if (!(journal->j_flags & JBD2_BARRIER))
1804		write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1805
1806	trace_jbd2_write_superblock(journal, write_flags);
1807
1808	if (buffer_write_io_error(bh)) {
1809		/*
1810		 * Oh, dear.  A previous attempt to write the journal
1811		 * superblock failed.  This could happen because the
1812		 * USB device was yanked out.  Or it could happen to
1813		 * be a transient write error and maybe the block will
1814		 * be remapped.  Nothing we can do but to retry the
1815		 * write and hope for the best.
1816		 */
1817		printk(KERN_ERR "JBD2: previous I/O error detected "
1818		       "for journal superblock update for %s.\n",
1819		       journal->j_devname);
1820		clear_buffer_write_io_error(bh);
1821		set_buffer_uptodate(bh);
1822	}
1823	if (jbd2_journal_has_csum_v2or3(journal))
1824		sb->s_checksum = jbd2_superblock_csum(journal, sb);
1825	get_bh(bh);
1826	bh->b_end_io = end_buffer_write_sync;
1827	submit_bh(REQ_OP_WRITE | write_flags, bh);
1828	wait_on_buffer(bh);
1829	if (buffer_write_io_error(bh)) {
1830		clear_buffer_write_io_error(bh);
1831		set_buffer_uptodate(bh);
1832		ret = -EIO;
1833	}
1834	if (ret) {
1835		printk(KERN_ERR "JBD2: I/O error when updating journal superblock for %s.\n",
1836				journal->j_devname);
1837		if (!is_journal_aborted(journal))
1838			jbd2_journal_abort(journal, ret);
1839	}
1840
1841	return ret;
1842}
1843
1844/**
1845 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1846 * @journal: The journal to update.
1847 * @tail_tid: TID of the new transaction at the tail of the log
1848 * @tail_block: The first block of the transaction at the tail of the log
1849 * @write_flags: Flags for the journal sb write operation
1850 *
1851 * Update a journal's superblock information about log tail and write it to
1852 * disk, waiting for the IO to complete.
1853 */
1854int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1855				    unsigned long tail_block,
1856				    blk_opf_t write_flags)
1857{
1858	journal_superblock_t *sb = journal->j_superblock;
1859	int ret;
1860
1861	if (is_journal_aborted(journal))
1862		return -EIO;
1863	if (jbd2_check_fs_dev_write_error(journal)) {
1864		jbd2_journal_abort(journal, -EIO);
1865		return -EIO;
1866	}
1867
1868	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1869	jbd2_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1870		  tail_block, tail_tid);
1871
1872	lock_buffer(journal->j_sb_buffer);
1873	sb->s_sequence = cpu_to_be32(tail_tid);
1874	sb->s_start    = cpu_to_be32(tail_block);
1875
1876	ret = jbd2_write_superblock(journal, write_flags);
1877	if (ret)
1878		goto out;
1879
1880	/* Log is no longer empty */
1881	write_lock(&journal->j_state_lock);
1882	WARN_ON(!sb->s_sequence);
1883	journal->j_flags &= ~JBD2_FLUSHED;
1884	write_unlock(&journal->j_state_lock);
1885
1886out:
1887	return ret;
1888}
1889
1890/**
1891 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1892 * @journal: The journal to update.
1893 * @write_flags: Flags for the journal sb write operation
1894 *
1895 * Update a journal's dynamic superblock fields to show that journal is empty.
1896 * Write updated superblock to disk waiting for IO to complete.
1897 */
1898static void jbd2_mark_journal_empty(journal_t *journal, blk_opf_t write_flags)
1899{
1900	journal_superblock_t *sb = journal->j_superblock;
1901	bool had_fast_commit = false;
1902
1903	BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1904	lock_buffer(journal->j_sb_buffer);
1905	if (sb->s_start == 0) {		/* Is it already empty? */
1906		unlock_buffer(journal->j_sb_buffer);
 
1907		return;
1908	}
1909
1910	jbd2_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1911		  journal->j_tail_sequence);
1912
1913	sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1914	sb->s_start    = cpu_to_be32(0);
1915	sb->s_head     = cpu_to_be32(journal->j_head);
1916	if (jbd2_has_feature_fast_commit(journal)) {
1917		/*
1918		 * When journal is clean, no need to commit fast commit flag and
1919		 * make file system incompatible with older kernels.
1920		 */
1921		jbd2_clear_feature_fast_commit(journal);
1922		had_fast_commit = true;
1923	}
1924
1925	jbd2_write_superblock(journal, write_flags);
1926
1927	if (had_fast_commit)
1928		jbd2_set_feature_fast_commit(journal);
1929
1930	/* Log is empty */
1931	write_lock(&journal->j_state_lock);
1932	journal->j_flags |= JBD2_FLUSHED;
1933	write_unlock(&journal->j_state_lock);
1934}
1935
 
1936/**
1937 * __jbd2_journal_erase() - Discard or zeroout journal blocks (excluding superblock)
1938 * @journal: The journal to erase.
1939 * @flags: A discard/zeroout request is sent for each physically contigous
1940 *	region of the journal. Either JBD2_JOURNAL_FLUSH_DISCARD or
1941 *	JBD2_JOURNAL_FLUSH_ZEROOUT must be set to determine which operation
1942 *	to perform.
1943 *
1944 * Note: JBD2_JOURNAL_FLUSH_ZEROOUT attempts to use hardware offload. Zeroes
1945 * will be explicitly written if no hardware offload is available, see
1946 * blkdev_issue_zeroout for more details.
1947 */
1948static int __jbd2_journal_erase(journal_t *journal, unsigned int flags)
1949{
1950	int err = 0;
1951	unsigned long block, log_offset; /* logical */
1952	unsigned long long phys_block, block_start, block_stop; /* physical */
1953	loff_t byte_start, byte_stop, byte_count;
1954
1955	/* flags must be set to either discard or zeroout */
1956	if ((flags & ~JBD2_JOURNAL_FLUSH_VALID) || !flags ||
1957			((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1958			(flags & JBD2_JOURNAL_FLUSH_ZEROOUT)))
1959		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
1960
1961	if ((flags & JBD2_JOURNAL_FLUSH_DISCARD) &&
1962	    !bdev_max_discard_sectors(journal->j_dev))
1963		return -EOPNOTSUPP;
1964
1965	/*
1966	 * lookup block mapping and issue discard/zeroout for each
1967	 * contiguous region
1968	 */
1969	log_offset = be32_to_cpu(journal->j_superblock->s_first);
1970	block_start =  ~0ULL;
1971	for (block = log_offset; block < journal->j_total_len; block++) {
1972		err = jbd2_journal_bmap(journal, block, &phys_block);
1973		if (err) {
1974			pr_err("JBD2: bad block at offset %lu", block);
1975			return err;
1976		}
 
 
 
 
1977
1978		if (block_start == ~0ULL) {
1979			block_start = phys_block;
1980			block_stop = block_start - 1;
1981		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982
1983		/*
1984		 * last block not contiguous with current block,
1985		 * process last contiguous region and return to this block on
1986		 * next loop
1987		 */
1988		if (phys_block != block_stop + 1) {
1989			block--;
1990		} else {
1991			block_stop++;
1992			/*
1993			 * if this isn't the last block of journal,
1994			 * no need to process now because next block may also
1995			 * be part of this contiguous region
1996			 */
1997			if (block != journal->j_total_len - 1)
1998				continue;
1999		}
2000
2001		/*
2002		 * end of contiguous region or this is last block of journal,
2003		 * take care of the region
2004		 */
2005		byte_start = block_start * journal->j_blocksize;
2006		byte_stop = block_stop * journal->j_blocksize;
2007		byte_count = (block_stop - block_start + 1) *
2008				journal->j_blocksize;
2009
2010		truncate_inode_pages_range(journal->j_dev->bd_mapping,
2011				byte_start, byte_stop);
2012
2013		if (flags & JBD2_JOURNAL_FLUSH_DISCARD) {
2014			err = blkdev_issue_discard(journal->j_dev,
2015					byte_start >> SECTOR_SHIFT,
2016					byte_count >> SECTOR_SHIFT,
2017					GFP_NOFS);
2018		} else if (flags & JBD2_JOURNAL_FLUSH_ZEROOUT) {
2019			err = blkdev_issue_zeroout(journal->j_dev,
2020					byte_start >> SECTOR_SHIFT,
2021					byte_count >> SECTOR_SHIFT,
2022					GFP_NOFS, 0);
2023		}
2024
2025		if (unlikely(err != 0)) {
2026			pr_err("JBD2: (error %d) unable to wipe journal at physical blocks %llu - %llu",
2027					err, block_start, block_stop);
2028			return err;
 
 
 
 
2029		}
 
2030
2031		/* reset start and stop after processing a region */
2032		block_start = ~0ULL;
 
 
 
2033	}
2034
2035	return blkdev_issue_flush(journal->j_dev);
 
 
 
 
 
 
 
 
 
 
 
2036}
2037
2038/**
2039 * jbd2_journal_update_sb_errno() - Update error in the journal.
2040 * @journal: The journal to update.
2041 *
2042 * Update a journal's errno.  Write updated superblock to disk waiting for IO
2043 * to complete.
2044 */
2045void jbd2_journal_update_sb_errno(journal_t *journal)
 
2046{
2047	journal_superblock_t *sb = journal->j_superblock;
2048	int errcode;
 
 
 
 
2049
2050	lock_buffer(journal->j_sb_buffer);
2051	errcode = journal->j_errno;
2052	if (errcode == -ESHUTDOWN)
2053		errcode = 0;
2054	jbd2_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
2055	sb->s_errno    = cpu_to_be32(errcode);
2056
2057	jbd2_write_superblock(journal, REQ_FUA);
 
 
 
 
 
 
2058}
2059EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
2060
2061/**
2062 * jbd2_journal_load() - Read journal from disk.
2063 * @journal: Journal to act on.
2064 *
2065 * Given a journal_t structure which tells us which disk blocks contain
2066 * a journal, read the journal from disk to initialise the in-memory
2067 * structures.
2068 */
2069int jbd2_journal_load(journal_t *journal)
2070{
2071	int err;
2072	journal_superblock_t *sb = journal->j_superblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073
2074	/*
2075	 * Create a slab for this blocksize
2076	 */
2077	err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
2078	if (err)
2079		return err;
2080
2081	/* Let the recovery code check whether it needs to recover any
2082	 * data from the journal. */
2083	err = jbd2_journal_recover(journal);
2084	if (err) {
2085		pr_warn("JBD2: journal recovery failed\n");
2086		return err;
2087	}
2088
2089	if (journal->j_failed_commit) {
2090		printk(KERN_ERR "JBD2: journal transaction %u on %s "
2091		       "is corrupt.\n", journal->j_failed_commit,
2092		       journal->j_devname);
2093		return -EFSCORRUPTED;
2094	}
2095	/*
2096	 * clear JBD2_ABORT flag initialized in journal_init_common
2097	 * here to update log tail information with the newest seq.
2098	 */
2099	journal->j_flags &= ~JBD2_ABORT;
2100
2101	/* OK, we've finished with the dynamic journal bits:
2102	 * reinitialise the dynamic contents of the superblock in memory
2103	 * and reset them on disk. */
2104	err = journal_reset(journal);
2105	if (err) {
2106		pr_warn("JBD2: journal reset failed\n");
2107		return err;
2108	}
2109
 
2110	journal->j_flags |= JBD2_LOADED;
2111	return 0;
 
 
 
 
2112}
2113
2114/**
2115 * jbd2_journal_destroy() - Release a journal_t structure.
2116 * @journal: Journal to act on.
2117 *
2118 * Release a journal_t structure once it is no longer in use by the
2119 * journaled object.
2120 * Return <0 if we couldn't clean up the journal.
2121 */
2122int jbd2_journal_destroy(journal_t *journal)
2123{
2124	int err = 0;
2125
2126	/* Wait for the commit thread to wake up and die. */
2127	journal_kill_thread(journal);
2128
2129	/* Force a final log commit */
2130	if (journal->j_running_transaction)
2131		jbd2_journal_commit_transaction(journal);
2132
2133	/* Force any old transactions to disk */
2134
2135	/* Totally anal locking here... */
2136	spin_lock(&journal->j_list_lock);
2137	while (journal->j_checkpoint_transactions != NULL) {
2138		spin_unlock(&journal->j_list_lock);
2139		mutex_lock_io(&journal->j_checkpoint_mutex);
2140		err = jbd2_log_do_checkpoint(journal);
2141		mutex_unlock(&journal->j_checkpoint_mutex);
2142		/*
2143		 * If checkpointing failed, just free the buffers to avoid
2144		 * looping forever
2145		 */
2146		if (err) {
2147			jbd2_journal_destroy_checkpoint(journal);
2148			spin_lock(&journal->j_list_lock);
2149			break;
2150		}
2151		spin_lock(&journal->j_list_lock);
2152	}
2153
2154	J_ASSERT(journal->j_running_transaction == NULL);
2155	J_ASSERT(journal->j_committing_transaction == NULL);
2156	J_ASSERT(journal->j_checkpoint_transactions == NULL);
2157	spin_unlock(&journal->j_list_lock);
2158
2159	/*
2160	 * OK, all checkpoint transactions have been checked, now check the
2161	 * writeback errseq of fs dev and abort the journal if some buffer
2162	 * failed to write back to the original location, otherwise the
2163	 * filesystem may become inconsistent.
2164	 */
2165	if (!is_journal_aborted(journal) &&
2166	    jbd2_check_fs_dev_write_error(journal))
2167		jbd2_journal_abort(journal, -EIO);
2168
2169	if (journal->j_sb_buffer) {
2170		if (!is_journal_aborted(journal)) {
2171			mutex_lock_io(&journal->j_checkpoint_mutex);
2172
2173			write_lock(&journal->j_state_lock);
2174			journal->j_tail_sequence =
2175				++journal->j_transaction_sequence;
2176			write_unlock(&journal->j_state_lock);
2177
2178			jbd2_mark_journal_empty(journal, REQ_PREFLUSH | REQ_FUA);
2179			mutex_unlock(&journal->j_checkpoint_mutex);
2180		} else
2181			err = -EIO;
2182		brelse(journal->j_sb_buffer);
2183	}
2184
2185	if (journal->j_shrinker) {
2186		percpu_counter_destroy(&journal->j_checkpoint_jh_count);
2187		shrinker_free(journal->j_shrinker);
2188	}
2189	if (journal->j_proc_entry)
2190		jbd2_stats_proc_exit(journal);
2191	iput(journal->j_inode);
2192	if (journal->j_revoke)
2193		jbd2_journal_destroy_revoke(journal);
2194	if (journal->j_chksum_driver)
2195		crypto_free_shash(journal->j_chksum_driver);
2196	kfree(journal->j_fc_wbuf);
2197	kfree(journal->j_wbuf);
2198	kfree(journal);
2199
2200	return err;
2201}
2202
2203
2204/**
2205 * jbd2_journal_check_used_features() - Check if features specified are used.
2206 * @journal: Journal to check.
2207 * @compat: bitmask of compatible features
2208 * @ro: bitmask of features that force read-only mount
2209 * @incompat: bitmask of incompatible features
2210 *
2211 * Check whether the journal uses all of a given set of
2212 * features.  Return true (non-zero) if it does.
2213 **/
2214
2215int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
2216				 unsigned long ro, unsigned long incompat)
2217{
2218	journal_superblock_t *sb;
2219
2220	if (!compat && !ro && !incompat)
2221		return 1;
2222	if (!jbd2_format_support_feature(journal))
 
 
 
 
2223		return 0;
2224
2225	sb = journal->j_superblock;
2226
2227	if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
2228	    ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
2229	    ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
2230		return 1;
2231
2232	return 0;
2233}
2234
2235/**
2236 * jbd2_journal_check_available_features() - Check feature set in journalling layer
2237 * @journal: Journal to check.
2238 * @compat: bitmask of compatible features
2239 * @ro: bitmask of features that force read-only mount
2240 * @incompat: bitmask of incompatible features
2241 *
2242 * Check whether the journaling code supports the use of
2243 * all of a given set of features on this journal.  Return true
2244 * (non-zero) if it can. */
2245
2246int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
2247				      unsigned long ro, unsigned long incompat)
2248{
2249	if (!compat && !ro && !incompat)
2250		return 1;
2251
2252	if (!jbd2_format_support_feature(journal))
 
 
 
 
2253		return 0;
2254
2255	if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
2256	    (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
2257	    (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
2258		return 1;
2259
2260	return 0;
2261}
2262
2263static int
2264jbd2_journal_initialize_fast_commit(journal_t *journal)
2265{
2266	journal_superblock_t *sb = journal->j_superblock;
2267	unsigned long long num_fc_blks;
2268
2269	num_fc_blks = jbd2_journal_get_num_fc_blks(sb);
2270	if (journal->j_last - num_fc_blks < JBD2_MIN_JOURNAL_BLOCKS)
2271		return -ENOSPC;
2272
2273	/* Are we called twice? */
2274	WARN_ON(journal->j_fc_wbuf != NULL);
2275	journal->j_fc_wbuf = kmalloc_array(num_fc_blks,
2276				sizeof(struct buffer_head *), GFP_KERNEL);
2277	if (!journal->j_fc_wbuf)
2278		return -ENOMEM;
2279
2280	journal->j_fc_wbufsize = num_fc_blks;
2281	journal->j_fc_last = journal->j_last;
2282	journal->j_last = journal->j_fc_last - num_fc_blks;
2283	journal->j_fc_first = journal->j_last + 1;
2284	journal->j_fc_off = 0;
2285	journal->j_free = journal->j_last - journal->j_first;
2286
2287	return 0;
2288}
2289
2290/**
2291 * jbd2_journal_set_features() - Mark a given journal feature in the superblock
2292 * @journal: Journal to act on.
2293 * @compat: bitmask of compatible features
2294 * @ro: bitmask of features that force read-only mount
2295 * @incompat: bitmask of incompatible features
2296 *
2297 * Mark a given journal feature as present on the
2298 * superblock.  Returns true if the requested features could be set.
2299 *
2300 */
2301
2302int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
2303			  unsigned long ro, unsigned long incompat)
2304{
2305#define INCOMPAT_FEATURE_ON(f) \
2306		((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
2307#define COMPAT_FEATURE_ON(f) \
2308		((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
2309	journal_superblock_t *sb;
2310
2311	if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
2312		return 1;
2313
2314	if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
2315		return 0;
2316
2317	/* If enabling v2 checksums, turn on v3 instead */
2318	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
2319		incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
2320		incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
2321	}
2322
2323	/* Asking for checksumming v3 and v1?  Only give them v3. */
2324	if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
2325	    compat & JBD2_FEATURE_COMPAT_CHECKSUM)
2326		compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
2327
2328	jbd2_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
2329		  compat, ro, incompat);
2330
2331	sb = journal->j_superblock;
2332
2333	if (incompat & JBD2_FEATURE_INCOMPAT_FAST_COMMIT) {
2334		if (jbd2_journal_initialize_fast_commit(journal)) {
2335			pr_err("JBD2: Cannot enable fast commits.\n");
2336			return 0;
2337		}
2338	}
2339
2340	/* Load the checksum driver if necessary */
2341	if ((journal->j_chksum_driver == NULL) &&
2342	    INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2343		journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
2344		if (IS_ERR(journal->j_chksum_driver)) {
2345			printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
2346			journal->j_chksum_driver = NULL;
2347			return 0;
2348		}
2349		/* Precompute checksum seed for all metadata */
2350		journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
2351						   sizeof(sb->s_uuid));
2352	}
2353
2354	lock_buffer(journal->j_sb_buffer);
2355
2356	/* If enabling v3 checksums, update superblock */
2357	if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
2358		sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
2359		sb->s_feature_compat &=
2360			~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361	}
2362
2363	/* If enabling v1 checksums, downgrade superblock */
2364	if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
2365		sb->s_feature_incompat &=
2366			~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
2367				     JBD2_FEATURE_INCOMPAT_CSUM_V3);
2368
2369	sb->s_feature_compat    |= cpu_to_be32(compat);
2370	sb->s_feature_ro_compat |= cpu_to_be32(ro);
2371	sb->s_feature_incompat  |= cpu_to_be32(incompat);
2372	unlock_buffer(journal->j_sb_buffer);
2373	jbd2_journal_init_transaction_limits(journal);
2374
2375	return 1;
2376#undef COMPAT_FEATURE_ON
2377#undef INCOMPAT_FEATURE_ON
2378}
2379
2380/*
2381 * jbd2_journal_clear_features() - Clear a given journal feature in the
2382 * 				    superblock
2383 * @journal: Journal to act on.
2384 * @compat: bitmask of compatible features
2385 * @ro: bitmask of features that force read-only mount
2386 * @incompat: bitmask of incompatible features
2387 *
2388 * Clear a given journal feature as present on the
2389 * superblock.
2390 */
2391void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
2392				unsigned long ro, unsigned long incompat)
2393{
2394	journal_superblock_t *sb;
2395
2396	jbd2_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
2397		  compat, ro, incompat);
2398
2399	sb = journal->j_superblock;
2400
2401	sb->s_feature_compat    &= ~cpu_to_be32(compat);
2402	sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
2403	sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
2404	jbd2_journal_init_transaction_limits(journal);
2405}
2406EXPORT_SYMBOL(jbd2_journal_clear_features);
2407
2408/**
2409 * jbd2_journal_flush() - Flush journal
2410 * @journal: Journal to act on.
2411 * @flags: optional operation on the journal blocks after the flush (see below)
2412 *
2413 * Flush all data for a given journal to disk and empty the journal.
2414 * Filesystems can use this when remounting readonly to ensure that
2415 * recovery does not need to happen on remount. Optionally, a discard or zeroout
2416 * can be issued on the journal blocks after flushing.
2417 *
2418 * flags:
2419 *	JBD2_JOURNAL_FLUSH_DISCARD: issues discards for the journal blocks
2420 *	JBD2_JOURNAL_FLUSH_ZEROOUT: issues zeroouts for the journal blocks
2421 */
2422int jbd2_journal_flush(journal_t *journal, unsigned int flags)
 
2423{
2424	int err = 0;
2425	transaction_t *transaction = NULL;
2426
2427	write_lock(&journal->j_state_lock);
2428
2429	/* Force everything buffered to the log... */
2430	if (journal->j_running_transaction) {
2431		transaction = journal->j_running_transaction;
2432		__jbd2_log_start_commit(journal, transaction->t_tid);
2433	} else if (journal->j_committing_transaction)
2434		transaction = journal->j_committing_transaction;
2435
2436	/* Wait for the log commit to complete... */
2437	if (transaction) {
2438		tid_t tid = transaction->t_tid;
2439
2440		write_unlock(&journal->j_state_lock);
2441		jbd2_log_wait_commit(journal, tid);
2442	} else {
2443		write_unlock(&journal->j_state_lock);
2444	}
2445
2446	/* ...and flush everything in the log out to disk. */
2447	spin_lock(&journal->j_list_lock);
2448	while (!err && journal->j_checkpoint_transactions != NULL) {
2449		spin_unlock(&journal->j_list_lock);
2450		mutex_lock_io(&journal->j_checkpoint_mutex);
2451		err = jbd2_log_do_checkpoint(journal);
2452		mutex_unlock(&journal->j_checkpoint_mutex);
2453		spin_lock(&journal->j_list_lock);
2454	}
2455	spin_unlock(&journal->j_list_lock);
2456
2457	if (is_journal_aborted(journal))
2458		return -EIO;
2459
2460	mutex_lock_io(&journal->j_checkpoint_mutex);
2461	if (!err) {
2462		err = jbd2_cleanup_journal_tail(journal);
2463		if (err < 0) {
2464			mutex_unlock(&journal->j_checkpoint_mutex);
2465			goto out;
2466		}
2467		err = 0;
2468	}
2469
2470	/* Finally, mark the journal as really needing no recovery.
2471	 * This sets s_start==0 in the underlying superblock, which is
2472	 * the magic code for a fully-recovered superblock.  Any future
2473	 * commits of data to the journal will restore the current
2474	 * s_start value. */
2475	jbd2_mark_journal_empty(journal, REQ_FUA);
2476
2477	if (flags)
2478		err = __jbd2_journal_erase(journal, flags);
2479
2480	mutex_unlock(&journal->j_checkpoint_mutex);
2481	write_lock(&journal->j_state_lock);
2482	J_ASSERT(!journal->j_running_transaction);
2483	J_ASSERT(!journal->j_committing_transaction);
2484	J_ASSERT(!journal->j_checkpoint_transactions);
2485	J_ASSERT(journal->j_head == journal->j_tail);
2486	J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2487	write_unlock(&journal->j_state_lock);
2488out:
2489	return err;
2490}
2491
2492/**
2493 * jbd2_journal_wipe() - Wipe journal contents
2494 * @journal: Journal to act on.
2495 * @write: flag (see below)
2496 *
2497 * Wipe out all of the contents of a journal, safely.  This will produce
2498 * a warning if the journal contains any valid recovery information.
2499 * Must be called between journal_init_*() and jbd2_journal_load().
2500 *
2501 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2502 * we merely suppress recovery.
2503 */
2504
2505int jbd2_journal_wipe(journal_t *journal, int write)
2506{
2507	int err;
2508
2509	J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2510
 
 
 
 
2511	if (!journal->j_tail)
2512		return 0;
2513
2514	printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2515		write ? "Clearing" : "Ignoring");
2516
2517	err = jbd2_journal_skip_recovery(journal);
2518	if (write) {
2519		/* Lock to make assertions happy... */
2520		mutex_lock_io(&journal->j_checkpoint_mutex);
2521		jbd2_mark_journal_empty(journal, REQ_FUA);
2522		mutex_unlock(&journal->j_checkpoint_mutex);
2523	}
2524
 
2525	return err;
2526}
2527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528/**
2529 * jbd2_journal_abort () - Shutdown the journal immediately.
2530 * @journal: the journal to shutdown.
2531 * @errno:   an error number to record in the journal indicating
2532 *           the reason for the shutdown.
2533 *
2534 * Perform a complete, immediate shutdown of the ENTIRE
2535 * journal (not of a single transaction).  This operation cannot be
2536 * undone without closing and reopening the journal.
2537 *
2538 * The jbd2_journal_abort function is intended to support higher level error
2539 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2540 * mode.
2541 *
2542 * Journal abort has very specific semantics.  Any existing dirty,
2543 * unjournaled buffers in the main filesystem will still be written to
2544 * disk by bdflush, but the journaling mechanism will be suspended
2545 * immediately and no further transaction commits will be honoured.
2546 *
2547 * Any dirty, journaled buffers will be written back to disk without
2548 * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2549 * filesystem, but we _do_ attempt to leave as much data as possible
2550 * behind for fsck to use for cleanup.
2551 *
2552 * Any attempt to get a new transaction handle on a journal which is in
2553 * ABORT state will just result in an -EROFS error return.  A
2554 * jbd2_journal_stop on an existing handle will return -EIO if we have
2555 * entered abort state during the update.
2556 *
2557 * Recursive transactions are not disturbed by journal abort until the
2558 * final jbd2_journal_stop, which will receive the -EIO error.
2559 *
2560 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2561 * which will be recorded (if possible) in the journal superblock.  This
2562 * allows a client to record failure conditions in the middle of a
2563 * transaction without having to complete the transaction to record the
2564 * failure to disk.  ext3_error, for example, now uses this
2565 * functionality.
2566 *
 
 
 
 
 
2567 */
2568
2569void jbd2_journal_abort(journal_t *journal, int errno)
2570{
2571	transaction_t *transaction;
2572
2573	/*
2574	 * Lock the aborting procedure until everything is done, this avoid
2575	 * races between filesystem's error handling flow (e.g. ext4_abort()),
2576	 * ensure panic after the error info is written into journal's
2577	 * superblock.
2578	 */
2579	mutex_lock(&journal->j_abort_mutex);
2580	/*
2581	 * ESHUTDOWN always takes precedence because a file system check
2582	 * caused by any other journal abort error is not required after
2583	 * a shutdown triggered.
2584	 */
2585	write_lock(&journal->j_state_lock);
2586	if (journal->j_flags & JBD2_ABORT) {
2587		int old_errno = journal->j_errno;
2588
2589		write_unlock(&journal->j_state_lock);
2590		if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2591			journal->j_errno = errno;
2592			jbd2_journal_update_sb_errno(journal);
2593		}
2594		mutex_unlock(&journal->j_abort_mutex);
2595		return;
2596	}
2597
2598	/*
2599	 * Mark the abort as occurred and start current running transaction
2600	 * to release all journaled buffer.
2601	 */
2602	pr_err("Aborting journal on device %s.\n", journal->j_devname);
2603
2604	journal->j_flags |= JBD2_ABORT;
2605	journal->j_errno = errno;
2606	transaction = journal->j_running_transaction;
2607	if (transaction)
2608		__jbd2_log_start_commit(journal, transaction->t_tid);
2609	write_unlock(&journal->j_state_lock);
2610
2611	/*
2612	 * Record errno to the journal super block, so that fsck and jbd2
2613	 * layer could realise that a filesystem check is needed.
2614	 */
2615	jbd2_journal_update_sb_errno(journal);
2616	mutex_unlock(&journal->j_abort_mutex);
2617}
2618
2619/**
2620 * jbd2_journal_errno() - returns the journal's error state.
2621 * @journal: journal to examine.
2622 *
2623 * This is the errno number set with jbd2_journal_abort(), the last
2624 * time the journal was mounted - if the journal was stopped
2625 * without calling abort this will be 0.
2626 *
2627 * If the journal has been aborted on this mount time -EROFS will
2628 * be returned.
2629 */
2630int jbd2_journal_errno(journal_t *journal)
2631{
2632	int err;
2633
2634	read_lock(&journal->j_state_lock);
2635	if (journal->j_flags & JBD2_ABORT)
2636		err = -EROFS;
2637	else
2638		err = journal->j_errno;
2639	read_unlock(&journal->j_state_lock);
2640	return err;
2641}
2642
2643/**
2644 * jbd2_journal_clear_err() - clears the journal's error state
2645 * @journal: journal to act on.
2646 *
2647 * An error must be cleared or acked to take a FS out of readonly
2648 * mode.
2649 */
2650int jbd2_journal_clear_err(journal_t *journal)
2651{
2652	int err = 0;
2653
2654	write_lock(&journal->j_state_lock);
2655	if (journal->j_flags & JBD2_ABORT)
2656		err = -EROFS;
2657	else
2658		journal->j_errno = 0;
2659	write_unlock(&journal->j_state_lock);
2660	return err;
2661}
2662
2663/**
2664 * jbd2_journal_ack_err() - Ack journal err.
2665 * @journal: journal to act on.
2666 *
2667 * An error must be cleared or acked to take a FS out of readonly
2668 * mode.
2669 */
2670void jbd2_journal_ack_err(journal_t *journal)
2671{
2672	write_lock(&journal->j_state_lock);
2673	if (journal->j_errno)
2674		journal->j_flags |= JBD2_ACK_ERR;
2675	write_unlock(&journal->j_state_lock);
2676}
2677
2678int jbd2_journal_blocks_per_page(struct inode *inode)
2679{
2680	return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2681}
2682
2683/*
2684 * helper functions to deal with 32 or 64bit block numbers.
2685 */
2686size_t journal_tag_bytes(journal_t *journal)
2687{
2688	size_t sz;
2689
2690	if (jbd2_has_feature_csum3(journal))
2691		return sizeof(journal_block_tag3_t);
2692
2693	sz = sizeof(journal_block_tag_t);
2694
2695	if (jbd2_has_feature_csum2(journal))
2696		sz += sizeof(__u16);
2697
2698	if (jbd2_has_feature_64bit(journal))
2699		return sz;
2700	else
2701		return sz - sizeof(__u32);
2702}
2703
2704/*
2705 * JBD memory management
2706 *
2707 * These functions are used to allocate block-sized chunks of memory
2708 * used for making copies of buffer_head data.  Very often it will be
2709 * page-sized chunks of data, but sometimes it will be in
2710 * sub-page-size chunks.  (For example, 16k pages on Power systems
2711 * with a 4k block file system.)  For blocks smaller than a page, we
2712 * use a SLAB allocator.  There are slab caches for each block size,
2713 * which are allocated at mount time, if necessary, and we only free
2714 * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2715 * this reason we don't need to a mutex to protect access to
2716 * jbd2_slab[] allocating or releasing memory; only in
2717 * jbd2_journal_create_slab().
2718 */
2719#define JBD2_MAX_SLABS 8
2720static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2721
2722static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2723	"jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2724	"jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2725};
2726
2727
2728static void jbd2_journal_destroy_slabs(void)
2729{
2730	int i;
2731
2732	for (i = 0; i < JBD2_MAX_SLABS; i++) {
2733		kmem_cache_destroy(jbd2_slab[i]);
 
2734		jbd2_slab[i] = NULL;
2735	}
2736}
2737
2738static int jbd2_journal_create_slab(size_t size)
2739{
2740	static DEFINE_MUTEX(jbd2_slab_create_mutex);
2741	int i = order_base_2(size) - 10;
2742	size_t slab_size;
2743
2744	if (size == PAGE_SIZE)
2745		return 0;
2746
2747	if (i >= JBD2_MAX_SLABS)
2748		return -EINVAL;
2749
2750	if (unlikely(i < 0))
2751		i = 0;
2752	mutex_lock(&jbd2_slab_create_mutex);
2753	if (jbd2_slab[i]) {
2754		mutex_unlock(&jbd2_slab_create_mutex);
2755		return 0;	/* Already created */
2756	}
2757
2758	slab_size = 1 << (i+10);
2759	jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2760					 slab_size, 0, NULL);
2761	mutex_unlock(&jbd2_slab_create_mutex);
2762	if (!jbd2_slab[i]) {
2763		printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2764		return -ENOMEM;
2765	}
2766	return 0;
2767}
2768
2769static struct kmem_cache *get_slab(size_t size)
2770{
2771	int i = order_base_2(size) - 10;
2772
2773	BUG_ON(i >= JBD2_MAX_SLABS);
2774	if (unlikely(i < 0))
2775		i = 0;
2776	BUG_ON(jbd2_slab[i] == NULL);
2777	return jbd2_slab[i];
2778}
2779
2780void *jbd2_alloc(size_t size, gfp_t flags)
2781{
2782	void *ptr;
2783
2784	BUG_ON(size & (size-1)); /* Must be a power of 2 */
2785
2786	if (size < PAGE_SIZE)
 
 
 
 
 
 
 
 
 
 
2787		ptr = kmem_cache_alloc(get_slab(size), flags);
2788	else
2789		ptr = (void *)__get_free_pages(flags, get_order(size));
2790
2791	/* Check alignment; SLUB has gotten this wrong in the past,
2792	 * and this can lead to user data corruption! */
2793	BUG_ON(((unsigned long) ptr) & (size-1));
2794
2795	return ptr;
2796}
2797
2798void jbd2_free(void *ptr, size_t size)
2799{
2800	if (size < PAGE_SIZE)
2801		kmem_cache_free(get_slab(size), ptr);
2802	else
2803		free_pages((unsigned long)ptr, get_order(size));
 
 
 
 
 
 
 
 
 
 
2804};
2805
2806/*
2807 * Journal_head storage management
2808 */
2809static struct kmem_cache *jbd2_journal_head_cache;
2810#ifdef CONFIG_JBD2_DEBUG
2811static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2812#endif
2813
2814static int __init jbd2_journal_init_journal_head_cache(void)
2815{
2816	J_ASSERT(!jbd2_journal_head_cache);
 
 
2817	jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2818				sizeof(struct journal_head),
2819				0,		/* offset */
2820				SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2821				NULL);		/* ctor */
 
2822	if (!jbd2_journal_head_cache) {
 
2823		printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2824		return -ENOMEM;
2825	}
2826	return 0;
2827}
2828
2829static void jbd2_journal_destroy_journal_head_cache(void)
2830{
2831	kmem_cache_destroy(jbd2_journal_head_cache);
2832	jbd2_journal_head_cache = NULL;
 
 
2833}
2834
2835/*
2836 * journal_head splicing and dicing
2837 */
2838static struct journal_head *journal_alloc_journal_head(void)
2839{
2840	struct journal_head *ret;
2841
2842#ifdef CONFIG_JBD2_DEBUG
2843	atomic_inc(&nr_journal_heads);
2844#endif
2845	ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2846	if (!ret) {
2847		jbd2_debug(1, "out of memory for journal_head\n");
2848		pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2849		ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2850				GFP_NOFS | __GFP_NOFAIL);
2851	}
2852	spin_lock_init(&ret->b_state_lock);
2853	return ret;
2854}
2855
2856static void journal_free_journal_head(struct journal_head *jh)
2857{
2858#ifdef CONFIG_JBD2_DEBUG
2859	atomic_dec(&nr_journal_heads);
2860	memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2861#endif
2862	kmem_cache_free(jbd2_journal_head_cache, jh);
2863}
2864
2865/*
2866 * A journal_head is attached to a buffer_head whenever JBD has an
2867 * interest in the buffer.
2868 *
2869 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2870 * is set.  This bit is tested in core kernel code where we need to take
2871 * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2872 * there.
2873 *
2874 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2875 *
2876 * When a buffer has its BH_JBD bit set it is immune from being released by
2877 * core kernel code, mainly via ->b_count.
2878 *
2879 * A journal_head is detached from its buffer_head when the journal_head's
2880 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2881 * transaction (b_cp_transaction) hold their references to b_jcount.
2882 *
2883 * Various places in the kernel want to attach a journal_head to a buffer_head
2884 * _before_ attaching the journal_head to a transaction.  To protect the
2885 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2886 * journal_head's b_jcount refcount by one.  The caller must call
2887 * jbd2_journal_put_journal_head() to undo this.
2888 *
2889 * So the typical usage would be:
2890 *
2891 *	(Attach a journal_head if needed.  Increments b_jcount)
2892 *	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2893 *	...
2894 *      (Get another reference for transaction)
2895 *	jbd2_journal_grab_journal_head(bh);
2896 *	jh->b_transaction = xxx;
2897 *	(Put original reference)
2898 *	jbd2_journal_put_journal_head(jh);
2899 */
2900
2901/*
2902 * Give a buffer_head a journal_head.
2903 *
2904 * May sleep.
2905 */
2906struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2907{
2908	struct journal_head *jh;
2909	struct journal_head *new_jh = NULL;
2910
2911repeat:
2912	if (!buffer_jbd(bh))
2913		new_jh = journal_alloc_journal_head();
2914
2915	jbd_lock_bh_journal_head(bh);
2916	if (buffer_jbd(bh)) {
2917		jh = bh2jh(bh);
2918	} else {
2919		J_ASSERT_BH(bh,
2920			(atomic_read(&bh->b_count) > 0) ||
2921			(bh->b_folio && bh->b_folio->mapping));
2922
2923		if (!new_jh) {
2924			jbd_unlock_bh_journal_head(bh);
2925			goto repeat;
2926		}
2927
2928		jh = new_jh;
2929		new_jh = NULL;		/* We consumed it */
2930		set_buffer_jbd(bh);
2931		bh->b_private = jh;
2932		jh->b_bh = bh;
2933		get_bh(bh);
2934		BUFFER_TRACE(bh, "added journal_head");
2935	}
2936	jh->b_jcount++;
2937	jbd_unlock_bh_journal_head(bh);
2938	if (new_jh)
2939		journal_free_journal_head(new_jh);
2940	return bh->b_private;
2941}
2942
2943/*
2944 * Grab a ref against this buffer_head's journal_head.  If it ended up not
2945 * having a journal_head, return NULL
2946 */
2947struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2948{
2949	struct journal_head *jh = NULL;
2950
2951	jbd_lock_bh_journal_head(bh);
2952	if (buffer_jbd(bh)) {
2953		jh = bh2jh(bh);
2954		jh->b_jcount++;
2955	}
2956	jbd_unlock_bh_journal_head(bh);
2957	return jh;
2958}
2959EXPORT_SYMBOL(jbd2_journal_grab_journal_head);
2960
2961static void __journal_remove_journal_head(struct buffer_head *bh)
2962{
2963	struct journal_head *jh = bh2jh(bh);
2964
 
2965	J_ASSERT_JH(jh, jh->b_transaction == NULL);
2966	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2967	J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2968	J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2969	J_ASSERT_BH(bh, buffer_jbd(bh));
2970	J_ASSERT_BH(bh, jh2bh(jh) == bh);
2971	BUFFER_TRACE(bh, "remove journal_head");
2972
2973	/* Unlink before dropping the lock */
2974	bh->b_private = NULL;
2975	jh->b_bh = NULL;	/* debug, really */
2976	clear_buffer_jbd(bh);
2977}
2978
2979static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2980{
2981	if (jh->b_frozen_data) {
2982		printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2983		jbd2_free(jh->b_frozen_data, b_size);
2984	}
2985	if (jh->b_committed_data) {
2986		printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2987		jbd2_free(jh->b_committed_data, b_size);
2988	}
 
 
 
2989	journal_free_journal_head(jh);
2990}
2991
2992/*
2993 * Drop a reference on the passed journal_head.  If it fell to zero then
2994 * release the journal_head from the buffer_head.
2995 */
2996void jbd2_journal_put_journal_head(struct journal_head *jh)
2997{
2998	struct buffer_head *bh = jh2bh(jh);
2999
3000	jbd_lock_bh_journal_head(bh);
3001	J_ASSERT_JH(jh, jh->b_jcount > 0);
3002	--jh->b_jcount;
3003	if (!jh->b_jcount) {
3004		__journal_remove_journal_head(bh);
3005		jbd_unlock_bh_journal_head(bh);
3006		journal_release_journal_head(jh, bh->b_size);
3007		__brelse(bh);
3008	} else {
3009		jbd_unlock_bh_journal_head(bh);
3010	}
3011}
3012EXPORT_SYMBOL(jbd2_journal_put_journal_head);
3013
3014/*
3015 * Initialize jbd inode head
3016 */
3017void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
3018{
3019	jinode->i_transaction = NULL;
3020	jinode->i_next_transaction = NULL;
3021	jinode->i_vfs_inode = inode;
3022	jinode->i_flags = 0;
3023	jinode->i_dirty_start = 0;
3024	jinode->i_dirty_end = 0;
3025	INIT_LIST_HEAD(&jinode->i_list);
3026}
3027
3028/*
3029 * Function to be called before we start removing inode from memory (i.e.,
3030 * clear_inode() is a fine place to be called from). It removes inode from
3031 * transaction's lists.
3032 */
3033void jbd2_journal_release_jbd_inode(journal_t *journal,
3034				    struct jbd2_inode *jinode)
3035{
3036	if (!journal)
3037		return;
3038restart:
3039	spin_lock(&journal->j_list_lock);
3040	/* Is commit writing out inode - we have to wait */
3041	if (jinode->i_flags & JI_COMMIT_RUNNING) {
3042		wait_queue_head_t *wq;
3043		DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
3044		wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
3045		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
3046		spin_unlock(&journal->j_list_lock);
3047		schedule();
3048		finish_wait(wq, &wait.wq_entry);
3049		goto restart;
3050	}
3051
3052	if (jinode->i_transaction) {
3053		list_del(&jinode->i_list);
3054		jinode->i_transaction = NULL;
3055	}
3056	spin_unlock(&journal->j_list_lock);
3057}
3058
3059
3060#ifdef CONFIG_PROC_FS
3061
3062#define JBD2_STATS_PROC_NAME "fs/jbd2"
3063
3064static void __init jbd2_create_jbd_stats_proc_entry(void)
3065{
3066	proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
3067}
3068
3069static void __exit jbd2_remove_jbd_stats_proc_entry(void)
3070{
3071	if (proc_jbd2_stats)
3072		remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
3073}
3074
3075#else
3076
3077#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
3078#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
3079
3080#endif
3081
3082struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
3083
3084static int __init jbd2_journal_init_inode_cache(void)
3085{
3086	J_ASSERT(!jbd2_inode_cache);
3087	jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
3088	if (!jbd2_inode_cache) {
3089		pr_emerg("JBD2: failed to create inode cache\n");
3090		return -ENOMEM;
3091	}
3092	return 0;
3093}
3094
3095static int __init jbd2_journal_init_handle_cache(void)
3096{
3097	J_ASSERT(!jbd2_handle_cache);
3098	jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
3099	if (!jbd2_handle_cache) {
3100		printk(KERN_EMERG "JBD2: failed to create handle cache\n");
3101		return -ENOMEM;
3102	}
 
 
 
 
 
 
3103	return 0;
3104}
3105
3106static void jbd2_journal_destroy_inode_cache(void)
3107{
3108	kmem_cache_destroy(jbd2_inode_cache);
3109	jbd2_inode_cache = NULL;
3110}
 
3111
3112static void jbd2_journal_destroy_handle_cache(void)
3113{
3114	kmem_cache_destroy(jbd2_handle_cache);
3115	jbd2_handle_cache = NULL;
3116}
3117
3118/*
3119 * Module startup and shutdown
3120 */
3121
3122static int __init journal_init_caches(void)
3123{
3124	int ret;
3125
3126	ret = jbd2_journal_init_revoke_record_cache();
3127	if (ret == 0)
3128		ret = jbd2_journal_init_revoke_table_cache();
3129	if (ret == 0)
3130		ret = jbd2_journal_init_journal_head_cache();
3131	if (ret == 0)
3132		ret = jbd2_journal_init_handle_cache();
3133	if (ret == 0)
3134		ret = jbd2_journal_init_inode_cache();
3135	if (ret == 0)
3136		ret = jbd2_journal_init_transaction_cache();
3137	return ret;
3138}
3139
3140static void jbd2_journal_destroy_caches(void)
3141{
3142	jbd2_journal_destroy_revoke_record_cache();
3143	jbd2_journal_destroy_revoke_table_cache();
3144	jbd2_journal_destroy_journal_head_cache();
3145	jbd2_journal_destroy_handle_cache();
3146	jbd2_journal_destroy_inode_cache();
3147	jbd2_journal_destroy_transaction_cache();
3148	jbd2_journal_destroy_slabs();
3149}
3150
3151static int __init journal_init(void)
3152{
3153	int ret;
3154
3155	BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
3156
3157	ret = journal_init_caches();
3158	if (ret == 0) {
3159		jbd2_create_jbd_stats_proc_entry();
3160	} else {
3161		jbd2_journal_destroy_caches();
3162	}
3163	return ret;
3164}
3165
3166static void __exit journal_exit(void)
3167{
3168#ifdef CONFIG_JBD2_DEBUG
3169	int n = atomic_read(&nr_journal_heads);
3170	if (n)
3171		printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
3172#endif
3173	jbd2_remove_jbd_stats_proc_entry();
3174	jbd2_journal_destroy_caches();
3175}
3176
3177MODULE_DESCRIPTION("Generic filesystem journal-writing module");
3178MODULE_LICENSE("GPL");
3179module_init(journal_init);
3180module_exit(journal_exit);
3181