Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * linux/fs/ext4/readpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 * Copyright (C) 2015, Google, Inc.
  6 *
  7 * This was originally taken from fs/mpage.c
  8 *
  9 * The intent is the ext4_mpage_readpages() function here is intended
 10 * to replace mpage_readpages() in the general case, not just for
 11 * encrypted files.  It has some limitations (see below), where it
 12 * will fall back to read_block_full_page(), but these limitations
 13 * should only be hit when page_size != block_size.
 14 *
 15 * This will allow us to attach a callback function to support ext4
 16 * encryption.
 17 *
 18 * If anything unusual happens, such as:
 19 *
 20 * - encountering a page which has buffers
 21 * - encountering a page which has a non-hole after a hole
 22 * - encountering a page with non-contiguous blocks
 23 *
 24 * then this code just gives up and calls the buffer_head-based read function.
 25 * It does handle a page which has holes at the end - that is a common case:
 26 * the end-of-file on blocksize < PAGE_SIZE setups.
 27 *
 28 */
 29
 30#include <linux/kernel.h>
 31#include <linux/export.h>
 32#include <linux/mm.h>
 33#include <linux/kdev_t.h>
 34#include <linux/gfp.h>
 35#include <linux/bio.h>
 36#include <linux/fs.h>
 37#include <linux/buffer_head.h>
 38#include <linux/blkdev.h>
 39#include <linux/highmem.h>
 40#include <linux/prefetch.h>
 41#include <linux/mpage.h>
 42#include <linux/writeback.h>
 43#include <linux/backing-dev.h>
 44#include <linux/pagevec.h>
 45#include <linux/cleancache.h>
 46
 47#include "ext4.h"
 48
 49/*
 50 * Call ext4_decrypt on every single page, reusing the encryption
 51 * context.
 52 */
 53static void completion_pages(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 54{
 55#ifdef CONFIG_EXT4_FS_ENCRYPTION
 56	struct ext4_crypto_ctx *ctx =
 57		container_of(work, struct ext4_crypto_ctx, r.work);
 58	struct bio	*bio	= ctx->r.bio;
 59	struct bio_vec	*bv;
 60	int		i;
 61
 62	bio_for_each_segment_all(bv, bio, i) {
 63		struct page *page = bv->bv_page;
 64
 65		int ret = ext4_decrypt(page);
 66		if (ret) {
 67			WARN_ON_ONCE(1);
 68			SetPageError(page);
 69		} else
 70			SetPageUptodate(page);
 71		unlock_page(page);
 72	}
 73	ext4_release_crypto_ctx(ctx);
 74	bio_put(bio);
 75#else
 76	BUG();
 77#endif
 78}
 79
 80static inline bool ext4_bio_encrypted(struct bio *bio)
 81{
 82#ifdef CONFIG_EXT4_FS_ENCRYPTION
 83	return unlikely(bio->bi_private != NULL);
 84#else
 85	return false;
 86#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 87}
 88
 89/*
 90 * I/O completion handler for multipage BIOs.
 91 *
 92 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 93 * If a page does not map to a contiguous run of blocks then it simply falls
 94 * back to block_read_full_page().
 95 *
 96 * Why is this?  If a page's completion depends on a number of different BIOs
 97 * which can complete in any order (or at the same time) then determining the
 98 * status of that page is hard.  See end_buffer_async_read() for the details.
 99 * There is no point in duplicating all that complexity.
100 */
101static void mpage_end_io(struct bio *bio)
102{
103	struct bio_vec *bv;
104	int i;
105
106	if (ext4_bio_encrypted(bio)) {
107		struct ext4_crypto_ctx *ctx = bio->bi_private;
108
109		if (bio->bi_error) {
110			ext4_release_crypto_ctx(ctx);
111		} else {
112			INIT_WORK(&ctx->r.work, completion_pages);
113			ctx->r.bio = bio;
114			queue_work(ext4_read_workqueue, &ctx->r.work);
115			return;
116		}
117	}
118	bio_for_each_segment_all(bv, bio, i) {
119		struct page *page = bv->bv_page;
120
121		if (!bio->bi_error) {
122			SetPageUptodate(page);
123		} else {
124			ClearPageUptodate(page);
125			SetPageError(page);
126		}
127		unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128	}
 
129
130	bio_put(bio);
 
 
 
 
 
131}
132
133int ext4_mpage_readpages(struct address_space *mapping,
134			 struct list_head *pages, struct page *page,
135			 unsigned nr_pages)
136{
137	struct bio *bio = NULL;
138	unsigned page_idx;
139	sector_t last_block_in_bio = 0;
140
141	struct inode *inode = mapping->host;
142	const unsigned blkbits = inode->i_blkbits;
143	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
144	const unsigned blocksize = 1 << blkbits;
 
145	sector_t block_in_file;
146	sector_t last_block;
147	sector_t last_block_in_file;
148	sector_t blocks[MAX_BUF_PER_PAGE];
149	unsigned page_block;
150	struct block_device *bdev = inode->i_sb->s_bdev;
151	int length;
152	unsigned relative_block = 0;
153	struct ext4_map_blocks map;
 
154
155	map.m_pblk = 0;
156	map.m_lblk = 0;
157	map.m_len = 0;
158	map.m_flags = 0;
159
160	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
161		int fully_mapped = 1;
162		unsigned first_hole = blocks_per_page;
163
164		prefetchw(&page->flags);
165		if (pages) {
166			page = list_entry(pages->prev, struct page, lru);
167			list_del(&page->lru);
168			if (add_to_page_cache_lru(page, mapping, page->index,
169				  mapping_gfp_constraint(mapping, GFP_KERNEL)))
170				goto next_page;
171		}
172
173		if (page_has_buffers(page))
174			goto confused;
175
176		block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 
177		last_block = block_in_file + nr_pages * blocks_per_page;
178		last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
 
179		if (last_block > last_block_in_file)
180			last_block = last_block_in_file;
181		page_block = 0;
182
183		/*
184		 * Map blocks using the previous result first.
185		 */
186		if ((map.m_flags & EXT4_MAP_MAPPED) &&
187		    block_in_file > map.m_lblk &&
188		    block_in_file < (map.m_lblk + map.m_len)) {
189			unsigned map_offset = block_in_file - map.m_lblk;
190			unsigned last = map.m_len - map_offset;
191
 
192			for (relative_block = 0; ; relative_block++) {
193				if (relative_block == last) {
194					/* needed? */
195					map.m_flags &= ~EXT4_MAP_MAPPED;
196					break;
197				}
198				if (page_block == blocks_per_page)
199					break;
200				blocks[page_block] = map.m_pblk + map_offset +
201					relative_block;
202				page_block++;
203				block_in_file++;
204			}
205		}
206
207		/*
208		 * Then do more ext4_map_blocks() calls until we are
209		 * done with this page.
210		 */
211		while (page_block < blocks_per_page) {
212			if (block_in_file < last_block) {
213				map.m_lblk = block_in_file;
214				map.m_len = last_block - block_in_file;
215
216				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
217				set_error_page:
218					SetPageError(page);
219					zero_user_segment(page, 0,
220							  PAGE_SIZE);
221					unlock_page(page);
222					goto next_page;
223				}
224			}
225			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
226				fully_mapped = 0;
227				if (first_hole == blocks_per_page)
228					first_hole = page_block;
229				page_block++;
230				block_in_file++;
231				continue;
232			}
233			if (first_hole != blocks_per_page)
234				goto confused;		/* hole -> non-hole */
235
236			/* Contiguous blocks? */
237			if (page_block && blocks[page_block-1] != map.m_pblk-1)
 
 
238				goto confused;
239			for (relative_block = 0; ; relative_block++) {
240				if (relative_block == map.m_len) {
241					/* needed? */
242					map.m_flags &= ~EXT4_MAP_MAPPED;
243					break;
244				} else if (page_block == blocks_per_page)
245					break;
246				blocks[page_block] = map.m_pblk+relative_block;
247				page_block++;
248				block_in_file++;
249			}
250		}
251		if (first_hole != blocks_per_page) {
252			zero_user_segment(page, first_hole << blkbits,
253					  PAGE_SIZE);
254			if (first_hole == 0) {
255				SetPageUptodate(page);
256				unlock_page(page);
257				goto next_page;
 
 
258			}
259		} else if (fully_mapped) {
260			SetPageMappedToDisk(page);
261		}
262		if (fully_mapped && blocks_per_page == 1 &&
263		    !PageUptodate(page) && cleancache_get_page(page) == 0) {
264			SetPageUptodate(page);
265			goto confused;
266		}
267
268		/*
269		 * This page will go to BIO.  Do we need to send this
270		 * BIO off first?
271		 */
272		if (bio && (last_block_in_bio != blocks[0] - 1)) {
 
273		submit_and_realloc:
274			submit_bio(READ, bio);
275			bio = NULL;
276		}
277		if (bio == NULL) {
278			struct ext4_crypto_ctx *ctx = NULL;
279
280			if (ext4_encrypted_inode(inode) &&
281			    S_ISREG(inode->i_mode)) {
282				ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
283				if (IS_ERR(ctx))
284					goto set_error_page;
285			}
286			bio = bio_alloc(GFP_KERNEL,
287				min_t(int, nr_pages, BIO_MAX_PAGES));
288			if (!bio) {
289				if (ctx)
290					ext4_release_crypto_ctx(ctx);
291				goto set_error_page;
292			}
293			bio->bi_bdev = bdev;
294			bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
295			bio->bi_end_io = mpage_end_io;
296			bio->bi_private = ctx;
 
297		}
298
299		length = first_hole << blkbits;
300		if (bio_add_page(bio, page, length, 0) < length)
301			goto submit_and_realloc;
302
303		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
304		     (relative_block == map.m_len)) ||
305		    (first_hole != blocks_per_page)) {
306			submit_bio(READ, bio);
307			bio = NULL;
308		} else
309			last_block_in_bio = blocks[blocks_per_page - 1];
310		goto next_page;
311	confused:
312		if (bio) {
313			submit_bio(READ, bio);
314			bio = NULL;
315		}
316		if (!PageUptodate(page))
317			block_read_full_page(page, ext4_get_block);
318		else
319			unlock_page(page);
320	next_page:
321		if (pages)
322			put_page(page);
323	}
324	BUG_ON(pages && !list_empty(pages));
325	if (bio)
326		submit_bio(READ, bio);
327	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/readpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 * Copyright (C) 2015, Google, Inc.
  7 *
  8 * This was originally taken from fs/mpage.c
  9 *
 10 * The ext4_mpage_readpages() function here is intended to
 11 * replace mpage_readahead() in the general case, not just for
 12 * encrypted files.  It has some limitations (see below), where it
 13 * will fall back to read_block_full_page(), but these limitations
 14 * should only be hit when page_size != block_size.
 15 *
 16 * This will allow us to attach a callback function to support ext4
 17 * encryption.
 18 *
 19 * If anything unusual happens, such as:
 20 *
 21 * - encountering a page which has buffers
 22 * - encountering a page which has a non-hole after a hole
 23 * - encountering a page with non-contiguous blocks
 24 *
 25 * then this code just gives up and calls the buffer_head-based read function.
 26 * It does handle a page which has holes at the end - that is a common case:
 27 * the end-of-file on blocksize < PAGE_SIZE setups.
 28 *
 29 */
 30
 31#include <linux/kernel.h>
 32#include <linux/export.h>
 33#include <linux/mm.h>
 34#include <linux/kdev_t.h>
 35#include <linux/gfp.h>
 36#include <linux/bio.h>
 37#include <linux/fs.h>
 38#include <linux/buffer_head.h>
 39#include <linux/blkdev.h>
 40#include <linux/highmem.h>
 41#include <linux/prefetch.h>
 42#include <linux/mpage.h>
 43#include <linux/writeback.h>
 44#include <linux/backing-dev.h>
 45#include <linux/pagevec.h>
 
 46
 47#include "ext4.h"
 48
 49#define NUM_PREALLOC_POST_READ_CTXS	128
 50
 51static struct kmem_cache *bio_post_read_ctx_cache;
 52static mempool_t *bio_post_read_ctx_pool;
 53
 54/* postprocessing steps for read bios */
 55enum bio_post_read_step {
 56	STEP_INITIAL = 0,
 57	STEP_DECRYPT,
 58	STEP_VERITY,
 59	STEP_MAX,
 60};
 61
 62struct bio_post_read_ctx {
 63	struct bio *bio;
 64	struct work_struct work;
 65	unsigned int cur_step;
 66	unsigned int enabled_steps;
 67};
 68
 69static void __read_end_io(struct bio *bio)
 70{
 71	struct folio_iter fi;
 72
 73	bio_for_each_folio_all(fi, bio)
 74		folio_end_read(fi.folio, bio->bi_status == 0);
 75	if (bio->bi_private)
 76		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 77	bio_put(bio);
 
 
 
 78}
 79
 80static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 81
 82static void decrypt_work(struct work_struct *work)
 83{
 84	struct bio_post_read_ctx *ctx =
 85		container_of(work, struct bio_post_read_ctx, work);
 86	struct bio *bio = ctx->bio;
 87
 88	if (fscrypt_decrypt_bio(bio))
 89		bio_post_read_processing(ctx);
 90	else
 91		__read_end_io(bio);
 92}
 93
 94static void verity_work(struct work_struct *work)
 95{
 96	struct bio_post_read_ctx *ctx =
 97		container_of(work, struct bio_post_read_ctx, work);
 98	struct bio *bio = ctx->bio;
 99
100	/*
101	 * fsverity_verify_bio() may call readahead() again, and although verity
102	 * will be disabled for that, decryption may still be needed, causing
103	 * another bio_post_read_ctx to be allocated.  So to guarantee that
104	 * mempool_alloc() never deadlocks we must free the current ctx first.
105	 * This is safe because verity is the last post-read step.
106	 */
107	BUILD_BUG_ON(STEP_VERITY + 1 != STEP_MAX);
108	mempool_free(ctx, bio_post_read_ctx_pool);
109	bio->bi_private = NULL;
110
111	fsverity_verify_bio(bio);
112
113	__read_end_io(bio);
114}
115
116static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
117{
118	/*
119	 * We use different work queues for decryption and for verity because
120	 * verity may require reading metadata pages that need decryption, and
121	 * we shouldn't recurse to the same workqueue.
122	 */
123	switch (++ctx->cur_step) {
124	case STEP_DECRYPT:
125		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
126			INIT_WORK(&ctx->work, decrypt_work);
127			fscrypt_enqueue_decrypt_work(&ctx->work);
128			return;
129		}
130		ctx->cur_step++;
131		fallthrough;
132	case STEP_VERITY:
133		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
134			INIT_WORK(&ctx->work, verity_work);
135			fsverity_enqueue_verify_work(&ctx->work);
136			return;
137		}
138		ctx->cur_step++;
139		fallthrough;
140	default:
141		__read_end_io(ctx->bio);
142	}
143}
144
145static bool bio_post_read_required(struct bio *bio)
146{
147	return bio->bi_private && !bio->bi_status;
148}
149
150/*
151 * I/O completion handler for multipage BIOs.
152 *
153 * The mpage code never puts partial pages into a BIO (except for end-of-file).
154 * If a page does not map to a contiguous run of blocks then it simply falls
155 * back to block_read_full_folio().
156 *
157 * Why is this?  If a page's completion depends on a number of different BIOs
158 * which can complete in any order (or at the same time) then determining the
159 * status of that page is hard.  See end_buffer_async_read() for the details.
160 * There is no point in duplicating all that complexity.
161 */
162static void mpage_end_io(struct bio *bio)
163{
164	if (bio_post_read_required(bio)) {
165		struct bio_post_read_ctx *ctx = bio->bi_private;
 
 
 
166
167		ctx->cur_step = STEP_INITIAL;
168		bio_post_read_processing(ctx);
169		return;
 
 
 
 
 
170	}
171	__read_end_io(bio);
172}
173
174static inline bool ext4_need_verity(const struct inode *inode, pgoff_t idx)
175{
176	return fsverity_active(inode) &&
177	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
178}
179
180static void ext4_set_bio_post_read_ctx(struct bio *bio,
181				       const struct inode *inode,
182				       pgoff_t first_idx)
183{
184	unsigned int post_read_steps = 0;
185
186	if (fscrypt_inode_uses_fs_layer_crypto(inode))
187		post_read_steps |= 1 << STEP_DECRYPT;
188
189	if (ext4_need_verity(inode, first_idx))
190		post_read_steps |= 1 << STEP_VERITY;
191
192	if (post_read_steps) {
193		/* Due to the mempool, this never fails. */
194		struct bio_post_read_ctx *ctx =
195			mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
196
197		ctx->bio = bio;
198		ctx->enabled_steps = post_read_steps;
199		bio->bi_private = ctx;
200	}
201}
202
203static inline loff_t ext4_readpage_limit(struct inode *inode)
204{
205	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
206		return inode->i_sb->s_maxbytes;
207
208	return i_size_read(inode);
209}
210
211int ext4_mpage_readpages(struct inode *inode,
212		struct readahead_control *rac, struct folio *folio)
 
213{
214	struct bio *bio = NULL;
 
215	sector_t last_block_in_bio = 0;
216
 
217	const unsigned blkbits = inode->i_blkbits;
218	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
219	const unsigned blocksize = 1 << blkbits;
220	sector_t next_block;
221	sector_t block_in_file;
222	sector_t last_block;
223	sector_t last_block_in_file;
224	sector_t first_block;
225	unsigned page_block;
226	struct block_device *bdev = inode->i_sb->s_bdev;
227	int length;
228	unsigned relative_block = 0;
229	struct ext4_map_blocks map;
230	unsigned int nr_pages = rac ? readahead_count(rac) : 1;
231
232	map.m_pblk = 0;
233	map.m_lblk = 0;
234	map.m_len = 0;
235	map.m_flags = 0;
236
237	for (; nr_pages; nr_pages--) {
238		int fully_mapped = 1;
239		unsigned first_hole = blocks_per_page;
240
241		if (rac)
242			folio = readahead_folio(rac);
243		prefetchw(&folio->flags);
 
 
 
 
 
244
245		if (folio_buffers(folio))
246			goto confused;
247
248		block_in_file = next_block =
249			(sector_t)folio->index << (PAGE_SHIFT - blkbits);
250		last_block = block_in_file + nr_pages * blocks_per_page;
251		last_block_in_file = (ext4_readpage_limit(inode) +
252				      blocksize - 1) >> blkbits;
253		if (last_block > last_block_in_file)
254			last_block = last_block_in_file;
255		page_block = 0;
256
257		/*
258		 * Map blocks using the previous result first.
259		 */
260		if ((map.m_flags & EXT4_MAP_MAPPED) &&
261		    block_in_file > map.m_lblk &&
262		    block_in_file < (map.m_lblk + map.m_len)) {
263			unsigned map_offset = block_in_file - map.m_lblk;
264			unsigned last = map.m_len - map_offset;
265
266			first_block = map.m_pblk + map_offset;
267			for (relative_block = 0; ; relative_block++) {
268				if (relative_block == last) {
269					/* needed? */
270					map.m_flags &= ~EXT4_MAP_MAPPED;
271					break;
272				}
273				if (page_block == blocks_per_page)
274					break;
 
 
275				page_block++;
276				block_in_file++;
277			}
278		}
279
280		/*
281		 * Then do more ext4_map_blocks() calls until we are
282		 * done with this folio.
283		 */
284		while (page_block < blocks_per_page) {
285			if (block_in_file < last_block) {
286				map.m_lblk = block_in_file;
287				map.m_len = last_block - block_in_file;
288
289				if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
290				set_error_page:
291					folio_zero_segment(folio, 0,
292							  folio_size(folio));
293					folio_unlock(folio);
 
294					goto next_page;
295				}
296			}
297			if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
298				fully_mapped = 0;
299				if (first_hole == blocks_per_page)
300					first_hole = page_block;
301				page_block++;
302				block_in_file++;
303				continue;
304			}
305			if (first_hole != blocks_per_page)
306				goto confused;		/* hole -> non-hole */
307
308			/* Contiguous blocks? */
309			if (!page_block)
310				first_block = map.m_pblk;
311			else if (first_block + page_block != map.m_pblk)
312				goto confused;
313			for (relative_block = 0; ; relative_block++) {
314				if (relative_block == map.m_len) {
315					/* needed? */
316					map.m_flags &= ~EXT4_MAP_MAPPED;
317					break;
318				} else if (page_block == blocks_per_page)
319					break;
 
320				page_block++;
321				block_in_file++;
322			}
323		}
324		if (first_hole != blocks_per_page) {
325			folio_zero_segment(folio, first_hole << blkbits,
326					  folio_size(folio));
327			if (first_hole == 0) {
328				if (ext4_need_verity(inode, folio->index) &&
329				    !fsverity_verify_folio(folio))
330					goto set_error_page;
331				folio_end_read(folio, true);
332				continue;
333			}
334		} else if (fully_mapped) {
335			folio_set_mappedtodisk(folio);
 
 
 
 
 
336		}
337
338		/*
339		 * This folio will go to BIO.  Do we need to send this
340		 * BIO off first?
341		 */
342		if (bio && (last_block_in_bio != first_block - 1 ||
343			    !fscrypt_mergeable_bio(bio, inode, next_block))) {
344		submit_and_realloc:
345			submit_bio(bio);
346			bio = NULL;
347		}
348		if (bio == NULL) {
349			/*
350			 * bio_alloc will _always_ be able to allocate a bio if
351			 * __GFP_DIRECT_RECLAIM is set, see bio_alloc_bioset().
352			 */
353			bio = bio_alloc(bdev, bio_max_segs(nr_pages),
354					REQ_OP_READ, GFP_KERNEL);
355			fscrypt_set_bio_crypt_ctx(bio, inode, next_block,
356						  GFP_KERNEL);
357			ext4_set_bio_post_read_ctx(bio, inode, folio->index);
358			bio->bi_iter.bi_sector = first_block << (blkbits - 9);
 
 
 
 
 
 
 
359			bio->bi_end_io = mpage_end_io;
360			if (rac)
361				bio->bi_opf |= REQ_RAHEAD;
362		}
363
364		length = first_hole << blkbits;
365		if (!bio_add_folio(bio, folio, length, 0))
366			goto submit_and_realloc;
367
368		if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
369		     (relative_block == map.m_len)) ||
370		    (first_hole != blocks_per_page)) {
371			submit_bio(bio);
372			bio = NULL;
373		} else
374			last_block_in_bio = first_block + blocks_per_page - 1;
375		continue;
376	confused:
377		if (bio) {
378			submit_bio(bio);
379			bio = NULL;
380		}
381		if (!folio_test_uptodate(folio))
382			block_read_full_folio(folio, ext4_get_block);
383		else
384			folio_unlock(folio);
385next_page:
386		; /* A label shall be followed by a statement until C23 */
 
387	}
 
388	if (bio)
389		submit_bio(bio);
390	return 0;
391}
392
393int __init ext4_init_post_read_processing(void)
394{
395	bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, SLAB_RECLAIM_ACCOUNT);
396
397	if (!bio_post_read_ctx_cache)
398		goto fail;
399	bio_post_read_ctx_pool =
400		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
401					 bio_post_read_ctx_cache);
402	if (!bio_post_read_ctx_pool)
403		goto fail_free_cache;
404	return 0;
405
406fail_free_cache:
407	kmem_cache_destroy(bio_post_read_ctx_cache);
408fail:
409	return -ENOMEM;
410}
411
412void ext4_exit_post_read_processing(void)
413{
414	mempool_destroy(bio_post_read_ctx_pool);
415	kmem_cache_destroy(bio_post_read_ctx_cache);
416}