Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/*
   4 * fs/ext4/fast_commit.c
   5 *
   6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
   7 *
   8 * Ext4 fast commits routines.
   9 */
  10#include "ext4.h"
  11#include "ext4_jbd2.h"
  12#include "ext4_extents.h"
  13#include "mballoc.h"
  14
  15/*
  16 * Ext4 Fast Commits
  17 * -----------------
  18 *
  19 * Ext4 fast commits implement fine grained journalling for Ext4.
  20 *
  21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
  22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
  23 * TLV during the recovery phase. For the scenarios for which we currently
  24 * don't have replay code, fast commit falls back to full commits.
  25 * Fast commits record delta in one of the following three categories.
  26 *
  27 * (A) Directory entry updates:
  28 *
  29 * - EXT4_FC_TAG_UNLINK		- records directory entry unlink
  30 * - EXT4_FC_TAG_LINK		- records directory entry link
  31 * - EXT4_FC_TAG_CREAT		- records inode and directory entry creation
  32 *
  33 * (B) File specific data range updates:
  34 *
  35 * - EXT4_FC_TAG_ADD_RANGE	- records addition of new blocks to an inode
  36 * - EXT4_FC_TAG_DEL_RANGE	- records deletion of blocks from an inode
  37 *
  38 * (C) Inode metadata (mtime / ctime etc):
  39 *
  40 * - EXT4_FC_TAG_INODE		- record the inode that should be replayed
  41 *				  during recovery. Note that iblocks field is
  42 *				  not replayed and instead derived during
  43 *				  replay.
  44 * Commit Operation
  45 * ----------------
  46 * With fast commits, we maintain all the directory entry operations in the
  47 * order in which they are issued in an in-memory queue. This queue is flushed
  48 * to disk during the commit operation. We also maintain a list of inodes
  49 * that need to be committed during a fast commit in another in memory queue of
  50 * inodes. During the commit operation, we commit in the following order:
  51 *
  52 * [1] Lock inodes for any further data updates by setting COMMITTING state
  53 * [2] Submit data buffers of all the inodes
  54 * [3] Wait for [2] to complete
  55 * [4] Commit all the directory entry updates in the fast commit space
  56 * [5] Commit all the changed inode structures
  57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
  58 *     section for more details).
  59 * [7] Wait for [4], [5] and [6] to complete.
  60 *
  61 * All the inode updates must call ext4_fc_start_update() before starting an
  62 * update. If such an ongoing update is present, fast commit waits for it to
  63 * complete. The completion of such an update is marked by
  64 * ext4_fc_stop_update().
  65 *
  66 * Fast Commit Ineligibility
  67 * -------------------------
  68 *
  69 * Not all operations are supported by fast commits today (e.g extended
  70 * attributes). Fast commit ineligibility is marked by calling
  71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
  72 * to full commit.
  73 *
  74 * Atomicity of commits
  75 * --------------------
  76 * In order to guarantee atomicity during the commit operation, fast commit
  77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
  78 * tag contains CRC of the contents and TID of the transaction after which
  79 * this fast commit should be applied. Recovery code replays fast commit
  80 * logs only if there's at least 1 valid tail present. For every fast commit
  81 * operation, there is 1 tail. This means, we may end up with multiple tails
  82 * in the fast commit space. Here's an example:
  83 *
  84 * - Create a new file A and remove existing file B
  85 * - fsync()
  86 * - Append contents to file A
  87 * - Truncate file A
  88 * - fsync()
  89 *
  90 * The fast commit space at the end of above operations would look like this:
  91 *      [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
  92 *             |<---  Fast Commit 1   --->|<---      Fast Commit 2     ---->|
  93 *
  94 * Replay code should thus check for all the valid tails in the FC area.
  95 *
  96 * Fast Commit Replay Idempotence
  97 * ------------------------------
  98 *
  99 * Fast commits tags are idempotent in nature provided the recovery code follows
 100 * certain rules. The guiding principle that the commit path follows while
 101 * committing is that it stores the result of a particular operation instead of
 102 * storing the procedure.
 103 *
 104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
 105 * was associated with inode 10. During fast commit, instead of storing this
 106 * operation as a procedure "rename a to b", we store the resulting file system
 107 * state as a "series" of outcomes:
 108 *
 109 * - Link dirent b to inode 10
 110 * - Unlink dirent a
 111 * - Inode <10> with valid refcount
 112 *
 113 * Now when recovery code runs, it needs "enforce" this state on the file
 114 * system. This is what guarantees idempotence of fast commit replay.
 115 *
 116 * Let's take an example of a procedure that is not idempotent and see how fast
 117 * commits make it idempotent. Consider following sequence of operations:
 118 *
 119 *     rm A;    mv B A;    read A
 120 *  (x)     (y)        (z)
 121 *
 122 * (x), (y) and (z) are the points at which we can crash. If we store this
 123 * sequence of operations as is then the replay is not idempotent. Let's say
 124 * while in replay, we crash at (z). During the second replay, file A (which was
 125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
 126 * file named A would be absent when we try to read A. So, this sequence of
 127 * operations is not idempotent. However, as mentioned above, instead of storing
 128 * the procedure fast commits store the outcome of each procedure. Thus the fast
 129 * commit log for above procedure would be as follows:
 130 *
 131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
 132 * inode 11 before the replay)
 133 *
 134 *    [Unlink A]   [Link A to inode 11]   [Unlink B]   [Inode 11]
 135 * (w)          (x)                    (y)          (z)
 136 *
 137 * If we crash at (z), we will have file A linked to inode 11. During the second
 138 * replay, we will remove file A (inode 11). But we will create it back and make
 139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
 140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
 141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
 142 * similarly. Thus, by converting a non-idempotent procedure into a series of
 143 * idempotent outcomes, fast commits ensured idempotence during the replay.
 144 *
 145 * TODOs
 146 * -----
 147 *
 148 * 0) Fast commit replay path hardening: Fast commit replay code should use
 149 *    journal handles to make sure all the updates it does during the replay
 150 *    path are atomic. With that if we crash during fast commit replay, after
 151 *    trying to do recovery again, we will find a file system where fast commit
 152 *    area is invalid (because new full commit would be found). In order to deal
 153 *    with that, fast commit replay code should ensure that the "FC_REPLAY"
 154 *    superblock state is persisted before starting the replay, so that after
 155 *    the crash, fast commit recovery code can look at that flag and perform
 156 *    fast commit recovery even if that area is invalidated by later full
 157 *    commits.
 158 *
 159 * 1) Fast commit's commit path locks the entire file system during fast
 160 *    commit. This has significant performance penalty. Instead of that, we
 161 *    should use ext4_fc_start/stop_update functions to start inode level
 162 *    updates from ext4_journal_start/stop. Once we do that we can drop file
 163 *    system locking during commit path.
 164 *
 165 * 2) Handle more ineligible cases.
 166 */
 167
 168#include <trace/events/ext4.h>
 169static struct kmem_cache *ext4_fc_dentry_cachep;
 170
 171static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
 172{
 173	BUFFER_TRACE(bh, "");
 174	if (uptodate) {
 175		ext4_debug("%s: Block %lld up-to-date",
 176			   __func__, bh->b_blocknr);
 177		set_buffer_uptodate(bh);
 178	} else {
 179		ext4_debug("%s: Block %lld not up-to-date",
 180			   __func__, bh->b_blocknr);
 181		clear_buffer_uptodate(bh);
 182	}
 183
 184	unlock_buffer(bh);
 185}
 186
 187static inline void ext4_fc_reset_inode(struct inode *inode)
 188{
 189	struct ext4_inode_info *ei = EXT4_I(inode);
 190
 191	ei->i_fc_lblk_start = 0;
 192	ei->i_fc_lblk_len = 0;
 193}
 194
 195void ext4_fc_init_inode(struct inode *inode)
 196{
 197	struct ext4_inode_info *ei = EXT4_I(inode);
 198
 199	ext4_fc_reset_inode(inode);
 200	ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
 201	INIT_LIST_HEAD(&ei->i_fc_list);
 202	INIT_LIST_HEAD(&ei->i_fc_dilist);
 203	init_waitqueue_head(&ei->i_fc_wait);
 204	atomic_set(&ei->i_fc_updates, 0);
 205}
 206
 207/* This function must be called with sbi->s_fc_lock held. */
 208static void ext4_fc_wait_committing_inode(struct inode *inode)
 209__releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
 210{
 211	wait_queue_head_t *wq;
 212	struct ext4_inode_info *ei = EXT4_I(inode);
 213
 214#if (BITS_PER_LONG < 64)
 215	DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
 216			EXT4_STATE_FC_COMMITTING);
 217	wq = bit_waitqueue(&ei->i_state_flags,
 218				EXT4_STATE_FC_COMMITTING);
 219#else
 220	DEFINE_WAIT_BIT(wait, &ei->i_flags,
 221			EXT4_STATE_FC_COMMITTING);
 222	wq = bit_waitqueue(&ei->i_flags,
 223				EXT4_STATE_FC_COMMITTING);
 224#endif
 225	lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
 226	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
 227	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
 228	schedule();
 229	finish_wait(wq, &wait.wq_entry);
 230}
 231
 232static bool ext4_fc_disabled(struct super_block *sb)
 233{
 234	return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
 235		(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
 236}
 237
 238/*
 239 * Inform Ext4's fast about start of an inode update
 240 *
 241 * This function is called by the high level call VFS callbacks before
 242 * performing any inode update. This function blocks if there's an ongoing
 243 * fast commit on the inode in question.
 244 */
 245void ext4_fc_start_update(struct inode *inode)
 246{
 247	struct ext4_inode_info *ei = EXT4_I(inode);
 248
 249	if (ext4_fc_disabled(inode->i_sb))
 250		return;
 251
 252restart:
 253	spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
 254	if (list_empty(&ei->i_fc_list))
 255		goto out;
 256
 257	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
 258		ext4_fc_wait_committing_inode(inode);
 259		goto restart;
 260	}
 261out:
 262	atomic_inc(&ei->i_fc_updates);
 263	spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
 264}
 265
 266/*
 267 * Stop inode update and wake up waiting fast commits if any.
 268 */
 269void ext4_fc_stop_update(struct inode *inode)
 270{
 271	struct ext4_inode_info *ei = EXT4_I(inode);
 272
 273	if (ext4_fc_disabled(inode->i_sb))
 274		return;
 275
 276	if (atomic_dec_and_test(&ei->i_fc_updates))
 277		wake_up_all(&ei->i_fc_wait);
 278}
 279
 280/*
 281 * Remove inode from fast commit list. If the inode is being committed
 282 * we wait until inode commit is done.
 283 */
 284void ext4_fc_del(struct inode *inode)
 285{
 286	struct ext4_inode_info *ei = EXT4_I(inode);
 287	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 288	struct ext4_fc_dentry_update *fc_dentry;
 289
 290	if (ext4_fc_disabled(inode->i_sb))
 291		return;
 292
 293restart:
 294	spin_lock(&sbi->s_fc_lock);
 295	if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
 296		spin_unlock(&sbi->s_fc_lock);
 297		return;
 298	}
 299
 300	if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
 301		ext4_fc_wait_committing_inode(inode);
 302		goto restart;
 303	}
 304
 305	if (!list_empty(&ei->i_fc_list))
 306		list_del_init(&ei->i_fc_list);
 307
 308	/*
 309	 * Since this inode is getting removed, let's also remove all FC
 310	 * dentry create references, since it is not needed to log it anyways.
 311	 */
 312	if (list_empty(&ei->i_fc_dilist)) {
 313		spin_unlock(&sbi->s_fc_lock);
 314		return;
 315	}
 316
 317	fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
 318	WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
 319	list_del_init(&fc_dentry->fcd_list);
 320	list_del_init(&fc_dentry->fcd_dilist);
 321
 322	WARN_ON(!list_empty(&ei->i_fc_dilist));
 323	spin_unlock(&sbi->s_fc_lock);
 324
 325	if (fc_dentry->fcd_name.name &&
 326		fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
 327		kfree(fc_dentry->fcd_name.name);
 328	kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
 329
 330	return;
 331}
 332
 333/*
 334 * Mark file system as fast commit ineligible, and record latest
 335 * ineligible transaction tid. This means until the recorded
 336 * transaction, commit operation would result in a full jbd2 commit.
 337 */
 338void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(sb);
 341	tid_t tid;
 342	bool has_transaction = true;
 343	bool is_ineligible;
 344
 345	if (ext4_fc_disabled(sb))
 346		return;
 347
 348	if (handle && !IS_ERR(handle))
 349		tid = handle->h_transaction->t_tid;
 350	else {
 351		read_lock(&sbi->s_journal->j_state_lock);
 352		if (sbi->s_journal->j_running_transaction)
 353			tid = sbi->s_journal->j_running_transaction->t_tid;
 354		else
 355			has_transaction = false;
 356		read_unlock(&sbi->s_journal->j_state_lock);
 357	}
 358	spin_lock(&sbi->s_fc_lock);
 359	is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
 360	if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
 361		sbi->s_fc_ineligible_tid = tid;
 362	ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
 363	spin_unlock(&sbi->s_fc_lock);
 364	WARN_ON(reason >= EXT4_FC_REASON_MAX);
 365	sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
 366}
 367
 368/*
 369 * Generic fast commit tracking function. If this is the first time this we are
 370 * called after a full commit, we initialize fast commit fields and then call
 371 * __fc_track_fn() with update = 0. If we have already been called after a full
 372 * commit, we pass update = 1. Based on that, the track function can determine
 373 * if it needs to track a field for the first time or if it needs to just
 374 * update the previously tracked value.
 375 *
 376 * If enqueue is set, this function enqueues the inode in fast commit list.
 377 */
 378static int ext4_fc_track_template(
 379	handle_t *handle, struct inode *inode,
 380	int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
 381	void *args, int enqueue)
 382{
 383	bool update = false;
 384	struct ext4_inode_info *ei = EXT4_I(inode);
 385	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 386	tid_t tid = 0;
 387	int ret;
 388
 389	tid = handle->h_transaction->t_tid;
 390	mutex_lock(&ei->i_fc_lock);
 391	if (tid == ei->i_sync_tid) {
 392		update = true;
 393	} else {
 394		ext4_fc_reset_inode(inode);
 395		ei->i_sync_tid = tid;
 396	}
 397	ret = __fc_track_fn(handle, inode, args, update);
 398	mutex_unlock(&ei->i_fc_lock);
 399
 400	if (!enqueue)
 401		return ret;
 402
 403	spin_lock(&sbi->s_fc_lock);
 404	if (list_empty(&EXT4_I(inode)->i_fc_list))
 405		list_add_tail(&EXT4_I(inode)->i_fc_list,
 406				(sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
 407				 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
 408				&sbi->s_fc_q[FC_Q_STAGING] :
 409				&sbi->s_fc_q[FC_Q_MAIN]);
 410	spin_unlock(&sbi->s_fc_lock);
 411
 412	return ret;
 413}
 414
 415struct __track_dentry_update_args {
 416	struct dentry *dentry;
 417	int op;
 418};
 419
 420/* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
 421static int __track_dentry_update(handle_t *handle, struct inode *inode,
 422				 void *arg, bool update)
 423{
 424	struct ext4_fc_dentry_update *node;
 425	struct ext4_inode_info *ei = EXT4_I(inode);
 426	struct __track_dentry_update_args *dentry_update =
 427		(struct __track_dentry_update_args *)arg;
 428	struct dentry *dentry = dentry_update->dentry;
 429	struct inode *dir = dentry->d_parent->d_inode;
 430	struct super_block *sb = inode->i_sb;
 431	struct ext4_sb_info *sbi = EXT4_SB(sb);
 432
 433	mutex_unlock(&ei->i_fc_lock);
 434
 435	if (IS_ENCRYPTED(dir)) {
 436		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
 437					handle);
 438		mutex_lock(&ei->i_fc_lock);
 439		return -EOPNOTSUPP;
 440	}
 441
 442	node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
 443	if (!node) {
 444		ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
 445		mutex_lock(&ei->i_fc_lock);
 446		return -ENOMEM;
 447	}
 448
 449	node->fcd_op = dentry_update->op;
 450	node->fcd_parent = dir->i_ino;
 451	node->fcd_ino = inode->i_ino;
 452	if (dentry->d_name.len > DNAME_INLINE_LEN) {
 453		node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
 454		if (!node->fcd_name.name) {
 455			kmem_cache_free(ext4_fc_dentry_cachep, node);
 456			ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
 457			mutex_lock(&ei->i_fc_lock);
 458			return -ENOMEM;
 459		}
 460		memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
 461			dentry->d_name.len);
 462	} else {
 463		memcpy(node->fcd_iname, dentry->d_name.name,
 464			dentry->d_name.len);
 465		node->fcd_name.name = node->fcd_iname;
 466	}
 467	node->fcd_name.len = dentry->d_name.len;
 468	INIT_LIST_HEAD(&node->fcd_dilist);
 469	spin_lock(&sbi->s_fc_lock);
 470	if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
 471		sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
 472		list_add_tail(&node->fcd_list,
 473				&sbi->s_fc_dentry_q[FC_Q_STAGING]);
 474	else
 475		list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
 476
 477	/*
 478	 * This helps us keep a track of all fc_dentry updates which is part of
 479	 * this ext4 inode. So in case the inode is getting unlinked, before
 480	 * even we get a chance to fsync, we could remove all fc_dentry
 481	 * references while evicting the inode in ext4_fc_del().
 482	 * Also with this, we don't need to loop over all the inodes in
 483	 * sbi->s_fc_q to get the corresponding inode in
 484	 * ext4_fc_commit_dentry_updates().
 485	 */
 486	if (dentry_update->op == EXT4_FC_TAG_CREAT) {
 487		WARN_ON(!list_empty(&ei->i_fc_dilist));
 488		list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
 489	}
 490	spin_unlock(&sbi->s_fc_lock);
 491	mutex_lock(&ei->i_fc_lock);
 492
 493	return 0;
 494}
 495
 496void __ext4_fc_track_unlink(handle_t *handle,
 497		struct inode *inode, struct dentry *dentry)
 498{
 499	struct __track_dentry_update_args args;
 500	int ret;
 501
 502	args.dentry = dentry;
 503	args.op = EXT4_FC_TAG_UNLINK;
 504
 505	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
 506					(void *)&args, 0);
 507	trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
 508}
 509
 510void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
 511{
 512	struct inode *inode = d_inode(dentry);
 513
 514	if (ext4_fc_disabled(inode->i_sb))
 515		return;
 516
 517	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 518		return;
 519
 520	__ext4_fc_track_unlink(handle, inode, dentry);
 521}
 522
 523void __ext4_fc_track_link(handle_t *handle,
 524	struct inode *inode, struct dentry *dentry)
 525{
 526	struct __track_dentry_update_args args;
 527	int ret;
 528
 529	args.dentry = dentry;
 530	args.op = EXT4_FC_TAG_LINK;
 531
 532	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
 533					(void *)&args, 0);
 534	trace_ext4_fc_track_link(handle, inode, dentry, ret);
 535}
 536
 537void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
 538{
 539	struct inode *inode = d_inode(dentry);
 540
 541	if (ext4_fc_disabled(inode->i_sb))
 542		return;
 543
 544	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 545		return;
 546
 547	__ext4_fc_track_link(handle, inode, dentry);
 548}
 549
 550void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
 551			  struct dentry *dentry)
 552{
 553	struct __track_dentry_update_args args;
 554	int ret;
 555
 556	args.dentry = dentry;
 557	args.op = EXT4_FC_TAG_CREAT;
 558
 559	ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
 560					(void *)&args, 0);
 561	trace_ext4_fc_track_create(handle, inode, dentry, ret);
 562}
 563
 564void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
 565{
 566	struct inode *inode = d_inode(dentry);
 567
 568	if (ext4_fc_disabled(inode->i_sb))
 569		return;
 570
 571	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 572		return;
 573
 574	__ext4_fc_track_create(handle, inode, dentry);
 575}
 576
 577/* __track_fn for inode tracking */
 578static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
 579			 bool update)
 580{
 581	if (update)
 582		return -EEXIST;
 583
 584	EXT4_I(inode)->i_fc_lblk_len = 0;
 585
 586	return 0;
 587}
 588
 589void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
 590{
 591	int ret;
 592
 593	if (S_ISDIR(inode->i_mode))
 594		return;
 595
 596	if (ext4_fc_disabled(inode->i_sb))
 597		return;
 598
 599	if (ext4_should_journal_data(inode)) {
 600		ext4_fc_mark_ineligible(inode->i_sb,
 601					EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
 602		return;
 603	}
 604
 605	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 606		return;
 607
 608	ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
 609	trace_ext4_fc_track_inode(handle, inode, ret);
 610}
 611
 612struct __track_range_args {
 613	ext4_lblk_t start, end;
 614};
 615
 616/* __track_fn for tracking data updates */
 617static int __track_range(handle_t *handle, struct inode *inode, void *arg,
 618			 bool update)
 619{
 620	struct ext4_inode_info *ei = EXT4_I(inode);
 621	ext4_lblk_t oldstart;
 622	struct __track_range_args *__arg =
 623		(struct __track_range_args *)arg;
 624
 625	if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
 626		ext4_debug("Special inode %ld being modified\n", inode->i_ino);
 627		return -ECANCELED;
 628	}
 629
 630	oldstart = ei->i_fc_lblk_start;
 631
 632	if (update && ei->i_fc_lblk_len > 0) {
 633		ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
 634		ei->i_fc_lblk_len =
 635			max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
 636				ei->i_fc_lblk_start + 1;
 637	} else {
 638		ei->i_fc_lblk_start = __arg->start;
 639		ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
 640	}
 641
 642	return 0;
 643}
 644
 645void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
 646			 ext4_lblk_t end)
 647{
 648	struct __track_range_args args;
 649	int ret;
 650
 651	if (S_ISDIR(inode->i_mode))
 652		return;
 653
 654	if (ext4_fc_disabled(inode->i_sb))
 655		return;
 656
 657	if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
 658		return;
 659
 660	if (ext4_has_inline_data(inode)) {
 661		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
 662					handle);
 663		return;
 664	}
 665
 666	args.start = start;
 667	args.end = end;
 668
 669	ret = ext4_fc_track_template(handle, inode,  __track_range, &args, 1);
 670
 671	trace_ext4_fc_track_range(handle, inode, start, end, ret);
 672}
 673
 674static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
 675{
 676	blk_opf_t write_flags = REQ_SYNC;
 677	struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
 678
 679	/* Add REQ_FUA | REQ_PREFLUSH only its tail */
 680	if (test_opt(sb, BARRIER) && is_tail)
 681		write_flags |= REQ_FUA | REQ_PREFLUSH;
 682	lock_buffer(bh);
 683	set_buffer_dirty(bh);
 684	set_buffer_uptodate(bh);
 685	bh->b_end_io = ext4_end_buffer_io_sync;
 686	submit_bh(REQ_OP_WRITE | write_flags, bh);
 687	EXT4_SB(sb)->s_fc_bh = NULL;
 688}
 689
 690/* Ext4 commit path routines */
 691
 692/*
 693 * Allocate len bytes on a fast commit buffer.
 694 *
 695 * During the commit time this function is used to manage fast commit
 696 * block space. We don't split a fast commit log onto different
 697 * blocks. So this function makes sure that if there's not enough space
 698 * on the current block, the remaining space in the current block is
 699 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
 700 * new block is from jbd2 and CRC is updated to reflect the padding
 701 * we added.
 702 */
 703static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
 704{
 705	struct ext4_fc_tl tl;
 706	struct ext4_sb_info *sbi = EXT4_SB(sb);
 707	struct buffer_head *bh;
 708	int bsize = sbi->s_journal->j_blocksize;
 709	int ret, off = sbi->s_fc_bytes % bsize;
 710	int remaining;
 711	u8 *dst;
 712
 713	/*
 714	 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
 715	 * cannot fulfill the request.
 716	 */
 717	if (len > bsize - EXT4_FC_TAG_BASE_LEN)
 718		return NULL;
 719
 720	if (!sbi->s_fc_bh) {
 721		ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
 722		if (ret)
 723			return NULL;
 724		sbi->s_fc_bh = bh;
 725	}
 726	dst = sbi->s_fc_bh->b_data + off;
 727
 728	/*
 729	 * Allocate the bytes in the current block if we can do so while still
 730	 * leaving enough space for a PAD tlv.
 731	 */
 732	remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
 733	if (len <= remaining) {
 734		sbi->s_fc_bytes += len;
 735		return dst;
 736	}
 737
 738	/*
 739	 * Else, terminate the current block with a PAD tlv, then allocate a new
 740	 * block and allocate the bytes at the start of that new block.
 741	 */
 742
 743	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
 744	tl.fc_len = cpu_to_le16(remaining);
 745	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 746	memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
 747	*crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
 748
 749	ext4_fc_submit_bh(sb, false);
 750
 751	ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
 752	if (ret)
 753		return NULL;
 754	sbi->s_fc_bh = bh;
 755	sbi->s_fc_bytes += bsize - off + len;
 756	return sbi->s_fc_bh->b_data;
 757}
 758
 759/*
 760 * Complete a fast commit by writing tail tag.
 761 *
 762 * Writing tail tag marks the end of a fast commit. In order to guarantee
 763 * atomicity, after writing tail tag, even if there's space remaining
 764 * in the block, next commit shouldn't use it. That's why tail tag
 765 * has the length as that of the remaining space on the block.
 766 */
 767static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
 768{
 769	struct ext4_sb_info *sbi = EXT4_SB(sb);
 770	struct ext4_fc_tl tl;
 771	struct ext4_fc_tail tail;
 772	int off, bsize = sbi->s_journal->j_blocksize;
 773	u8 *dst;
 774
 775	/*
 776	 * ext4_fc_reserve_space takes care of allocating an extra block if
 777	 * there's no enough space on this block for accommodating this tail.
 778	 */
 779	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
 780	if (!dst)
 781		return -ENOSPC;
 782
 783	off = sbi->s_fc_bytes % bsize;
 784
 785	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
 786	tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
 787	sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
 788
 789	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 790	dst += EXT4_FC_TAG_BASE_LEN;
 791	tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
 792	memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
 793	dst += sizeof(tail.fc_tid);
 794	crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
 795			  dst - (u8 *)sbi->s_fc_bh->b_data);
 796	tail.fc_crc = cpu_to_le32(crc);
 797	memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
 798	dst += sizeof(tail.fc_crc);
 799	memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
 800
 801	ext4_fc_submit_bh(sb, true);
 802
 803	return 0;
 804}
 805
 806/*
 807 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
 808 * Returns false if there's not enough space.
 809 */
 810static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
 811			   u32 *crc)
 812{
 813	struct ext4_fc_tl tl;
 814	u8 *dst;
 815
 816	dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
 817	if (!dst)
 818		return false;
 819
 820	tl.fc_tag = cpu_to_le16(tag);
 821	tl.fc_len = cpu_to_le16(len);
 822
 823	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 824	memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
 825
 826	return true;
 827}
 828
 829/* Same as above, but adds dentry tlv. */
 830static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
 831				   struct ext4_fc_dentry_update *fc_dentry)
 832{
 833	struct ext4_fc_dentry_info fcd;
 834	struct ext4_fc_tl tl;
 835	int dlen = fc_dentry->fcd_name.len;
 836	u8 *dst = ext4_fc_reserve_space(sb,
 837			EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
 838
 839	if (!dst)
 840		return false;
 841
 842	fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
 843	fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
 844	tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
 845	tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
 846	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 847	dst += EXT4_FC_TAG_BASE_LEN;
 848	memcpy(dst, &fcd, sizeof(fcd));
 849	dst += sizeof(fcd);
 850	memcpy(dst, fc_dentry->fcd_name.name, dlen);
 851
 852	return true;
 853}
 854
 855/*
 856 * Writes inode in the fast commit space under TLV with tag @tag.
 857 * Returns 0 on success, error on failure.
 858 */
 859static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
 860{
 861	struct ext4_inode_info *ei = EXT4_I(inode);
 862	int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
 863	int ret;
 864	struct ext4_iloc iloc;
 865	struct ext4_fc_inode fc_inode;
 866	struct ext4_fc_tl tl;
 867	u8 *dst;
 868
 869	ret = ext4_get_inode_loc(inode, &iloc);
 870	if (ret)
 871		return ret;
 872
 873	if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
 874		inode_len = EXT4_INODE_SIZE(inode->i_sb);
 875	else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
 876		inode_len += ei->i_extra_isize;
 877
 878	fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
 879	tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
 880	tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
 881
 882	ret = -ECANCELED;
 883	dst = ext4_fc_reserve_space(inode->i_sb,
 884		EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
 885	if (!dst)
 886		goto err;
 887
 888	memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
 889	dst += EXT4_FC_TAG_BASE_LEN;
 890	memcpy(dst, &fc_inode, sizeof(fc_inode));
 891	dst += sizeof(fc_inode);
 892	memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
 893	ret = 0;
 894err:
 895	brelse(iloc.bh);
 896	return ret;
 897}
 898
 899/*
 900 * Writes updated data ranges for the inode in question. Updates CRC.
 901 * Returns 0 on success, error otherwise.
 902 */
 903static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
 904{
 905	ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
 906	struct ext4_inode_info *ei = EXT4_I(inode);
 907	struct ext4_map_blocks map;
 908	struct ext4_fc_add_range fc_ext;
 909	struct ext4_fc_del_range lrange;
 910	struct ext4_extent *ex;
 911	int ret;
 912
 913	mutex_lock(&ei->i_fc_lock);
 914	if (ei->i_fc_lblk_len == 0) {
 915		mutex_unlock(&ei->i_fc_lock);
 916		return 0;
 917	}
 918	old_blk_size = ei->i_fc_lblk_start;
 919	new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
 920	ei->i_fc_lblk_len = 0;
 921	mutex_unlock(&ei->i_fc_lock);
 922
 923	cur_lblk_off = old_blk_size;
 924	ext4_debug("will try writing %d to %d for inode %ld\n",
 925		   cur_lblk_off, new_blk_size, inode->i_ino);
 926
 927	while (cur_lblk_off <= new_blk_size) {
 928		map.m_lblk = cur_lblk_off;
 929		map.m_len = new_blk_size - cur_lblk_off + 1;
 930		ret = ext4_map_blocks(NULL, inode, &map, 0);
 931		if (ret < 0)
 932			return -ECANCELED;
 933
 934		if (map.m_len == 0) {
 935			cur_lblk_off++;
 936			continue;
 937		}
 938
 939		if (ret == 0) {
 940			lrange.fc_ino = cpu_to_le32(inode->i_ino);
 941			lrange.fc_lblk = cpu_to_le32(map.m_lblk);
 942			lrange.fc_len = cpu_to_le32(map.m_len);
 943			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
 944					    sizeof(lrange), (u8 *)&lrange, crc))
 945				return -ENOSPC;
 946		} else {
 947			unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
 948				EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
 949
 950			/* Limit the number of blocks in one extent */
 951			map.m_len = min(max, map.m_len);
 952
 953			fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
 954			ex = (struct ext4_extent *)&fc_ext.fc_ex;
 955			ex->ee_block = cpu_to_le32(map.m_lblk);
 956			ex->ee_len = cpu_to_le16(map.m_len);
 957			ext4_ext_store_pblock(ex, map.m_pblk);
 958			if (map.m_flags & EXT4_MAP_UNWRITTEN)
 959				ext4_ext_mark_unwritten(ex);
 960			else
 961				ext4_ext_mark_initialized(ex);
 962			if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
 963					    sizeof(fc_ext), (u8 *)&fc_ext, crc))
 964				return -ENOSPC;
 965		}
 966
 967		cur_lblk_off += map.m_len;
 968	}
 969
 970	return 0;
 971}
 972
 973
 974/* Submit data for all the fast commit inodes */
 975static int ext4_fc_submit_inode_data_all(journal_t *journal)
 976{
 977	struct super_block *sb = journal->j_private;
 978	struct ext4_sb_info *sbi = EXT4_SB(sb);
 979	struct ext4_inode_info *ei;
 980	int ret = 0;
 981
 982	spin_lock(&sbi->s_fc_lock);
 983	list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
 984		ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
 985		while (atomic_read(&ei->i_fc_updates)) {
 986			DEFINE_WAIT(wait);
 987
 988			prepare_to_wait(&ei->i_fc_wait, &wait,
 989						TASK_UNINTERRUPTIBLE);
 990			if (atomic_read(&ei->i_fc_updates)) {
 991				spin_unlock(&sbi->s_fc_lock);
 992				schedule();
 993				spin_lock(&sbi->s_fc_lock);
 994			}
 995			finish_wait(&ei->i_fc_wait, &wait);
 996		}
 997		spin_unlock(&sbi->s_fc_lock);
 998		ret = jbd2_submit_inode_data(journal, ei->jinode);
 999		if (ret)
1000			return ret;
1001		spin_lock(&sbi->s_fc_lock);
1002	}
1003	spin_unlock(&sbi->s_fc_lock);
1004
1005	return ret;
1006}
1007
1008/* Wait for completion of data for all the fast commit inodes */
1009static int ext4_fc_wait_inode_data_all(journal_t *journal)
1010{
1011	struct super_block *sb = journal->j_private;
1012	struct ext4_sb_info *sbi = EXT4_SB(sb);
1013	struct ext4_inode_info *pos, *n;
1014	int ret = 0;
1015
1016	spin_lock(&sbi->s_fc_lock);
1017	list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1018		if (!ext4_test_inode_state(&pos->vfs_inode,
1019					   EXT4_STATE_FC_COMMITTING))
1020			continue;
1021		spin_unlock(&sbi->s_fc_lock);
1022
1023		ret = jbd2_wait_inode_data(journal, pos->jinode);
1024		if (ret)
1025			return ret;
1026		spin_lock(&sbi->s_fc_lock);
1027	}
1028	spin_unlock(&sbi->s_fc_lock);
1029
1030	return 0;
1031}
1032
1033/* Commit all the directory entry updates */
1034static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1035__acquires(&sbi->s_fc_lock)
1036__releases(&sbi->s_fc_lock)
1037{
1038	struct super_block *sb = journal->j_private;
1039	struct ext4_sb_info *sbi = EXT4_SB(sb);
1040	struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1041	struct inode *inode;
1042	struct ext4_inode_info *ei;
1043	int ret;
1044
1045	if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1046		return 0;
1047	list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1048				 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1049		if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1050			spin_unlock(&sbi->s_fc_lock);
1051			if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1052				ret = -ENOSPC;
1053				goto lock_and_exit;
1054			}
1055			spin_lock(&sbi->s_fc_lock);
1056			continue;
1057		}
1058		/*
1059		 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1060		 * corresponding inode pointer
1061		 */
1062		WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1063		ei = list_first_entry(&fc_dentry->fcd_dilist,
1064				struct ext4_inode_info, i_fc_dilist);
1065		inode = &ei->vfs_inode;
1066		WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1067
1068		spin_unlock(&sbi->s_fc_lock);
1069
1070		/*
1071		 * We first write the inode and then the create dirent. This
1072		 * allows the recovery code to create an unnamed inode first
1073		 * and then link it to a directory entry. This allows us
1074		 * to use namei.c routines almost as is and simplifies
1075		 * the recovery code.
1076		 */
1077		ret = ext4_fc_write_inode(inode, crc);
1078		if (ret)
1079			goto lock_and_exit;
1080
1081		ret = ext4_fc_write_inode_data(inode, crc);
1082		if (ret)
1083			goto lock_and_exit;
1084
1085		if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1086			ret = -ENOSPC;
1087			goto lock_and_exit;
1088		}
1089
1090		spin_lock(&sbi->s_fc_lock);
1091	}
1092	return 0;
1093lock_and_exit:
1094	spin_lock(&sbi->s_fc_lock);
1095	return ret;
1096}
1097
1098static int ext4_fc_perform_commit(journal_t *journal)
1099{
1100	struct super_block *sb = journal->j_private;
1101	struct ext4_sb_info *sbi = EXT4_SB(sb);
1102	struct ext4_inode_info *iter;
1103	struct ext4_fc_head head;
1104	struct inode *inode;
1105	struct blk_plug plug;
1106	int ret = 0;
1107	u32 crc = 0;
1108
1109	ret = ext4_fc_submit_inode_data_all(journal);
1110	if (ret)
1111		return ret;
1112
1113	ret = ext4_fc_wait_inode_data_all(journal);
1114	if (ret)
1115		return ret;
1116
1117	/*
1118	 * If file system device is different from journal device, issue a cache
1119	 * flush before we start writing fast commit blocks.
1120	 */
1121	if (journal->j_fs_dev != journal->j_dev)
1122		blkdev_issue_flush(journal->j_fs_dev);
1123
1124	blk_start_plug(&plug);
1125	if (sbi->s_fc_bytes == 0) {
1126		/*
1127		 * Add a head tag only if this is the first fast commit
1128		 * in this TID.
1129		 */
1130		head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1131		head.fc_tid = cpu_to_le32(
1132			sbi->s_journal->j_running_transaction->t_tid);
1133		if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1134			(u8 *)&head, &crc)) {
1135			ret = -ENOSPC;
1136			goto out;
1137		}
1138	}
1139
1140	spin_lock(&sbi->s_fc_lock);
1141	ret = ext4_fc_commit_dentry_updates(journal, &crc);
1142	if (ret) {
1143		spin_unlock(&sbi->s_fc_lock);
1144		goto out;
1145	}
1146
1147	list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1148		inode = &iter->vfs_inode;
1149		if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1150			continue;
1151
1152		spin_unlock(&sbi->s_fc_lock);
1153		ret = ext4_fc_write_inode_data(inode, &crc);
1154		if (ret)
1155			goto out;
1156		ret = ext4_fc_write_inode(inode, &crc);
1157		if (ret)
1158			goto out;
1159		spin_lock(&sbi->s_fc_lock);
1160	}
1161	spin_unlock(&sbi->s_fc_lock);
1162
1163	ret = ext4_fc_write_tail(sb, crc);
1164
1165out:
1166	blk_finish_plug(&plug);
1167	return ret;
1168}
1169
1170static void ext4_fc_update_stats(struct super_block *sb, int status,
1171				 u64 commit_time, int nblks, tid_t commit_tid)
1172{
1173	struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1174
1175	ext4_debug("Fast commit ended with status = %d for tid %u",
1176			status, commit_tid);
1177	if (status == EXT4_FC_STATUS_OK) {
1178		stats->fc_num_commits++;
1179		stats->fc_numblks += nblks;
1180		if (likely(stats->s_fc_avg_commit_time))
1181			stats->s_fc_avg_commit_time =
1182				(commit_time +
1183				 stats->s_fc_avg_commit_time * 3) / 4;
1184		else
1185			stats->s_fc_avg_commit_time = commit_time;
1186	} else if (status == EXT4_FC_STATUS_FAILED ||
1187		   status == EXT4_FC_STATUS_INELIGIBLE) {
1188		if (status == EXT4_FC_STATUS_FAILED)
1189			stats->fc_failed_commits++;
1190		stats->fc_ineligible_commits++;
1191	} else {
1192		stats->fc_skipped_commits++;
1193	}
1194	trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1195}
1196
1197/*
1198 * The main commit entry point. Performs a fast commit for transaction
1199 * commit_tid if needed. If it's not possible to perform a fast commit
1200 * due to various reasons, we fall back to full commit. Returns 0
1201 * on success, error otherwise.
1202 */
1203int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1204{
1205	struct super_block *sb = journal->j_private;
1206	struct ext4_sb_info *sbi = EXT4_SB(sb);
1207	int nblks = 0, ret, bsize = journal->j_blocksize;
1208	int subtid = atomic_read(&sbi->s_fc_subtid);
1209	int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1210	ktime_t start_time, commit_time;
1211
1212	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1213		return jbd2_complete_transaction(journal, commit_tid);
1214
1215	trace_ext4_fc_commit_start(sb, commit_tid);
1216
1217	start_time = ktime_get();
1218
1219restart_fc:
1220	ret = jbd2_fc_begin_commit(journal, commit_tid);
1221	if (ret == -EALREADY) {
1222		/* There was an ongoing commit, check if we need to restart */
1223		if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1224		    tid_gt(commit_tid, journal->j_commit_sequence))
1225			goto restart_fc;
1226		ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227				commit_tid);
1228		return 0;
1229	} else if (ret) {
1230		/*
1231		 * Commit couldn't start. Just update stats and perform a
1232		 * full commit.
1233		 */
1234		ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1235				commit_tid);
1236		return jbd2_complete_transaction(journal, commit_tid);
1237	}
1238
1239	/*
1240	 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1241	 * if we are fast commit ineligible.
1242	 */
1243	if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1244		status = EXT4_FC_STATUS_INELIGIBLE;
1245		goto fallback;
1246	}
1247
1248	fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1249	ret = ext4_fc_perform_commit(journal);
1250	if (ret < 0) {
1251		status = EXT4_FC_STATUS_FAILED;
1252		goto fallback;
1253	}
1254	nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1255	ret = jbd2_fc_wait_bufs(journal, nblks);
1256	if (ret < 0) {
1257		status = EXT4_FC_STATUS_FAILED;
1258		goto fallback;
1259	}
1260	atomic_inc(&sbi->s_fc_subtid);
1261	ret = jbd2_fc_end_commit(journal);
1262	/*
1263	 * weight the commit time higher than the average time so we
1264	 * don't react too strongly to vast changes in the commit time
1265	 */
1266	commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1267	ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1268	return ret;
1269
1270fallback:
1271	ret = jbd2_fc_end_commit_fallback(journal);
1272	ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1273	return ret;
1274}
1275
1276/*
1277 * Fast commit cleanup routine. This is called after every fast commit and
1278 * full commit. full is true if we are called after a full commit.
1279 */
1280static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1281{
1282	struct super_block *sb = journal->j_private;
1283	struct ext4_sb_info *sbi = EXT4_SB(sb);
1284	struct ext4_inode_info *iter, *iter_n;
1285	struct ext4_fc_dentry_update *fc_dentry;
1286
1287	if (full && sbi->s_fc_bh)
1288		sbi->s_fc_bh = NULL;
1289
1290	trace_ext4_fc_cleanup(journal, full, tid);
1291	jbd2_fc_release_bufs(journal);
1292
1293	spin_lock(&sbi->s_fc_lock);
1294	list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1295				 i_fc_list) {
1296		list_del_init(&iter->i_fc_list);
1297		ext4_clear_inode_state(&iter->vfs_inode,
1298				       EXT4_STATE_FC_COMMITTING);
1299		if (tid_geq(tid, iter->i_sync_tid)) {
1300			ext4_fc_reset_inode(&iter->vfs_inode);
1301		} else if (full) {
1302			/*
1303			 * We are called after a full commit, inode has been
1304			 * modified while the commit was running. Re-enqueue
1305			 * the inode into STAGING, which will then be splice
1306			 * back into MAIN. This cannot happen during
1307			 * fastcommit because the journal is locked all the
1308			 * time in that case (and tid doesn't increase so
1309			 * tid check above isn't reliable).
1310			 */
1311			list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1312				      &sbi->s_fc_q[FC_Q_STAGING]);
1313		}
1314		/* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1315		smp_mb();
1316#if (BITS_PER_LONG < 64)
1317		wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1318#else
1319		wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1320#endif
1321	}
1322
1323	while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1324		fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1325					     struct ext4_fc_dentry_update,
1326					     fcd_list);
1327		list_del_init(&fc_dentry->fcd_list);
1328		list_del_init(&fc_dentry->fcd_dilist);
1329		spin_unlock(&sbi->s_fc_lock);
1330
1331		if (fc_dentry->fcd_name.name &&
1332			fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1333			kfree(fc_dentry->fcd_name.name);
1334		kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1335		spin_lock(&sbi->s_fc_lock);
1336	}
1337
1338	list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1339				&sbi->s_fc_dentry_q[FC_Q_MAIN]);
1340	list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1341				&sbi->s_fc_q[FC_Q_MAIN]);
1342
1343	if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1344		sbi->s_fc_ineligible_tid = 0;
1345		ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1346	}
1347
1348	if (full)
1349		sbi->s_fc_bytes = 0;
1350	spin_unlock(&sbi->s_fc_lock);
1351	trace_ext4_fc_stats(sb);
1352}
1353
1354/* Ext4 Replay Path Routines */
1355
1356/* Helper struct for dentry replay routines */
1357struct dentry_info_args {
1358	int parent_ino, dname_len, ino, inode_len;
1359	char *dname;
1360};
1361
1362/* Same as struct ext4_fc_tl, but uses native endianness fields */
1363struct ext4_fc_tl_mem {
1364	u16 fc_tag;
1365	u16 fc_len;
1366};
1367
1368static inline void tl_to_darg(struct dentry_info_args *darg,
1369			      struct ext4_fc_tl_mem *tl, u8 *val)
1370{
1371	struct ext4_fc_dentry_info fcd;
1372
1373	memcpy(&fcd, val, sizeof(fcd));
1374
1375	darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1376	darg->ino = le32_to_cpu(fcd.fc_ino);
1377	darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1378	darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1379}
1380
1381static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1382{
1383	struct ext4_fc_tl tl_disk;
1384
1385	memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1386	tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1387	tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1388}
1389
1390/* Unlink replay function */
1391static int ext4_fc_replay_unlink(struct super_block *sb,
1392				 struct ext4_fc_tl_mem *tl, u8 *val)
1393{
1394	struct inode *inode, *old_parent;
1395	struct qstr entry;
1396	struct dentry_info_args darg;
1397	int ret = 0;
1398
1399	tl_to_darg(&darg, tl, val);
1400
1401	trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1402			darg.parent_ino, darg.dname_len);
1403
1404	entry.name = darg.dname;
1405	entry.len = darg.dname_len;
1406	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1407
1408	if (IS_ERR(inode)) {
1409		ext4_debug("Inode %d not found", darg.ino);
1410		return 0;
1411	}
1412
1413	old_parent = ext4_iget(sb, darg.parent_ino,
1414				EXT4_IGET_NORMAL);
1415	if (IS_ERR(old_parent)) {
1416		ext4_debug("Dir with inode %d not found", darg.parent_ino);
1417		iput(inode);
1418		return 0;
1419	}
1420
1421	ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1422	/* -ENOENT ok coz it might not exist anymore. */
1423	if (ret == -ENOENT)
1424		ret = 0;
1425	iput(old_parent);
1426	iput(inode);
1427	return ret;
1428}
1429
1430static int ext4_fc_replay_link_internal(struct super_block *sb,
1431				struct dentry_info_args *darg,
1432				struct inode *inode)
1433{
1434	struct inode *dir = NULL;
1435	struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1436	struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1437	int ret = 0;
1438
1439	dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1440	if (IS_ERR(dir)) {
1441		ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1442		dir = NULL;
1443		goto out;
1444	}
1445
1446	dentry_dir = d_obtain_alias(dir);
1447	if (IS_ERR(dentry_dir)) {
1448		ext4_debug("Failed to obtain dentry");
1449		dentry_dir = NULL;
1450		goto out;
1451	}
1452
1453	dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1454	if (!dentry_inode) {
1455		ext4_debug("Inode dentry not created.");
1456		ret = -ENOMEM;
1457		goto out;
1458	}
1459
1460	ret = __ext4_link(dir, inode, dentry_inode);
1461	/*
1462	 * It's possible that link already existed since data blocks
1463	 * for the dir in question got persisted before we crashed OR
1464	 * we replayed this tag and crashed before the entire replay
1465	 * could complete.
1466	 */
1467	if (ret && ret != -EEXIST) {
1468		ext4_debug("Failed to link\n");
1469		goto out;
1470	}
1471
1472	ret = 0;
1473out:
1474	if (dentry_dir) {
1475		d_drop(dentry_dir);
1476		dput(dentry_dir);
1477	} else if (dir) {
1478		iput(dir);
1479	}
1480	if (dentry_inode) {
1481		d_drop(dentry_inode);
1482		dput(dentry_inode);
1483	}
1484
1485	return ret;
1486}
1487
1488/* Link replay function */
1489static int ext4_fc_replay_link(struct super_block *sb,
1490			       struct ext4_fc_tl_mem *tl, u8 *val)
1491{
1492	struct inode *inode;
1493	struct dentry_info_args darg;
1494	int ret = 0;
1495
1496	tl_to_darg(&darg, tl, val);
1497	trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1498			darg.parent_ino, darg.dname_len);
1499
1500	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1501	if (IS_ERR(inode)) {
1502		ext4_debug("Inode not found.");
1503		return 0;
1504	}
1505
1506	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1507	iput(inode);
1508	return ret;
1509}
1510
1511/*
1512 * Record all the modified inodes during replay. We use this later to setup
1513 * block bitmaps correctly.
1514 */
1515static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1516{
1517	struct ext4_fc_replay_state *state;
1518	int i;
1519
1520	state = &EXT4_SB(sb)->s_fc_replay_state;
1521	for (i = 0; i < state->fc_modified_inodes_used; i++)
1522		if (state->fc_modified_inodes[i] == ino)
1523			return 0;
1524	if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1525		int *fc_modified_inodes;
1526
1527		fc_modified_inodes = krealloc(state->fc_modified_inodes,
1528				sizeof(int) * (state->fc_modified_inodes_size +
1529				EXT4_FC_REPLAY_REALLOC_INCREMENT),
1530				GFP_KERNEL);
1531		if (!fc_modified_inodes)
1532			return -ENOMEM;
1533		state->fc_modified_inodes = fc_modified_inodes;
1534		state->fc_modified_inodes_size +=
1535			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1536	}
1537	state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1538	return 0;
1539}
1540
1541/*
1542 * Inode replay function
1543 */
1544static int ext4_fc_replay_inode(struct super_block *sb,
1545				struct ext4_fc_tl_mem *tl, u8 *val)
1546{
1547	struct ext4_fc_inode fc_inode;
1548	struct ext4_inode *raw_inode;
1549	struct ext4_inode *raw_fc_inode;
1550	struct inode *inode = NULL;
1551	struct ext4_iloc iloc;
1552	int inode_len, ino, ret, tag = tl->fc_tag;
1553	struct ext4_extent_header *eh;
1554	size_t off_gen = offsetof(struct ext4_inode, i_generation);
1555
1556	memcpy(&fc_inode, val, sizeof(fc_inode));
1557
1558	ino = le32_to_cpu(fc_inode.fc_ino);
1559	trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1560
1561	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1562	if (!IS_ERR(inode)) {
1563		ext4_ext_clear_bb(inode);
1564		iput(inode);
1565	}
1566	inode = NULL;
1567
1568	ret = ext4_fc_record_modified_inode(sb, ino);
1569	if (ret)
1570		goto out;
1571
1572	raw_fc_inode = (struct ext4_inode *)
1573		(val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1574	ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1575	if (ret)
1576		goto out;
1577
1578	inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1579	raw_inode = ext4_raw_inode(&iloc);
1580
1581	memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1582	memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1583	       inode_len - off_gen);
1584	if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1585		eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1586		if (eh->eh_magic != EXT4_EXT_MAGIC) {
1587			memset(eh, 0, sizeof(*eh));
1588			eh->eh_magic = EXT4_EXT_MAGIC;
1589			eh->eh_max = cpu_to_le16(
1590				(sizeof(raw_inode->i_block) -
1591				 sizeof(struct ext4_extent_header))
1592				 / sizeof(struct ext4_extent));
1593		}
1594	} else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1595		memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1596			sizeof(raw_inode->i_block));
1597	}
1598
1599	/* Immediately update the inode on disk. */
1600	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1601	if (ret)
1602		goto out;
1603	ret = sync_dirty_buffer(iloc.bh);
1604	if (ret)
1605		goto out;
1606	ret = ext4_mark_inode_used(sb, ino);
1607	if (ret)
1608		goto out;
1609
1610	/* Given that we just wrote the inode on disk, this SHOULD succeed. */
1611	inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1612	if (IS_ERR(inode)) {
1613		ext4_debug("Inode not found.");
1614		return -EFSCORRUPTED;
1615	}
1616
1617	/*
1618	 * Our allocator could have made different decisions than before
1619	 * crashing. This should be fixed but until then, we calculate
1620	 * the number of blocks the inode.
1621	 */
1622	if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1623		ext4_ext_replay_set_iblocks(inode);
1624
1625	inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1626	ext4_reset_inode_seed(inode);
1627
1628	ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1629	ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1630	sync_dirty_buffer(iloc.bh);
1631	brelse(iloc.bh);
1632out:
1633	iput(inode);
1634	if (!ret)
1635		blkdev_issue_flush(sb->s_bdev);
1636
1637	return 0;
1638}
1639
1640/*
1641 * Dentry create replay function.
1642 *
1643 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1644 * inode for which we are trying to create a dentry here, should already have
1645 * been replayed before we start here.
1646 */
1647static int ext4_fc_replay_create(struct super_block *sb,
1648				 struct ext4_fc_tl_mem *tl, u8 *val)
1649{
1650	int ret = 0;
1651	struct inode *inode = NULL;
1652	struct inode *dir = NULL;
1653	struct dentry_info_args darg;
1654
1655	tl_to_darg(&darg, tl, val);
1656
1657	trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1658			darg.parent_ino, darg.dname_len);
1659
1660	/* This takes care of update group descriptor and other metadata */
1661	ret = ext4_mark_inode_used(sb, darg.ino);
1662	if (ret)
1663		goto out;
1664
1665	inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1666	if (IS_ERR(inode)) {
1667		ext4_debug("inode %d not found.", darg.ino);
1668		inode = NULL;
1669		ret = -EINVAL;
1670		goto out;
1671	}
1672
1673	if (S_ISDIR(inode->i_mode)) {
1674		/*
1675		 * If we are creating a directory, we need to make sure that the
1676		 * dot and dot dot dirents are setup properly.
1677		 */
1678		dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1679		if (IS_ERR(dir)) {
1680			ext4_debug("Dir %d not found.", darg.ino);
1681			goto out;
1682		}
1683		ret = ext4_init_new_dir(NULL, dir, inode);
1684		iput(dir);
1685		if (ret) {
1686			ret = 0;
1687			goto out;
1688		}
1689	}
1690	ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1691	if (ret)
1692		goto out;
1693	set_nlink(inode, 1);
1694	ext4_mark_inode_dirty(NULL, inode);
1695out:
1696	iput(inode);
1697	return ret;
1698}
1699
1700/*
1701 * Record physical disk regions which are in use as per fast commit area,
1702 * and used by inodes during replay phase. Our simple replay phase
1703 * allocator excludes these regions from allocation.
1704 */
1705int ext4_fc_record_regions(struct super_block *sb, int ino,
1706		ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1707{
1708	struct ext4_fc_replay_state *state;
1709	struct ext4_fc_alloc_region *region;
1710
1711	state = &EXT4_SB(sb)->s_fc_replay_state;
1712	/*
1713	 * during replay phase, the fc_regions_valid may not same as
1714	 * fc_regions_used, update it when do new additions.
1715	 */
1716	if (replay && state->fc_regions_used != state->fc_regions_valid)
1717		state->fc_regions_used = state->fc_regions_valid;
1718	if (state->fc_regions_used == state->fc_regions_size) {
1719		struct ext4_fc_alloc_region *fc_regions;
1720
1721		fc_regions = krealloc(state->fc_regions,
1722				      sizeof(struct ext4_fc_alloc_region) *
1723				      (state->fc_regions_size +
1724				       EXT4_FC_REPLAY_REALLOC_INCREMENT),
1725				      GFP_KERNEL);
1726		if (!fc_regions)
1727			return -ENOMEM;
1728		state->fc_regions_size +=
1729			EXT4_FC_REPLAY_REALLOC_INCREMENT;
1730		state->fc_regions = fc_regions;
1731	}
1732	region = &state->fc_regions[state->fc_regions_used++];
1733	region->ino = ino;
1734	region->lblk = lblk;
1735	region->pblk = pblk;
1736	region->len = len;
1737
1738	if (replay)
1739		state->fc_regions_valid++;
1740
1741	return 0;
1742}
1743
1744/* Replay add range tag */
1745static int ext4_fc_replay_add_range(struct super_block *sb,
1746				    struct ext4_fc_tl_mem *tl, u8 *val)
1747{
1748	struct ext4_fc_add_range fc_add_ex;
1749	struct ext4_extent newex, *ex;
1750	struct inode *inode;
1751	ext4_lblk_t start, cur;
1752	int remaining, len;
1753	ext4_fsblk_t start_pblk;
1754	struct ext4_map_blocks map;
1755	struct ext4_ext_path *path = NULL;
1756	int ret;
1757
1758	memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1759	ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1760
1761	trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1762		le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1763		ext4_ext_get_actual_len(ex));
1764
1765	inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1766	if (IS_ERR(inode)) {
1767		ext4_debug("Inode not found.");
1768		return 0;
1769	}
1770
1771	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1772	if (ret)
1773		goto out;
1774
1775	start = le32_to_cpu(ex->ee_block);
1776	start_pblk = ext4_ext_pblock(ex);
1777	len = ext4_ext_get_actual_len(ex);
1778
1779	cur = start;
1780	remaining = len;
1781	ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1782		  start, start_pblk, len, ext4_ext_is_unwritten(ex),
1783		  inode->i_ino);
1784
1785	while (remaining > 0) {
1786		map.m_lblk = cur;
1787		map.m_len = remaining;
1788		map.m_pblk = 0;
1789		ret = ext4_map_blocks(NULL, inode, &map, 0);
1790
1791		if (ret < 0)
1792			goto out;
1793
1794		if (ret == 0) {
1795			/* Range is not mapped */
1796			path = ext4_find_extent(inode, cur, path, 0);
1797			if (IS_ERR(path))
1798				goto out;
1799			memset(&newex, 0, sizeof(newex));
1800			newex.ee_block = cpu_to_le32(cur);
1801			ext4_ext_store_pblock(
1802				&newex, start_pblk + cur - start);
1803			newex.ee_len = cpu_to_le16(map.m_len);
1804			if (ext4_ext_is_unwritten(ex))
1805				ext4_ext_mark_unwritten(&newex);
1806			down_write(&EXT4_I(inode)->i_data_sem);
1807			path = ext4_ext_insert_extent(NULL, inode,
1808						      path, &newex, 0);
1809			up_write((&EXT4_I(inode)->i_data_sem));
1810			if (IS_ERR(path))
1811				goto out;
1812			goto next;
1813		}
1814
1815		if (start_pblk + cur - start != map.m_pblk) {
1816			/*
1817			 * Logical to physical mapping changed. This can happen
1818			 * if this range was removed and then reallocated to
1819			 * map to new physical blocks during a fast commit.
1820			 */
1821			ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1822					ext4_ext_is_unwritten(ex),
1823					start_pblk + cur - start);
1824			if (ret)
1825				goto out;
1826			/*
1827			 * Mark the old blocks as free since they aren't used
1828			 * anymore. We maintain an array of all the modified
1829			 * inodes. In case these blocks are still used at either
1830			 * a different logical range in the same inode or in
1831			 * some different inode, we will mark them as allocated
1832			 * at the end of the FC replay using our array of
1833			 * modified inodes.
1834			 */
1835			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1836			goto next;
1837		}
1838
1839		/* Range is mapped and needs a state change */
1840		ext4_debug("Converting from %ld to %d %lld",
1841				map.m_flags & EXT4_MAP_UNWRITTEN,
1842			ext4_ext_is_unwritten(ex), map.m_pblk);
1843		ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1844					ext4_ext_is_unwritten(ex), map.m_pblk);
1845		if (ret)
1846			goto out;
1847		/*
1848		 * We may have split the extent tree while toggling the state.
1849		 * Try to shrink the extent tree now.
1850		 */
1851		ext4_ext_replay_shrink_inode(inode, start + len);
1852next:
1853		cur += map.m_len;
1854		remaining -= map.m_len;
1855	}
1856	ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1857					sb->s_blocksize_bits);
1858out:
1859	ext4_free_ext_path(path);
1860	iput(inode);
1861	return 0;
1862}
1863
1864/* Replay DEL_RANGE tag */
1865static int
1866ext4_fc_replay_del_range(struct super_block *sb,
1867			 struct ext4_fc_tl_mem *tl, u8 *val)
1868{
1869	struct inode *inode;
1870	struct ext4_fc_del_range lrange;
1871	struct ext4_map_blocks map;
1872	ext4_lblk_t cur, remaining;
1873	int ret;
1874
1875	memcpy(&lrange, val, sizeof(lrange));
1876	cur = le32_to_cpu(lrange.fc_lblk);
1877	remaining = le32_to_cpu(lrange.fc_len);
1878
1879	trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1880		le32_to_cpu(lrange.fc_ino), cur, remaining);
1881
1882	inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1883	if (IS_ERR(inode)) {
1884		ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1885		return 0;
1886	}
1887
1888	ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1889	if (ret)
1890		goto out;
1891
1892	ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1893			inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1894			le32_to_cpu(lrange.fc_len));
1895	while (remaining > 0) {
1896		map.m_lblk = cur;
1897		map.m_len = remaining;
1898
1899		ret = ext4_map_blocks(NULL, inode, &map, 0);
1900		if (ret < 0)
1901			goto out;
1902		if (ret > 0) {
1903			remaining -= ret;
1904			cur += ret;
1905			ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1906		} else {
1907			remaining -= map.m_len;
1908			cur += map.m_len;
1909		}
1910	}
1911
1912	down_write(&EXT4_I(inode)->i_data_sem);
1913	ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1914				le32_to_cpu(lrange.fc_lblk) +
1915				le32_to_cpu(lrange.fc_len) - 1);
1916	up_write(&EXT4_I(inode)->i_data_sem);
1917	if (ret)
1918		goto out;
1919	ext4_ext_replay_shrink_inode(inode,
1920		i_size_read(inode) >> sb->s_blocksize_bits);
1921	ext4_mark_inode_dirty(NULL, inode);
1922out:
1923	iput(inode);
1924	return 0;
1925}
1926
1927static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1928{
1929	struct ext4_fc_replay_state *state;
1930	struct inode *inode;
1931	struct ext4_ext_path *path = NULL;
1932	struct ext4_map_blocks map;
1933	int i, ret, j;
1934	ext4_lblk_t cur, end;
1935
1936	state = &EXT4_SB(sb)->s_fc_replay_state;
1937	for (i = 0; i < state->fc_modified_inodes_used; i++) {
1938		inode = ext4_iget(sb, state->fc_modified_inodes[i],
1939			EXT4_IGET_NORMAL);
1940		if (IS_ERR(inode)) {
1941			ext4_debug("Inode %d not found.",
1942				state->fc_modified_inodes[i]);
1943			continue;
1944		}
1945		cur = 0;
1946		end = EXT_MAX_BLOCKS;
1947		if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1948			iput(inode);
1949			continue;
1950		}
1951		while (cur < end) {
1952			map.m_lblk = cur;
1953			map.m_len = end - cur;
1954
1955			ret = ext4_map_blocks(NULL, inode, &map, 0);
1956			if (ret < 0)
1957				break;
1958
1959			if (ret > 0) {
1960				path = ext4_find_extent(inode, map.m_lblk, path, 0);
1961				if (!IS_ERR(path)) {
1962					for (j = 0; j < path->p_depth; j++)
1963						ext4_mb_mark_bb(inode->i_sb,
1964							path[j].p_block, 1, true);
1965				} else {
1966					path = NULL;
1967				}
1968				cur += ret;
1969				ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1970							map.m_len, true);
1971			} else {
1972				cur = cur + (map.m_len ? map.m_len : 1);
1973			}
1974		}
1975		iput(inode);
1976	}
1977
1978	ext4_free_ext_path(path);
1979}
1980
1981/*
1982 * Check if block is in excluded regions for block allocation. The simple
1983 * allocator that runs during replay phase is calls this function to see
1984 * if it is okay to use a block.
1985 */
1986bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1987{
1988	int i;
1989	struct ext4_fc_replay_state *state;
1990
1991	state = &EXT4_SB(sb)->s_fc_replay_state;
1992	for (i = 0; i < state->fc_regions_valid; i++) {
1993		if (state->fc_regions[i].ino == 0 ||
1994			state->fc_regions[i].len == 0)
1995			continue;
1996		if (in_range(blk, state->fc_regions[i].pblk,
1997					state->fc_regions[i].len))
1998			return true;
1999	}
2000	return false;
2001}
2002
2003/* Cleanup function called after replay */
2004void ext4_fc_replay_cleanup(struct super_block *sb)
2005{
2006	struct ext4_sb_info *sbi = EXT4_SB(sb);
2007
2008	sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2009	kfree(sbi->s_fc_replay_state.fc_regions);
2010	kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2011}
2012
2013static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2014				      int tag, int len)
2015{
2016	switch (tag) {
2017	case EXT4_FC_TAG_ADD_RANGE:
2018		return len == sizeof(struct ext4_fc_add_range);
2019	case EXT4_FC_TAG_DEL_RANGE:
2020		return len == sizeof(struct ext4_fc_del_range);
2021	case EXT4_FC_TAG_CREAT:
2022	case EXT4_FC_TAG_LINK:
2023	case EXT4_FC_TAG_UNLINK:
2024		len -= sizeof(struct ext4_fc_dentry_info);
2025		return len >= 1 && len <= EXT4_NAME_LEN;
2026	case EXT4_FC_TAG_INODE:
2027		len -= sizeof(struct ext4_fc_inode);
2028		return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2029			len <= sbi->s_inode_size;
2030	case EXT4_FC_TAG_PAD:
2031		return true; /* padding can have any length */
2032	case EXT4_FC_TAG_TAIL:
2033		return len >= sizeof(struct ext4_fc_tail);
2034	case EXT4_FC_TAG_HEAD:
2035		return len == sizeof(struct ext4_fc_head);
2036	}
2037	return false;
2038}
2039
2040/*
2041 * Recovery Scan phase handler
2042 *
2043 * This function is called during the scan phase and is responsible
2044 * for doing following things:
2045 * - Make sure the fast commit area has valid tags for replay
2046 * - Count number of tags that need to be replayed by the replay handler
2047 * - Verify CRC
2048 * - Create a list of excluded blocks for allocation during replay phase
2049 *
2050 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2051 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2052 * to indicate that scan has finished and JBD2 can now start replay phase.
2053 * It returns a negative error to indicate that there was an error. At the end
2054 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2055 * to indicate the number of tags that need to replayed during the replay phase.
2056 */
2057static int ext4_fc_replay_scan(journal_t *journal,
2058				struct buffer_head *bh, int off,
2059				tid_t expected_tid)
2060{
2061	struct super_block *sb = journal->j_private;
2062	struct ext4_sb_info *sbi = EXT4_SB(sb);
2063	struct ext4_fc_replay_state *state;
2064	int ret = JBD2_FC_REPLAY_CONTINUE;
2065	struct ext4_fc_add_range ext;
2066	struct ext4_fc_tl_mem tl;
2067	struct ext4_fc_tail tail;
2068	__u8 *start, *end, *cur, *val;
2069	struct ext4_fc_head head;
2070	struct ext4_extent *ex;
2071
2072	state = &sbi->s_fc_replay_state;
2073
2074	start = (u8 *)bh->b_data;
2075	end = start + journal->j_blocksize;
2076
2077	if (state->fc_replay_expected_off == 0) {
2078		state->fc_cur_tag = 0;
2079		state->fc_replay_num_tags = 0;
2080		state->fc_crc = 0;
2081		state->fc_regions = NULL;
2082		state->fc_regions_valid = state->fc_regions_used =
2083			state->fc_regions_size = 0;
2084		/* Check if we can stop early */
2085		if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2086			!= EXT4_FC_TAG_HEAD)
2087			return 0;
2088	}
2089
2090	if (off != state->fc_replay_expected_off) {
2091		ret = -EFSCORRUPTED;
2092		goto out_err;
2093	}
2094
2095	state->fc_replay_expected_off++;
2096	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2097	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2098		ext4_fc_get_tl(&tl, cur);
2099		val = cur + EXT4_FC_TAG_BASE_LEN;
2100		if (tl.fc_len > end - val ||
2101		    !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2102			ret = state->fc_replay_num_tags ?
2103				JBD2_FC_REPLAY_STOP : -ECANCELED;
2104			goto out_err;
2105		}
2106		ext4_debug("Scan phase, tag:%s, blk %lld\n",
2107			   tag2str(tl.fc_tag), bh->b_blocknr);
2108		switch (tl.fc_tag) {
2109		case EXT4_FC_TAG_ADD_RANGE:
2110			memcpy(&ext, val, sizeof(ext));
2111			ex = (struct ext4_extent *)&ext.fc_ex;
2112			ret = ext4_fc_record_regions(sb,
2113				le32_to_cpu(ext.fc_ino),
2114				le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2115				ext4_ext_get_actual_len(ex), 0);
2116			if (ret < 0)
2117				break;
2118			ret = JBD2_FC_REPLAY_CONTINUE;
2119			fallthrough;
2120		case EXT4_FC_TAG_DEL_RANGE:
2121		case EXT4_FC_TAG_LINK:
2122		case EXT4_FC_TAG_UNLINK:
2123		case EXT4_FC_TAG_CREAT:
2124		case EXT4_FC_TAG_INODE:
2125		case EXT4_FC_TAG_PAD:
2126			state->fc_cur_tag++;
2127			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2128				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2129			break;
2130		case EXT4_FC_TAG_TAIL:
2131			state->fc_cur_tag++;
2132			memcpy(&tail, val, sizeof(tail));
2133			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2134						EXT4_FC_TAG_BASE_LEN +
2135						offsetof(struct ext4_fc_tail,
2136						fc_crc));
2137			if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2138				le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2139				state->fc_replay_num_tags = state->fc_cur_tag;
2140				state->fc_regions_valid =
2141					state->fc_regions_used;
2142			} else {
2143				ret = state->fc_replay_num_tags ?
2144					JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2145			}
2146			state->fc_crc = 0;
2147			break;
2148		case EXT4_FC_TAG_HEAD:
2149			memcpy(&head, val, sizeof(head));
2150			if (le32_to_cpu(head.fc_features) &
2151				~EXT4_FC_SUPPORTED_FEATURES) {
2152				ret = -EOPNOTSUPP;
2153				break;
2154			}
2155			if (le32_to_cpu(head.fc_tid) != expected_tid) {
2156				ret = JBD2_FC_REPLAY_STOP;
2157				break;
2158			}
2159			state->fc_cur_tag++;
2160			state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2161				EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2162			break;
2163		default:
2164			ret = state->fc_replay_num_tags ?
2165				JBD2_FC_REPLAY_STOP : -ECANCELED;
2166		}
2167		if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2168			break;
2169	}
2170
2171out_err:
2172	trace_ext4_fc_replay_scan(sb, ret, off);
2173	return ret;
2174}
2175
2176/*
2177 * Main recovery path entry point.
2178 * The meaning of return codes is similar as above.
2179 */
2180static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2181				enum passtype pass, int off, tid_t expected_tid)
2182{
2183	struct super_block *sb = journal->j_private;
2184	struct ext4_sb_info *sbi = EXT4_SB(sb);
2185	struct ext4_fc_tl_mem tl;
2186	__u8 *start, *end, *cur, *val;
2187	int ret = JBD2_FC_REPLAY_CONTINUE;
2188	struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2189	struct ext4_fc_tail tail;
2190
2191	if (pass == PASS_SCAN) {
2192		state->fc_current_pass = PASS_SCAN;
2193		return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2194	}
2195
2196	if (state->fc_current_pass != pass) {
2197		state->fc_current_pass = pass;
2198		sbi->s_mount_state |= EXT4_FC_REPLAY;
2199	}
2200	if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2201		ext4_debug("Replay stops\n");
2202		ext4_fc_set_bitmaps_and_counters(sb);
2203		return 0;
2204	}
2205
2206#ifdef CONFIG_EXT4_DEBUG
2207	if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2208		pr_warn("Dropping fc block %d because max_replay set\n", off);
2209		return JBD2_FC_REPLAY_STOP;
2210	}
2211#endif
2212
2213	start = (u8 *)bh->b_data;
2214	end = start + journal->j_blocksize;
2215
2216	for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2217	     cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2218		ext4_fc_get_tl(&tl, cur);
2219		val = cur + EXT4_FC_TAG_BASE_LEN;
2220
2221		if (state->fc_replay_num_tags == 0) {
2222			ret = JBD2_FC_REPLAY_STOP;
2223			ext4_fc_set_bitmaps_and_counters(sb);
2224			break;
2225		}
2226
2227		ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2228		state->fc_replay_num_tags--;
2229		switch (tl.fc_tag) {
2230		case EXT4_FC_TAG_LINK:
2231			ret = ext4_fc_replay_link(sb, &tl, val);
2232			break;
2233		case EXT4_FC_TAG_UNLINK:
2234			ret = ext4_fc_replay_unlink(sb, &tl, val);
2235			break;
2236		case EXT4_FC_TAG_ADD_RANGE:
2237			ret = ext4_fc_replay_add_range(sb, &tl, val);
2238			break;
2239		case EXT4_FC_TAG_CREAT:
2240			ret = ext4_fc_replay_create(sb, &tl, val);
2241			break;
2242		case EXT4_FC_TAG_DEL_RANGE:
2243			ret = ext4_fc_replay_del_range(sb, &tl, val);
2244			break;
2245		case EXT4_FC_TAG_INODE:
2246			ret = ext4_fc_replay_inode(sb, &tl, val);
2247			break;
2248		case EXT4_FC_TAG_PAD:
2249			trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2250					     tl.fc_len, 0);
2251			break;
2252		case EXT4_FC_TAG_TAIL:
2253			trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2254					     0, tl.fc_len, 0);
2255			memcpy(&tail, val, sizeof(tail));
2256			WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2257			break;
2258		case EXT4_FC_TAG_HEAD:
2259			break;
2260		default:
2261			trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2262			ret = -ECANCELED;
2263			break;
2264		}
2265		if (ret < 0)
2266			break;
2267		ret = JBD2_FC_REPLAY_CONTINUE;
2268	}
2269	return ret;
2270}
2271
2272void ext4_fc_init(struct super_block *sb, journal_t *journal)
2273{
2274	/*
2275	 * We set replay callback even if fast commit disabled because we may
2276	 * could still have fast commit blocks that need to be replayed even if
2277	 * fast commit has now been turned off.
2278	 */
2279	journal->j_fc_replay_callback = ext4_fc_replay;
2280	if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2281		return;
2282	journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2283}
2284
2285static const char * const fc_ineligible_reasons[] = {
2286	[EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2287	[EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2288	[EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2289	[EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2290	[EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2291	[EXT4_FC_REASON_RESIZE] = "Resize",
2292	[EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2293	[EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2294	[EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2295	[EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2296};
2297
2298int ext4_fc_info_show(struct seq_file *seq, void *v)
2299{
2300	struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2301	struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2302	int i;
2303
2304	if (v != SEQ_START_TOKEN)
2305		return 0;
2306
2307	seq_printf(seq,
2308		"fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2309		   stats->fc_num_commits, stats->fc_ineligible_commits,
2310		   stats->fc_numblks,
2311		   div_u64(stats->s_fc_avg_commit_time, 1000));
2312	seq_puts(seq, "Ineligible reasons:\n");
2313	for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2314		seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2315			stats->fc_ineligible_reason_count[i]);
2316
2317	return 0;
2318}
2319
2320int __init ext4_fc_init_dentry_cache(void)
2321{
2322	ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2323					   SLAB_RECLAIM_ACCOUNT);
2324
2325	if (ext4_fc_dentry_cachep == NULL)
2326		return -ENOMEM;
2327
2328	return 0;
2329}
2330
2331void ext4_fc_destroy_dentry_cache(void)
2332{
2333	kmem_cache_destroy(ext4_fc_dentry_cachep);
2334}