Linux Audio

Check our new training course

Loading...
v4.6
 
  1/******************************************************************************
  2*******************************************************************************
  3**
  4**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
  5**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
  6**
  7**  This copyrighted material is made available to anyone wishing to use,
  8**  modify, copy, or redistribute it subject to the terms and conditions
  9**  of the GNU General Public License v.2.
 10**
 11*******************************************************************************
 12******************************************************************************/
 13
 14#include "dlm_internal.h"
 15#include "lockspace.h"
 16#include "dir.h"
 17#include "config.h"
 18#include "ast.h"
 19#include "memory.h"
 20#include "rcom.h"
 21#include "lock.h"
 22#include "lowcomms.h"
 23#include "member.h"
 24#include "recover.h"
 25
 26
 27/*
 28 * Recovery waiting routines: these functions wait for a particular reply from
 29 * a remote node, or for the remote node to report a certain status.  They need
 30 * to abort if the lockspace is stopped indicating a node has failed (perhaps
 31 * the one being waited for).
 32 */
 33
 34/*
 35 * Wait until given function returns non-zero or lockspace is stopped
 36 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
 37 * function thinks it could have completed the waited-on task, they should wake
 38 * up ls_wait_general to get an immediate response rather than waiting for the
 39 * timeout.  This uses a timeout so it can check periodically if the wait
 40 * should abort due to node failure (which doesn't cause a wake_up).
 41 * This should only be called by the dlm_recoverd thread.
 42 */
 43
 44int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
 45{
 46	int error = 0;
 47	int rv;
 48
 49	while (1) {
 50		rv = wait_event_timeout(ls->ls_wait_general,
 51					testfn(ls) || dlm_recovery_stopped(ls),
 52					dlm_config.ci_recover_timer * HZ);
 53		if (rv)
 54			break;
 
 
 
 
 55	}
 56
 57	if (dlm_recovery_stopped(ls)) {
 58		log_debug(ls, "dlm_wait_function aborted");
 59		error = -EINTR;
 60	}
 61	return error;
 62}
 63
 64/*
 65 * An efficient way for all nodes to wait for all others to have a certain
 66 * status.  The node with the lowest nodeid polls all the others for their
 67 * status (wait_status_all) and all the others poll the node with the low id
 68 * for its accumulated result (wait_status_low).  When all nodes have set
 69 * status flag X, then status flag X_ALL will be set on the low nodeid.
 70 */
 71
 72uint32_t dlm_recover_status(struct dlm_ls *ls)
 73{
 74	uint32_t status;
 75	spin_lock(&ls->ls_recover_lock);
 76	status = ls->ls_recover_status;
 77	spin_unlock(&ls->ls_recover_lock);
 78	return status;
 79}
 80
 81static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
 82{
 83	ls->ls_recover_status |= status;
 84}
 85
 86void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
 87{
 88	spin_lock(&ls->ls_recover_lock);
 89	_set_recover_status(ls, status);
 90	spin_unlock(&ls->ls_recover_lock);
 91}
 92
 93static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
 94			   int save_slots)
 95{
 96	struct dlm_rcom *rc = ls->ls_recover_buf;
 97	struct dlm_member *memb;
 98	int error = 0, delay;
 99
100	list_for_each_entry(memb, &ls->ls_nodes, list) {
101		delay = 0;
102		for (;;) {
103			if (dlm_recovery_stopped(ls)) {
104				error = -EINTR;
105				goto out;
106			}
107
108			error = dlm_rcom_status(ls, memb->nodeid, 0);
109			if (error)
110				goto out;
111
112			if (save_slots)
113				dlm_slot_save(ls, rc, memb);
114
115			if (rc->rc_result & wait_status)
116				break;
117			if (delay < 1000)
118				delay += 20;
119			msleep(delay);
120		}
121	}
122 out:
123	return error;
124}
125
126static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
127			   uint32_t status_flags)
128{
129	struct dlm_rcom *rc = ls->ls_recover_buf;
130	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
131
132	for (;;) {
133		if (dlm_recovery_stopped(ls)) {
134			error = -EINTR;
135			goto out;
136		}
137
138		error = dlm_rcom_status(ls, nodeid, status_flags);
139		if (error)
140			break;
141
142		if (rc->rc_result & wait_status)
143			break;
144		if (delay < 1000)
145			delay += 20;
146		msleep(delay);
147	}
148 out:
149	return error;
150}
151
152static int wait_status(struct dlm_ls *ls, uint32_t status)
153{
154	uint32_t status_all = status << 1;
155	int error;
156
157	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
158		error = wait_status_all(ls, status, 0);
159		if (!error)
160			dlm_set_recover_status(ls, status_all);
161	} else
162		error = wait_status_low(ls, status_all, 0);
163
164	return error;
165}
166
167int dlm_recover_members_wait(struct dlm_ls *ls)
168{
169	struct dlm_member *memb;
170	struct dlm_slot *slots;
171	int num_slots, slots_size;
172	int error, rv;
173	uint32_t gen;
174
175	list_for_each_entry(memb, &ls->ls_nodes, list) {
176		memb->slot = -1;
177		memb->generation = 0;
178	}
179
180	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
181		error = wait_status_all(ls, DLM_RS_NODES, 1);
182		if (error)
183			goto out;
184
185		/* slots array is sparse, slots_size may be > num_slots */
186
187		rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
188		if (!rv) {
189			spin_lock(&ls->ls_recover_lock);
190			_set_recover_status(ls, DLM_RS_NODES_ALL);
191			ls->ls_num_slots = num_slots;
192			ls->ls_slots_size = slots_size;
193			ls->ls_slots = slots;
194			ls->ls_generation = gen;
195			spin_unlock(&ls->ls_recover_lock);
196		} else {
197			dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
198		}
199	} else {
200		error = wait_status_low(ls, DLM_RS_NODES_ALL, DLM_RSF_NEED_SLOTS);
 
201		if (error)
202			goto out;
203
204		dlm_slots_copy_in(ls);
205	}
206 out:
207	return error;
208}
209
210int dlm_recover_directory_wait(struct dlm_ls *ls)
211{
212	return wait_status(ls, DLM_RS_DIR);
213}
214
215int dlm_recover_locks_wait(struct dlm_ls *ls)
216{
217	return wait_status(ls, DLM_RS_LOCKS);
218}
219
220int dlm_recover_done_wait(struct dlm_ls *ls)
221{
222	return wait_status(ls, DLM_RS_DONE);
223}
224
225/*
226 * The recover_list contains all the rsb's for which we've requested the new
227 * master nodeid.  As replies are returned from the resource directories the
228 * rsb's are removed from the list.  When the list is empty we're done.
229 *
230 * The recover_list is later similarly used for all rsb's for which we've sent
231 * new lkb's and need to receive new corresponding lkid's.
232 *
233 * We use the address of the rsb struct as a simple local identifier for the
234 * rsb so we can match an rcom reply with the rsb it was sent for.
235 */
236
237static int recover_list_empty(struct dlm_ls *ls)
238{
239	int empty;
240
241	spin_lock(&ls->ls_recover_list_lock);
242	empty = list_empty(&ls->ls_recover_list);
243	spin_unlock(&ls->ls_recover_list_lock);
244
245	return empty;
246}
247
248static void recover_list_add(struct dlm_rsb *r)
249{
250	struct dlm_ls *ls = r->res_ls;
251
252	spin_lock(&ls->ls_recover_list_lock);
253	if (list_empty(&r->res_recover_list)) {
254		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
255		ls->ls_recover_list_count++;
256		dlm_hold_rsb(r);
257	}
258	spin_unlock(&ls->ls_recover_list_lock);
259}
260
261static void recover_list_del(struct dlm_rsb *r)
262{
263	struct dlm_ls *ls = r->res_ls;
264
265	spin_lock(&ls->ls_recover_list_lock);
266	list_del_init(&r->res_recover_list);
267	ls->ls_recover_list_count--;
268	spin_unlock(&ls->ls_recover_list_lock);
269
270	dlm_put_rsb(r);
271}
272
273static void recover_list_clear(struct dlm_ls *ls)
274{
275	struct dlm_rsb *r, *s;
276
277	spin_lock(&ls->ls_recover_list_lock);
278	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
279		list_del_init(&r->res_recover_list);
280		r->res_recover_locks_count = 0;
281		dlm_put_rsb(r);
282		ls->ls_recover_list_count--;
283	}
284
285	if (ls->ls_recover_list_count != 0) {
286		log_error(ls, "warning: recover_list_count %d",
287			  ls->ls_recover_list_count);
288		ls->ls_recover_list_count = 0;
289	}
290	spin_unlock(&ls->ls_recover_list_lock);
291}
292
293static int recover_idr_empty(struct dlm_ls *ls)
294{
295	int empty = 1;
296
297	spin_lock(&ls->ls_recover_idr_lock);
298	if (ls->ls_recover_list_count)
299		empty = 0;
300	spin_unlock(&ls->ls_recover_idr_lock);
301
302	return empty;
303}
304
305static int recover_idr_add(struct dlm_rsb *r)
306{
307	struct dlm_ls *ls = r->res_ls;
 
 
 
 
 
308	int rv;
309
310	idr_preload(GFP_NOFS);
311	spin_lock(&ls->ls_recover_idr_lock);
312	if (r->res_id) {
313		rv = -1;
314		goto out_unlock;
315	}
316	rv = idr_alloc(&ls->ls_recover_idr, r, 1, 0, GFP_NOWAIT);
317	if (rv < 0)
318		goto out_unlock;
319
320	r->res_id = rv;
321	ls->ls_recover_list_count++;
322	dlm_hold_rsb(r);
323	rv = 0;
324out_unlock:
325	spin_unlock(&ls->ls_recover_idr_lock);
326	idr_preload_end();
327	return rv;
328}
329
330static void recover_idr_del(struct dlm_rsb *r)
331{
332	struct dlm_ls *ls = r->res_ls;
333
334	spin_lock(&ls->ls_recover_idr_lock);
335	idr_remove(&ls->ls_recover_idr, r->res_id);
336	r->res_id = 0;
337	ls->ls_recover_list_count--;
338	spin_unlock(&ls->ls_recover_idr_lock);
339
340	dlm_put_rsb(r);
341}
342
343static struct dlm_rsb *recover_idr_find(struct dlm_ls *ls, uint64_t id)
344{
345	struct dlm_rsb *r;
346
347	spin_lock(&ls->ls_recover_idr_lock);
348	r = idr_find(&ls->ls_recover_idr, (int)id);
349	spin_unlock(&ls->ls_recover_idr_lock);
350	return r;
351}
352
353static void recover_idr_clear(struct dlm_ls *ls)
354{
355	struct dlm_rsb *r;
356	int id;
357
358	spin_lock(&ls->ls_recover_idr_lock);
359
360	idr_for_each_entry(&ls->ls_recover_idr, r, id) {
361		idr_remove(&ls->ls_recover_idr, id);
362		r->res_id = 0;
363		r->res_recover_locks_count = 0;
364		ls->ls_recover_list_count--;
365
366		dlm_put_rsb(r);
367	}
368
369	if (ls->ls_recover_list_count != 0) {
370		log_error(ls, "warning: recover_list_count %d",
371			  ls->ls_recover_list_count);
372		ls->ls_recover_list_count = 0;
373	}
374	spin_unlock(&ls->ls_recover_idr_lock);
375}
376
377
378/* Master recovery: find new master node for rsb's that were
379   mastered on nodes that have been removed.
380
381   dlm_recover_masters
382   recover_master
383   dlm_send_rcom_lookup            ->  receive_rcom_lookup
384                                       dlm_dir_lookup
385   receive_rcom_lookup_reply       <-
386   dlm_recover_master_reply
387   set_new_master
388   set_master_lkbs
389   set_lock_master
390*/
391
392/*
393 * Set the lock master for all LKBs in a lock queue
394 * If we are the new master of the rsb, we may have received new
395 * MSTCPY locks from other nodes already which we need to ignore
396 * when setting the new nodeid.
397 */
398
399static void set_lock_master(struct list_head *queue, int nodeid)
400{
401	struct dlm_lkb *lkb;
402
403	list_for_each_entry(lkb, queue, lkb_statequeue) {
404		if (!(lkb->lkb_flags & DLM_IFL_MSTCPY)) {
405			lkb->lkb_nodeid = nodeid;
406			lkb->lkb_remid = 0;
407		}
408	}
409}
410
411static void set_master_lkbs(struct dlm_rsb *r)
412{
413	set_lock_master(&r->res_grantqueue, r->res_nodeid);
414	set_lock_master(&r->res_convertqueue, r->res_nodeid);
415	set_lock_master(&r->res_waitqueue, r->res_nodeid);
416}
417
418/*
419 * Propagate the new master nodeid to locks
420 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
421 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
422 * rsb's to consider.
423 */
424
425static void set_new_master(struct dlm_rsb *r)
426{
427	set_master_lkbs(r);
428	rsb_set_flag(r, RSB_NEW_MASTER);
429	rsb_set_flag(r, RSB_NEW_MASTER2);
430}
431
432/*
433 * We do async lookups on rsb's that need new masters.  The rsb's
434 * waiting for a lookup reply are kept on the recover_list.
435 *
436 * Another node recovering the master may have sent us a rcom lookup,
437 * and our dlm_master_lookup() set it as the new master, along with
438 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid
439 * equals our_nodeid below).
440 */
441
442static int recover_master(struct dlm_rsb *r, unsigned int *count)
443{
444	struct dlm_ls *ls = r->res_ls;
445	int our_nodeid, dir_nodeid;
446	int is_removed = 0;
447	int error;
448
449	if (is_master(r))
450		return 0;
451
452	is_removed = dlm_is_removed(ls, r->res_nodeid);
 
453
454	if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER))
455		return 0;
456
457	our_nodeid = dlm_our_nodeid();
458	dir_nodeid = dlm_dir_nodeid(r);
459
460	if (dir_nodeid == our_nodeid) {
461		if (is_removed) {
462			r->res_master_nodeid = our_nodeid;
463			r->res_nodeid = 0;
464		}
465
466		/* set master of lkbs to ourself when is_removed, or to
467		   another new master which we set along with NEW_MASTER
468		   in dlm_master_lookup */
469		set_new_master(r);
470		error = 0;
471	} else {
472		recover_idr_add(r);
473		error = dlm_send_rcom_lookup(r, dir_nodeid);
474	}
475
476	(*count)++;
477	return error;
478}
479
480/*
481 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
482 * This is necessary because recovery can be started, aborted and restarted,
483 * causing the master nodeid to briefly change during the aborted recovery, and
484 * change back to the original value in the second recovery.  The MSTCPY locks
485 * may or may not have been purged during the aborted recovery.  Another node
486 * with an outstanding request in waiters list and a request reply saved in the
487 * requestqueue, cannot know whether it should ignore the reply and resend the
488 * request, or accept the reply and complete the request.  It must do the
489 * former if the remote node purged MSTCPY locks, and it must do the later if
490 * the remote node did not.  This is solved by always purging MSTCPY locks, in
491 * which case, the request reply would always be ignored and the request
492 * resent.
493 */
494
495static int recover_master_static(struct dlm_rsb *r, unsigned int *count)
496{
497	int dir_nodeid = dlm_dir_nodeid(r);
498	int new_master = dir_nodeid;
499
500	if (dir_nodeid == dlm_our_nodeid())
501		new_master = 0;
502
503	dlm_purge_mstcpy_locks(r);
504	r->res_master_nodeid = dir_nodeid;
505	r->res_nodeid = new_master;
506	set_new_master(r);
507	(*count)++;
508	return 0;
509}
510
511/*
512 * Go through local root resources and for each rsb which has a master which
513 * has departed, get the new master nodeid from the directory.  The dir will
514 * assign mastery to the first node to look up the new master.  That means
515 * we'll discover in this lookup if we're the new master of any rsb's.
516 *
517 * We fire off all the dir lookup requests individually and asynchronously to
518 * the correct dir node.
519 */
520
521int dlm_recover_masters(struct dlm_ls *ls)
 
522{
523	struct dlm_rsb *r;
524	unsigned int total = 0;
525	unsigned int count = 0;
526	int nodir = dlm_no_directory(ls);
527	int error;
528
529	log_rinfo(ls, "dlm_recover_masters");
530
531	down_read(&ls->ls_root_sem);
532	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
533		if (dlm_recovery_stopped(ls)) {
534			up_read(&ls->ls_root_sem);
535			error = -EINTR;
536			goto out;
537		}
538
539		lock_rsb(r);
540		if (nodir)
541			error = recover_master_static(r, &count);
542		else
543			error = recover_master(r, &count);
544		unlock_rsb(r);
545		cond_resched();
546		total++;
547
548		if (error) {
549			up_read(&ls->ls_root_sem);
550			goto out;
551		}
552	}
553	up_read(&ls->ls_root_sem);
554
555	log_rinfo(ls, "dlm_recover_masters %u of %u", count, total);
556
557	error = dlm_wait_function(ls, &recover_idr_empty);
558 out:
559	if (error)
560		recover_idr_clear(ls);
561	return error;
562}
563
564int dlm_recover_master_reply(struct dlm_ls *ls, struct dlm_rcom *rc)
565{
566	struct dlm_rsb *r;
567	int ret_nodeid, new_master;
568
569	r = recover_idr_find(ls, rc->rc_id);
570	if (!r) {
571		log_error(ls, "dlm_recover_master_reply no id %llx",
572			  (unsigned long long)rc->rc_id);
573		goto out;
574	}
575
576	ret_nodeid = rc->rc_result;
577
578	if (ret_nodeid == dlm_our_nodeid())
579		new_master = 0;
580	else
581		new_master = ret_nodeid;
582
583	lock_rsb(r);
584	r->res_master_nodeid = ret_nodeid;
585	r->res_nodeid = new_master;
586	set_new_master(r);
587	unlock_rsb(r);
588	recover_idr_del(r);
589
590	if (recover_idr_empty(ls))
591		wake_up(&ls->ls_wait_general);
592 out:
593	return 0;
594}
595
596
597/* Lock recovery: rebuild the process-copy locks we hold on a
598   remastered rsb on the new rsb master.
599
600   dlm_recover_locks
601   recover_locks
602   recover_locks_queue
603   dlm_send_rcom_lock              ->  receive_rcom_lock
604                                       dlm_recover_master_copy
605   receive_rcom_lock_reply         <-
606   dlm_recover_process_copy
607*/
608
609
610/*
611 * keep a count of the number of lkb's we send to the new master; when we get
612 * an equal number of replies then recovery for the rsb is done
613 */
614
615static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head)
 
616{
617	struct dlm_lkb *lkb;
618	int error = 0;
619
620	list_for_each_entry(lkb, head, lkb_statequeue) {
621	   	error = dlm_send_rcom_lock(r, lkb);
622		if (error)
623			break;
624		r->res_recover_locks_count++;
625	}
626
627	return error;
628}
629
630static int recover_locks(struct dlm_rsb *r)
631{
632	int error = 0;
633
634	lock_rsb(r);
635
636	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
637
638	error = recover_locks_queue(r, &r->res_grantqueue);
639	if (error)
640		goto out;
641	error = recover_locks_queue(r, &r->res_convertqueue);
642	if (error)
643		goto out;
644	error = recover_locks_queue(r, &r->res_waitqueue);
645	if (error)
646		goto out;
647
648	if (r->res_recover_locks_count)
649		recover_list_add(r);
650	else
651		rsb_clear_flag(r, RSB_NEW_MASTER);
652 out:
653	unlock_rsb(r);
654	return error;
655}
656
657int dlm_recover_locks(struct dlm_ls *ls)
 
658{
659	struct dlm_rsb *r;
660	int error, count = 0;
661
662	down_read(&ls->ls_root_sem);
663	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
664		if (is_master(r)) {
665			rsb_clear_flag(r, RSB_NEW_MASTER);
666			continue;
667		}
668
669		if (!rsb_flag(r, RSB_NEW_MASTER))
670			continue;
671
672		if (dlm_recovery_stopped(ls)) {
673			error = -EINTR;
674			up_read(&ls->ls_root_sem);
675			goto out;
676		}
677
678		error = recover_locks(r);
679		if (error) {
680			up_read(&ls->ls_root_sem);
681			goto out;
682		}
683
684		count += r->res_recover_locks_count;
685	}
686	up_read(&ls->ls_root_sem);
687
688	log_rinfo(ls, "dlm_recover_locks %d out", count);
689
690	error = dlm_wait_function(ls, &recover_list_empty);
691 out:
692	if (error)
693		recover_list_clear(ls);
694	return error;
695}
696
697void dlm_recovered_lock(struct dlm_rsb *r)
698{
699	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
700
701	r->res_recover_locks_count--;
702	if (!r->res_recover_locks_count) {
703		rsb_clear_flag(r, RSB_NEW_MASTER);
704		recover_list_del(r);
705	}
706
707	if (recover_list_empty(r->res_ls))
708		wake_up(&r->res_ls->ls_wait_general);
709}
710
711/*
712 * The lvb needs to be recovered on all master rsb's.  This includes setting
713 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
714 * based on the lvb's of the locks held on the rsb.
715 *
716 * RSB_VALNOTVALID is set in two cases:
717 *
718 * 1. we are master, but not new, and we purged an EX/PW lock held by a
719 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL)
720 *
721 * 2. we are a new master, and there are only NL/CR locks left.
722 * (We could probably improve this by only invaliding in this way when
723 * the previous master left uncleanly.  VMS docs mention that.)
724 *
725 * The LVB contents are only considered for changing when this is a new master
726 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
727 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
728 * from the lkb with the largest lvb sequence number.
729 */
730
731static void recover_lvb(struct dlm_rsb *r)
732{
733	struct dlm_lkb *lkb, *high_lkb = NULL;
734	uint32_t high_seq = 0;
735	int lock_lvb_exists = 0;
736	int big_lock_exists = 0;
737	int lvblen = r->res_ls->ls_lvblen;
738
739	if (!rsb_flag(r, RSB_NEW_MASTER2) &&
740	    rsb_flag(r, RSB_RECOVER_LVB_INVAL)) {
741		/* case 1 above */
742		rsb_set_flag(r, RSB_VALNOTVALID);
743		return;
744	}
745
746	if (!rsb_flag(r, RSB_NEW_MASTER2))
747		return;
748
749	/* we are the new master, so figure out if VALNOTVALID should
750	   be set, and set the rsb lvb from the best lkb available. */
751
752	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
753		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
754			continue;
755
756		lock_lvb_exists = 1;
757
758		if (lkb->lkb_grmode > DLM_LOCK_CR) {
759			big_lock_exists = 1;
760			goto setflag;
761		}
762
763		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
764			high_lkb = lkb;
765			high_seq = lkb->lkb_lvbseq;
766		}
767	}
768
769	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
770		if (!(lkb->lkb_exflags & DLM_LKF_VALBLK))
771			continue;
772
773		lock_lvb_exists = 1;
774
775		if (lkb->lkb_grmode > DLM_LOCK_CR) {
776			big_lock_exists = 1;
777			goto setflag;
778		}
779
780		if (((int)lkb->lkb_lvbseq - (int)high_seq) >= 0) {
781			high_lkb = lkb;
782			high_seq = lkb->lkb_lvbseq;
783		}
784	}
785
786 setflag:
787	if (!lock_lvb_exists)
788		goto out;
789
790	/* lvb is invalidated if only NL/CR locks remain */
791	if (!big_lock_exists)
792		rsb_set_flag(r, RSB_VALNOTVALID);
793
794	if (!r->res_lvbptr) {
795		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
796		if (!r->res_lvbptr)
797			goto out;
798	}
799
800	if (big_lock_exists) {
801		r->res_lvbseq = lkb->lkb_lvbseq;
802		memcpy(r->res_lvbptr, lkb->lkb_lvbptr, lvblen);
803	} else if (high_lkb) {
804		r->res_lvbseq = high_lkb->lkb_lvbseq;
805		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
806	} else {
807		r->res_lvbseq = 0;
808		memset(r->res_lvbptr, 0, lvblen);
809	}
810 out:
811	return;
812}
813
814/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
815   converting PR->CW or CW->PR need to have their lkb_grmode set. */
 
816
817static void recover_conversion(struct dlm_rsb *r)
818{
819	struct dlm_ls *ls = r->res_ls;
 
 
820	struct dlm_lkb *lkb;
821	int grmode = -1;
822
823	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
824		if (lkb->lkb_grmode == DLM_LOCK_PR ||
825		    lkb->lkb_grmode == DLM_LOCK_CW) {
826			grmode = lkb->lkb_grmode;
 
827			break;
828		}
829	}
830
 
 
 
831	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
832		if (lkb->lkb_grmode != DLM_LOCK_IV)
833			continue;
834		if (grmode == -1) {
835			log_debug(ls, "recover_conversion %x set gr to rq %d",
836				  lkb->lkb_id, lkb->lkb_rqmode);
837			lkb->lkb_grmode = lkb->lkb_rqmode;
838		} else {
839			log_debug(ls, "recover_conversion %x set gr %d",
840				  lkb->lkb_id, grmode);
841			lkb->lkb_grmode = grmode;
 
 
 
842		}
843	}
844}
845
846/* We've become the new master for this rsb and waiting/converting locks may
847   need to be granted in dlm_recover_grant() due to locks that may have
848   existed from a removed node. */
849
850static void recover_grant(struct dlm_rsb *r)
851{
852	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
853		rsb_set_flag(r, RSB_RECOVER_GRANT);
854}
855
856void dlm_recover_rsbs(struct dlm_ls *ls)
857{
858	struct dlm_rsb *r;
859	unsigned int count = 0;
860
861	down_read(&ls->ls_root_sem);
862	list_for_each_entry(r, &ls->ls_root_list, res_root_list) {
863		lock_rsb(r);
864		if (is_master(r)) {
865			if (rsb_flag(r, RSB_RECOVER_CONVERT))
866				recover_conversion(r);
867
868			/* recover lvb before granting locks so the updated
869			   lvb/VALNOTVALID is presented in the completion */
870			recover_lvb(r);
871
872			if (rsb_flag(r, RSB_NEW_MASTER2))
873				recover_grant(r);
874			count++;
875		} else {
876			rsb_clear_flag(r, RSB_VALNOTVALID);
877		}
878		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
879		rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL);
880		rsb_clear_flag(r, RSB_NEW_MASTER2);
881		unlock_rsb(r);
882	}
883	up_read(&ls->ls_root_sem);
884
885	if (count)
886		log_rinfo(ls, "dlm_recover_rsbs %d done", count);
887}
888
889/* Create a single list of all root rsb's to be used during recovery */
890
891int dlm_create_root_list(struct dlm_ls *ls)
892{
893	struct rb_node *n;
894	struct dlm_rsb *r;
895	int i, error = 0;
896
897	down_write(&ls->ls_root_sem);
898	if (!list_empty(&ls->ls_root_list)) {
899		log_error(ls, "root list not empty");
900		error = -EINVAL;
901		goto out;
902	}
903
904	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
905		spin_lock(&ls->ls_rsbtbl[i].lock);
906		for (n = rb_first(&ls->ls_rsbtbl[i].keep); n; n = rb_next(n)) {
907			r = rb_entry(n, struct dlm_rsb, res_hashnode);
908			list_add(&r->res_root_list, &ls->ls_root_list);
909			dlm_hold_rsb(r);
910		}
911
912		if (!RB_EMPTY_ROOT(&ls->ls_rsbtbl[i].toss))
913			log_error(ls, "dlm_create_root_list toss not empty");
914		spin_unlock(&ls->ls_rsbtbl[i].lock);
915	}
916 out:
917	up_write(&ls->ls_root_sem);
918	return error;
919}
920
921void dlm_release_root_list(struct dlm_ls *ls)
922{
923	struct dlm_rsb *r, *safe;
 
924
925	down_write(&ls->ls_root_sem);
926	list_for_each_entry_safe(r, safe, &ls->ls_root_list, res_root_list) {
927		list_del_init(&r->res_root_list);
928		dlm_put_rsb(r);
929	}
930	up_write(&ls->ls_root_sem);
931}
932
933void dlm_clear_toss(struct dlm_ls *ls)
934{
935	struct rb_node *n, *next;
936	struct dlm_rsb *r;
937	unsigned int count = 0;
938	int i;
939
940	for (i = 0; i < ls->ls_rsbtbl_size; i++) {
941		spin_lock(&ls->ls_rsbtbl[i].lock);
942		for (n = rb_first(&ls->ls_rsbtbl[i].toss); n; n = next) {
943			next = rb_next(n);
944			r = rb_entry(n, struct dlm_rsb, res_hashnode);
945			rb_erase(n, &ls->ls_rsbtbl[i].toss);
946			dlm_free_rsb(r);
947			count++;
948		}
949		spin_unlock(&ls->ls_rsbtbl[i].lock);
950	}
 
951
952	if (count)
953		log_rinfo(ls, "dlm_clear_toss %u done", count);
954}
955
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/******************************************************************************
  3*******************************************************************************
  4**
  5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
  6**  Copyright (C) 2004-2005 Red Hat, Inc.  All rights reserved.
  7**
 
 
 
  8**
  9*******************************************************************************
 10******************************************************************************/
 11
 12#include "dlm_internal.h"
 13#include "lockspace.h"
 14#include "dir.h"
 15#include "config.h"
 16#include "ast.h"
 17#include "memory.h"
 18#include "rcom.h"
 19#include "lock.h"
 20#include "lowcomms.h"
 21#include "member.h"
 22#include "recover.h"
 23
 24
 25/*
 26 * Recovery waiting routines: these functions wait for a particular reply from
 27 * a remote node, or for the remote node to report a certain status.  They need
 28 * to abort if the lockspace is stopped indicating a node has failed (perhaps
 29 * the one being waited for).
 30 */
 31
 32/*
 33 * Wait until given function returns non-zero or lockspace is stopped
 34 * (LS_RECOVERY_STOP set due to failure of a node in ls_nodes).  When another
 35 * function thinks it could have completed the waited-on task, they should wake
 36 * up ls_wait_general to get an immediate response rather than waiting for the
 37 * timeout.  This uses a timeout so it can check periodically if the wait
 38 * should abort due to node failure (which doesn't cause a wake_up).
 39 * This should only be called by the dlm_recoverd thread.
 40 */
 41
 42int dlm_wait_function(struct dlm_ls *ls, int (*testfn) (struct dlm_ls *ls))
 43{
 44	int error = 0;
 45	int rv;
 46
 47	while (1) {
 48		rv = wait_event_timeout(ls->ls_wait_general,
 49					testfn(ls) || dlm_recovery_stopped(ls),
 50					dlm_config.ci_recover_timer * HZ);
 51		if (rv)
 52			break;
 53		if (test_bit(LSFL_RCOM_WAIT, &ls->ls_flags)) {
 54			log_debug(ls, "dlm_wait_function timed out");
 55			return -ETIMEDOUT;
 56		}
 57	}
 58
 59	if (dlm_recovery_stopped(ls)) {
 60		log_debug(ls, "dlm_wait_function aborted");
 61		error = -EINTR;
 62	}
 63	return error;
 64}
 65
 66/*
 67 * An efficient way for all nodes to wait for all others to have a certain
 68 * status.  The node with the lowest nodeid polls all the others for their
 69 * status (wait_status_all) and all the others poll the node with the low id
 70 * for its accumulated result (wait_status_low).  When all nodes have set
 71 * status flag X, then status flag X_ALL will be set on the low nodeid.
 72 */
 73
 74uint32_t dlm_recover_status(struct dlm_ls *ls)
 75{
 76	uint32_t status;
 77	spin_lock_bh(&ls->ls_recover_lock);
 78	status = ls->ls_recover_status;
 79	spin_unlock_bh(&ls->ls_recover_lock);
 80	return status;
 81}
 82
 83static void _set_recover_status(struct dlm_ls *ls, uint32_t status)
 84{
 85	ls->ls_recover_status |= status;
 86}
 87
 88void dlm_set_recover_status(struct dlm_ls *ls, uint32_t status)
 89{
 90	spin_lock_bh(&ls->ls_recover_lock);
 91	_set_recover_status(ls, status);
 92	spin_unlock_bh(&ls->ls_recover_lock);
 93}
 94
 95static int wait_status_all(struct dlm_ls *ls, uint32_t wait_status,
 96			   int save_slots, uint64_t seq)
 97{
 98	struct dlm_rcom *rc = ls->ls_recover_buf;
 99	struct dlm_member *memb;
100	int error = 0, delay;
101
102	list_for_each_entry(memb, &ls->ls_nodes, list) {
103		delay = 0;
104		for (;;) {
105			if (dlm_recovery_stopped(ls)) {
106				error = -EINTR;
107				goto out;
108			}
109
110			error = dlm_rcom_status(ls, memb->nodeid, 0, seq);
111			if (error)
112				goto out;
113
114			if (save_slots)
115				dlm_slot_save(ls, rc, memb);
116
117			if (le32_to_cpu(rc->rc_result) & wait_status)
118				break;
119			if (delay < 1000)
120				delay += 20;
121			msleep(delay);
122		}
123	}
124 out:
125	return error;
126}
127
128static int wait_status_low(struct dlm_ls *ls, uint32_t wait_status,
129			   uint32_t status_flags, uint64_t seq)
130{
131	struct dlm_rcom *rc = ls->ls_recover_buf;
132	int error = 0, delay = 0, nodeid = ls->ls_low_nodeid;
133
134	for (;;) {
135		if (dlm_recovery_stopped(ls)) {
136			error = -EINTR;
137			goto out;
138		}
139
140		error = dlm_rcom_status(ls, nodeid, status_flags, seq);
141		if (error)
142			break;
143
144		if (le32_to_cpu(rc->rc_result) & wait_status)
145			break;
146		if (delay < 1000)
147			delay += 20;
148		msleep(delay);
149	}
150 out:
151	return error;
152}
153
154static int wait_status(struct dlm_ls *ls, uint32_t status, uint64_t seq)
155{
156	uint32_t status_all = status << 1;
157	int error;
158
159	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
160		error = wait_status_all(ls, status, 0, seq);
161		if (!error)
162			dlm_set_recover_status(ls, status_all);
163	} else
164		error = wait_status_low(ls, status_all, 0, seq);
165
166	return error;
167}
168
169int dlm_recover_members_wait(struct dlm_ls *ls, uint64_t seq)
170{
171	struct dlm_member *memb;
172	struct dlm_slot *slots;
173	int num_slots, slots_size;
174	int error, rv;
175	uint32_t gen;
176
177	list_for_each_entry(memb, &ls->ls_nodes, list) {
178		memb->slot = -1;
179		memb->generation = 0;
180	}
181
182	if (ls->ls_low_nodeid == dlm_our_nodeid()) {
183		error = wait_status_all(ls, DLM_RS_NODES, 1, seq);
184		if (error)
185			goto out;
186
187		/* slots array is sparse, slots_size may be > num_slots */
188
189		rv = dlm_slots_assign(ls, &num_slots, &slots_size, &slots, &gen);
190		if (!rv) {
191			spin_lock_bh(&ls->ls_recover_lock);
192			_set_recover_status(ls, DLM_RS_NODES_ALL);
193			ls->ls_num_slots = num_slots;
194			ls->ls_slots_size = slots_size;
195			ls->ls_slots = slots;
196			ls->ls_generation = gen;
197			spin_unlock_bh(&ls->ls_recover_lock);
198		} else {
199			dlm_set_recover_status(ls, DLM_RS_NODES_ALL);
200		}
201	} else {
202		error = wait_status_low(ls, DLM_RS_NODES_ALL,
203					DLM_RSF_NEED_SLOTS, seq);
204		if (error)
205			goto out;
206
207		dlm_slots_copy_in(ls);
208	}
209 out:
210	return error;
211}
212
213int dlm_recover_directory_wait(struct dlm_ls *ls, uint64_t seq)
214{
215	return wait_status(ls, DLM_RS_DIR, seq);
216}
217
218int dlm_recover_locks_wait(struct dlm_ls *ls, uint64_t seq)
219{
220	return wait_status(ls, DLM_RS_LOCKS, seq);
221}
222
223int dlm_recover_done_wait(struct dlm_ls *ls, uint64_t seq)
224{
225	return wait_status(ls, DLM_RS_DONE, seq);
226}
227
228/*
229 * The recover_list contains all the rsb's for which we've requested the new
230 * master nodeid.  As replies are returned from the resource directories the
231 * rsb's are removed from the list.  When the list is empty we're done.
232 *
233 * The recover_list is later similarly used for all rsb's for which we've sent
234 * new lkb's and need to receive new corresponding lkid's.
235 *
236 * We use the address of the rsb struct as a simple local identifier for the
237 * rsb so we can match an rcom reply with the rsb it was sent for.
238 */
239
240static int recover_list_empty(struct dlm_ls *ls)
241{
242	int empty;
243
244	spin_lock_bh(&ls->ls_recover_list_lock);
245	empty = list_empty(&ls->ls_recover_list);
246	spin_unlock_bh(&ls->ls_recover_list_lock);
247
248	return empty;
249}
250
251static void recover_list_add(struct dlm_rsb *r)
252{
253	struct dlm_ls *ls = r->res_ls;
254
255	spin_lock_bh(&ls->ls_recover_list_lock);
256	if (list_empty(&r->res_recover_list)) {
257		list_add_tail(&r->res_recover_list, &ls->ls_recover_list);
258		ls->ls_recover_list_count++;
259		dlm_hold_rsb(r);
260	}
261	spin_unlock_bh(&ls->ls_recover_list_lock);
262}
263
264static void recover_list_del(struct dlm_rsb *r)
265{
266	struct dlm_ls *ls = r->res_ls;
267
268	spin_lock_bh(&ls->ls_recover_list_lock);
269	list_del_init(&r->res_recover_list);
270	ls->ls_recover_list_count--;
271	spin_unlock_bh(&ls->ls_recover_list_lock);
272
273	dlm_put_rsb(r);
274}
275
276static void recover_list_clear(struct dlm_ls *ls)
277{
278	struct dlm_rsb *r, *s;
279
280	spin_lock_bh(&ls->ls_recover_list_lock);
281	list_for_each_entry_safe(r, s, &ls->ls_recover_list, res_recover_list) {
282		list_del_init(&r->res_recover_list);
283		r->res_recover_locks_count = 0;
284		dlm_put_rsb(r);
285		ls->ls_recover_list_count--;
286	}
287
288	if (ls->ls_recover_list_count != 0) {
289		log_error(ls, "warning: recover_list_count %d",
290			  ls->ls_recover_list_count);
291		ls->ls_recover_list_count = 0;
292	}
293	spin_unlock_bh(&ls->ls_recover_list_lock);
294}
295
296static int recover_xa_empty(struct dlm_ls *ls)
297{
298	int empty = 1;
299
300	spin_lock_bh(&ls->ls_recover_xa_lock);
301	if (ls->ls_recover_list_count)
302		empty = 0;
303	spin_unlock_bh(&ls->ls_recover_xa_lock);
304
305	return empty;
306}
307
308static int recover_xa_add(struct dlm_rsb *r)
309{
310	struct dlm_ls *ls = r->res_ls;
311	struct xa_limit limit = {
312		.min = 1,
313		.max = UINT_MAX,
314	};
315	uint32_t id;
316	int rv;
317
318	spin_lock_bh(&ls->ls_recover_xa_lock);
 
319	if (r->res_id) {
320		rv = -1;
321		goto out_unlock;
322	}
323	rv = xa_alloc(&ls->ls_recover_xa, &id, r, limit, GFP_ATOMIC);
324	if (rv < 0)
325		goto out_unlock;
326
327	r->res_id = id;
328	ls->ls_recover_list_count++;
329	dlm_hold_rsb(r);
330	rv = 0;
331out_unlock:
332	spin_unlock_bh(&ls->ls_recover_xa_lock);
 
333	return rv;
334}
335
336static void recover_xa_del(struct dlm_rsb *r)
337{
338	struct dlm_ls *ls = r->res_ls;
339
340	spin_lock_bh(&ls->ls_recover_xa_lock);
341	xa_erase_bh(&ls->ls_recover_xa, r->res_id);
342	r->res_id = 0;
343	ls->ls_recover_list_count--;
344	spin_unlock_bh(&ls->ls_recover_xa_lock);
345
346	dlm_put_rsb(r);
347}
348
349static struct dlm_rsb *recover_xa_find(struct dlm_ls *ls, uint64_t id)
350{
351	struct dlm_rsb *r;
352
353	spin_lock_bh(&ls->ls_recover_xa_lock);
354	r = xa_load(&ls->ls_recover_xa, (int)id);
355	spin_unlock_bh(&ls->ls_recover_xa_lock);
356	return r;
357}
358
359static void recover_xa_clear(struct dlm_ls *ls)
360{
361	struct dlm_rsb *r;
362	unsigned long id;
363
364	spin_lock_bh(&ls->ls_recover_xa_lock);
365
366	xa_for_each(&ls->ls_recover_xa, id, r) {
367		xa_erase_bh(&ls->ls_recover_xa, id);
368		r->res_id = 0;
369		r->res_recover_locks_count = 0;
370		ls->ls_recover_list_count--;
371
372		dlm_put_rsb(r);
373	}
374
375	if (ls->ls_recover_list_count != 0) {
376		log_error(ls, "warning: recover_list_count %d",
377			  ls->ls_recover_list_count);
378		ls->ls_recover_list_count = 0;
379	}
380	spin_unlock_bh(&ls->ls_recover_xa_lock);
381}
382
383
384/* Master recovery: find new master node for rsb's that were
385   mastered on nodes that have been removed.
386
387   dlm_recover_masters
388   recover_master
389   dlm_send_rcom_lookup            ->  receive_rcom_lookup
390                                       dlm_dir_lookup
391   receive_rcom_lookup_reply       <-
392   dlm_recover_master_reply
393   set_new_master
394   set_master_lkbs
395   set_lock_master
396*/
397
398/*
399 * Set the lock master for all LKBs in a lock queue
400 * If we are the new master of the rsb, we may have received new
401 * MSTCPY locks from other nodes already which we need to ignore
402 * when setting the new nodeid.
403 */
404
405static void set_lock_master(struct list_head *queue, int nodeid)
406{
407	struct dlm_lkb *lkb;
408
409	list_for_each_entry(lkb, queue, lkb_statequeue) {
410		if (!test_bit(DLM_IFL_MSTCPY_BIT, &lkb->lkb_iflags)) {
411			lkb->lkb_nodeid = nodeid;
412			lkb->lkb_remid = 0;
413		}
414	}
415}
416
417static void set_master_lkbs(struct dlm_rsb *r)
418{
419	set_lock_master(&r->res_grantqueue, r->res_nodeid);
420	set_lock_master(&r->res_convertqueue, r->res_nodeid);
421	set_lock_master(&r->res_waitqueue, r->res_nodeid);
422}
423
424/*
425 * Propagate the new master nodeid to locks
426 * The NEW_MASTER flag tells dlm_recover_locks() which rsb's to consider.
427 * The NEW_MASTER2 flag tells recover_lvb() and recover_grant() which
428 * rsb's to consider.
429 */
430
431static void set_new_master(struct dlm_rsb *r)
432{
433	set_master_lkbs(r);
434	rsb_set_flag(r, RSB_NEW_MASTER);
435	rsb_set_flag(r, RSB_NEW_MASTER2);
436}
437
438/*
439 * We do async lookups on rsb's that need new masters.  The rsb's
440 * waiting for a lookup reply are kept on the recover_list.
441 *
442 * Another node recovering the master may have sent us a rcom lookup,
443 * and our dlm_master_lookup() set it as the new master, along with
444 * NEW_MASTER so that we'll recover it here (this implies dir_nodeid
445 * equals our_nodeid below).
446 */
447
448static int recover_master(struct dlm_rsb *r, unsigned int *count, uint64_t seq)
449{
450	struct dlm_ls *ls = r->res_ls;
451	int our_nodeid, dir_nodeid;
452	int is_removed = 0;
453	int error;
454
455	if (r->res_nodeid != -1 && is_master(r))
456		return 0;
457
458	if (r->res_nodeid != -1)
459		is_removed = dlm_is_removed(ls, r->res_nodeid);
460
461	if (!is_removed && !rsb_flag(r, RSB_NEW_MASTER))
462		return 0;
463
464	our_nodeid = dlm_our_nodeid();
465	dir_nodeid = dlm_dir_nodeid(r);
466
467	if (dir_nodeid == our_nodeid) {
468		if (is_removed) {
469			r->res_master_nodeid = our_nodeid;
470			r->res_nodeid = 0;
471		}
472
473		/* set master of lkbs to ourself when is_removed, or to
474		   another new master which we set along with NEW_MASTER
475		   in dlm_master_lookup */
476		set_new_master(r);
477		error = 0;
478	} else {
479		recover_xa_add(r);
480		error = dlm_send_rcom_lookup(r, dir_nodeid, seq);
481	}
482
483	(*count)++;
484	return error;
485}
486
487/*
488 * All MSTCPY locks are purged and rebuilt, even if the master stayed the same.
489 * This is necessary because recovery can be started, aborted and restarted,
490 * causing the master nodeid to briefly change during the aborted recovery, and
491 * change back to the original value in the second recovery.  The MSTCPY locks
492 * may or may not have been purged during the aborted recovery.  Another node
493 * with an outstanding request in waiters list and a request reply saved in the
494 * requestqueue, cannot know whether it should ignore the reply and resend the
495 * request, or accept the reply and complete the request.  It must do the
496 * former if the remote node purged MSTCPY locks, and it must do the later if
497 * the remote node did not.  This is solved by always purging MSTCPY locks, in
498 * which case, the request reply would always be ignored and the request
499 * resent.
500 */
501
502static int recover_master_static(struct dlm_rsb *r, unsigned int *count)
503{
504	int dir_nodeid = dlm_dir_nodeid(r);
505	int new_master = dir_nodeid;
506
507	if (dir_nodeid == dlm_our_nodeid())
508		new_master = 0;
509
510	dlm_purge_mstcpy_locks(r);
511	r->res_master_nodeid = dir_nodeid;
512	r->res_nodeid = new_master;
513	set_new_master(r);
514	(*count)++;
515	return 0;
516}
517
518/*
519 * Go through local root resources and for each rsb which has a master which
520 * has departed, get the new master nodeid from the directory.  The dir will
521 * assign mastery to the first node to look up the new master.  That means
522 * we'll discover in this lookup if we're the new master of any rsb's.
523 *
524 * We fire off all the dir lookup requests individually and asynchronously to
525 * the correct dir node.
526 */
527
528int dlm_recover_masters(struct dlm_ls *ls, uint64_t seq,
529			const struct list_head *root_list)
530{
531	struct dlm_rsb *r;
532	unsigned int total = 0;
533	unsigned int count = 0;
534	int nodir = dlm_no_directory(ls);
535	int error;
536
537	log_rinfo(ls, "dlm_recover_masters");
538
539	list_for_each_entry(r, root_list, res_root_list) {
 
540		if (dlm_recovery_stopped(ls)) {
 
541			error = -EINTR;
542			goto out;
543		}
544
545		lock_rsb(r);
546		if (nodir)
547			error = recover_master_static(r, &count);
548		else
549			error = recover_master(r, &count, seq);
550		unlock_rsb(r);
551		cond_resched();
552		total++;
553
554		if (error)
 
555			goto out;
 
556	}
 
557
558	log_rinfo(ls, "dlm_recover_masters %u of %u", count, total);
559
560	error = dlm_wait_function(ls, &recover_xa_empty);
561 out:
562	if (error)
563		recover_xa_clear(ls);
564	return error;
565}
566
567int dlm_recover_master_reply(struct dlm_ls *ls, const struct dlm_rcom *rc)
568{
569	struct dlm_rsb *r;
570	int ret_nodeid, new_master;
571
572	r = recover_xa_find(ls, le64_to_cpu(rc->rc_id));
573	if (!r) {
574		log_error(ls, "dlm_recover_master_reply no id %llx",
575			  (unsigned long long)le64_to_cpu(rc->rc_id));
576		goto out;
577	}
578
579	ret_nodeid = le32_to_cpu(rc->rc_result);
580
581	if (ret_nodeid == dlm_our_nodeid())
582		new_master = 0;
583	else
584		new_master = ret_nodeid;
585
586	lock_rsb(r);
587	r->res_master_nodeid = ret_nodeid;
588	r->res_nodeid = new_master;
589	set_new_master(r);
590	unlock_rsb(r);
591	recover_xa_del(r);
592
593	if (recover_xa_empty(ls))
594		wake_up(&ls->ls_wait_general);
595 out:
596	return 0;
597}
598
599
600/* Lock recovery: rebuild the process-copy locks we hold on a
601   remastered rsb on the new rsb master.
602
603   dlm_recover_locks
604   recover_locks
605   recover_locks_queue
606   dlm_send_rcom_lock              ->  receive_rcom_lock
607                                       dlm_recover_master_copy
608   receive_rcom_lock_reply         <-
609   dlm_recover_process_copy
610*/
611
612
613/*
614 * keep a count of the number of lkb's we send to the new master; when we get
615 * an equal number of replies then recovery for the rsb is done
616 */
617
618static int recover_locks_queue(struct dlm_rsb *r, struct list_head *head,
619			       uint64_t seq)
620{
621	struct dlm_lkb *lkb;
622	int error = 0;
623
624	list_for_each_entry(lkb, head, lkb_statequeue) {
625		error = dlm_send_rcom_lock(r, lkb, seq);
626		if (error)
627			break;
628		r->res_recover_locks_count++;
629	}
630
631	return error;
632}
633
634static int recover_locks(struct dlm_rsb *r, uint64_t seq)
635{
636	int error = 0;
637
638	lock_rsb(r);
639
640	DLM_ASSERT(!r->res_recover_locks_count, dlm_dump_rsb(r););
641
642	error = recover_locks_queue(r, &r->res_grantqueue, seq);
643	if (error)
644		goto out;
645	error = recover_locks_queue(r, &r->res_convertqueue, seq);
646	if (error)
647		goto out;
648	error = recover_locks_queue(r, &r->res_waitqueue, seq);
649	if (error)
650		goto out;
651
652	if (r->res_recover_locks_count)
653		recover_list_add(r);
654	else
655		rsb_clear_flag(r, RSB_NEW_MASTER);
656 out:
657	unlock_rsb(r);
658	return error;
659}
660
661int dlm_recover_locks(struct dlm_ls *ls, uint64_t seq,
662		      const struct list_head *root_list)
663{
664	struct dlm_rsb *r;
665	int error, count = 0;
666
667	list_for_each_entry(r, root_list, res_root_list) {
668		if (r->res_nodeid != -1 && is_master(r)) {
 
669			rsb_clear_flag(r, RSB_NEW_MASTER);
670			continue;
671		}
672
673		if (!rsb_flag(r, RSB_NEW_MASTER))
674			continue;
675
676		if (dlm_recovery_stopped(ls)) {
677			error = -EINTR;
 
678			goto out;
679		}
680
681		error = recover_locks(r, seq);
682		if (error)
 
683			goto out;
 
684
685		count += r->res_recover_locks_count;
686	}
 
687
688	log_rinfo(ls, "dlm_recover_locks %d out", count);
689
690	error = dlm_wait_function(ls, &recover_list_empty);
691 out:
692	if (error)
693		recover_list_clear(ls);
694	return error;
695}
696
697void dlm_recovered_lock(struct dlm_rsb *r)
698{
699	DLM_ASSERT(rsb_flag(r, RSB_NEW_MASTER), dlm_dump_rsb(r););
700
701	r->res_recover_locks_count--;
702	if (!r->res_recover_locks_count) {
703		rsb_clear_flag(r, RSB_NEW_MASTER);
704		recover_list_del(r);
705	}
706
707	if (recover_list_empty(r->res_ls))
708		wake_up(&r->res_ls->ls_wait_general);
709}
710
711/*
712 * The lvb needs to be recovered on all master rsb's.  This includes setting
713 * the VALNOTVALID flag if necessary, and determining the correct lvb contents
714 * based on the lvb's of the locks held on the rsb.
715 *
716 * RSB_VALNOTVALID is set in two cases:
717 *
718 * 1. we are master, but not new, and we purged an EX/PW lock held by a
719 * failed node (in dlm_recover_purge which set RSB_RECOVER_LVB_INVAL)
720 *
721 * 2. we are a new master, and there are only NL/CR locks left.
722 * (We could probably improve this by only invaliding in this way when
723 * the previous master left uncleanly.  VMS docs mention that.)
724 *
725 * The LVB contents are only considered for changing when this is a new master
726 * of the rsb (NEW_MASTER2).  Then, the rsb's lvb is taken from any lkb with
727 * mode > CR.  If no lkb's exist with mode above CR, the lvb contents are taken
728 * from the lkb with the largest lvb sequence number.
729 */
730
731static void recover_lvb(struct dlm_rsb *r)
732{
733	struct dlm_lkb *big_lkb = NULL, *iter, *high_lkb = NULL;
734	uint32_t high_seq = 0;
735	int lock_lvb_exists = 0;
 
736	int lvblen = r->res_ls->ls_lvblen;
737
738	if (!rsb_flag(r, RSB_NEW_MASTER2) &&
739	    rsb_flag(r, RSB_RECOVER_LVB_INVAL)) {
740		/* case 1 above */
741		rsb_set_flag(r, RSB_VALNOTVALID);
742		return;
743	}
744
745	if (!rsb_flag(r, RSB_NEW_MASTER2))
746		return;
747
748	/* we are the new master, so figure out if VALNOTVALID should
749	   be set, and set the rsb lvb from the best lkb available. */
750
751	list_for_each_entry(iter, &r->res_grantqueue, lkb_statequeue) {
752		if (!(iter->lkb_exflags & DLM_LKF_VALBLK))
753			continue;
754
755		lock_lvb_exists = 1;
756
757		if (iter->lkb_grmode > DLM_LOCK_CR) {
758			big_lkb = iter;
759			goto setflag;
760		}
761
762		if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) {
763			high_lkb = iter;
764			high_seq = iter->lkb_lvbseq;
765		}
766	}
767
768	list_for_each_entry(iter, &r->res_convertqueue, lkb_statequeue) {
769		if (!(iter->lkb_exflags & DLM_LKF_VALBLK))
770			continue;
771
772		lock_lvb_exists = 1;
773
774		if (iter->lkb_grmode > DLM_LOCK_CR) {
775			big_lkb = iter;
776			goto setflag;
777		}
778
779		if (((int)iter->lkb_lvbseq - (int)high_seq) >= 0) {
780			high_lkb = iter;
781			high_seq = iter->lkb_lvbseq;
782		}
783	}
784
785 setflag:
786	if (!lock_lvb_exists)
787		goto out;
788
789	/* lvb is invalidated if only NL/CR locks remain */
790	if (!big_lkb)
791		rsb_set_flag(r, RSB_VALNOTVALID);
792
793	if (!r->res_lvbptr) {
794		r->res_lvbptr = dlm_allocate_lvb(r->res_ls);
795		if (!r->res_lvbptr)
796			goto out;
797	}
798
799	if (big_lkb) {
800		r->res_lvbseq = big_lkb->lkb_lvbseq;
801		memcpy(r->res_lvbptr, big_lkb->lkb_lvbptr, lvblen);
802	} else if (high_lkb) {
803		r->res_lvbseq = high_lkb->lkb_lvbseq;
804		memcpy(r->res_lvbptr, high_lkb->lkb_lvbptr, lvblen);
805	} else {
806		r->res_lvbseq = 0;
807		memset(r->res_lvbptr, 0, lvblen);
808	}
809 out:
810	return;
811}
812
813/* All master rsb's flagged RECOVER_CONVERT need to be looked at.  The locks
814 * converting PR->CW or CW->PR may need to have their lkb_grmode changed.
815 */
816
817static void recover_conversion(struct dlm_rsb *r)
818{
819	struct dlm_ls *ls = r->res_ls;
820	uint32_t other_lkid = 0;
821	int other_grmode = -1;
822	struct dlm_lkb *lkb;
 
823
824	list_for_each_entry(lkb, &r->res_grantqueue, lkb_statequeue) {
825		if (lkb->lkb_grmode == DLM_LOCK_PR ||
826		    lkb->lkb_grmode == DLM_LOCK_CW) {
827			other_grmode = lkb->lkb_grmode;
828			other_lkid = lkb->lkb_id;
829			break;
830		}
831	}
832
833	if (other_grmode == -1)
834		return;
835
836	list_for_each_entry(lkb, &r->res_convertqueue, lkb_statequeue) {
837		/* Lock recovery created incompatible granted modes, so
838		 * change the granted mode of the converting lock to
839		 * NL. The rqmode of the converting lock should be CW,
840		 * which means the converting lock should be granted at
841		 * the end of recovery.
842		 */
843		if (((lkb->lkb_grmode == DLM_LOCK_PR) && (other_grmode == DLM_LOCK_CW)) ||
844		    ((lkb->lkb_grmode == DLM_LOCK_CW) && (other_grmode == DLM_LOCK_PR))) {
845			log_limit(ls, "%s %x gr %d rq %d, remote %d %x, other_lkid %u, other gr %d, set gr=NL",
846				  __func__, lkb->lkb_id, lkb->lkb_grmode,
847				  lkb->lkb_rqmode, lkb->lkb_nodeid,
848				  lkb->lkb_remid, other_lkid, other_grmode);
849			lkb->lkb_grmode = DLM_LOCK_NL;
850		}
851	}
852}
853
854/* We've become the new master for this rsb and waiting/converting locks may
855   need to be granted in dlm_recover_grant() due to locks that may have
856   existed from a removed node. */
857
858static void recover_grant(struct dlm_rsb *r)
859{
860	if (!list_empty(&r->res_waitqueue) || !list_empty(&r->res_convertqueue))
861		rsb_set_flag(r, RSB_RECOVER_GRANT);
862}
863
864void dlm_recover_rsbs(struct dlm_ls *ls, const struct list_head *root_list)
865{
866	struct dlm_rsb *r;
867	unsigned int count = 0;
868
869	list_for_each_entry(r, root_list, res_root_list) {
 
870		lock_rsb(r);
871		if (r->res_nodeid != -1 && is_master(r)) {
872			if (rsb_flag(r, RSB_RECOVER_CONVERT))
873				recover_conversion(r);
874
875			/* recover lvb before granting locks so the updated
876			   lvb/VALNOTVALID is presented in the completion */
877			recover_lvb(r);
878
879			if (rsb_flag(r, RSB_NEW_MASTER2))
880				recover_grant(r);
881			count++;
882		} else {
883			rsb_clear_flag(r, RSB_VALNOTVALID);
884		}
885		rsb_clear_flag(r, RSB_RECOVER_CONVERT);
886		rsb_clear_flag(r, RSB_RECOVER_LVB_INVAL);
887		rsb_clear_flag(r, RSB_NEW_MASTER2);
888		unlock_rsb(r);
889	}
 
890
891	if (count)
892		log_rinfo(ls, "dlm_recover_rsbs %d done", count);
893}
894
895void dlm_clear_inactive(struct dlm_ls *ls)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896{
897	struct dlm_rsb *r, *safe;
898	unsigned int count = 0;
899
900	write_lock_bh(&ls->ls_rsbtbl_lock);
901	list_for_each_entry_safe(r, safe, &ls->ls_slow_inactive, res_slow_list) {
902		list_del(&r->res_slow_list);
903		rhashtable_remove_fast(&ls->ls_rsbtbl, &r->res_node,
904				       dlm_rhash_rsb_params);
 
 
905
906		if (!list_empty(&r->res_scan_list))
907			list_del_init(&r->res_scan_list);
 
 
 
 
908
909		free_inactive_rsb(r);
910		count++;
 
 
 
 
 
 
 
 
911	}
912	write_unlock_bh(&ls->ls_rsbtbl_lock);
913
914	if (count)
915		log_rinfo(ls, "dlm_clear_inactive %u done", count);
916}
917