Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * This contains encryption functions for per-file encryption.
  3 *
  4 * Copyright (C) 2015, Google, Inc.
  5 * Copyright (C) 2015, Motorola Mobility
  6 *
  7 * Written by Michael Halcrow, 2014.
  8 *
  9 * Filename encryption additions
 10 *	Uday Savagaonkar, 2014
 11 * Encryption policy handling additions
 12 *	Ildar Muslukhov, 2014
 13 * Add fscrypt_pullback_bio_page()
 14 *	Jaegeuk Kim, 2015.
 15 *
 16 * This has not yet undergone a rigorous security audit.
 17 *
 18 * The usage of AES-XTS should conform to recommendations in NIST
 19 * Special Publication 800-38E and IEEE P1619/D16.
 20 */
 21
 22#include <linux/pagemap.h>
 23#include <linux/mempool.h>
 24#include <linux/module.h>
 25#include <linux/scatterlist.h>
 26#include <linux/ratelimit.h>
 27#include <linux/bio.h>
 28#include <linux/dcache.h>
 29#include <linux/namei.h>
 30#include <linux/fscrypto.h>
 31#include <linux/ecryptfs.h>
 32
 33static unsigned int num_prealloc_crypto_pages = 32;
 34static unsigned int num_prealloc_crypto_ctxs = 128;
 35
 36module_param(num_prealloc_crypto_pages, uint, 0444);
 37MODULE_PARM_DESC(num_prealloc_crypto_pages,
 38		"Number of crypto pages to preallocate");
 39module_param(num_prealloc_crypto_ctxs, uint, 0444);
 40MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
 41		"Number of crypto contexts to preallocate");
 42
 43static mempool_t *fscrypt_bounce_page_pool = NULL;
 44
 45static LIST_HEAD(fscrypt_free_ctxs);
 46static DEFINE_SPINLOCK(fscrypt_ctx_lock);
 47
 48static struct workqueue_struct *fscrypt_read_workqueue;
 49static DEFINE_MUTEX(fscrypt_init_mutex);
 50
 51static struct kmem_cache *fscrypt_ctx_cachep;
 52struct kmem_cache *fscrypt_info_cachep;
 53
 54/**
 55 * fscrypt_release_ctx() - Releases an encryption context
 56 * @ctx: The encryption context to release.
 57 *
 58 * If the encryption context was allocated from the pre-allocated pool, returns
 59 * it to that pool. Else, frees it.
 60 *
 61 * If there's a bounce page in the context, this frees that.
 62 */
 63void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
 64{
 65	unsigned long flags;
 
 
 66
 67	if (ctx->flags & FS_WRITE_PATH_FL && ctx->w.bounce_page) {
 68		mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
 69		ctx->w.bounce_page = NULL;
 70	}
 71	ctx->w.control_page = NULL;
 72	if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
 73		kmem_cache_free(fscrypt_ctx_cachep, ctx);
 74	} else {
 75		spin_lock_irqsave(&fscrypt_ctx_lock, flags);
 76		list_add(&ctx->free_list, &fscrypt_free_ctxs);
 77		spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
 78	}
 
 79}
 80EXPORT_SYMBOL(fscrypt_release_ctx);
 81
 82/**
 83 * fscrypt_get_ctx() - Gets an encryption context
 84 * @inode:       The inode for which we are doing the crypto
 85 * @gfp_flags:   The gfp flag for memory allocation
 86 *
 87 * Allocates and initializes an encryption context.
 88 *
 89 * Return: An allocated and initialized encryption context on success; error
 90 * value or NULL otherwise.
 91 */
 92struct fscrypt_ctx *fscrypt_get_ctx(struct inode *inode, gfp_t gfp_flags)
 93{
 94	struct fscrypt_ctx *ctx = NULL;
 95	struct fscrypt_info *ci = inode->i_crypt_info;
 96	unsigned long flags;
 97
 98	if (ci == NULL)
 99		return ERR_PTR(-ENOKEY);
100
101	/*
102	 * We first try getting the ctx from a free list because in
103	 * the common case the ctx will have an allocated and
104	 * initialized crypto tfm, so it's probably a worthwhile
105	 * optimization. For the bounce page, we first try getting it
106	 * from the kernel allocator because that's just about as fast
107	 * as getting it from a list and because a cache of free pages
108	 * should generally be a "last resort" option for a filesystem
109	 * to be able to do its job.
110	 */
111	spin_lock_irqsave(&fscrypt_ctx_lock, flags);
112	ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
113					struct fscrypt_ctx, free_list);
114	if (ctx)
115		list_del(&ctx->free_list);
116	spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
117	if (!ctx) {
118		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
119		if (!ctx)
120			return ERR_PTR(-ENOMEM);
121		ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
122	} else {
123		ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
124	}
125	ctx->flags &= ~FS_WRITE_PATH_FL;
126	return ctx;
127}
128EXPORT_SYMBOL(fscrypt_get_ctx);
129
130/**
131 * fscrypt_complete() - The completion callback for page encryption
132 * @req: The asynchronous encryption request context
133 * @res: The result of the encryption operation
 
 
 
134 */
135static void fscrypt_complete(struct crypto_async_request *req, int res)
 
136{
137	struct fscrypt_completion_result *ecr = req->data;
138
139	if (res == -EINPROGRESS)
140		return;
141	ecr->res = res;
142	complete(&ecr->completion);
143}
144
145typedef enum {
146	FS_DECRYPT = 0,
147	FS_ENCRYPT,
148} fscrypt_direction_t;
 
 
 
 
 
 
 
 
149
150static int do_page_crypto(struct inode *inode,
151			fscrypt_direction_t rw, pgoff_t index,
152			struct page *src_page, struct page *dest_page,
153			gfp_t gfp_flags)
 
 
154{
155	u8 xts_tweak[FS_XTS_TWEAK_SIZE];
156	struct skcipher_request *req = NULL;
157	DECLARE_FS_COMPLETION_RESULT(ecr);
158	struct scatterlist dst, src;
159	struct fscrypt_info *ci = inode->i_crypt_info;
160	struct crypto_skcipher *tfm = ci->ci_ctfm;
161	int res = 0;
162
 
 
 
 
 
 
 
163	req = skcipher_request_alloc(tfm, gfp_flags);
164	if (!req) {
165		printk_ratelimited(KERN_ERR
166				"%s: crypto_request_alloc() failed\n",
167				__func__);
168		return -ENOMEM;
169	}
170
171	skcipher_request_set_callback(
172		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
173		fscrypt_complete, &ecr);
174
175	BUILD_BUG_ON(FS_XTS_TWEAK_SIZE < sizeof(index));
176	memcpy(xts_tweak, &index, sizeof(index));
177	memset(&xts_tweak[sizeof(index)], 0,
178			FS_XTS_TWEAK_SIZE - sizeof(index));
179
180	sg_init_table(&dst, 1);
181	sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
182	sg_init_table(&src, 1);
183	sg_set_page(&src, src_page, PAGE_SIZE, 0);
184	skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
185					xts_tweak);
186	if (rw == FS_DECRYPT)
187		res = crypto_skcipher_decrypt(req);
188	else
189		res = crypto_skcipher_encrypt(req);
190	if (res == -EINPROGRESS || res == -EBUSY) {
191		BUG_ON(req->base.data != &ecr);
192		wait_for_completion(&ecr.completion);
193		res = ecr.res;
194	}
195	skcipher_request_free(req);
196	if (res) {
197		printk_ratelimited(KERN_ERR
198			"%s: crypto_skcipher_encrypt() returned %d\n",
199			__func__, res);
200		return res;
201	}
202	return 0;
203}
204
205static struct page *alloc_bounce_page(struct fscrypt_ctx *ctx, gfp_t gfp_flags)
206{
207	ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
208	if (ctx->w.bounce_page == NULL)
209		return ERR_PTR(-ENOMEM);
210	ctx->flags |= FS_WRITE_PATH_FL;
211	return ctx->w.bounce_page;
212}
213
214/**
215 * fscypt_encrypt_page() - Encrypts a page
216 * @inode:          The inode for which the encryption should take place
217 * @plaintext_page: The page to encrypt. Must be locked.
218 * @gfp_flags:      The gfp flag for memory allocation
219 *
220 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
221 * encryption context.
222 *
223 * Called on the page write path.  The caller must call
224 * fscrypt_restore_control_page() on the returned ciphertext page to
225 * release the bounce buffer and the encryption context.
226 *
227 * Return: An allocated page with the encrypted content on success. Else, an
228 * error value or NULL.
229 */
230struct page *fscrypt_encrypt_page(struct inode *inode,
231				struct page *plaintext_page, gfp_t gfp_flags)
232{
233	struct fscrypt_ctx *ctx;
234	struct page *ciphertext_page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235	int err;
236
237	BUG_ON(!PageLocked(plaintext_page));
 
 
 
 
 
 
 
 
238
239	ctx = fscrypt_get_ctx(inode, gfp_flags);
240	if (IS_ERR(ctx))
241		return (struct page *)ctx;
242
243	/* The encryption operation will require a bounce page. */
244	ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
245	if (IS_ERR(ciphertext_page))
246		goto errout;
247
248	ctx->w.control_page = plaintext_page;
249	err = do_page_crypto(inode, FS_ENCRYPT, plaintext_page->index,
250					plaintext_page, ciphertext_page,
251					gfp_flags);
252	if (err) {
253		ciphertext_page = ERR_PTR(err);
254		goto errout;
255	}
256	SetPagePrivate(ciphertext_page);
257	set_page_private(ciphertext_page, (unsigned long)ctx);
258	lock_page(ciphertext_page);
259	return ciphertext_page;
260
261errout:
262	fscrypt_release_ctx(ctx);
263	return ciphertext_page;
264}
265EXPORT_SYMBOL(fscrypt_encrypt_page);
266
267/**
268 * f2crypt_decrypt_page() - Decrypts a page in-place
269 * @page: The page to decrypt. Must be locked.
270 *
271 * Decrypts page in-place using the ctx encryption context.
272 *
273 * Called from the read completion callback.
274 *
275 * Return: Zero on success, non-zero otherwise.
276 */
277int fscrypt_decrypt_page(struct page *page)
278{
279	BUG_ON(!PageLocked(page));
280
281	return do_page_crypto(page->mapping->host,
282			FS_DECRYPT, page->index, page, page, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
283}
284EXPORT_SYMBOL(fscrypt_decrypt_page);
285
286int fscrypt_zeroout_range(struct inode *inode, pgoff_t lblk,
287				sector_t pblk, unsigned int len)
288{
289	struct fscrypt_ctx *ctx;
290	struct page *ciphertext_page = NULL;
291	struct bio *bio;
292	int ret, err = 0;
293
294	BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295
296	ctx = fscrypt_get_ctx(inode, GFP_NOFS);
297	if (IS_ERR(ctx))
298		return PTR_ERR(ctx);
299
300	ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
301	if (IS_ERR(ciphertext_page)) {
302		err = PTR_ERR(ciphertext_page);
303		goto errout;
304	}
305
306	while (len--) {
307		err = do_page_crypto(inode, FS_ENCRYPT, lblk,
308					ZERO_PAGE(0), ciphertext_page,
309					GFP_NOFS);
310		if (err)
311			goto errout;
312
313		bio = bio_alloc(GFP_NOWAIT, 1);
314		if (!bio) {
315			err = -ENOMEM;
316			goto errout;
317		}
318		bio->bi_bdev = inode->i_sb->s_bdev;
319		bio->bi_iter.bi_sector =
320			pblk << (inode->i_sb->s_blocksize_bits - 9);
321		ret = bio_add_page(bio, ciphertext_page,
322					inode->i_sb->s_blocksize, 0);
323		if (ret != inode->i_sb->s_blocksize) {
324			/* should never happen! */
325			WARN_ON(1);
326			bio_put(bio);
327			err = -EIO;
328			goto errout;
329		}
330		err = submit_bio_wait(WRITE, bio);
331		if ((err == 0) && bio->bi_error)
332			err = -EIO;
333		bio_put(bio);
334		if (err)
335			goto errout;
336		lblk++;
337		pblk++;
338	}
339	err = 0;
340errout:
341	fscrypt_release_ctx(ctx);
342	return err;
343}
344EXPORT_SYMBOL(fscrypt_zeroout_range);
345
346/*
347 * Validate dentries for encrypted directories to make sure we aren't
348 * potentially caching stale data after a key has been added or
349 * removed.
350 */
351static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
352{
353	struct dentry *dir;
354	struct fscrypt_info *ci;
355	int dir_has_key, cached_with_key;
356
357	if (flags & LOOKUP_RCU)
358		return -ECHILD;
359
360	dir = dget_parent(dentry);
361	if (!d_inode(dir)->i_sb->s_cop->is_encrypted(d_inode(dir))) {
362		dput(dir);
363		return 0;
364	}
365
366	ci = d_inode(dir)->i_crypt_info;
367	if (ci && ci->ci_keyring_key &&
368	    (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
369					  (1 << KEY_FLAG_REVOKED) |
370					  (1 << KEY_FLAG_DEAD))))
371		ci = NULL;
372
373	/* this should eventually be an flag in d_flags */
374	spin_lock(&dentry->d_lock);
375	cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
376	spin_unlock(&dentry->d_lock);
377	dir_has_key = (ci != NULL);
378	dput(dir);
379
380	/*
381	 * If the dentry was cached without the key, and it is a
382	 * negative dentry, it might be a valid name.  We can't check
383	 * if the key has since been made available due to locking
384	 * reasons, so we fail the validation so ext4_lookup() can do
385	 * this check.
386	 *
387	 * We also fail the validation if the dentry was created with
388	 * the key present, but we no longer have the key, or vice versa.
389	 */
390	if ((!cached_with_key && d_is_negative(dentry)) ||
391			(!cached_with_key && dir_has_key) ||
392			(cached_with_key && !dir_has_key))
393		return 0;
394	return 1;
395}
396
397const struct dentry_operations fscrypt_d_ops = {
398	.d_revalidate = fscrypt_d_revalidate,
399};
400EXPORT_SYMBOL(fscrypt_d_ops);
401
402/*
403 * Call fscrypt_decrypt_page on every single page, reusing the encryption
404 * context.
405 */
406static void completion_pages(struct work_struct *work)
407{
408	struct fscrypt_ctx *ctx =
409		container_of(work, struct fscrypt_ctx, r.work);
410	struct bio *bio = ctx->r.bio;
411	struct bio_vec *bv;
412	int i;
413
414	bio_for_each_segment_all(bv, bio, i) {
415		struct page *page = bv->bv_page;
416		int ret = fscrypt_decrypt_page(page);
417
418		if (ret) {
419			WARN_ON_ONCE(1);
420			SetPageError(page);
421		} else {
422			SetPageUptodate(page);
423		}
424		unlock_page(page);
425	}
426	fscrypt_release_ctx(ctx);
427	bio_put(bio);
428}
429
430void fscrypt_decrypt_bio_pages(struct fscrypt_ctx *ctx, struct bio *bio)
431{
432	INIT_WORK(&ctx->r.work, completion_pages);
433	ctx->r.bio = bio;
434	queue_work(fscrypt_read_workqueue, &ctx->r.work);
435}
436EXPORT_SYMBOL(fscrypt_decrypt_bio_pages);
437
438void fscrypt_pullback_bio_page(struct page **page, bool restore)
439{
440	struct fscrypt_ctx *ctx;
441	struct page *bounce_page;
442
443	/* The bounce data pages are unmapped. */
444	if ((*page)->mapping)
445		return;
446
447	/* The bounce data page is unmapped. */
448	bounce_page = *page;
449	ctx = (struct fscrypt_ctx *)page_private(bounce_page);
450
451	/* restore control page */
452	*page = ctx->w.control_page;
453
454	if (restore)
455		fscrypt_restore_control_page(bounce_page);
456}
457EXPORT_SYMBOL(fscrypt_pullback_bio_page);
458
459void fscrypt_restore_control_page(struct page *page)
460{
461	struct fscrypt_ctx *ctx;
462
463	ctx = (struct fscrypt_ctx *)page_private(page);
464	set_page_private(page, (unsigned long)NULL);
465	ClearPagePrivate(page);
466	unlock_page(page);
467	fscrypt_release_ctx(ctx);
468}
469EXPORT_SYMBOL(fscrypt_restore_control_page);
470
471static void fscrypt_destroy(void)
472{
473	struct fscrypt_ctx *pos, *n;
474
475	list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
476		kmem_cache_free(fscrypt_ctx_cachep, pos);
477	INIT_LIST_HEAD(&fscrypt_free_ctxs);
478	mempool_destroy(fscrypt_bounce_page_pool);
479	fscrypt_bounce_page_pool = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
480}
 
481
482/**
483 * fscrypt_initialize() - allocate major buffers for fs encryption.
 
484 *
485 * We only call this when we start accessing encrypted files, since it
486 * results in memory getting allocated that wouldn't otherwise be used.
487 *
488 * Return: Zero on success, non-zero otherwise.
489 */
490int fscrypt_initialize(void)
491{
492	int i, res = -ENOMEM;
 
493
494	if (fscrypt_bounce_page_pool)
 
 
 
 
 
495		return 0;
496
497	mutex_lock(&fscrypt_init_mutex);
498	if (fscrypt_bounce_page_pool)
499		goto already_initialized;
500
501	for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
502		struct fscrypt_ctx *ctx;
 
 
 
 
 
 
 
 
 
503
504		ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
505		if (!ctx)
506			goto fail;
507		list_add(&ctx->free_list, &fscrypt_free_ctxs);
508	}
 
 
509
510	fscrypt_bounce_page_pool =
511		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
512	if (!fscrypt_bounce_page_pool)
513		goto fail;
514
515already_initialized:
516	mutex_unlock(&fscrypt_init_mutex);
517	return 0;
518fail:
519	fscrypt_destroy();
520	mutex_unlock(&fscrypt_init_mutex);
521	return res;
 
 
 
 
522}
523EXPORT_SYMBOL(fscrypt_initialize);
524
525/**
526 * fscrypt_init() - Set up for fs encryption.
 
 
527 */
528static int __init fscrypt_init(void)
529{
 
 
 
 
 
 
 
 
 
 
530	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
531							WQ_HIGHPRI, 0);
 
532	if (!fscrypt_read_workqueue)
533		goto fail;
534
535	fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
536	if (!fscrypt_ctx_cachep)
 
537		goto fail_free_queue;
538
539	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
540	if (!fscrypt_info_cachep)
541		goto fail_free_ctx;
542
543	return 0;
544
545fail_free_ctx:
546	kmem_cache_destroy(fscrypt_ctx_cachep);
547fail_free_queue:
548	destroy_workqueue(fscrypt_read_workqueue);
549fail:
550	return -ENOMEM;
551}
552module_init(fscrypt_init)
553
554/**
555 * fscrypt_exit() - Shutdown the fs encryption system
556 */
557static void __exit fscrypt_exit(void)
558{
559	fscrypt_destroy();
560
561	if (fscrypt_read_workqueue)
562		destroy_workqueue(fscrypt_read_workqueue);
563	kmem_cache_destroy(fscrypt_ctx_cachep);
564	kmem_cache_destroy(fscrypt_info_cachep);
565}
566module_exit(fscrypt_exit);
567
568MODULE_LICENSE("GPL");
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * This contains encryption functions for per-file encryption.
  4 *
  5 * Copyright (C) 2015, Google, Inc.
  6 * Copyright (C) 2015, Motorola Mobility
  7 *
  8 * Written by Michael Halcrow, 2014.
  9 *
 10 * Filename encryption additions
 11 *	Uday Savagaonkar, 2014
 12 * Encryption policy handling additions
 13 *	Ildar Muslukhov, 2014
 14 * Add fscrypt_pullback_bio_page()
 15 *	Jaegeuk Kim, 2015.
 16 *
 17 * This has not yet undergone a rigorous security audit.
 18 *
 19 * The usage of AES-XTS should conform to recommendations in NIST
 20 * Special Publication 800-38E and IEEE P1619/D16.
 21 */
 22
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/module.h>
 26#include <linux/scatterlist.h>
 27#include <linux/ratelimit.h>
 28#include <crypto/skcipher.h>
 29#include "fscrypt_private.h"
 
 
 
 30
 31static unsigned int num_prealloc_crypto_pages = 32;
 
 32
 33module_param(num_prealloc_crypto_pages, uint, 0444);
 34MODULE_PARM_DESC(num_prealloc_crypto_pages,
 35		"Number of crypto pages to preallocate");
 
 
 
 36
 37static mempool_t *fscrypt_bounce_page_pool = NULL;
 38
 
 
 
 39static struct workqueue_struct *fscrypt_read_workqueue;
 40static DEFINE_MUTEX(fscrypt_init_mutex);
 41
 42struct kmem_cache *fscrypt_inode_info_cachep;
 
 43
 44void fscrypt_enqueue_decrypt_work(struct work_struct *work)
 
 
 
 
 
 
 
 
 
 45{
 46	queue_work(fscrypt_read_workqueue, work);
 47}
 48EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
 49
 50struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
 51{
 52	if (WARN_ON_ONCE(!fscrypt_bounce_page_pool)) {
 53		/*
 54		 * Oops, the filesystem called a function that uses the bounce
 55		 * page pool, but it didn't set needs_bounce_pages.
 56		 */
 57		return NULL;
 
 
 
 58	}
 59	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
 60}
 
 61
 62/**
 63 * fscrypt_free_bounce_page() - free a ciphertext bounce page
 64 * @bounce_page: the bounce page to free, or NULL
 
 65 *
 66 * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
 67 * or by fscrypt_alloc_bounce_page() directly.
 
 
 68 */
 69void fscrypt_free_bounce_page(struct page *bounce_page)
 70{
 71	if (!bounce_page)
 72		return;
 73	set_page_private(bounce_page, (unsigned long)NULL);
 74	ClearPagePrivate(bounce_page);
 75	mempool_free(bounce_page, fscrypt_bounce_page_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76}
 77EXPORT_SYMBOL(fscrypt_free_bounce_page);
 78
 79/*
 80 * Generate the IV for the given data unit index within the given file.
 81 * For filenames encryption, index == 0.
 82 *
 83 * Keep this in sync with fscrypt_limit_io_blocks().  fscrypt_limit_io_blocks()
 84 * needs to know about any IV generation methods where the low bits of IV don't
 85 * simply contain the data unit index (e.g., IV_INO_LBLK_32).
 86 */
 87void fscrypt_generate_iv(union fscrypt_iv *iv, u64 index,
 88			 const struct fscrypt_inode_info *ci)
 89{
 90	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
 91
 92	memset(iv, 0, ci->ci_mode->ivsize);
 
 
 
 
 93
 94	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
 95		WARN_ON_ONCE(index > U32_MAX);
 96		WARN_ON_ONCE(ci->ci_inode->i_ino > U32_MAX);
 97		index |= (u64)ci->ci_inode->i_ino << 32;
 98	} else if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
 99		WARN_ON_ONCE(index > U32_MAX);
100		index = (u32)(ci->ci_hashed_ino + index);
101	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
102		memcpy(iv->nonce, ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE);
103	}
104	iv->index = cpu_to_le64(index);
105}
106
107/* Encrypt or decrypt a single "data unit" of file contents. */
108int fscrypt_crypt_data_unit(const struct fscrypt_inode_info *ci,
109			    fscrypt_direction_t rw, u64 index,
110			    struct page *src_page, struct page *dest_page,
111			    unsigned int len, unsigned int offs,
112			    gfp_t gfp_flags)
113{
114	union fscrypt_iv iv;
115	struct skcipher_request *req = NULL;
116	DECLARE_CRYPTO_WAIT(wait);
117	struct scatterlist dst, src;
118	struct crypto_skcipher *tfm = ci->ci_enc_key.tfm;
 
119	int res = 0;
120
121	if (WARN_ON_ONCE(len <= 0))
122		return -EINVAL;
123	if (WARN_ON_ONCE(len % FSCRYPT_CONTENTS_ALIGNMENT != 0))
124		return -EINVAL;
125
126	fscrypt_generate_iv(&iv, index, ci);
127
128	req = skcipher_request_alloc(tfm, gfp_flags);
129	if (!req)
 
 
 
130		return -ENOMEM;
 
131
132	skcipher_request_set_callback(
133		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
134		crypto_req_done, &wait);
 
 
 
 
 
135
136	sg_init_table(&dst, 1);
137	sg_set_page(&dst, dest_page, len, offs);
138	sg_init_table(&src, 1);
139	sg_set_page(&src, src_page, len, offs);
140	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
 
141	if (rw == FS_DECRYPT)
142		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
143	else
144		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 
 
 
 
 
145	skcipher_request_free(req);
146	if (res) {
147		fscrypt_err(ci->ci_inode,
148			    "%scryption failed for data unit %llu: %d",
149			    (rw == FS_DECRYPT ? "De" : "En"), index, res);
150		return res;
151	}
152	return 0;
153}
154
 
 
 
 
 
 
 
 
 
155/**
156 * fscrypt_encrypt_pagecache_blocks() - Encrypt data from a pagecache page
157 * @page: the locked pagecache page containing the data to encrypt
158 * @len: size of the data to encrypt, in bytes
159 * @offs: offset within @page of the data to encrypt, in bytes
160 * @gfp_flags: memory allocation flags; see details below
161 *
162 * This allocates a new bounce page and encrypts the given data into it.  The
163 * length and offset of the data must be aligned to the file's crypto data unit
164 * size.  Alignment to the filesystem block size fulfills this requirement, as
165 * the filesystem block size is always a multiple of the data unit size.
166 *
167 * In the bounce page, the ciphertext data will be located at the same offset at
168 * which the plaintext data was located in the source page.  Any other parts of
169 * the bounce page will be left uninitialized.
170 *
171 * This is for use by the filesystem's ->writepages() method.
172 *
173 * The bounce page allocation is mempool-backed, so it will always succeed when
174 * @gfp_flags includes __GFP_DIRECT_RECLAIM, e.g. when it's GFP_NOFS.  However,
175 * only the first page of each bio can be allocated this way.  To prevent
176 * deadlocks, for any additional pages a mask like GFP_NOWAIT must be used.
177 *
178 * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
179 */
180struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
181					      unsigned int len,
182					      unsigned int offs,
183					      gfp_t gfp_flags)
184
185{
186	const struct inode *inode = page->mapping->host;
187	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
188	const unsigned int du_bits = ci->ci_data_unit_bits;
189	const unsigned int du_size = 1U << du_bits;
190	struct page *ciphertext_page;
191	u64 index = ((u64)page->index << (PAGE_SHIFT - du_bits)) +
192		    (offs >> du_bits);
193	unsigned int i;
194	int err;
195
196	if (WARN_ON_ONCE(!PageLocked(page)))
197		return ERR_PTR(-EINVAL);
198
199	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
200		return ERR_PTR(-EINVAL);
201
202	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
203	if (!ciphertext_page)
204		return ERR_PTR(-ENOMEM);
205
206	for (i = offs; i < offs + len; i += du_size, index++) {
207		err = fscrypt_crypt_data_unit(ci, FS_ENCRYPT, index,
208					      page, ciphertext_page,
209					      du_size, i, gfp_flags);
210		if (err) {
211			fscrypt_free_bounce_page(ciphertext_page);
212			return ERR_PTR(err);
213		}
 
 
 
 
 
 
 
 
214	}
215	SetPagePrivate(ciphertext_page);
216	set_page_private(ciphertext_page, (unsigned long)page);
 
 
 
 
 
217	return ciphertext_page;
218}
219EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
220
221/**
222 * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
223 * @inode:     The inode to which this block belongs
224 * @page:      The page containing the block to encrypt
225 * @len:       Size of block to encrypt.  This must be a multiple of
226 *		FSCRYPT_CONTENTS_ALIGNMENT.
227 * @offs:      Byte offset within @page at which the block to encrypt begins
228 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
229 *		number of the block within the file
230 * @gfp_flags: Memory allocation flags
231 *
232 * Encrypt a possibly-compressed filesystem block that is located in an
233 * arbitrary page, not necessarily in the original pagecache page.  The @inode
234 * and @lblk_num must be specified, as they can't be determined from @page.
235 *
236 * This is not compatible with fscrypt_operations::supports_subblock_data_units.
237 *
238 * Return: 0 on success; -errno on failure
239 */
240int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
241				  unsigned int len, unsigned int offs,
242				  u64 lblk_num, gfp_t gfp_flags)
243{
244	if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
245		return -EOPNOTSUPP;
246	return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_ENCRYPT,
247				       lblk_num, page, page, len, offs,
248				       gfp_flags);
249}
250EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
 
 
 
 
 
 
 
 
251
252/**
253 * fscrypt_decrypt_pagecache_blocks() - Decrypt data from a pagecache folio
254 * @folio: the pagecache folio containing the data to decrypt
255 * @len: size of the data to decrypt, in bytes
256 * @offs: offset within @folio of the data to decrypt, in bytes
257 *
258 * Decrypt data that has just been read from an encrypted file.  The data must
259 * be located in a pagecache folio that is still locked and not yet uptodate.
260 * The length and offset of the data must be aligned to the file's crypto data
261 * unit size.  Alignment to the filesystem block size fulfills this requirement,
262 * as the filesystem block size is always a multiple of the data unit size.
263 *
264 * Return: 0 on success; -errno on failure
265 */
266int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
267				     size_t offs)
268{
269	const struct inode *inode = folio->mapping->host;
270	const struct fscrypt_inode_info *ci = inode->i_crypt_info;
271	const unsigned int du_bits = ci->ci_data_unit_bits;
272	const unsigned int du_size = 1U << du_bits;
273	u64 index = ((u64)folio->index << (PAGE_SHIFT - du_bits)) +
274		    (offs >> du_bits);
275	size_t i;
276	int err;
277
278	if (WARN_ON_ONCE(!folio_test_locked(folio)))
279		return -EINVAL;
 
280
281	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, du_size)))
282		return -EINVAL;
 
 
 
283
284	for (i = offs; i < offs + len; i += du_size, index++) {
285		struct page *page = folio_page(folio, i >> PAGE_SHIFT);
 
 
 
 
286
287		err = fscrypt_crypt_data_unit(ci, FS_DECRYPT, index, page,
288					      page, du_size, i & ~PAGE_MASK,
289					      GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
290		if (err)
291			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
292	}
293	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
294}
295EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
 
 
 
 
296
297/**
298 * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
299 * @inode:     The inode to which this block belongs
300 * @page:      The page containing the block to decrypt
301 * @len:       Size of block to decrypt.  This must be a multiple of
302 *		FSCRYPT_CONTENTS_ALIGNMENT.
303 * @offs:      Byte offset within @page at which the block to decrypt begins
304 * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
305 *		number of the block within the file
306 *
307 * Decrypt a possibly-compressed filesystem block that is located in an
308 * arbitrary page, not necessarily in the original pagecache page.  The @inode
309 * and @lblk_num must be specified, as they can't be determined from @page.
310 *
311 * This is not compatible with fscrypt_operations::supports_subblock_data_units.
312 *
313 * Return: 0 on success; -errno on failure
314 */
315int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
316				  unsigned int len, unsigned int offs,
317				  u64 lblk_num)
318{
319	if (WARN_ON_ONCE(inode->i_sb->s_cop->supports_subblock_data_units))
320		return -EOPNOTSUPP;
321	return fscrypt_crypt_data_unit(inode->i_crypt_info, FS_DECRYPT,
322				       lblk_num, page, page, len, offs,
323				       GFP_NOFS);
324}
325EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
326
327/**
328 * fscrypt_initialize() - allocate major buffers for fs encryption.
329 * @sb: the filesystem superblock
330 *
331 * We only call this when we start accessing encrypted files, since it
332 * results in memory getting allocated that wouldn't otherwise be used.
333 *
334 * Return: 0 on success; -errno on failure
335 */
336int fscrypt_initialize(struct super_block *sb)
337{
338	int err = 0;
339	mempool_t *pool;
340
341	/* pairs with smp_store_release() below */
342	if (likely(smp_load_acquire(&fscrypt_bounce_page_pool)))
343		return 0;
344
345	/* No need to allocate a bounce page pool if this FS won't use it. */
346	if (!sb->s_cop->needs_bounce_pages)
347		return 0;
348
349	mutex_lock(&fscrypt_init_mutex);
350	if (fscrypt_bounce_page_pool)
351		goto out_unlock;
352
353	err = -ENOMEM;
354	pool = mempool_create_page_pool(num_prealloc_crypto_pages, 0);
355	if (!pool)
356		goto out_unlock;
357	/* pairs with smp_load_acquire() above */
358	smp_store_release(&fscrypt_bounce_page_pool, pool);
359	err = 0;
360out_unlock:
361	mutex_unlock(&fscrypt_init_mutex);
362	return err;
363}
364
365void fscrypt_msg(const struct inode *inode, const char *level,
366		 const char *fmt, ...)
367{
368	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
369				      DEFAULT_RATELIMIT_BURST);
370	struct va_format vaf;
371	va_list args;
372
373	if (!__ratelimit(&rs))
374		return;
 
 
375
376	va_start(args, fmt);
377	vaf.fmt = fmt;
378	vaf.va = &args;
379	if (inode && inode->i_ino)
380		printk("%sfscrypt (%s, inode %lu): %pV\n",
381		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
382	else if (inode)
383		printk("%sfscrypt (%s): %pV\n", level, inode->i_sb->s_id, &vaf);
384	else
385		printk("%sfscrypt: %pV\n", level, &vaf);
386	va_end(args);
387}
 
388
389/**
390 * fscrypt_init() - Set up for fs encryption.
391 *
392 * Return: 0 on success; -errno on failure
393 */
394static int __init fscrypt_init(void)
395{
396	int err = -ENOMEM;
397
398	/*
399	 * Use an unbound workqueue to allow bios to be decrypted in parallel
400	 * even when they happen to complete on the same CPU.  This sacrifices
401	 * locality, but it's worthwhile since decryption is CPU-intensive.
402	 *
403	 * Also use a high-priority workqueue to prioritize decryption work,
404	 * which blocks reads from completing, over regular application tasks.
405	 */
406	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
407						 WQ_UNBOUND | WQ_HIGHPRI,
408						 num_online_cpus());
409	if (!fscrypt_read_workqueue)
410		goto fail;
411
412	fscrypt_inode_info_cachep = KMEM_CACHE(fscrypt_inode_info,
413					       SLAB_RECLAIM_ACCOUNT);
414	if (!fscrypt_inode_info_cachep)
415		goto fail_free_queue;
416
417	err = fscrypt_init_keyring();
418	if (err)
419		goto fail_free_inode_info;
420
421	return 0;
422
423fail_free_inode_info:
424	kmem_cache_destroy(fscrypt_inode_info_cachep);
425fail_free_queue:
426	destroy_workqueue(fscrypt_read_workqueue);
427fail:
428	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
429}
430late_initcall(fscrypt_init)