Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/drivers/thermal/cpufreq_cooling.c
  4 *
  5 *  Copyright (C) 2012	Samsung Electronics Co., Ltd(http://www.samsung.com)
  6 *
  7 *  Copyright (C) 2012-2018 Linaro Limited.
  8 *
  9 *  Authors:	Amit Daniel <amit.kachhap@linaro.org>
 10 *		Viresh Kumar <viresh.kumar@linaro.org>
 11 *
 12 */
 13#include <linux/cpu.h>
 14#include <linux/cpufreq.h>
 15#include <linux/cpu_cooling.h>
 16#include <linux/device.h>
 17#include <linux/energy_model.h>
 18#include <linux/err.h>
 19#include <linux/export.h>
 20#include <linux/pm_opp.h>
 21#include <linux/pm_qos.h>
 22#include <linux/slab.h>
 23#include <linux/thermal.h>
 24#include <linux/units.h>
 25
 26#include "thermal_trace.h"
 27
 28/*
 29 * Cooling state <-> CPUFreq frequency
 30 *
 31 * Cooling states are translated to frequencies throughout this driver and this
 32 * is the relation between them.
 33 *
 34 * Highest cooling state corresponds to lowest possible frequency.
 35 *
 36 * i.e.
 37 *	level 0 --> 1st Max Freq
 38 *	level 1 --> 2nd Max Freq
 39 *	...
 40 */
 41
 42/**
 43 * struct time_in_idle - Idle time stats
 44 * @time: previous reading of the absolute time that this cpu was idle
 45 * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
 46 */
 47struct time_in_idle {
 48	u64 time;
 49	u64 timestamp;
 50};
 51
 52/**
 53 * struct cpufreq_cooling_device - data for cooling device with cpufreq
 54 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
 55 * @cpufreq_state: integer value representing the current state of cpufreq
 56 *	cooling	devices.
 57 * @max_level: maximum cooling level. One less than total number of valid
 58 *	cpufreq frequencies.
 59 * @em: Reference on the Energy Model of the device
 60 * @cdev: thermal_cooling_device pointer to keep track of the
 61 *	registered cooling device.
 62 * @policy: cpufreq policy.
 63 * @cooling_ops: cpufreq callbacks to thermal cooling device ops
 64 * @idle_time: idle time stats
 65 * @qos_req: PM QoS contraint to apply
 66 *
 67 * This structure is required for keeping information of each registered
 68 * cpufreq_cooling_device.
 69 */
 70struct cpufreq_cooling_device {
 71	u32 last_load;
 72	unsigned int cpufreq_state;
 73	unsigned int max_level;
 74	struct em_perf_domain *em;
 75	struct cpufreq_policy *policy;
 76	struct thermal_cooling_device_ops cooling_ops;
 77#ifndef CONFIG_SMP
 78	struct time_in_idle *idle_time;
 79#endif
 80	struct freq_qos_request qos_req;
 81};
 82
 83#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
 84/**
 85 * get_level: Find the level for a particular frequency
 86 * @cpufreq_cdev: cpufreq_cdev for which the property is required
 87 * @freq: Frequency
 88 *
 89 * Return: level corresponding to the frequency.
 90 */
 91static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
 92			       unsigned int freq)
 93{
 94	struct em_perf_state *table;
 95	int i;
 96
 97	rcu_read_lock();
 98	table = em_perf_state_from_pd(cpufreq_cdev->em);
 99	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
100		if (freq > table[i].frequency)
101			break;
102	}
103	rcu_read_unlock();
104
105	return cpufreq_cdev->max_level - i - 1;
106}
107
108static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
109			     u32 freq)
110{
111	struct em_perf_state *table;
112	unsigned long power_mw;
113	int i;
114
115	rcu_read_lock();
116	table = em_perf_state_from_pd(cpufreq_cdev->em);
117	for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
118		if (freq > table[i].frequency)
119			break;
120	}
121
122	power_mw = table[i + 1].power;
123	power_mw /= MICROWATT_PER_MILLIWATT;
124	rcu_read_unlock();
125
126	return power_mw;
127}
128
129static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
130			     u32 power)
131{
132	struct em_perf_state *table;
133	unsigned long em_power_mw;
134	u32 freq;
135	int i;
136
137	rcu_read_lock();
138	table = em_perf_state_from_pd(cpufreq_cdev->em);
139	for (i = cpufreq_cdev->max_level; i > 0; i--) {
140		/* Convert EM power to milli-Watts to make safe comparison */
141		em_power_mw = table[i].power;
142		em_power_mw /= MICROWATT_PER_MILLIWATT;
143		if (power >= em_power_mw)
144			break;
145	}
146	freq = table[i].frequency;
147	rcu_read_unlock();
148
149	return freq;
150}
151
152/**
153 * get_load() - get load for a cpu
154 * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
155 * @cpu: cpu number
156 * @cpu_idx: index of the cpu in time_in_idle array
157 *
158 * Return: The average load of cpu @cpu in percentage since this
159 * function was last called.
160 */
161#ifdef CONFIG_SMP
162static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
163		    int cpu_idx)
164{
165	unsigned long util = sched_cpu_util(cpu);
166
167	return (util * 100) / arch_scale_cpu_capacity(cpu);
168}
169#else /* !CONFIG_SMP */
170static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
171		    int cpu_idx)
172{
173	u32 load;
174	u64 now, now_idle, delta_time, delta_idle;
175	struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
176
177	now_idle = get_cpu_idle_time(cpu, &now, 0);
178	delta_idle = now_idle - idle_time->time;
179	delta_time = now - idle_time->timestamp;
180
181	if (delta_time <= delta_idle)
182		load = 0;
183	else
184		load = div64_u64(100 * (delta_time - delta_idle), delta_time);
185
186	idle_time->time = now_idle;
187	idle_time->timestamp = now;
188
189	return load;
190}
191#endif /* CONFIG_SMP */
192
193/**
194 * get_dynamic_power() - calculate the dynamic power
195 * @cpufreq_cdev:	&cpufreq_cooling_device for this cdev
196 * @freq:	current frequency
197 *
198 * Return: the dynamic power consumed by the cpus described by
199 * @cpufreq_cdev.
200 */
201static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
202			     unsigned long freq)
203{
204	u32 raw_cpu_power;
205
206	raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
207	return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
208}
209
210/**
211 * cpufreq_get_requested_power() - get the current power
212 * @cdev:	&thermal_cooling_device pointer
213 * @power:	pointer in which to store the resulting power
214 *
215 * Calculate the current power consumption of the cpus in milliwatts
216 * and store it in @power.  This function should actually calculate
217 * the requested power, but it's hard to get the frequency that
218 * cpufreq would have assigned if there were no thermal limits.
219 * Instead, we calculate the current power on the assumption that the
220 * immediate future will look like the immediate past.
221 *
222 * We use the current frequency and the average load since this
223 * function was last called.  In reality, there could have been
224 * multiple opps since this function was last called and that affects
225 * the load calculation.  While it's not perfectly accurate, this
226 * simplification is good enough and works.  REVISIT this, as more
227 * complex code may be needed if experiments show that it's not
228 * accurate enough.
229 *
230 * Return: 0 on success, this function doesn't fail.
231 */
232static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
233				       u32 *power)
234{
235	unsigned long freq;
236	int i = 0, cpu;
237	u32 total_load = 0;
238	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
239	struct cpufreq_policy *policy = cpufreq_cdev->policy;
240
241	freq = cpufreq_quick_get(policy->cpu);
242
243	for_each_cpu(cpu, policy->related_cpus) {
244		u32 load;
245
246		if (cpu_online(cpu))
247			load = get_load(cpufreq_cdev, cpu, i);
248		else
249			load = 0;
250
251		total_load += load;
252	}
253
254	cpufreq_cdev->last_load = total_load;
255
256	*power = get_dynamic_power(cpufreq_cdev, freq);
257
258	trace_thermal_power_cpu_get_power_simple(policy->cpu, *power);
259
260	return 0;
261}
262
263/**
264 * cpufreq_state2power() - convert a cpu cdev state to power consumed
265 * @cdev:	&thermal_cooling_device pointer
266 * @state:	cooling device state to be converted
267 * @power:	pointer in which to store the resulting power
268 *
269 * Convert cooling device state @state into power consumption in
270 * milliwatts assuming 100% load.  Store the calculated power in
271 * @power.
272 *
273 * Return: 0 on success, -EINVAL if the cooling device state is bigger
274 * than maximum allowed.
275 */
276static int cpufreq_state2power(struct thermal_cooling_device *cdev,
277			       unsigned long state, u32 *power)
278{
279	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
280	unsigned int freq, num_cpus, idx;
281	struct em_perf_state *table;
282
283	/* Request state should be less than max_level */
284	if (state > cpufreq_cdev->max_level)
285		return -EINVAL;
286
287	num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
288
289	idx = cpufreq_cdev->max_level - state;
290
291	rcu_read_lock();
292	table = em_perf_state_from_pd(cpufreq_cdev->em);
293	freq = table[idx].frequency;
294	rcu_read_unlock();
295
296	*power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
297
298	return 0;
299}
300
301/**
302 * cpufreq_power2state() - convert power to a cooling device state
303 * @cdev:	&thermal_cooling_device pointer
304 * @power:	power in milliwatts to be converted
305 * @state:	pointer in which to store the resulting state
306 *
307 * Calculate a cooling device state for the cpus described by @cdev
308 * that would allow them to consume at most @power mW and store it in
309 * @state.  Note that this calculation depends on external factors
310 * such as the CPUs load.  Calling this function with the same power
311 * as input can yield different cooling device states depending on those
312 * external factors.
313 *
314 * Return: 0 on success, this function doesn't fail.
315 */
316static int cpufreq_power2state(struct thermal_cooling_device *cdev,
317			       u32 power, unsigned long *state)
318{
319	unsigned int target_freq;
320	u32 last_load, normalised_power;
321	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
322	struct cpufreq_policy *policy = cpufreq_cdev->policy;
323
324	last_load = cpufreq_cdev->last_load ?: 1;
325	normalised_power = (power * 100) / last_load;
326	target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
327
328	*state = get_level(cpufreq_cdev, target_freq);
329	trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
330				      power);
331	return 0;
332}
333
334static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
335			      struct em_perf_domain *em) {
336	struct cpufreq_policy *policy;
337	unsigned int nr_levels;
338
339	if (!em || em_is_artificial(em))
340		return false;
341
342	policy = cpufreq_cdev->policy;
343	if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
344		pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
345			cpumask_pr_args(em_span_cpus(em)),
346			cpumask_pr_args(policy->related_cpus));
347		return false;
348	}
349
350	nr_levels = cpufreq_cdev->max_level + 1;
351	if (em_pd_nr_perf_states(em) != nr_levels) {
352		pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
353			cpumask_pr_args(em_span_cpus(em)),
354			em_pd_nr_perf_states(em), nr_levels);
355		return false;
356	}
357
358	return true;
359}
360#endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
361
362#ifdef CONFIG_SMP
363static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
364{
365	return 0;
366}
367
368static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
369{
370}
371#else
372static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
373{
374	unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
375
376	cpufreq_cdev->idle_time = kcalloc(num_cpus,
377					  sizeof(*cpufreq_cdev->idle_time),
378					  GFP_KERNEL);
379	if (!cpufreq_cdev->idle_time)
380		return -ENOMEM;
381
382	return 0;
383}
384
385static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
386{
387	kfree(cpufreq_cdev->idle_time);
388	cpufreq_cdev->idle_time = NULL;
389}
390#endif /* CONFIG_SMP */
391
392static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
393				   unsigned long state)
394{
395	struct cpufreq_policy *policy;
396	unsigned long idx;
397
398#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
399	/* Use the Energy Model table if available */
400	if (cpufreq_cdev->em) {
401		struct em_perf_state *table;
402		unsigned int freq;
403
404		idx = cpufreq_cdev->max_level - state;
405
406		rcu_read_lock();
407		table = em_perf_state_from_pd(cpufreq_cdev->em);
408		freq = table[idx].frequency;
409		rcu_read_unlock();
410
411		return freq;
412	}
413#endif
414
415	/* Otherwise, fallback on the CPUFreq table */
416	policy = cpufreq_cdev->policy;
417	if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
418		idx = cpufreq_cdev->max_level - state;
419	else
420		idx = state;
421
422	return policy->freq_table[idx].frequency;
423}
424
425/* cpufreq cooling device callback functions are defined below */
426
427/**
428 * cpufreq_get_max_state - callback function to get the max cooling state.
429 * @cdev: thermal cooling device pointer.
430 * @state: fill this variable with the max cooling state.
431 *
432 * Callback for the thermal cooling device to return the cpufreq
433 * max cooling state.
434 *
435 * Return: 0 on success, this function doesn't fail.
436 */
437static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
438				 unsigned long *state)
439{
440	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
441
442	*state = cpufreq_cdev->max_level;
443	return 0;
444}
445
446/**
447 * cpufreq_get_cur_state - callback function to get the current cooling state.
448 * @cdev: thermal cooling device pointer.
449 * @state: fill this variable with the current cooling state.
450 *
451 * Callback for the thermal cooling device to return the cpufreq
452 * current cooling state.
453 *
454 * Return: 0 on success, this function doesn't fail.
455 */
456static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
457				 unsigned long *state)
458{
459	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
460
461	*state = cpufreq_cdev->cpufreq_state;
462
463	return 0;
464}
465
466/**
467 * cpufreq_set_cur_state - callback function to set the current cooling state.
468 * @cdev: thermal cooling device pointer.
469 * @state: set this variable to the current cooling state.
470 *
471 * Callback for the thermal cooling device to change the cpufreq
472 * current cooling state.
473 *
474 * Return: 0 on success, an error code otherwise.
475 */
476static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
477				 unsigned long state)
478{
479	struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
480	unsigned int frequency;
481	int ret;
482
483	/* Request state should be less than max_level */
484	if (state > cpufreq_cdev->max_level)
485		return -EINVAL;
486
487	/* Check if the old cooling action is same as new cooling action */
488	if (cpufreq_cdev->cpufreq_state == state)
489		return 0;
490
491	frequency = get_state_freq(cpufreq_cdev, state);
492
493	ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
494	if (ret >= 0) {
495		cpufreq_cdev->cpufreq_state = state;
496		ret = 0;
497	}
498
499	return ret;
500}
501
502/**
503 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
504 * @np: a valid struct device_node to the cooling device tree node
505 * @policy: cpufreq policy
506 * Normally this should be same as cpufreq policy->related_cpus.
507 * @em: Energy Model of the cpufreq policy
508 *
509 * This interface function registers the cpufreq cooling device with the name
510 * "cpufreq-%s". This API can support multiple instances of cpufreq
511 * cooling devices. It also gives the opportunity to link the cooling device
512 * with a device tree node, in order to bind it via the thermal DT code.
513 *
514 * Return: a valid struct thermal_cooling_device pointer on success,
515 * on failure, it returns a corresponding ERR_PTR().
516 */
517static struct thermal_cooling_device *
518__cpufreq_cooling_register(struct device_node *np,
519			struct cpufreq_policy *policy,
520			struct em_perf_domain *em)
521{
522	struct thermal_cooling_device *cdev;
523	struct cpufreq_cooling_device *cpufreq_cdev;
524	unsigned int i;
525	struct device *dev;
526	int ret;
527	struct thermal_cooling_device_ops *cooling_ops;
528	char *name;
529
530	if (IS_ERR_OR_NULL(policy)) {
531		pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
532		return ERR_PTR(-EINVAL);
533	}
534
535	dev = get_cpu_device(policy->cpu);
536	if (unlikely(!dev)) {
537		pr_warn("No cpu device for cpu %d\n", policy->cpu);
538		return ERR_PTR(-ENODEV);
539	}
540
541	i = cpufreq_table_count_valid_entries(policy);
542	if (!i) {
543		pr_debug("%s: CPUFreq table not found or has no valid entries\n",
544			 __func__);
545		return ERR_PTR(-ENODEV);
546	}
547
548	cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
549	if (!cpufreq_cdev)
550		return ERR_PTR(-ENOMEM);
551
552	cpufreq_cdev->policy = policy;
553
554	ret = allocate_idle_time(cpufreq_cdev);
555	if (ret) {
556		cdev = ERR_PTR(ret);
557		goto free_cdev;
558	}
559
560	/* max_level is an index, not a counter */
561	cpufreq_cdev->max_level = i - 1;
562
563	cooling_ops = &cpufreq_cdev->cooling_ops;
564	cooling_ops->get_max_state = cpufreq_get_max_state;
565	cooling_ops->get_cur_state = cpufreq_get_cur_state;
566	cooling_ops->set_cur_state = cpufreq_set_cur_state;
567
568#ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
569	if (em_is_sane(cpufreq_cdev, em)) {
570		cpufreq_cdev->em = em;
571		cooling_ops->get_requested_power = cpufreq_get_requested_power;
572		cooling_ops->state2power = cpufreq_state2power;
573		cooling_ops->power2state = cpufreq_power2state;
574	} else
575#endif
576	if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
577		pr_err("%s: unsorted frequency tables are not supported\n",
578		       __func__);
579		cdev = ERR_PTR(-EINVAL);
580		goto free_idle_time;
581	}
582
583	ret = freq_qos_add_request(&policy->constraints,
584				   &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
585				   get_state_freq(cpufreq_cdev, 0));
586	if (ret < 0) {
587		pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
588		       ret);
589		cdev = ERR_PTR(ret);
590		goto free_idle_time;
591	}
592
593	cdev = ERR_PTR(-ENOMEM);
594	name = kasprintf(GFP_KERNEL, "cpufreq-%s", dev_name(dev));
595	if (!name)
596		goto remove_qos_req;
597
598	cdev = thermal_of_cooling_device_register(np, name, cpufreq_cdev,
599						  cooling_ops);
600	kfree(name);
601
602	if (IS_ERR(cdev))
603		goto remove_qos_req;
604
605	return cdev;
606
607remove_qos_req:
608	freq_qos_remove_request(&cpufreq_cdev->qos_req);
609free_idle_time:
610	free_idle_time(cpufreq_cdev);
611free_cdev:
612	kfree(cpufreq_cdev);
613	return cdev;
614}
615
616/**
617 * cpufreq_cooling_register - function to create cpufreq cooling device.
618 * @policy: cpufreq policy
619 *
620 * This interface function registers the cpufreq cooling device with the name
621 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
622 * devices.
623 *
624 * Return: a valid struct thermal_cooling_device pointer on success,
625 * on failure, it returns a corresponding ERR_PTR().
626 */
627struct thermal_cooling_device *
628cpufreq_cooling_register(struct cpufreq_policy *policy)
629{
630	return __cpufreq_cooling_register(NULL, policy, NULL);
631}
632EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
633
634/**
635 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
636 * @policy: cpufreq policy
637 *
638 * This interface function registers the cpufreq cooling device with the name
639 * "cpufreq-%s". This API can support multiple instances of cpufreq cooling
640 * devices. Using this API, the cpufreq cooling device will be linked to the
641 * device tree node provided.
642 *
643 * Using this function, the cooling device will implement the power
644 * extensions by using the Energy Model (if present).  The cpus must have
645 * registered their OPPs using the OPP library.
646 *
647 * Return: a valid struct thermal_cooling_device pointer on success,
648 * and NULL on failure.
649 */
650struct thermal_cooling_device *
651of_cpufreq_cooling_register(struct cpufreq_policy *policy)
652{
653	struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
654	struct thermal_cooling_device *cdev = NULL;
655
656	if (!np) {
657		pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
658		       policy->cpu);
659		return NULL;
660	}
661
662	if (of_property_present(np, "#cooling-cells")) {
663		struct em_perf_domain *em = em_cpu_get(policy->cpu);
664
665		cdev = __cpufreq_cooling_register(np, policy, em);
666		if (IS_ERR(cdev)) {
667			pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
668			       policy->cpu, PTR_ERR(cdev));
669			cdev = NULL;
670		}
671	}
672
673	of_node_put(np);
674	return cdev;
675}
676EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
677
678/**
679 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
680 * @cdev: thermal cooling device pointer.
681 *
682 * This interface function unregisters the "cpufreq-%x" cooling device.
683 */
684void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
685{
686	struct cpufreq_cooling_device *cpufreq_cdev;
687
688	if (!cdev)
689		return;
690
691	cpufreq_cdev = cdev->devdata;
692
693	thermal_cooling_device_unregister(cdev);
694	freq_qos_remove_request(&cpufreq_cdev->qos_req);
695	free_idle_time(cpufreq_cdev);
696	kfree(cpufreq_cdev);
697}
698EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);