Loading...
1/*
2 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
3 *
4 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
5 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21#include <linux/ctype.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/workqueue.h>
25#include <linux/blkdev.h>
26#include <linux/mutex.h>
27#include <linux/sysfs.h>
28#include <linux/slab.h>
29#include <scsi/scsi.h>
30#include "scsi_priv.h"
31#include <scsi/scsi_device.h>
32#include <scsi/scsi_host.h>
33#include <scsi/scsi_cmnd.h>
34#include <scsi/scsi_eh.h>
35#include <scsi/scsi_tcq.h>
36#include <scsi/scsi_transport.h>
37#include <scsi/scsi_transport_spi.h>
38
39#define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
40#define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
41 * on" attributes */
42#define SPI_HOST_ATTRS 1
43
44#define SPI_MAX_ECHO_BUFFER_SIZE 4096
45
46#define DV_LOOPS 3
47#define DV_TIMEOUT (10*HZ)
48#define DV_RETRIES 3 /* should only need at most
49 * two cc/ua clears */
50
51/* Our blacklist flags */
52enum {
53 SPI_BLIST_NOIUS = 0x1,
54};
55
56/* blacklist table, modelled on scsi_devinfo.c */
57static struct {
58 char *vendor;
59 char *model;
60 unsigned flags;
61} spi_static_device_list[] __initdata = {
62 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
63 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
64 {NULL, NULL, 0}
65};
66
67/* Private data accessors (keep these out of the header file) */
68#define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
69#define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
70
71struct spi_internal {
72 struct scsi_transport_template t;
73 struct spi_function_template *f;
74};
75
76#define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
77
78static const int ppr_to_ps[] = {
79 /* The PPR values 0-6 are reserved, fill them in when
80 * the committee defines them */
81 -1, /* 0x00 */
82 -1, /* 0x01 */
83 -1, /* 0x02 */
84 -1, /* 0x03 */
85 -1, /* 0x04 */
86 -1, /* 0x05 */
87 -1, /* 0x06 */
88 3125, /* 0x07 */
89 6250, /* 0x08 */
90 12500, /* 0x09 */
91 25000, /* 0x0a */
92 30300, /* 0x0b */
93 50000, /* 0x0c */
94};
95/* The PPR values at which you calculate the period in ns by multiplying
96 * by 4 */
97#define SPI_STATIC_PPR 0x0c
98
99static int sprint_frac(char *dest, int value, int denom)
100{
101 int frac = value % denom;
102 int result = sprintf(dest, "%d", value / denom);
103
104 if (frac == 0)
105 return result;
106 dest[result++] = '.';
107
108 do {
109 denom /= 10;
110 sprintf(dest + result, "%d", frac / denom);
111 result++;
112 frac %= denom;
113 } while (frac);
114
115 dest[result++] = '\0';
116 return result;
117}
118
119static int spi_execute(struct scsi_device *sdev, const void *cmd,
120 enum dma_data_direction dir,
121 void *buffer, unsigned bufflen,
122 struct scsi_sense_hdr *sshdr)
123{
124 int i, result;
125 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
126
127 for(i = 0; i < DV_RETRIES; i++) {
128 result = scsi_execute(sdev, cmd, dir, buffer, bufflen,
129 sense, DV_TIMEOUT, /* retries */ 1,
130 REQ_FAILFAST_DEV |
131 REQ_FAILFAST_TRANSPORT |
132 REQ_FAILFAST_DRIVER,
133 NULL);
134 if (driver_byte(result) & DRIVER_SENSE) {
135 struct scsi_sense_hdr sshdr_tmp;
136 if (!sshdr)
137 sshdr = &sshdr_tmp;
138
139 if (scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE,
140 sshdr)
141 && sshdr->sense_key == UNIT_ATTENTION)
142 continue;
143 }
144 break;
145 }
146 return result;
147}
148
149static struct {
150 enum spi_signal_type value;
151 char *name;
152} signal_types[] = {
153 { SPI_SIGNAL_UNKNOWN, "unknown" },
154 { SPI_SIGNAL_SE, "SE" },
155 { SPI_SIGNAL_LVD, "LVD" },
156 { SPI_SIGNAL_HVD, "HVD" },
157};
158
159static inline const char *spi_signal_to_string(enum spi_signal_type type)
160{
161 int i;
162
163 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
164 if (type == signal_types[i].value)
165 return signal_types[i].name;
166 }
167 return NULL;
168}
169static inline enum spi_signal_type spi_signal_to_value(const char *name)
170{
171 int i, len;
172
173 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
174 len = strlen(signal_types[i].name);
175 if (strncmp(name, signal_types[i].name, len) == 0 &&
176 (name[len] == '\n' || name[len] == '\0'))
177 return signal_types[i].value;
178 }
179 return SPI_SIGNAL_UNKNOWN;
180}
181
182static int spi_host_setup(struct transport_container *tc, struct device *dev,
183 struct device *cdev)
184{
185 struct Scsi_Host *shost = dev_to_shost(dev);
186
187 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
188
189 return 0;
190}
191
192static int spi_host_configure(struct transport_container *tc,
193 struct device *dev,
194 struct device *cdev);
195
196static DECLARE_TRANSPORT_CLASS(spi_host_class,
197 "spi_host",
198 spi_host_setup,
199 NULL,
200 spi_host_configure);
201
202static int spi_host_match(struct attribute_container *cont,
203 struct device *dev)
204{
205 struct Scsi_Host *shost;
206
207 if (!scsi_is_host_device(dev))
208 return 0;
209
210 shost = dev_to_shost(dev);
211 if (!shost->transportt || shost->transportt->host_attrs.ac.class
212 != &spi_host_class.class)
213 return 0;
214
215 return &shost->transportt->host_attrs.ac == cont;
216}
217
218static int spi_target_configure(struct transport_container *tc,
219 struct device *dev,
220 struct device *cdev);
221
222static int spi_device_configure(struct transport_container *tc,
223 struct device *dev,
224 struct device *cdev)
225{
226 struct scsi_device *sdev = to_scsi_device(dev);
227 struct scsi_target *starget = sdev->sdev_target;
228 unsigned bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
229 &sdev->inquiry[16],
230 SCSI_DEVINFO_SPI);
231
232 /* Populate the target capability fields with the values
233 * gleaned from the device inquiry */
234
235 spi_support_sync(starget) = scsi_device_sync(sdev);
236 spi_support_wide(starget) = scsi_device_wide(sdev);
237 spi_support_dt(starget) = scsi_device_dt(sdev);
238 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
239 spi_support_ius(starget) = scsi_device_ius(sdev);
240 if (bflags & SPI_BLIST_NOIUS) {
241 dev_info(dev, "Information Units disabled by blacklist\n");
242 spi_support_ius(starget) = 0;
243 }
244 spi_support_qas(starget) = scsi_device_qas(sdev);
245
246 return 0;
247}
248
249static int spi_setup_transport_attrs(struct transport_container *tc,
250 struct device *dev,
251 struct device *cdev)
252{
253 struct scsi_target *starget = to_scsi_target(dev);
254
255 spi_period(starget) = -1; /* illegal value */
256 spi_min_period(starget) = 0;
257 spi_offset(starget) = 0; /* async */
258 spi_max_offset(starget) = 255;
259 spi_width(starget) = 0; /* narrow */
260 spi_max_width(starget) = 1;
261 spi_iu(starget) = 0; /* no IU */
262 spi_max_iu(starget) = 1;
263 spi_dt(starget) = 0; /* ST */
264 spi_qas(starget) = 0;
265 spi_max_qas(starget) = 1;
266 spi_wr_flow(starget) = 0;
267 spi_rd_strm(starget) = 0;
268 spi_rti(starget) = 0;
269 spi_pcomp_en(starget) = 0;
270 spi_hold_mcs(starget) = 0;
271 spi_dv_pending(starget) = 0;
272 spi_dv_in_progress(starget) = 0;
273 spi_initial_dv(starget) = 0;
274 mutex_init(&spi_dv_mutex(starget));
275
276 return 0;
277}
278
279#define spi_transport_show_simple(field, format_string) \
280 \
281static ssize_t \
282show_spi_transport_##field(struct device *dev, \
283 struct device_attribute *attr, char *buf) \
284{ \
285 struct scsi_target *starget = transport_class_to_starget(dev); \
286 struct spi_transport_attrs *tp; \
287 \
288 tp = (struct spi_transport_attrs *)&starget->starget_data; \
289 return snprintf(buf, 20, format_string, tp->field); \
290}
291
292#define spi_transport_store_simple(field, format_string) \
293 \
294static ssize_t \
295store_spi_transport_##field(struct device *dev, \
296 struct device_attribute *attr, \
297 const char *buf, size_t count) \
298{ \
299 int val; \
300 struct scsi_target *starget = transport_class_to_starget(dev); \
301 struct spi_transport_attrs *tp; \
302 \
303 tp = (struct spi_transport_attrs *)&starget->starget_data; \
304 val = simple_strtoul(buf, NULL, 0); \
305 tp->field = val; \
306 return count; \
307}
308
309#define spi_transport_show_function(field, format_string) \
310 \
311static ssize_t \
312show_spi_transport_##field(struct device *dev, \
313 struct device_attribute *attr, char *buf) \
314{ \
315 struct scsi_target *starget = transport_class_to_starget(dev); \
316 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
317 struct spi_transport_attrs *tp; \
318 struct spi_internal *i = to_spi_internal(shost->transportt); \
319 tp = (struct spi_transport_attrs *)&starget->starget_data; \
320 if (i->f->get_##field) \
321 i->f->get_##field(starget); \
322 return snprintf(buf, 20, format_string, tp->field); \
323}
324
325#define spi_transport_store_function(field, format_string) \
326static ssize_t \
327store_spi_transport_##field(struct device *dev, \
328 struct device_attribute *attr, \
329 const char *buf, size_t count) \
330{ \
331 int val; \
332 struct scsi_target *starget = transport_class_to_starget(dev); \
333 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
334 struct spi_internal *i = to_spi_internal(shost->transportt); \
335 \
336 if (!i->f->set_##field) \
337 return -EINVAL; \
338 val = simple_strtoul(buf, NULL, 0); \
339 i->f->set_##field(starget, val); \
340 return count; \
341}
342
343#define spi_transport_store_max(field, format_string) \
344static ssize_t \
345store_spi_transport_##field(struct device *dev, \
346 struct device_attribute *attr, \
347 const char *buf, size_t count) \
348{ \
349 int val; \
350 struct scsi_target *starget = transport_class_to_starget(dev); \
351 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
352 struct spi_internal *i = to_spi_internal(shost->transportt); \
353 struct spi_transport_attrs *tp \
354 = (struct spi_transport_attrs *)&starget->starget_data; \
355 \
356 if (i->f->set_##field) \
357 return -EINVAL; \
358 val = simple_strtoul(buf, NULL, 0); \
359 if (val > tp->max_##field) \
360 val = tp->max_##field; \
361 i->f->set_##field(starget, val); \
362 return count; \
363}
364
365#define spi_transport_rd_attr(field, format_string) \
366 spi_transport_show_function(field, format_string) \
367 spi_transport_store_function(field, format_string) \
368static DEVICE_ATTR(field, S_IRUGO, \
369 show_spi_transport_##field, \
370 store_spi_transport_##field);
371
372#define spi_transport_simple_attr(field, format_string) \
373 spi_transport_show_simple(field, format_string) \
374 spi_transport_store_simple(field, format_string) \
375static DEVICE_ATTR(field, S_IRUGO, \
376 show_spi_transport_##field, \
377 store_spi_transport_##field);
378
379#define spi_transport_max_attr(field, format_string) \
380 spi_transport_show_function(field, format_string) \
381 spi_transport_store_max(field, format_string) \
382 spi_transport_simple_attr(max_##field, format_string) \
383static DEVICE_ATTR(field, S_IRUGO, \
384 show_spi_transport_##field, \
385 store_spi_transport_##field);
386
387/* The Parallel SCSI Tranport Attributes: */
388spi_transport_max_attr(offset, "%d\n");
389spi_transport_max_attr(width, "%d\n");
390spi_transport_max_attr(iu, "%d\n");
391spi_transport_rd_attr(dt, "%d\n");
392spi_transport_max_attr(qas, "%d\n");
393spi_transport_rd_attr(wr_flow, "%d\n");
394spi_transport_rd_attr(rd_strm, "%d\n");
395spi_transport_rd_attr(rti, "%d\n");
396spi_transport_rd_attr(pcomp_en, "%d\n");
397spi_transport_rd_attr(hold_mcs, "%d\n");
398
399/* we only care about the first child device that's a real SCSI device
400 * so we return 1 to terminate the iteration when we find it */
401static int child_iter(struct device *dev, void *data)
402{
403 if (!scsi_is_sdev_device(dev))
404 return 0;
405
406 spi_dv_device(to_scsi_device(dev));
407 return 1;
408}
409
410static ssize_t
411store_spi_revalidate(struct device *dev, struct device_attribute *attr,
412 const char *buf, size_t count)
413{
414 struct scsi_target *starget = transport_class_to_starget(dev);
415
416 device_for_each_child(&starget->dev, NULL, child_iter);
417 return count;
418}
419static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
420
421/* Translate the period into ns according to the current spec
422 * for SDTR/PPR messages */
423static int period_to_str(char *buf, int period)
424{
425 int len, picosec;
426
427 if (period < 0 || period > 0xff) {
428 picosec = -1;
429 } else if (period <= SPI_STATIC_PPR) {
430 picosec = ppr_to_ps[period];
431 } else {
432 picosec = period * 4000;
433 }
434
435 if (picosec == -1) {
436 len = sprintf(buf, "reserved");
437 } else {
438 len = sprint_frac(buf, picosec, 1000);
439 }
440
441 return len;
442}
443
444static ssize_t
445show_spi_transport_period_helper(char *buf, int period)
446{
447 int len = period_to_str(buf, period);
448 buf[len++] = '\n';
449 buf[len] = '\0';
450 return len;
451}
452
453static ssize_t
454store_spi_transport_period_helper(struct device *dev, const char *buf,
455 size_t count, int *periodp)
456{
457 int j, picosec, period = -1;
458 char *endp;
459
460 picosec = simple_strtoul(buf, &endp, 10) * 1000;
461 if (*endp == '.') {
462 int mult = 100;
463 do {
464 endp++;
465 if (!isdigit(*endp))
466 break;
467 picosec += (*endp - '0') * mult;
468 mult /= 10;
469 } while (mult > 0);
470 }
471
472 for (j = 0; j <= SPI_STATIC_PPR; j++) {
473 if (ppr_to_ps[j] < picosec)
474 continue;
475 period = j;
476 break;
477 }
478
479 if (period == -1)
480 period = picosec / 4000;
481
482 if (period > 0xff)
483 period = 0xff;
484
485 *periodp = period;
486
487 return count;
488}
489
490static ssize_t
491show_spi_transport_period(struct device *dev,
492 struct device_attribute *attr, char *buf)
493{
494 struct scsi_target *starget = transport_class_to_starget(dev);
495 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
496 struct spi_internal *i = to_spi_internal(shost->transportt);
497 struct spi_transport_attrs *tp =
498 (struct spi_transport_attrs *)&starget->starget_data;
499
500 if (i->f->get_period)
501 i->f->get_period(starget);
502
503 return show_spi_transport_period_helper(buf, tp->period);
504}
505
506static ssize_t
507store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
508 const char *buf, size_t count)
509{
510 struct scsi_target *starget = transport_class_to_starget(cdev);
511 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
512 struct spi_internal *i = to_spi_internal(shost->transportt);
513 struct spi_transport_attrs *tp =
514 (struct spi_transport_attrs *)&starget->starget_data;
515 int period, retval;
516
517 if (!i->f->set_period)
518 return -EINVAL;
519
520 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
521
522 if (period < tp->min_period)
523 period = tp->min_period;
524
525 i->f->set_period(starget, period);
526
527 return retval;
528}
529
530static DEVICE_ATTR(period, S_IRUGO,
531 show_spi_transport_period,
532 store_spi_transport_period);
533
534static ssize_t
535show_spi_transport_min_period(struct device *cdev,
536 struct device_attribute *attr, char *buf)
537{
538 struct scsi_target *starget = transport_class_to_starget(cdev);
539 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
540 struct spi_internal *i = to_spi_internal(shost->transportt);
541 struct spi_transport_attrs *tp =
542 (struct spi_transport_attrs *)&starget->starget_data;
543
544 if (!i->f->set_period)
545 return -EINVAL;
546
547 return show_spi_transport_period_helper(buf, tp->min_period);
548}
549
550static ssize_t
551store_spi_transport_min_period(struct device *cdev,
552 struct device_attribute *attr,
553 const char *buf, size_t count)
554{
555 struct scsi_target *starget = transport_class_to_starget(cdev);
556 struct spi_transport_attrs *tp =
557 (struct spi_transport_attrs *)&starget->starget_data;
558
559 return store_spi_transport_period_helper(cdev, buf, count,
560 &tp->min_period);
561}
562
563
564static DEVICE_ATTR(min_period, S_IRUGO,
565 show_spi_transport_min_period,
566 store_spi_transport_min_period);
567
568
569static ssize_t show_spi_host_signalling(struct device *cdev,
570 struct device_attribute *attr,
571 char *buf)
572{
573 struct Scsi_Host *shost = transport_class_to_shost(cdev);
574 struct spi_internal *i = to_spi_internal(shost->transportt);
575
576 if (i->f->get_signalling)
577 i->f->get_signalling(shost);
578
579 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
580}
581static ssize_t store_spi_host_signalling(struct device *dev,
582 struct device_attribute *attr,
583 const char *buf, size_t count)
584{
585 struct Scsi_Host *shost = transport_class_to_shost(dev);
586 struct spi_internal *i = to_spi_internal(shost->transportt);
587 enum spi_signal_type type = spi_signal_to_value(buf);
588
589 if (!i->f->set_signalling)
590 return -EINVAL;
591
592 if (type != SPI_SIGNAL_UNKNOWN)
593 i->f->set_signalling(shost, type);
594
595 return count;
596}
597static DEVICE_ATTR(signalling, S_IRUGO,
598 show_spi_host_signalling,
599 store_spi_host_signalling);
600
601static ssize_t show_spi_host_width(struct device *cdev,
602 struct device_attribute *attr,
603 char *buf)
604{
605 struct Scsi_Host *shost = transport_class_to_shost(cdev);
606
607 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
608}
609static DEVICE_ATTR(host_width, S_IRUGO,
610 show_spi_host_width, NULL);
611
612static ssize_t show_spi_host_hba_id(struct device *cdev,
613 struct device_attribute *attr,
614 char *buf)
615{
616 struct Scsi_Host *shost = transport_class_to_shost(cdev);
617
618 return sprintf(buf, "%d\n", shost->this_id);
619}
620static DEVICE_ATTR(hba_id, S_IRUGO,
621 show_spi_host_hba_id, NULL);
622
623#define DV_SET(x, y) \
624 if(i->f->set_##x) \
625 i->f->set_##x(sdev->sdev_target, y)
626
627enum spi_compare_returns {
628 SPI_COMPARE_SUCCESS,
629 SPI_COMPARE_FAILURE,
630 SPI_COMPARE_SKIP_TEST,
631};
632
633
634/* This is for read/write Domain Validation: If the device supports
635 * an echo buffer, we do read/write tests to it */
636static enum spi_compare_returns
637spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
638 u8 *ptr, const int retries)
639{
640 int len = ptr - buffer;
641 int j, k, r, result;
642 unsigned int pattern = 0x0000ffff;
643 struct scsi_sense_hdr sshdr;
644
645 const char spi_write_buffer[] = {
646 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
647 };
648 const char spi_read_buffer[] = {
649 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
650 };
651
652 /* set up the pattern buffer. Doesn't matter if we spill
653 * slightly beyond since that's where the read buffer is */
654 for (j = 0; j < len; ) {
655
656 /* fill the buffer with counting (test a) */
657 for ( ; j < min(len, 32); j++)
658 buffer[j] = j;
659 k = j;
660 /* fill the buffer with alternating words of 0x0 and
661 * 0xffff (test b) */
662 for ( ; j < min(len, k + 32); j += 2) {
663 u16 *word = (u16 *)&buffer[j];
664
665 *word = (j & 0x02) ? 0x0000 : 0xffff;
666 }
667 k = j;
668 /* fill with crosstalk (alternating 0x5555 0xaaa)
669 * (test c) */
670 for ( ; j < min(len, k + 32); j += 2) {
671 u16 *word = (u16 *)&buffer[j];
672
673 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
674 }
675 k = j;
676 /* fill with shifting bits (test d) */
677 for ( ; j < min(len, k + 32); j += 4) {
678 u32 *word = (unsigned int *)&buffer[j];
679 u32 roll = (pattern & 0x80000000) ? 1 : 0;
680
681 *word = pattern;
682 pattern = (pattern << 1) | roll;
683 }
684 /* don't bother with random data (test e) */
685 }
686
687 for (r = 0; r < retries; r++) {
688 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
689 buffer, len, &sshdr);
690 if(result || !scsi_device_online(sdev)) {
691
692 scsi_device_set_state(sdev, SDEV_QUIESCE);
693 if (scsi_sense_valid(&sshdr)
694 && sshdr.sense_key == ILLEGAL_REQUEST
695 /* INVALID FIELD IN CDB */
696 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
697 /* This would mean that the drive lied
698 * to us about supporting an echo
699 * buffer (unfortunately some Western
700 * Digital drives do precisely this)
701 */
702 return SPI_COMPARE_SKIP_TEST;
703
704
705 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
706 return SPI_COMPARE_FAILURE;
707 }
708
709 memset(ptr, 0, len);
710 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
711 ptr, len, NULL);
712 scsi_device_set_state(sdev, SDEV_QUIESCE);
713
714 if (memcmp(buffer, ptr, len) != 0)
715 return SPI_COMPARE_FAILURE;
716 }
717 return SPI_COMPARE_SUCCESS;
718}
719
720/* This is for the simplest form of Domain Validation: a read test
721 * on the inquiry data from the device */
722static enum spi_compare_returns
723spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
724 u8 *ptr, const int retries)
725{
726 int r, result;
727 const int len = sdev->inquiry_len;
728 const char spi_inquiry[] = {
729 INQUIRY, 0, 0, 0, len, 0
730 };
731
732 for (r = 0; r < retries; r++) {
733 memset(ptr, 0, len);
734
735 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
736 ptr, len, NULL);
737
738 if(result || !scsi_device_online(sdev)) {
739 scsi_device_set_state(sdev, SDEV_QUIESCE);
740 return SPI_COMPARE_FAILURE;
741 }
742
743 /* If we don't have the inquiry data already, the
744 * first read gets it */
745 if (ptr == buffer) {
746 ptr += len;
747 --r;
748 continue;
749 }
750
751 if (memcmp(buffer, ptr, len) != 0)
752 /* failure */
753 return SPI_COMPARE_FAILURE;
754 }
755 return SPI_COMPARE_SUCCESS;
756}
757
758static enum spi_compare_returns
759spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
760 enum spi_compare_returns
761 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
762{
763 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
764 struct scsi_target *starget = sdev->sdev_target;
765 int period = 0, prevperiod = 0;
766 enum spi_compare_returns retval;
767
768
769 for (;;) {
770 int newperiod;
771 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
772
773 if (retval == SPI_COMPARE_SUCCESS
774 || retval == SPI_COMPARE_SKIP_TEST)
775 break;
776
777 /* OK, retrain, fallback */
778 if (i->f->get_iu)
779 i->f->get_iu(starget);
780 if (i->f->get_qas)
781 i->f->get_qas(starget);
782 if (i->f->get_period)
783 i->f->get_period(sdev->sdev_target);
784
785 /* Here's the fallback sequence; first try turning off
786 * IU, then QAS (if we can control them), then finally
787 * fall down the periods */
788 if (i->f->set_iu && spi_iu(starget)) {
789 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
790 DV_SET(iu, 0);
791 } else if (i->f->set_qas && spi_qas(starget)) {
792 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
793 DV_SET(qas, 0);
794 } else {
795 newperiod = spi_period(starget);
796 period = newperiod > period ? newperiod : period;
797 if (period < 0x0d)
798 period++;
799 else
800 period += period >> 1;
801
802 if (unlikely(period > 0xff || period == prevperiod)) {
803 /* Total failure; set to async and return */
804 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
805 DV_SET(offset, 0);
806 return SPI_COMPARE_FAILURE;
807 }
808 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
809 DV_SET(period, period);
810 prevperiod = period;
811 }
812 }
813 return retval;
814}
815
816static int
817spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
818{
819 int l, result;
820
821 /* first off do a test unit ready. This can error out
822 * because of reservations or some other reason. If it
823 * fails, the device won't let us write to the echo buffer
824 * so just return failure */
825
826 const char spi_test_unit_ready[] = {
827 TEST_UNIT_READY, 0, 0, 0, 0, 0
828 };
829
830 const char spi_read_buffer_descriptor[] = {
831 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
832 };
833
834
835 /* We send a set of three TURs to clear any outstanding
836 * unit attention conditions if they exist (Otherwise the
837 * buffer tests won't be happy). If the TUR still fails
838 * (reservation conflict, device not ready, etc) just
839 * skip the write tests */
840 for (l = 0; ; l++) {
841 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
842 NULL, 0, NULL);
843
844 if(result) {
845 if(l >= 3)
846 return 0;
847 } else {
848 /* TUR succeeded */
849 break;
850 }
851 }
852
853 result = spi_execute(sdev, spi_read_buffer_descriptor,
854 DMA_FROM_DEVICE, buffer, 4, NULL);
855
856 if (result)
857 /* Device has no echo buffer */
858 return 0;
859
860 return buffer[3] + ((buffer[2] & 0x1f) << 8);
861}
862
863static void
864spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
865{
866 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
867 struct scsi_target *starget = sdev->sdev_target;
868 struct Scsi_Host *shost = sdev->host;
869 int len = sdev->inquiry_len;
870 int min_period = spi_min_period(starget);
871 int max_width = spi_max_width(starget);
872 /* first set us up for narrow async */
873 DV_SET(offset, 0);
874 DV_SET(width, 0);
875
876 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
877 != SPI_COMPARE_SUCCESS) {
878 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
879 /* FIXME: should probably offline the device here? */
880 return;
881 }
882
883 if (!spi_support_wide(starget)) {
884 spi_max_width(starget) = 0;
885 max_width = 0;
886 }
887
888 /* test width */
889 if (i->f->set_width && max_width) {
890 i->f->set_width(starget, 1);
891
892 if (spi_dv_device_compare_inquiry(sdev, buffer,
893 buffer + len,
894 DV_LOOPS)
895 != SPI_COMPARE_SUCCESS) {
896 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
897 i->f->set_width(starget, 0);
898 /* Make sure we don't force wide back on by asking
899 * for a transfer period that requires it */
900 max_width = 0;
901 if (min_period < 10)
902 min_period = 10;
903 }
904 }
905
906 if (!i->f->set_period)
907 return;
908
909 /* device can't handle synchronous */
910 if (!spi_support_sync(starget) && !spi_support_dt(starget))
911 return;
912
913 /* len == -1 is the signal that we need to ascertain the
914 * presence of an echo buffer before trying to use it. len ==
915 * 0 means we don't have an echo buffer */
916 len = -1;
917
918 retry:
919
920 /* now set up to the maximum */
921 DV_SET(offset, spi_max_offset(starget));
922 DV_SET(period, min_period);
923
924 /* try QAS requests; this should be harmless to set if the
925 * target supports it */
926 if (spi_support_qas(starget) && spi_max_qas(starget)) {
927 DV_SET(qas, 1);
928 } else {
929 DV_SET(qas, 0);
930 }
931
932 if (spi_support_ius(starget) && spi_max_iu(starget) &&
933 min_period < 9) {
934 /* This u320 (or u640). Set IU transfers */
935 DV_SET(iu, 1);
936 /* Then set the optional parameters */
937 DV_SET(rd_strm, 1);
938 DV_SET(wr_flow, 1);
939 DV_SET(rti, 1);
940 if (min_period == 8)
941 DV_SET(pcomp_en, 1);
942 } else {
943 DV_SET(iu, 0);
944 }
945
946 /* now that we've done all this, actually check the bus
947 * signal type (if known). Some devices are stupid on
948 * a SE bus and still claim they can try LVD only settings */
949 if (i->f->get_signalling)
950 i->f->get_signalling(shost);
951 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
952 spi_signalling(shost) == SPI_SIGNAL_HVD ||
953 !spi_support_dt(starget)) {
954 DV_SET(dt, 0);
955 } else {
956 DV_SET(dt, 1);
957 }
958 /* set width last because it will pull all the other
959 * parameters down to required values */
960 DV_SET(width, max_width);
961
962 /* Do the read only INQUIRY tests */
963 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
964 spi_dv_device_compare_inquiry);
965 /* See if we actually managed to negotiate and sustain DT */
966 if (i->f->get_dt)
967 i->f->get_dt(starget);
968
969 /* see if the device has an echo buffer. If it does we can do
970 * the SPI pattern write tests. Because of some broken
971 * devices, we *only* try this on a device that has actually
972 * negotiated DT */
973
974 if (len == -1 && spi_dt(starget))
975 len = spi_dv_device_get_echo_buffer(sdev, buffer);
976
977 if (len <= 0) {
978 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
979 return;
980 }
981
982 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
983 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
984 len = SPI_MAX_ECHO_BUFFER_SIZE;
985 }
986
987 if (spi_dv_retrain(sdev, buffer, buffer + len,
988 spi_dv_device_echo_buffer)
989 == SPI_COMPARE_SKIP_TEST) {
990 /* OK, the stupid drive can't do a write echo buffer
991 * test after all, fall back to the read tests */
992 len = 0;
993 goto retry;
994 }
995}
996
997
998/** spi_dv_device - Do Domain Validation on the device
999 * @sdev: scsi device to validate
1000 *
1001 * Performs the domain validation on the given device in the
1002 * current execution thread. Since DV operations may sleep,
1003 * the current thread must have user context. Also no SCSI
1004 * related locks that would deadlock I/O issued by the DV may
1005 * be held.
1006 */
1007void
1008spi_dv_device(struct scsi_device *sdev)
1009{
1010 struct scsi_target *starget = sdev->sdev_target;
1011 u8 *buffer;
1012 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1013
1014 if (unlikely(spi_dv_in_progress(starget)))
1015 return;
1016
1017 if (unlikely(scsi_device_get(sdev)))
1018 return;
1019 spi_dv_in_progress(starget) = 1;
1020
1021 buffer = kzalloc(len, GFP_KERNEL);
1022
1023 if (unlikely(!buffer))
1024 goto out_put;
1025
1026 /* We need to verify that the actual device will quiesce; the
1027 * later target quiesce is just a nice to have */
1028 if (unlikely(scsi_device_quiesce(sdev)))
1029 goto out_free;
1030
1031 scsi_target_quiesce(starget);
1032
1033 spi_dv_pending(starget) = 1;
1034 mutex_lock(&spi_dv_mutex(starget));
1035
1036 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1037
1038 spi_dv_device_internal(sdev, buffer);
1039
1040 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1041
1042 mutex_unlock(&spi_dv_mutex(starget));
1043 spi_dv_pending(starget) = 0;
1044
1045 scsi_target_resume(starget);
1046
1047 spi_initial_dv(starget) = 1;
1048
1049 out_free:
1050 kfree(buffer);
1051 out_put:
1052 spi_dv_in_progress(starget) = 0;
1053 scsi_device_put(sdev);
1054}
1055EXPORT_SYMBOL(spi_dv_device);
1056
1057struct work_queue_wrapper {
1058 struct work_struct work;
1059 struct scsi_device *sdev;
1060};
1061
1062static void
1063spi_dv_device_work_wrapper(struct work_struct *work)
1064{
1065 struct work_queue_wrapper *wqw =
1066 container_of(work, struct work_queue_wrapper, work);
1067 struct scsi_device *sdev = wqw->sdev;
1068
1069 kfree(wqw);
1070 spi_dv_device(sdev);
1071 spi_dv_pending(sdev->sdev_target) = 0;
1072 scsi_device_put(sdev);
1073}
1074
1075
1076/**
1077 * spi_schedule_dv_device - schedule domain validation to occur on the device
1078 * @sdev: The device to validate
1079 *
1080 * Identical to spi_dv_device() above, except that the DV will be
1081 * scheduled to occur in a workqueue later. All memory allocations
1082 * are atomic, so may be called from any context including those holding
1083 * SCSI locks.
1084 */
1085void
1086spi_schedule_dv_device(struct scsi_device *sdev)
1087{
1088 struct work_queue_wrapper *wqw =
1089 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1090
1091 if (unlikely(!wqw))
1092 return;
1093
1094 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1095 kfree(wqw);
1096 return;
1097 }
1098 /* Set pending early (dv_device doesn't check it, only sets it) */
1099 spi_dv_pending(sdev->sdev_target) = 1;
1100 if (unlikely(scsi_device_get(sdev))) {
1101 kfree(wqw);
1102 spi_dv_pending(sdev->sdev_target) = 0;
1103 return;
1104 }
1105
1106 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1107 wqw->sdev = sdev;
1108
1109 schedule_work(&wqw->work);
1110}
1111EXPORT_SYMBOL(spi_schedule_dv_device);
1112
1113/**
1114 * spi_display_xfer_agreement - Print the current target transfer agreement
1115 * @starget: The target for which to display the agreement
1116 *
1117 * Each SPI port is required to maintain a transfer agreement for each
1118 * other port on the bus. This function prints a one-line summary of
1119 * the current agreement; more detailed information is available in sysfs.
1120 */
1121void spi_display_xfer_agreement(struct scsi_target *starget)
1122{
1123 struct spi_transport_attrs *tp;
1124 tp = (struct spi_transport_attrs *)&starget->starget_data;
1125
1126 if (tp->offset > 0 && tp->period > 0) {
1127 unsigned int picosec, kb100;
1128 char *scsi = "FAST-?";
1129 char tmp[8];
1130
1131 if (tp->period <= SPI_STATIC_PPR) {
1132 picosec = ppr_to_ps[tp->period];
1133 switch (tp->period) {
1134 case 7: scsi = "FAST-320"; break;
1135 case 8: scsi = "FAST-160"; break;
1136 case 9: scsi = "FAST-80"; break;
1137 case 10:
1138 case 11: scsi = "FAST-40"; break;
1139 case 12: scsi = "FAST-20"; break;
1140 }
1141 } else {
1142 picosec = tp->period * 4000;
1143 if (tp->period < 25)
1144 scsi = "FAST-20";
1145 else if (tp->period < 50)
1146 scsi = "FAST-10";
1147 else
1148 scsi = "FAST-5";
1149 }
1150
1151 kb100 = (10000000 + picosec / 2) / picosec;
1152 if (tp->width)
1153 kb100 *= 2;
1154 sprint_frac(tmp, picosec, 1000);
1155
1156 dev_info(&starget->dev,
1157 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1158 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1159 tp->dt ? "DT" : "ST",
1160 tp->iu ? " IU" : "",
1161 tp->qas ? " QAS" : "",
1162 tp->rd_strm ? " RDSTRM" : "",
1163 tp->rti ? " RTI" : "",
1164 tp->wr_flow ? " WRFLOW" : "",
1165 tp->pcomp_en ? " PCOMP" : "",
1166 tp->hold_mcs ? " HMCS" : "",
1167 tmp, tp->offset);
1168 } else {
1169 dev_info(&starget->dev, "%sasynchronous\n",
1170 tp->width ? "wide " : "");
1171 }
1172}
1173EXPORT_SYMBOL(spi_display_xfer_agreement);
1174
1175int spi_populate_width_msg(unsigned char *msg, int width)
1176{
1177 msg[0] = EXTENDED_MESSAGE;
1178 msg[1] = 2;
1179 msg[2] = EXTENDED_WDTR;
1180 msg[3] = width;
1181 return 4;
1182}
1183EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1184
1185int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1186{
1187 msg[0] = EXTENDED_MESSAGE;
1188 msg[1] = 3;
1189 msg[2] = EXTENDED_SDTR;
1190 msg[3] = period;
1191 msg[4] = offset;
1192 return 5;
1193}
1194EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1195
1196int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1197 int width, int options)
1198{
1199 msg[0] = EXTENDED_MESSAGE;
1200 msg[1] = 6;
1201 msg[2] = EXTENDED_PPR;
1202 msg[3] = period;
1203 msg[4] = 0;
1204 msg[5] = offset;
1205 msg[6] = width;
1206 msg[7] = options;
1207 return 8;
1208}
1209EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1210
1211/**
1212 * spi_populate_tag_msg - place a tag message in a buffer
1213 * @msg: pointer to the area to place the tag
1214 * @cmd: pointer to the scsi command for the tag
1215 *
1216 * Notes:
1217 * designed to create the correct type of tag message for the
1218 * particular request. Returns the size of the tag message.
1219 * May return 0 if TCQ is disabled for this device.
1220 **/
1221int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1222{
1223 if (cmd->flags & SCMD_TAGGED) {
1224 *msg++ = SIMPLE_QUEUE_TAG;
1225 *msg++ = cmd->request->tag;
1226 return 2;
1227 }
1228
1229 return 0;
1230}
1231EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1232
1233#ifdef CONFIG_SCSI_CONSTANTS
1234static const char * const one_byte_msgs[] = {
1235/* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1236/* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1237/* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1238/* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1239/* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1240/* 0x0f */ "Initiate Recovery", "Release Recovery",
1241/* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1242/* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1243};
1244
1245static const char * const two_byte_msgs[] = {
1246/* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1247/* 0x23 */ "Ignore Wide Residue", "ACA"
1248};
1249
1250static const char * const extended_msgs[] = {
1251/* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1252/* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1253/* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1254};
1255
1256static void print_nego(const unsigned char *msg, int per, int off, int width)
1257{
1258 if (per) {
1259 char buf[20];
1260 period_to_str(buf, msg[per]);
1261 printk("period = %s ns ", buf);
1262 }
1263
1264 if (off)
1265 printk("offset = %d ", msg[off]);
1266 if (width)
1267 printk("width = %d ", 8 << msg[width]);
1268}
1269
1270static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1271{
1272 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1273 msg[msb+3];
1274 printk("%s = %d ", desc, ptr);
1275}
1276
1277int spi_print_msg(const unsigned char *msg)
1278{
1279 int len = 1, i;
1280 if (msg[0] == EXTENDED_MESSAGE) {
1281 len = 2 + msg[1];
1282 if (len == 2)
1283 len += 256;
1284 if (msg[2] < ARRAY_SIZE(extended_msgs))
1285 printk ("%s ", extended_msgs[msg[2]]);
1286 else
1287 printk ("Extended Message, reserved code (0x%02x) ",
1288 (int) msg[2]);
1289 switch (msg[2]) {
1290 case EXTENDED_MODIFY_DATA_POINTER:
1291 print_ptr(msg, 3, "pointer");
1292 break;
1293 case EXTENDED_SDTR:
1294 print_nego(msg, 3, 4, 0);
1295 break;
1296 case EXTENDED_WDTR:
1297 print_nego(msg, 0, 0, 3);
1298 break;
1299 case EXTENDED_PPR:
1300 print_nego(msg, 3, 5, 6);
1301 break;
1302 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1303 print_ptr(msg, 3, "out");
1304 print_ptr(msg, 7, "in");
1305 break;
1306 default:
1307 for (i = 2; i < len; ++i)
1308 printk("%02x ", msg[i]);
1309 }
1310 /* Identify */
1311 } else if (msg[0] & 0x80) {
1312 printk("Identify disconnect %sallowed %s %d ",
1313 (msg[0] & 0x40) ? "" : "not ",
1314 (msg[0] & 0x20) ? "target routine" : "lun",
1315 msg[0] & 0x7);
1316 /* Normal One byte */
1317 } else if (msg[0] < 0x1f) {
1318 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1319 printk("%s ", one_byte_msgs[msg[0]]);
1320 else
1321 printk("reserved (%02x) ", msg[0]);
1322 } else if (msg[0] == 0x55) {
1323 printk("QAS Request ");
1324 /* Two byte */
1325 } else if (msg[0] <= 0x2f) {
1326 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1327 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1328 msg[1]);
1329 else
1330 printk("reserved two byte (%02x %02x) ",
1331 msg[0], msg[1]);
1332 len = 2;
1333 } else
1334 printk("reserved ");
1335 return len;
1336}
1337EXPORT_SYMBOL(spi_print_msg);
1338
1339#else /* ifndef CONFIG_SCSI_CONSTANTS */
1340
1341int spi_print_msg(const unsigned char *msg)
1342{
1343 int len = 1, i;
1344
1345 if (msg[0] == EXTENDED_MESSAGE) {
1346 len = 2 + msg[1];
1347 if (len == 2)
1348 len += 256;
1349 for (i = 0; i < len; ++i)
1350 printk("%02x ", msg[i]);
1351 /* Identify */
1352 } else if (msg[0] & 0x80) {
1353 printk("%02x ", msg[0]);
1354 /* Normal One byte */
1355 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1356 printk("%02x ", msg[0]);
1357 /* Two byte */
1358 } else if (msg[0] <= 0x2f) {
1359 printk("%02x %02x", msg[0], msg[1]);
1360 len = 2;
1361 } else
1362 printk("%02x ", msg[0]);
1363 return len;
1364}
1365EXPORT_SYMBOL(spi_print_msg);
1366#endif /* ! CONFIG_SCSI_CONSTANTS */
1367
1368static int spi_device_match(struct attribute_container *cont,
1369 struct device *dev)
1370{
1371 struct scsi_device *sdev;
1372 struct Scsi_Host *shost;
1373 struct spi_internal *i;
1374
1375 if (!scsi_is_sdev_device(dev))
1376 return 0;
1377
1378 sdev = to_scsi_device(dev);
1379 shost = sdev->host;
1380 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1381 != &spi_host_class.class)
1382 return 0;
1383 /* Note: this class has no device attributes, so it has
1384 * no per-HBA allocation and thus we don't need to distinguish
1385 * the attribute containers for the device */
1386 i = to_spi_internal(shost->transportt);
1387 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1388 return 0;
1389 return 1;
1390}
1391
1392static int spi_target_match(struct attribute_container *cont,
1393 struct device *dev)
1394{
1395 struct Scsi_Host *shost;
1396 struct scsi_target *starget;
1397 struct spi_internal *i;
1398
1399 if (!scsi_is_target_device(dev))
1400 return 0;
1401
1402 shost = dev_to_shost(dev->parent);
1403 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1404 != &spi_host_class.class)
1405 return 0;
1406
1407 i = to_spi_internal(shost->transportt);
1408 starget = to_scsi_target(dev);
1409
1410 if (i->f->deny_binding && i->f->deny_binding(starget))
1411 return 0;
1412
1413 return &i->t.target_attrs.ac == cont;
1414}
1415
1416static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1417 "spi_transport",
1418 spi_setup_transport_attrs,
1419 NULL,
1420 spi_target_configure);
1421
1422static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1423 spi_device_match,
1424 spi_device_configure);
1425
1426static struct attribute *host_attributes[] = {
1427 &dev_attr_signalling.attr,
1428 &dev_attr_host_width.attr,
1429 &dev_attr_hba_id.attr,
1430 NULL
1431};
1432
1433static struct attribute_group host_attribute_group = {
1434 .attrs = host_attributes,
1435};
1436
1437static int spi_host_configure(struct transport_container *tc,
1438 struct device *dev,
1439 struct device *cdev)
1440{
1441 struct kobject *kobj = &cdev->kobj;
1442 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1443 struct spi_internal *si = to_spi_internal(shost->transportt);
1444 struct attribute *attr = &dev_attr_signalling.attr;
1445 int rc = 0;
1446
1447 if (si->f->set_signalling)
1448 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1449
1450 return rc;
1451}
1452
1453/* returns true if we should be showing the variable. Also
1454 * overloads the return by setting 1<<1 if the attribute should
1455 * be writeable */
1456#define TARGET_ATTRIBUTE_HELPER(name) \
1457 (si->f->show_##name ? S_IRUGO : 0) | \
1458 (si->f->set_##name ? S_IWUSR : 0)
1459
1460static umode_t target_attribute_is_visible(struct kobject *kobj,
1461 struct attribute *attr, int i)
1462{
1463 struct device *cdev = container_of(kobj, struct device, kobj);
1464 struct scsi_target *starget = transport_class_to_starget(cdev);
1465 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1466 struct spi_internal *si = to_spi_internal(shost->transportt);
1467
1468 if (attr == &dev_attr_period.attr &&
1469 spi_support_sync(starget))
1470 return TARGET_ATTRIBUTE_HELPER(period);
1471 else if (attr == &dev_attr_min_period.attr &&
1472 spi_support_sync(starget))
1473 return TARGET_ATTRIBUTE_HELPER(period);
1474 else if (attr == &dev_attr_offset.attr &&
1475 spi_support_sync(starget))
1476 return TARGET_ATTRIBUTE_HELPER(offset);
1477 else if (attr == &dev_attr_max_offset.attr &&
1478 spi_support_sync(starget))
1479 return TARGET_ATTRIBUTE_HELPER(offset);
1480 else if (attr == &dev_attr_width.attr &&
1481 spi_support_wide(starget))
1482 return TARGET_ATTRIBUTE_HELPER(width);
1483 else if (attr == &dev_attr_max_width.attr &&
1484 spi_support_wide(starget))
1485 return TARGET_ATTRIBUTE_HELPER(width);
1486 else if (attr == &dev_attr_iu.attr &&
1487 spi_support_ius(starget))
1488 return TARGET_ATTRIBUTE_HELPER(iu);
1489 else if (attr == &dev_attr_max_iu.attr &&
1490 spi_support_ius(starget))
1491 return TARGET_ATTRIBUTE_HELPER(iu);
1492 else if (attr == &dev_attr_dt.attr &&
1493 spi_support_dt(starget))
1494 return TARGET_ATTRIBUTE_HELPER(dt);
1495 else if (attr == &dev_attr_qas.attr &&
1496 spi_support_qas(starget))
1497 return TARGET_ATTRIBUTE_HELPER(qas);
1498 else if (attr == &dev_attr_max_qas.attr &&
1499 spi_support_qas(starget))
1500 return TARGET_ATTRIBUTE_HELPER(qas);
1501 else if (attr == &dev_attr_wr_flow.attr &&
1502 spi_support_ius(starget))
1503 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1504 else if (attr == &dev_attr_rd_strm.attr &&
1505 spi_support_ius(starget))
1506 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1507 else if (attr == &dev_attr_rti.attr &&
1508 spi_support_ius(starget))
1509 return TARGET_ATTRIBUTE_HELPER(rti);
1510 else if (attr == &dev_attr_pcomp_en.attr &&
1511 spi_support_ius(starget))
1512 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1513 else if (attr == &dev_attr_hold_mcs.attr &&
1514 spi_support_ius(starget))
1515 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1516 else if (attr == &dev_attr_revalidate.attr)
1517 return S_IWUSR;
1518
1519 return 0;
1520}
1521
1522static struct attribute *target_attributes[] = {
1523 &dev_attr_period.attr,
1524 &dev_attr_min_period.attr,
1525 &dev_attr_offset.attr,
1526 &dev_attr_max_offset.attr,
1527 &dev_attr_width.attr,
1528 &dev_attr_max_width.attr,
1529 &dev_attr_iu.attr,
1530 &dev_attr_max_iu.attr,
1531 &dev_attr_dt.attr,
1532 &dev_attr_qas.attr,
1533 &dev_attr_max_qas.attr,
1534 &dev_attr_wr_flow.attr,
1535 &dev_attr_rd_strm.attr,
1536 &dev_attr_rti.attr,
1537 &dev_attr_pcomp_en.attr,
1538 &dev_attr_hold_mcs.attr,
1539 &dev_attr_revalidate.attr,
1540 NULL
1541};
1542
1543static struct attribute_group target_attribute_group = {
1544 .attrs = target_attributes,
1545 .is_visible = target_attribute_is_visible,
1546};
1547
1548static int spi_target_configure(struct transport_container *tc,
1549 struct device *dev,
1550 struct device *cdev)
1551{
1552 struct kobject *kobj = &cdev->kobj;
1553
1554 /* force an update based on parameters read from the device */
1555 sysfs_update_group(kobj, &target_attribute_group);
1556
1557 return 0;
1558}
1559
1560struct scsi_transport_template *
1561spi_attach_transport(struct spi_function_template *ft)
1562{
1563 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1564 GFP_KERNEL);
1565
1566 if (unlikely(!i))
1567 return NULL;
1568
1569 i->t.target_attrs.ac.class = &spi_transport_class.class;
1570 i->t.target_attrs.ac.grp = &target_attribute_group;
1571 i->t.target_attrs.ac.match = spi_target_match;
1572 transport_container_register(&i->t.target_attrs);
1573 i->t.target_size = sizeof(struct spi_transport_attrs);
1574 i->t.host_attrs.ac.class = &spi_host_class.class;
1575 i->t.host_attrs.ac.grp = &host_attribute_group;
1576 i->t.host_attrs.ac.match = spi_host_match;
1577 transport_container_register(&i->t.host_attrs);
1578 i->t.host_size = sizeof(struct spi_host_attrs);
1579 i->f = ft;
1580
1581 return &i->t;
1582}
1583EXPORT_SYMBOL(spi_attach_transport);
1584
1585void spi_release_transport(struct scsi_transport_template *t)
1586{
1587 struct spi_internal *i = to_spi_internal(t);
1588
1589 transport_container_unregister(&i->t.target_attrs);
1590 transport_container_unregister(&i->t.host_attrs);
1591
1592 kfree(i);
1593}
1594EXPORT_SYMBOL(spi_release_transport);
1595
1596static __init int spi_transport_init(void)
1597{
1598 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1599 "SCSI Parallel Transport Class");
1600 if (!error) {
1601 int i;
1602
1603 for (i = 0; spi_static_device_list[i].vendor; i++)
1604 scsi_dev_info_list_add_keyed(1, /* compatible */
1605 spi_static_device_list[i].vendor,
1606 spi_static_device_list[i].model,
1607 NULL,
1608 spi_static_device_list[i].flags,
1609 SCSI_DEVINFO_SPI);
1610 }
1611
1612 error = transport_class_register(&spi_transport_class);
1613 if (error)
1614 return error;
1615 error = anon_transport_class_register(&spi_device_class);
1616 return transport_class_register(&spi_host_class);
1617}
1618
1619static void __exit spi_transport_exit(void)
1620{
1621 transport_class_unregister(&spi_transport_class);
1622 anon_transport_class_unregister(&spi_device_class);
1623 transport_class_unregister(&spi_host_class);
1624 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1625}
1626
1627MODULE_AUTHOR("Martin Hicks");
1628MODULE_DESCRIPTION("SPI Transport Attributes");
1629MODULE_LICENSE("GPL");
1630
1631module_init(spi_transport_init);
1632module_exit(spi_transport_exit);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
4 *
5 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
6 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
7 */
8#include <linux/ctype.h>
9#include <linux/init.h>
10#include <linux/module.h>
11#include <linux/workqueue.h>
12#include <linux/blkdev.h>
13#include <linux/mutex.h>
14#include <linux/sysfs.h>
15#include <linux/slab.h>
16#include <linux/suspend.h>
17#include <scsi/scsi.h>
18#include "scsi_priv.h"
19#include <scsi/scsi_device.h>
20#include <scsi/scsi_host.h>
21#include <scsi/scsi_cmnd.h>
22#include <scsi/scsi_eh.h>
23#include <scsi/scsi_tcq.h>
24#include <scsi/scsi_transport.h>
25#include <scsi/scsi_transport_spi.h>
26
27#define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
28#define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
29 * on" attributes */
30#define SPI_HOST_ATTRS 1
31
32#define SPI_MAX_ECHO_BUFFER_SIZE 4096
33
34#define DV_LOOPS 3
35#define DV_TIMEOUT (10*HZ)
36#define DV_RETRIES 3 /* should only need at most
37 * two cc/ua clears */
38
39/* Our blacklist flags */
40enum {
41 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1,
42};
43
44/* blacklist table, modelled on scsi_devinfo.c */
45static struct {
46 char *vendor;
47 char *model;
48 blist_flags_t flags;
49} spi_static_device_list[] __initdata = {
50 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
51 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
52 {NULL, NULL, 0}
53};
54
55/* Private data accessors (keep these out of the header file) */
56#define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
57#define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
58
59struct spi_internal {
60 struct scsi_transport_template t;
61 struct spi_function_template *f;
62};
63
64#define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
65
66static const int ppr_to_ps[] = {
67 /* The PPR values 0-6 are reserved, fill them in when
68 * the committee defines them */
69 -1, /* 0x00 */
70 -1, /* 0x01 */
71 -1, /* 0x02 */
72 -1, /* 0x03 */
73 -1, /* 0x04 */
74 -1, /* 0x05 */
75 -1, /* 0x06 */
76 3125, /* 0x07 */
77 6250, /* 0x08 */
78 12500, /* 0x09 */
79 25000, /* 0x0a */
80 30300, /* 0x0b */
81 50000, /* 0x0c */
82};
83/* The PPR values at which you calculate the period in ns by multiplying
84 * by 4 */
85#define SPI_STATIC_PPR 0x0c
86
87static int sprint_frac(char *dest, int value, int denom)
88{
89 int frac = value % denom;
90 int result = sprintf(dest, "%d", value / denom);
91
92 if (frac == 0)
93 return result;
94 dest[result++] = '.';
95
96 do {
97 denom /= 10;
98 sprintf(dest + result, "%d", frac / denom);
99 result++;
100 frac %= denom;
101 } while (frac);
102
103 dest[result++] = '\0';
104 return result;
105}
106
107static int spi_execute(struct scsi_device *sdev, const void *cmd,
108 enum req_op op, void *buffer, unsigned int bufflen,
109 struct scsi_sense_hdr *sshdr)
110{
111 blk_opf_t opf = op | REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT |
112 REQ_FAILFAST_DRIVER;
113 struct scsi_failure failure_defs[] = {
114 {
115 .sense = UNIT_ATTENTION,
116 .asc = SCMD_FAILURE_ASC_ANY,
117 .ascq = SCMD_FAILURE_ASCQ_ANY,
118 .allowed = DV_RETRIES,
119 .result = SAM_STAT_CHECK_CONDITION,
120 },
121 {}
122 };
123 struct scsi_failures failures = {
124 .failure_definitions = failure_defs,
125 };
126 const struct scsi_exec_args exec_args = {
127 /* bypass the SDEV_QUIESCE state with BLK_MQ_REQ_PM */
128 .req_flags = BLK_MQ_REQ_PM,
129 .sshdr = sshdr,
130 .failures = &failures,
131 };
132
133 return scsi_execute_cmd(sdev, cmd, opf, buffer, bufflen, DV_TIMEOUT, 1,
134 &exec_args);
135}
136
137static struct {
138 enum spi_signal_type value;
139 char *name;
140} signal_types[] = {
141 { SPI_SIGNAL_UNKNOWN, "unknown" },
142 { SPI_SIGNAL_SE, "SE" },
143 { SPI_SIGNAL_LVD, "LVD" },
144 { SPI_SIGNAL_HVD, "HVD" },
145};
146
147static inline const char *spi_signal_to_string(enum spi_signal_type type)
148{
149 int i;
150
151 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
152 if (type == signal_types[i].value)
153 return signal_types[i].name;
154 }
155 return NULL;
156}
157static inline enum spi_signal_type spi_signal_to_value(const char *name)
158{
159 int i, len;
160
161 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
162 len = strlen(signal_types[i].name);
163 if (strncmp(name, signal_types[i].name, len) == 0 &&
164 (name[len] == '\n' || name[len] == '\0'))
165 return signal_types[i].value;
166 }
167 return SPI_SIGNAL_UNKNOWN;
168}
169
170static int spi_host_setup(struct transport_container *tc, struct device *dev,
171 struct device *cdev)
172{
173 struct Scsi_Host *shost = dev_to_shost(dev);
174
175 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
176
177 return 0;
178}
179
180static int spi_host_configure(struct transport_container *tc,
181 struct device *dev,
182 struct device *cdev);
183
184static DECLARE_TRANSPORT_CLASS(spi_host_class,
185 "spi_host",
186 spi_host_setup,
187 NULL,
188 spi_host_configure);
189
190static int spi_host_match(struct attribute_container *cont,
191 struct device *dev)
192{
193 struct Scsi_Host *shost;
194
195 if (!scsi_is_host_device(dev))
196 return 0;
197
198 shost = dev_to_shost(dev);
199 if (!shost->transportt || shost->transportt->host_attrs.ac.class
200 != &spi_host_class.class)
201 return 0;
202
203 return &shost->transportt->host_attrs.ac == cont;
204}
205
206static int spi_target_configure(struct transport_container *tc,
207 struct device *dev,
208 struct device *cdev);
209
210static int spi_device_configure(struct transport_container *tc,
211 struct device *dev,
212 struct device *cdev)
213{
214 struct scsi_device *sdev = to_scsi_device(dev);
215 struct scsi_target *starget = sdev->sdev_target;
216 blist_flags_t bflags;
217
218 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
219 &sdev->inquiry[16],
220 SCSI_DEVINFO_SPI);
221
222 /* Populate the target capability fields with the values
223 * gleaned from the device inquiry */
224
225 spi_support_sync(starget) = scsi_device_sync(sdev);
226 spi_support_wide(starget) = scsi_device_wide(sdev);
227 spi_support_dt(starget) = scsi_device_dt(sdev);
228 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
229 spi_support_ius(starget) = scsi_device_ius(sdev);
230 if (bflags & SPI_BLIST_NOIUS) {
231 dev_info(dev, "Information Units disabled by blacklist\n");
232 spi_support_ius(starget) = 0;
233 }
234 spi_support_qas(starget) = scsi_device_qas(sdev);
235
236 return 0;
237}
238
239static int spi_setup_transport_attrs(struct transport_container *tc,
240 struct device *dev,
241 struct device *cdev)
242{
243 struct scsi_target *starget = to_scsi_target(dev);
244
245 spi_period(starget) = -1; /* illegal value */
246 spi_min_period(starget) = 0;
247 spi_offset(starget) = 0; /* async */
248 spi_max_offset(starget) = 255;
249 spi_width(starget) = 0; /* narrow */
250 spi_max_width(starget) = 1;
251 spi_iu(starget) = 0; /* no IU */
252 spi_max_iu(starget) = 1;
253 spi_dt(starget) = 0; /* ST */
254 spi_qas(starget) = 0;
255 spi_max_qas(starget) = 1;
256 spi_wr_flow(starget) = 0;
257 spi_rd_strm(starget) = 0;
258 spi_rti(starget) = 0;
259 spi_pcomp_en(starget) = 0;
260 spi_hold_mcs(starget) = 0;
261 spi_dv_pending(starget) = 0;
262 spi_dv_in_progress(starget) = 0;
263 spi_initial_dv(starget) = 0;
264 mutex_init(&spi_dv_mutex(starget));
265
266 return 0;
267}
268
269#define spi_transport_show_simple(field, format_string) \
270 \
271static ssize_t \
272show_spi_transport_##field(struct device *dev, \
273 struct device_attribute *attr, char *buf) \
274{ \
275 struct scsi_target *starget = transport_class_to_starget(dev); \
276 struct spi_transport_attrs *tp; \
277 \
278 tp = (struct spi_transport_attrs *)&starget->starget_data; \
279 return snprintf(buf, 20, format_string, tp->field); \
280}
281
282#define spi_transport_store_simple(field, format_string) \
283 \
284static ssize_t \
285store_spi_transport_##field(struct device *dev, \
286 struct device_attribute *attr, \
287 const char *buf, size_t count) \
288{ \
289 int val; \
290 struct scsi_target *starget = transport_class_to_starget(dev); \
291 struct spi_transport_attrs *tp; \
292 \
293 tp = (struct spi_transport_attrs *)&starget->starget_data; \
294 val = simple_strtoul(buf, NULL, 0); \
295 tp->field = val; \
296 return count; \
297}
298
299#define spi_transport_show_function(field, format_string) \
300 \
301static ssize_t \
302show_spi_transport_##field(struct device *dev, \
303 struct device_attribute *attr, char *buf) \
304{ \
305 struct scsi_target *starget = transport_class_to_starget(dev); \
306 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
307 struct spi_transport_attrs *tp; \
308 struct spi_internal *i = to_spi_internal(shost->transportt); \
309 tp = (struct spi_transport_attrs *)&starget->starget_data; \
310 if (i->f->get_##field) \
311 i->f->get_##field(starget); \
312 return snprintf(buf, 20, format_string, tp->field); \
313}
314
315#define spi_transport_store_function(field, format_string) \
316static ssize_t \
317store_spi_transport_##field(struct device *dev, \
318 struct device_attribute *attr, \
319 const char *buf, size_t count) \
320{ \
321 int val; \
322 struct scsi_target *starget = transport_class_to_starget(dev); \
323 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
324 struct spi_internal *i = to_spi_internal(shost->transportt); \
325 \
326 if (!i->f->set_##field) \
327 return -EINVAL; \
328 val = simple_strtoul(buf, NULL, 0); \
329 i->f->set_##field(starget, val); \
330 return count; \
331}
332
333#define spi_transport_store_max(field, format_string) \
334static ssize_t \
335store_spi_transport_##field(struct device *dev, \
336 struct device_attribute *attr, \
337 const char *buf, size_t count) \
338{ \
339 int val; \
340 struct scsi_target *starget = transport_class_to_starget(dev); \
341 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
342 struct spi_internal *i = to_spi_internal(shost->transportt); \
343 struct spi_transport_attrs *tp \
344 = (struct spi_transport_attrs *)&starget->starget_data; \
345 \
346 if (!i->f->set_##field) \
347 return -EINVAL; \
348 val = simple_strtoul(buf, NULL, 0); \
349 if (val > tp->max_##field) \
350 val = tp->max_##field; \
351 i->f->set_##field(starget, val); \
352 return count; \
353}
354
355#define spi_transport_rd_attr(field, format_string) \
356 spi_transport_show_function(field, format_string) \
357 spi_transport_store_function(field, format_string) \
358static DEVICE_ATTR(field, S_IRUGO, \
359 show_spi_transport_##field, \
360 store_spi_transport_##field);
361
362#define spi_transport_simple_attr(field, format_string) \
363 spi_transport_show_simple(field, format_string) \
364 spi_transport_store_simple(field, format_string) \
365static DEVICE_ATTR(field, S_IRUGO, \
366 show_spi_transport_##field, \
367 store_spi_transport_##field);
368
369#define spi_transport_max_attr(field, format_string) \
370 spi_transport_show_function(field, format_string) \
371 spi_transport_store_max(field, format_string) \
372 spi_transport_simple_attr(max_##field, format_string) \
373static DEVICE_ATTR(field, S_IRUGO, \
374 show_spi_transport_##field, \
375 store_spi_transport_##field);
376
377/* The Parallel SCSI Tranport Attributes: */
378spi_transport_max_attr(offset, "%d\n");
379spi_transport_max_attr(width, "%d\n");
380spi_transport_max_attr(iu, "%d\n");
381spi_transport_rd_attr(dt, "%d\n");
382spi_transport_max_attr(qas, "%d\n");
383spi_transport_rd_attr(wr_flow, "%d\n");
384spi_transport_rd_attr(rd_strm, "%d\n");
385spi_transport_rd_attr(rti, "%d\n");
386spi_transport_rd_attr(pcomp_en, "%d\n");
387spi_transport_rd_attr(hold_mcs, "%d\n");
388
389/* we only care about the first child device that's a real SCSI device
390 * so we return 1 to terminate the iteration when we find it */
391static int child_iter(struct device *dev, void *data)
392{
393 if (!scsi_is_sdev_device(dev))
394 return 0;
395
396 spi_dv_device(to_scsi_device(dev));
397 return 1;
398}
399
400static ssize_t
401store_spi_revalidate(struct device *dev, struct device_attribute *attr,
402 const char *buf, size_t count)
403{
404 struct scsi_target *starget = transport_class_to_starget(dev);
405
406 device_for_each_child(&starget->dev, NULL, child_iter);
407 return count;
408}
409static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
410
411/* Translate the period into ns according to the current spec
412 * for SDTR/PPR messages */
413static int period_to_str(char *buf, int period)
414{
415 int len, picosec;
416
417 if (period < 0 || period > 0xff) {
418 picosec = -1;
419 } else if (period <= SPI_STATIC_PPR) {
420 picosec = ppr_to_ps[period];
421 } else {
422 picosec = period * 4000;
423 }
424
425 if (picosec == -1) {
426 len = sprintf(buf, "reserved");
427 } else {
428 len = sprint_frac(buf, picosec, 1000);
429 }
430
431 return len;
432}
433
434static ssize_t
435show_spi_transport_period_helper(char *buf, int period)
436{
437 int len = period_to_str(buf, period);
438 buf[len++] = '\n';
439 buf[len] = '\0';
440 return len;
441}
442
443static ssize_t
444store_spi_transport_period_helper(struct device *dev, const char *buf,
445 size_t count, int *periodp)
446{
447 int j, picosec, period = -1;
448 char *endp;
449
450 picosec = simple_strtoul(buf, &endp, 10) * 1000;
451 if (*endp == '.') {
452 int mult = 100;
453 do {
454 endp++;
455 if (!isdigit(*endp))
456 break;
457 picosec += (*endp - '0') * mult;
458 mult /= 10;
459 } while (mult > 0);
460 }
461
462 for (j = 0; j <= SPI_STATIC_PPR; j++) {
463 if (ppr_to_ps[j] < picosec)
464 continue;
465 period = j;
466 break;
467 }
468
469 if (period == -1)
470 period = picosec / 4000;
471
472 if (period > 0xff)
473 period = 0xff;
474
475 *periodp = period;
476
477 return count;
478}
479
480static ssize_t
481show_spi_transport_period(struct device *dev,
482 struct device_attribute *attr, char *buf)
483{
484 struct scsi_target *starget = transport_class_to_starget(dev);
485 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
486 struct spi_internal *i = to_spi_internal(shost->transportt);
487 struct spi_transport_attrs *tp =
488 (struct spi_transport_attrs *)&starget->starget_data;
489
490 if (i->f->get_period)
491 i->f->get_period(starget);
492
493 return show_spi_transport_period_helper(buf, tp->period);
494}
495
496static ssize_t
497store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
498 const char *buf, size_t count)
499{
500 struct scsi_target *starget = transport_class_to_starget(cdev);
501 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
502 struct spi_internal *i = to_spi_internal(shost->transportt);
503 struct spi_transport_attrs *tp =
504 (struct spi_transport_attrs *)&starget->starget_data;
505 int period, retval;
506
507 if (!i->f->set_period)
508 return -EINVAL;
509
510 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
511
512 if (period < tp->min_period)
513 period = tp->min_period;
514
515 i->f->set_period(starget, period);
516
517 return retval;
518}
519
520static DEVICE_ATTR(period, S_IRUGO,
521 show_spi_transport_period,
522 store_spi_transport_period);
523
524static ssize_t
525show_spi_transport_min_period(struct device *cdev,
526 struct device_attribute *attr, char *buf)
527{
528 struct scsi_target *starget = transport_class_to_starget(cdev);
529 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
530 struct spi_internal *i = to_spi_internal(shost->transportt);
531 struct spi_transport_attrs *tp =
532 (struct spi_transport_attrs *)&starget->starget_data;
533
534 if (!i->f->set_period)
535 return -EINVAL;
536
537 return show_spi_transport_period_helper(buf, tp->min_period);
538}
539
540static ssize_t
541store_spi_transport_min_period(struct device *cdev,
542 struct device_attribute *attr,
543 const char *buf, size_t count)
544{
545 struct scsi_target *starget = transport_class_to_starget(cdev);
546 struct spi_transport_attrs *tp =
547 (struct spi_transport_attrs *)&starget->starget_data;
548
549 return store_spi_transport_period_helper(cdev, buf, count,
550 &tp->min_period);
551}
552
553
554static DEVICE_ATTR(min_period, S_IRUGO,
555 show_spi_transport_min_period,
556 store_spi_transport_min_period);
557
558
559static ssize_t show_spi_host_signalling(struct device *cdev,
560 struct device_attribute *attr,
561 char *buf)
562{
563 struct Scsi_Host *shost = transport_class_to_shost(cdev);
564 struct spi_internal *i = to_spi_internal(shost->transportt);
565
566 if (i->f->get_signalling)
567 i->f->get_signalling(shost);
568
569 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
570}
571static ssize_t store_spi_host_signalling(struct device *dev,
572 struct device_attribute *attr,
573 const char *buf, size_t count)
574{
575 struct Scsi_Host *shost = transport_class_to_shost(dev);
576 struct spi_internal *i = to_spi_internal(shost->transportt);
577 enum spi_signal_type type = spi_signal_to_value(buf);
578
579 if (!i->f->set_signalling)
580 return -EINVAL;
581
582 if (type != SPI_SIGNAL_UNKNOWN)
583 i->f->set_signalling(shost, type);
584
585 return count;
586}
587static DEVICE_ATTR(signalling, S_IRUGO,
588 show_spi_host_signalling,
589 store_spi_host_signalling);
590
591static ssize_t show_spi_host_width(struct device *cdev,
592 struct device_attribute *attr,
593 char *buf)
594{
595 struct Scsi_Host *shost = transport_class_to_shost(cdev);
596
597 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
598}
599static DEVICE_ATTR(host_width, S_IRUGO,
600 show_spi_host_width, NULL);
601
602static ssize_t show_spi_host_hba_id(struct device *cdev,
603 struct device_attribute *attr,
604 char *buf)
605{
606 struct Scsi_Host *shost = transport_class_to_shost(cdev);
607
608 return sprintf(buf, "%d\n", shost->this_id);
609}
610static DEVICE_ATTR(hba_id, S_IRUGO,
611 show_spi_host_hba_id, NULL);
612
613#define DV_SET(x, y) \
614 if(i->f->set_##x) \
615 i->f->set_##x(sdev->sdev_target, y)
616
617enum spi_compare_returns {
618 SPI_COMPARE_SUCCESS,
619 SPI_COMPARE_FAILURE,
620 SPI_COMPARE_SKIP_TEST,
621};
622
623
624/* This is for read/write Domain Validation: If the device supports
625 * an echo buffer, we do read/write tests to it */
626static enum spi_compare_returns
627spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
628 u8 *ptr, const int retries)
629{
630 int len = ptr - buffer;
631 int j, k, r, result;
632 unsigned int pattern = 0x0000ffff;
633 struct scsi_sense_hdr sshdr;
634
635 const char spi_write_buffer[] = {
636 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
637 };
638 const char spi_read_buffer[] = {
639 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
640 };
641
642 /* set up the pattern buffer. Doesn't matter if we spill
643 * slightly beyond since that's where the read buffer is */
644 for (j = 0; j < len; ) {
645
646 /* fill the buffer with counting (test a) */
647 for ( ; j < min(len, 32); j++)
648 buffer[j] = j;
649 k = j;
650 /* fill the buffer with alternating words of 0x0 and
651 * 0xffff (test b) */
652 for ( ; j < min(len, k + 32); j += 2) {
653 u16 *word = (u16 *)&buffer[j];
654
655 *word = (j & 0x02) ? 0x0000 : 0xffff;
656 }
657 k = j;
658 /* fill with crosstalk (alternating 0x5555 0xaaa)
659 * (test c) */
660 for ( ; j < min(len, k + 32); j += 2) {
661 u16 *word = (u16 *)&buffer[j];
662
663 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
664 }
665 k = j;
666 /* fill with shifting bits (test d) */
667 for ( ; j < min(len, k + 32); j += 4) {
668 u32 *word = (unsigned int *)&buffer[j];
669 u32 roll = (pattern & 0x80000000) ? 1 : 0;
670
671 *word = pattern;
672 pattern = (pattern << 1) | roll;
673 }
674 /* don't bother with random data (test e) */
675 }
676
677 for (r = 0; r < retries; r++) {
678 result = spi_execute(sdev, spi_write_buffer, REQ_OP_DRV_OUT,
679 buffer, len, &sshdr);
680 if (result || !scsi_device_online(sdev)) {
681
682 scsi_device_set_state(sdev, SDEV_QUIESCE);
683 if (result > 0 && scsi_sense_valid(&sshdr)
684 && sshdr.sense_key == ILLEGAL_REQUEST
685 /* INVALID FIELD IN CDB */
686 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
687 /* This would mean that the drive lied
688 * to us about supporting an echo
689 * buffer (unfortunately some Western
690 * Digital drives do precisely this)
691 */
692 return SPI_COMPARE_SKIP_TEST;
693
694
695 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
696 return SPI_COMPARE_FAILURE;
697 }
698
699 memset(ptr, 0, len);
700 spi_execute(sdev, spi_read_buffer, REQ_OP_DRV_IN,
701 ptr, len, NULL);
702 scsi_device_set_state(sdev, SDEV_QUIESCE);
703
704 if (memcmp(buffer, ptr, len) != 0)
705 return SPI_COMPARE_FAILURE;
706 }
707 return SPI_COMPARE_SUCCESS;
708}
709
710/* This is for the simplest form of Domain Validation: a read test
711 * on the inquiry data from the device */
712static enum spi_compare_returns
713spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
714 u8 *ptr, const int retries)
715{
716 int r, result;
717 const int len = sdev->inquiry_len;
718 const char spi_inquiry[] = {
719 INQUIRY, 0, 0, 0, len, 0
720 };
721
722 for (r = 0; r < retries; r++) {
723 memset(ptr, 0, len);
724
725 result = spi_execute(sdev, spi_inquiry, REQ_OP_DRV_IN,
726 ptr, len, NULL);
727
728 if(result || !scsi_device_online(sdev)) {
729 scsi_device_set_state(sdev, SDEV_QUIESCE);
730 return SPI_COMPARE_FAILURE;
731 }
732
733 /* If we don't have the inquiry data already, the
734 * first read gets it */
735 if (ptr == buffer) {
736 ptr += len;
737 --r;
738 continue;
739 }
740
741 if (memcmp(buffer, ptr, len) != 0)
742 /* failure */
743 return SPI_COMPARE_FAILURE;
744 }
745 return SPI_COMPARE_SUCCESS;
746}
747
748static enum spi_compare_returns
749spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
750 enum spi_compare_returns
751 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
752{
753 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
754 struct scsi_target *starget = sdev->sdev_target;
755 int period = 0, prevperiod = 0;
756 enum spi_compare_returns retval;
757
758
759 for (;;) {
760 int newperiod;
761 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
762
763 if (retval == SPI_COMPARE_SUCCESS
764 || retval == SPI_COMPARE_SKIP_TEST)
765 break;
766
767 /* OK, retrain, fallback */
768 if (i->f->get_iu)
769 i->f->get_iu(starget);
770 if (i->f->get_qas)
771 i->f->get_qas(starget);
772 if (i->f->get_period)
773 i->f->get_period(sdev->sdev_target);
774
775 /* Here's the fallback sequence; first try turning off
776 * IU, then QAS (if we can control them), then finally
777 * fall down the periods */
778 if (i->f->set_iu && spi_iu(starget)) {
779 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
780 DV_SET(iu, 0);
781 } else if (i->f->set_qas && spi_qas(starget)) {
782 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
783 DV_SET(qas, 0);
784 } else {
785 newperiod = spi_period(starget);
786 period = newperiod > period ? newperiod : period;
787 if (period < 0x0d)
788 period++;
789 else
790 period += period >> 1;
791
792 if (unlikely(period > 0xff || period == prevperiod)) {
793 /* Total failure; set to async and return */
794 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
795 DV_SET(offset, 0);
796 return SPI_COMPARE_FAILURE;
797 }
798 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
799 DV_SET(period, period);
800 prevperiod = period;
801 }
802 }
803 return retval;
804}
805
806static int
807spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
808{
809 int l, result;
810
811 /* first off do a test unit ready. This can error out
812 * because of reservations or some other reason. If it
813 * fails, the device won't let us write to the echo buffer
814 * so just return failure */
815
816 static const char spi_test_unit_ready[] = {
817 TEST_UNIT_READY, 0, 0, 0, 0, 0
818 };
819
820 static const char spi_read_buffer_descriptor[] = {
821 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
822 };
823
824
825 /* We send a set of three TURs to clear any outstanding
826 * unit attention conditions if they exist (Otherwise the
827 * buffer tests won't be happy). If the TUR still fails
828 * (reservation conflict, device not ready, etc) just
829 * skip the write tests */
830 for (l = 0; ; l++) {
831 result = spi_execute(sdev, spi_test_unit_ready, REQ_OP_DRV_IN,
832 NULL, 0, NULL);
833
834 if(result) {
835 if(l >= 3)
836 return 0;
837 } else {
838 /* TUR succeeded */
839 break;
840 }
841 }
842
843 result = spi_execute(sdev, spi_read_buffer_descriptor,
844 REQ_OP_DRV_IN, buffer, 4, NULL);
845
846 if (result)
847 /* Device has no echo buffer */
848 return 0;
849
850 return buffer[3] + ((buffer[2] & 0x1f) << 8);
851}
852
853static void
854spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
855{
856 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
857 struct scsi_target *starget = sdev->sdev_target;
858 struct Scsi_Host *shost = sdev->host;
859 int len = sdev->inquiry_len;
860 int min_period = spi_min_period(starget);
861 int max_width = spi_max_width(starget);
862 /* first set us up for narrow async */
863 DV_SET(offset, 0);
864 DV_SET(width, 0);
865
866 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
867 != SPI_COMPARE_SUCCESS) {
868 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
869 /* FIXME: should probably offline the device here? */
870 return;
871 }
872
873 if (!spi_support_wide(starget)) {
874 spi_max_width(starget) = 0;
875 max_width = 0;
876 }
877
878 /* test width */
879 if (i->f->set_width && max_width) {
880 i->f->set_width(starget, 1);
881
882 if (spi_dv_device_compare_inquiry(sdev, buffer,
883 buffer + len,
884 DV_LOOPS)
885 != SPI_COMPARE_SUCCESS) {
886 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
887 i->f->set_width(starget, 0);
888 /* Make sure we don't force wide back on by asking
889 * for a transfer period that requires it */
890 max_width = 0;
891 if (min_period < 10)
892 min_period = 10;
893 }
894 }
895
896 if (!i->f->set_period)
897 return;
898
899 /* device can't handle synchronous */
900 if (!spi_support_sync(starget) && !spi_support_dt(starget))
901 return;
902
903 /* len == -1 is the signal that we need to ascertain the
904 * presence of an echo buffer before trying to use it. len ==
905 * 0 means we don't have an echo buffer */
906 len = -1;
907
908 retry:
909
910 /* now set up to the maximum */
911 DV_SET(offset, spi_max_offset(starget));
912 DV_SET(period, min_period);
913
914 /* try QAS requests; this should be harmless to set if the
915 * target supports it */
916 if (spi_support_qas(starget) && spi_max_qas(starget)) {
917 DV_SET(qas, 1);
918 } else {
919 DV_SET(qas, 0);
920 }
921
922 if (spi_support_ius(starget) && spi_max_iu(starget) &&
923 min_period < 9) {
924 /* This u320 (or u640). Set IU transfers */
925 DV_SET(iu, 1);
926 /* Then set the optional parameters */
927 DV_SET(rd_strm, 1);
928 DV_SET(wr_flow, 1);
929 DV_SET(rti, 1);
930 if (min_period == 8)
931 DV_SET(pcomp_en, 1);
932 } else {
933 DV_SET(iu, 0);
934 }
935
936 /* now that we've done all this, actually check the bus
937 * signal type (if known). Some devices are stupid on
938 * a SE bus and still claim they can try LVD only settings */
939 if (i->f->get_signalling)
940 i->f->get_signalling(shost);
941 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
942 spi_signalling(shost) == SPI_SIGNAL_HVD ||
943 !spi_support_dt(starget)) {
944 DV_SET(dt, 0);
945 } else {
946 DV_SET(dt, 1);
947 }
948 /* set width last because it will pull all the other
949 * parameters down to required values */
950 DV_SET(width, max_width);
951
952 /* Do the read only INQUIRY tests */
953 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
954 spi_dv_device_compare_inquiry);
955 /* See if we actually managed to negotiate and sustain DT */
956 if (i->f->get_dt)
957 i->f->get_dt(starget);
958
959 /* see if the device has an echo buffer. If it does we can do
960 * the SPI pattern write tests. Because of some broken
961 * devices, we *only* try this on a device that has actually
962 * negotiated DT */
963
964 if (len == -1 && spi_dt(starget))
965 len = spi_dv_device_get_echo_buffer(sdev, buffer);
966
967 if (len <= 0) {
968 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
969 return;
970 }
971
972 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
973 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
974 len = SPI_MAX_ECHO_BUFFER_SIZE;
975 }
976
977 if (spi_dv_retrain(sdev, buffer, buffer + len,
978 spi_dv_device_echo_buffer)
979 == SPI_COMPARE_SKIP_TEST) {
980 /* OK, the stupid drive can't do a write echo buffer
981 * test after all, fall back to the read tests */
982 len = 0;
983 goto retry;
984 }
985}
986
987
988/** spi_dv_device - Do Domain Validation on the device
989 * @sdev: scsi device to validate
990 *
991 * Performs the domain validation on the given device in the
992 * current execution thread. Since DV operations may sleep,
993 * the current thread must have user context. Also no SCSI
994 * related locks that would deadlock I/O issued by the DV may
995 * be held.
996 */
997void
998spi_dv_device(struct scsi_device *sdev)
999{
1000 struct scsi_target *starget = sdev->sdev_target;
1001 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
1002 unsigned int sleep_flags;
1003 u8 *buffer;
1004
1005 /*
1006 * Because this function and the power management code both call
1007 * scsi_device_quiesce(), it is not safe to perform domain validation
1008 * while suspend or resume is in progress. Hence the
1009 * lock/unlock_system_sleep() calls.
1010 */
1011 sleep_flags = lock_system_sleep();
1012
1013 if (scsi_autopm_get_device(sdev))
1014 goto unlock_system_sleep;
1015
1016 if (unlikely(spi_dv_in_progress(starget)))
1017 goto put_autopm;
1018
1019 if (unlikely(scsi_device_get(sdev)))
1020 goto put_autopm;
1021
1022 spi_dv_in_progress(starget) = 1;
1023
1024 buffer = kzalloc(len, GFP_KERNEL);
1025
1026 if (unlikely(!buffer))
1027 goto put_sdev;
1028
1029 /* We need to verify that the actual device will quiesce; the
1030 * later target quiesce is just a nice to have */
1031 if (unlikely(scsi_device_quiesce(sdev)))
1032 goto free_buffer;
1033
1034 scsi_target_quiesce(starget);
1035
1036 spi_dv_pending(starget) = 1;
1037 mutex_lock(&spi_dv_mutex(starget));
1038
1039 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1040
1041 spi_dv_device_internal(sdev, buffer);
1042
1043 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1044
1045 mutex_unlock(&spi_dv_mutex(starget));
1046 spi_dv_pending(starget) = 0;
1047
1048 scsi_target_resume(starget);
1049
1050 spi_initial_dv(starget) = 1;
1051
1052free_buffer:
1053 kfree(buffer);
1054
1055put_sdev:
1056 spi_dv_in_progress(starget) = 0;
1057 scsi_device_put(sdev);
1058put_autopm:
1059 scsi_autopm_put_device(sdev);
1060
1061unlock_system_sleep:
1062 unlock_system_sleep(sleep_flags);
1063}
1064EXPORT_SYMBOL(spi_dv_device);
1065
1066struct work_queue_wrapper {
1067 struct work_struct work;
1068 struct scsi_device *sdev;
1069};
1070
1071static void
1072spi_dv_device_work_wrapper(struct work_struct *work)
1073{
1074 struct work_queue_wrapper *wqw =
1075 container_of(work, struct work_queue_wrapper, work);
1076 struct scsi_device *sdev = wqw->sdev;
1077
1078 kfree(wqw);
1079 spi_dv_device(sdev);
1080 spi_dv_pending(sdev->sdev_target) = 0;
1081 scsi_device_put(sdev);
1082}
1083
1084
1085/**
1086 * spi_schedule_dv_device - schedule domain validation to occur on the device
1087 * @sdev: The device to validate
1088 *
1089 * Identical to spi_dv_device() above, except that the DV will be
1090 * scheduled to occur in a workqueue later. All memory allocations
1091 * are atomic, so may be called from any context including those holding
1092 * SCSI locks.
1093 */
1094void
1095spi_schedule_dv_device(struct scsi_device *sdev)
1096{
1097 struct work_queue_wrapper *wqw =
1098 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1099
1100 if (unlikely(!wqw))
1101 return;
1102
1103 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1104 kfree(wqw);
1105 return;
1106 }
1107 /* Set pending early (dv_device doesn't check it, only sets it) */
1108 spi_dv_pending(sdev->sdev_target) = 1;
1109 if (unlikely(scsi_device_get(sdev))) {
1110 kfree(wqw);
1111 spi_dv_pending(sdev->sdev_target) = 0;
1112 return;
1113 }
1114
1115 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1116 wqw->sdev = sdev;
1117
1118 schedule_work(&wqw->work);
1119}
1120EXPORT_SYMBOL(spi_schedule_dv_device);
1121
1122/**
1123 * spi_display_xfer_agreement - Print the current target transfer agreement
1124 * @starget: The target for which to display the agreement
1125 *
1126 * Each SPI port is required to maintain a transfer agreement for each
1127 * other port on the bus. This function prints a one-line summary of
1128 * the current agreement; more detailed information is available in sysfs.
1129 */
1130void spi_display_xfer_agreement(struct scsi_target *starget)
1131{
1132 struct spi_transport_attrs *tp;
1133 tp = (struct spi_transport_attrs *)&starget->starget_data;
1134
1135 if (tp->offset > 0 && tp->period > 0) {
1136 unsigned int picosec, kb100;
1137 char *scsi = "FAST-?";
1138 char tmp[8];
1139
1140 if (tp->period <= SPI_STATIC_PPR) {
1141 picosec = ppr_to_ps[tp->period];
1142 switch (tp->period) {
1143 case 7: scsi = "FAST-320"; break;
1144 case 8: scsi = "FAST-160"; break;
1145 case 9: scsi = "FAST-80"; break;
1146 case 10:
1147 case 11: scsi = "FAST-40"; break;
1148 case 12: scsi = "FAST-20"; break;
1149 }
1150 } else {
1151 picosec = tp->period * 4000;
1152 if (tp->period < 25)
1153 scsi = "FAST-20";
1154 else if (tp->period < 50)
1155 scsi = "FAST-10";
1156 else
1157 scsi = "FAST-5";
1158 }
1159
1160 kb100 = (10000000 + picosec / 2) / picosec;
1161 if (tp->width)
1162 kb100 *= 2;
1163 sprint_frac(tmp, picosec, 1000);
1164
1165 dev_info(&starget->dev,
1166 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1167 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1168 tp->dt ? "DT" : "ST",
1169 tp->iu ? " IU" : "",
1170 tp->qas ? " QAS" : "",
1171 tp->rd_strm ? " RDSTRM" : "",
1172 tp->rti ? " RTI" : "",
1173 tp->wr_flow ? " WRFLOW" : "",
1174 tp->pcomp_en ? " PCOMP" : "",
1175 tp->hold_mcs ? " HMCS" : "",
1176 tmp, tp->offset);
1177 } else {
1178 dev_info(&starget->dev, "%sasynchronous\n",
1179 tp->width ? "wide " : "");
1180 }
1181}
1182EXPORT_SYMBOL(spi_display_xfer_agreement);
1183
1184int spi_populate_width_msg(unsigned char *msg, int width)
1185{
1186 msg[0] = EXTENDED_MESSAGE;
1187 msg[1] = 2;
1188 msg[2] = EXTENDED_WDTR;
1189 msg[3] = width;
1190 return 4;
1191}
1192EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1193
1194int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1195{
1196 msg[0] = EXTENDED_MESSAGE;
1197 msg[1] = 3;
1198 msg[2] = EXTENDED_SDTR;
1199 msg[3] = period;
1200 msg[4] = offset;
1201 return 5;
1202}
1203EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1204
1205int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1206 int width, int options)
1207{
1208 msg[0] = EXTENDED_MESSAGE;
1209 msg[1] = 6;
1210 msg[2] = EXTENDED_PPR;
1211 msg[3] = period;
1212 msg[4] = 0;
1213 msg[5] = offset;
1214 msg[6] = width;
1215 msg[7] = options;
1216 return 8;
1217}
1218EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1219
1220/**
1221 * spi_populate_tag_msg - place a tag message in a buffer
1222 * @msg: pointer to the area to place the tag
1223 * @cmd: pointer to the scsi command for the tag
1224 *
1225 * Notes:
1226 * designed to create the correct type of tag message for the
1227 * particular request. Returns the size of the tag message.
1228 * May return 0 if TCQ is disabled for this device.
1229 **/
1230int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1231{
1232 if (cmd->flags & SCMD_TAGGED) {
1233 *msg++ = SIMPLE_QUEUE_TAG;
1234 *msg++ = scsi_cmd_to_rq(cmd)->tag;
1235 return 2;
1236 }
1237
1238 return 0;
1239}
1240EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1241
1242#ifdef CONFIG_SCSI_CONSTANTS
1243static const char * const one_byte_msgs[] = {
1244/* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1245/* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1246/* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1247/* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1248/* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1249/* 0x0f */ "Initiate Recovery", "Release Recovery",
1250/* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1251/* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1252};
1253
1254static const char * const two_byte_msgs[] = {
1255/* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1256/* 0x23 */ "Ignore Wide Residue", "ACA"
1257};
1258
1259static const char * const extended_msgs[] = {
1260/* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1261/* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1262/* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1263};
1264
1265static void print_nego(const unsigned char *msg, int per, int off, int width)
1266{
1267 if (per) {
1268 char buf[20];
1269 period_to_str(buf, msg[per]);
1270 printk("period = %s ns ", buf);
1271 }
1272
1273 if (off)
1274 printk("offset = %d ", msg[off]);
1275 if (width)
1276 printk("width = %d ", 8 << msg[width]);
1277}
1278
1279static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1280{
1281 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1282 msg[msb+3];
1283 printk("%s = %d ", desc, ptr);
1284}
1285
1286int spi_print_msg(const unsigned char *msg)
1287{
1288 int len = 1, i;
1289 if (msg[0] == EXTENDED_MESSAGE) {
1290 len = 2 + msg[1];
1291 if (len == 2)
1292 len += 256;
1293 if (msg[2] < ARRAY_SIZE(extended_msgs))
1294 printk ("%s ", extended_msgs[msg[2]]);
1295 else
1296 printk ("Extended Message, reserved code (0x%02x) ",
1297 (int) msg[2]);
1298 switch (msg[2]) {
1299 case EXTENDED_MODIFY_DATA_POINTER:
1300 print_ptr(msg, 3, "pointer");
1301 break;
1302 case EXTENDED_SDTR:
1303 print_nego(msg, 3, 4, 0);
1304 break;
1305 case EXTENDED_WDTR:
1306 print_nego(msg, 0, 0, 3);
1307 break;
1308 case EXTENDED_PPR:
1309 print_nego(msg, 3, 5, 6);
1310 break;
1311 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1312 print_ptr(msg, 3, "out");
1313 print_ptr(msg, 7, "in");
1314 break;
1315 default:
1316 for (i = 2; i < len; ++i)
1317 printk("%02x ", msg[i]);
1318 }
1319 /* Identify */
1320 } else if (msg[0] & 0x80) {
1321 printk("Identify disconnect %sallowed %s %d ",
1322 (msg[0] & 0x40) ? "" : "not ",
1323 (msg[0] & 0x20) ? "target routine" : "lun",
1324 msg[0] & 0x7);
1325 /* Normal One byte */
1326 } else if (msg[0] < 0x1f) {
1327 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1328 printk("%s ", one_byte_msgs[msg[0]]);
1329 else
1330 printk("reserved (%02x) ", msg[0]);
1331 } else if (msg[0] == 0x55) {
1332 printk("QAS Request ");
1333 /* Two byte */
1334 } else if (msg[0] <= 0x2f) {
1335 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1336 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1337 msg[1]);
1338 else
1339 printk("reserved two byte (%02x %02x) ",
1340 msg[0], msg[1]);
1341 len = 2;
1342 } else
1343 printk("reserved ");
1344 return len;
1345}
1346EXPORT_SYMBOL(spi_print_msg);
1347
1348#else /* ifndef CONFIG_SCSI_CONSTANTS */
1349
1350int spi_print_msg(const unsigned char *msg)
1351{
1352 int len = 1, i;
1353
1354 if (msg[0] == EXTENDED_MESSAGE) {
1355 len = 2 + msg[1];
1356 if (len == 2)
1357 len += 256;
1358 for (i = 0; i < len; ++i)
1359 printk("%02x ", msg[i]);
1360 /* Identify */
1361 } else if (msg[0] & 0x80) {
1362 printk("%02x ", msg[0]);
1363 /* Normal One byte */
1364 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1365 printk("%02x ", msg[0]);
1366 /* Two byte */
1367 } else if (msg[0] <= 0x2f) {
1368 printk("%02x %02x", msg[0], msg[1]);
1369 len = 2;
1370 } else
1371 printk("%02x ", msg[0]);
1372 return len;
1373}
1374EXPORT_SYMBOL(spi_print_msg);
1375#endif /* ! CONFIG_SCSI_CONSTANTS */
1376
1377static int spi_device_match(struct attribute_container *cont,
1378 struct device *dev)
1379{
1380 struct scsi_device *sdev;
1381 struct Scsi_Host *shost;
1382 struct spi_internal *i;
1383
1384 if (!scsi_is_sdev_device(dev))
1385 return 0;
1386
1387 sdev = to_scsi_device(dev);
1388 shost = sdev->host;
1389 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1390 != &spi_host_class.class)
1391 return 0;
1392 /* Note: this class has no device attributes, so it has
1393 * no per-HBA allocation and thus we don't need to distinguish
1394 * the attribute containers for the device */
1395 i = to_spi_internal(shost->transportt);
1396 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1397 return 0;
1398 return 1;
1399}
1400
1401static int spi_target_match(struct attribute_container *cont,
1402 struct device *dev)
1403{
1404 struct Scsi_Host *shost;
1405 struct scsi_target *starget;
1406 struct spi_internal *i;
1407
1408 if (!scsi_is_target_device(dev))
1409 return 0;
1410
1411 shost = dev_to_shost(dev->parent);
1412 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1413 != &spi_host_class.class)
1414 return 0;
1415
1416 i = to_spi_internal(shost->transportt);
1417 starget = to_scsi_target(dev);
1418
1419 if (i->f->deny_binding && i->f->deny_binding(starget))
1420 return 0;
1421
1422 return &i->t.target_attrs.ac == cont;
1423}
1424
1425static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1426 "spi_transport",
1427 spi_setup_transport_attrs,
1428 NULL,
1429 spi_target_configure);
1430
1431static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1432 spi_device_match,
1433 spi_device_configure);
1434
1435static struct attribute *host_attributes[] = {
1436 &dev_attr_signalling.attr,
1437 &dev_attr_host_width.attr,
1438 &dev_attr_hba_id.attr,
1439 NULL
1440};
1441
1442static struct attribute_group host_attribute_group = {
1443 .attrs = host_attributes,
1444};
1445
1446static int spi_host_configure(struct transport_container *tc,
1447 struct device *dev,
1448 struct device *cdev)
1449{
1450 struct kobject *kobj = &cdev->kobj;
1451 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1452 struct spi_internal *si = to_spi_internal(shost->transportt);
1453 struct attribute *attr = &dev_attr_signalling.attr;
1454 int rc = 0;
1455
1456 if (si->f->set_signalling)
1457 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1458
1459 return rc;
1460}
1461
1462/* returns true if we should be showing the variable. Also
1463 * overloads the return by setting 1<<1 if the attribute should
1464 * be writeable */
1465#define TARGET_ATTRIBUTE_HELPER(name) \
1466 (si->f->show_##name ? S_IRUGO : 0) | \
1467 (si->f->set_##name ? S_IWUSR : 0)
1468
1469static umode_t target_attribute_is_visible(struct kobject *kobj,
1470 struct attribute *attr, int i)
1471{
1472 struct device *cdev = container_of(kobj, struct device, kobj);
1473 struct scsi_target *starget = transport_class_to_starget(cdev);
1474 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1475 struct spi_internal *si = to_spi_internal(shost->transportt);
1476
1477 if (attr == &dev_attr_period.attr &&
1478 spi_support_sync(starget))
1479 return TARGET_ATTRIBUTE_HELPER(period);
1480 else if (attr == &dev_attr_min_period.attr &&
1481 spi_support_sync(starget))
1482 return TARGET_ATTRIBUTE_HELPER(period);
1483 else if (attr == &dev_attr_offset.attr &&
1484 spi_support_sync(starget))
1485 return TARGET_ATTRIBUTE_HELPER(offset);
1486 else if (attr == &dev_attr_max_offset.attr &&
1487 spi_support_sync(starget))
1488 return TARGET_ATTRIBUTE_HELPER(offset);
1489 else if (attr == &dev_attr_width.attr &&
1490 spi_support_wide(starget))
1491 return TARGET_ATTRIBUTE_HELPER(width);
1492 else if (attr == &dev_attr_max_width.attr &&
1493 spi_support_wide(starget))
1494 return TARGET_ATTRIBUTE_HELPER(width);
1495 else if (attr == &dev_attr_iu.attr &&
1496 spi_support_ius(starget))
1497 return TARGET_ATTRIBUTE_HELPER(iu);
1498 else if (attr == &dev_attr_max_iu.attr &&
1499 spi_support_ius(starget))
1500 return TARGET_ATTRIBUTE_HELPER(iu);
1501 else if (attr == &dev_attr_dt.attr &&
1502 spi_support_dt(starget))
1503 return TARGET_ATTRIBUTE_HELPER(dt);
1504 else if (attr == &dev_attr_qas.attr &&
1505 spi_support_qas(starget))
1506 return TARGET_ATTRIBUTE_HELPER(qas);
1507 else if (attr == &dev_attr_max_qas.attr &&
1508 spi_support_qas(starget))
1509 return TARGET_ATTRIBUTE_HELPER(qas);
1510 else if (attr == &dev_attr_wr_flow.attr &&
1511 spi_support_ius(starget))
1512 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1513 else if (attr == &dev_attr_rd_strm.attr &&
1514 spi_support_ius(starget))
1515 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1516 else if (attr == &dev_attr_rti.attr &&
1517 spi_support_ius(starget))
1518 return TARGET_ATTRIBUTE_HELPER(rti);
1519 else if (attr == &dev_attr_pcomp_en.attr &&
1520 spi_support_ius(starget))
1521 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1522 else if (attr == &dev_attr_hold_mcs.attr &&
1523 spi_support_ius(starget))
1524 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1525 else if (attr == &dev_attr_revalidate.attr)
1526 return S_IWUSR;
1527
1528 return 0;
1529}
1530
1531static struct attribute *target_attributes[] = {
1532 &dev_attr_period.attr,
1533 &dev_attr_min_period.attr,
1534 &dev_attr_offset.attr,
1535 &dev_attr_max_offset.attr,
1536 &dev_attr_width.attr,
1537 &dev_attr_max_width.attr,
1538 &dev_attr_iu.attr,
1539 &dev_attr_max_iu.attr,
1540 &dev_attr_dt.attr,
1541 &dev_attr_qas.attr,
1542 &dev_attr_max_qas.attr,
1543 &dev_attr_wr_flow.attr,
1544 &dev_attr_rd_strm.attr,
1545 &dev_attr_rti.attr,
1546 &dev_attr_pcomp_en.attr,
1547 &dev_attr_hold_mcs.attr,
1548 &dev_attr_revalidate.attr,
1549 NULL
1550};
1551
1552static struct attribute_group target_attribute_group = {
1553 .attrs = target_attributes,
1554 .is_visible = target_attribute_is_visible,
1555};
1556
1557static int spi_target_configure(struct transport_container *tc,
1558 struct device *dev,
1559 struct device *cdev)
1560{
1561 struct kobject *kobj = &cdev->kobj;
1562
1563 /* force an update based on parameters read from the device */
1564 sysfs_update_group(kobj, &target_attribute_group);
1565
1566 return 0;
1567}
1568
1569struct scsi_transport_template *
1570spi_attach_transport(struct spi_function_template *ft)
1571{
1572 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1573 GFP_KERNEL);
1574
1575 if (unlikely(!i))
1576 return NULL;
1577
1578 i->t.target_attrs.ac.class = &spi_transport_class.class;
1579 i->t.target_attrs.ac.grp = &target_attribute_group;
1580 i->t.target_attrs.ac.match = spi_target_match;
1581 transport_container_register(&i->t.target_attrs);
1582 i->t.target_size = sizeof(struct spi_transport_attrs);
1583 i->t.host_attrs.ac.class = &spi_host_class.class;
1584 i->t.host_attrs.ac.grp = &host_attribute_group;
1585 i->t.host_attrs.ac.match = spi_host_match;
1586 transport_container_register(&i->t.host_attrs);
1587 i->t.host_size = sizeof(struct spi_host_attrs);
1588 i->f = ft;
1589
1590 return &i->t;
1591}
1592EXPORT_SYMBOL(spi_attach_transport);
1593
1594void spi_release_transport(struct scsi_transport_template *t)
1595{
1596 struct spi_internal *i = to_spi_internal(t);
1597
1598 transport_container_unregister(&i->t.target_attrs);
1599 transport_container_unregister(&i->t.host_attrs);
1600
1601 kfree(i);
1602}
1603EXPORT_SYMBOL(spi_release_transport);
1604
1605static __init int spi_transport_init(void)
1606{
1607 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1608 "SCSI Parallel Transport Class");
1609 if (!error) {
1610 int i;
1611
1612 for (i = 0; spi_static_device_list[i].vendor; i++)
1613 scsi_dev_info_list_add_keyed(1, /* compatible */
1614 spi_static_device_list[i].vendor,
1615 spi_static_device_list[i].model,
1616 NULL,
1617 spi_static_device_list[i].flags,
1618 SCSI_DEVINFO_SPI);
1619 }
1620
1621 error = transport_class_register(&spi_transport_class);
1622 if (error)
1623 return error;
1624 error = anon_transport_class_register(&spi_device_class);
1625 return transport_class_register(&spi_host_class);
1626}
1627
1628static void __exit spi_transport_exit(void)
1629{
1630 transport_class_unregister(&spi_transport_class);
1631 anon_transport_class_unregister(&spi_device_class);
1632 transport_class_unregister(&spi_host_class);
1633 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1634}
1635
1636MODULE_AUTHOR("Martin Hicks");
1637MODULE_DESCRIPTION("SPI Transport Attributes");
1638MODULE_LICENSE("GPL");
1639
1640module_init(spi_transport_init);
1641module_exit(spi_transport_exit);