Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2** ccio-dma.c:
   3**	DMA management routines for first generation cache-coherent machines.
   4**	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
   5**
   6**	(c) Copyright 2000 Grant Grundler
   7**	(c) Copyright 2000 Ryan Bradetich
   8**	(c) Copyright 2000 Hewlett-Packard Company
   9**
  10** This program is free software; you can redistribute it and/or modify
  11** it under the terms of the GNU General Public License as published by
  12** the Free Software Foundation; either version 2 of the License, or
  13** (at your option) any later version.
  14**
  15**
  16**  "Real Mode" operation refers to U2/Uturn chip operation.
  17**  U2/Uturn were designed to perform coherency checks w/o using
  18**  the I/O MMU - basically what x86 does.
  19**
  20**  Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
  21**      CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
  22**      cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
  23**
  24**  I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
  25**
  26**  Drawbacks of using Real Mode are:
  27**	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
  28**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
  29**	o Ability to do scatter/gather in HW is lost.
  30**	o Doesn't work under PCX-U/U+ machines since they didn't follow
  31**        the coherency design originally worked out. Only PCX-W does.
  32*/
  33
  34#include <linux/types.h>
  35#include <linux/kernel.h>
  36#include <linux/init.h>
  37#include <linux/mm.h>
  38#include <linux/spinlock.h>
  39#include <linux/slab.h>
  40#include <linux/string.h>
  41#include <linux/pci.h>
  42#include <linux/reboot.h>
  43#include <linux/proc_fs.h>
  44#include <linux/seq_file.h>
 
  45#include <linux/scatterlist.h>
  46#include <linux/iommu-helper.h>
  47#include <linux/export.h>
  48
  49#include <asm/byteorder.h>
  50#include <asm/cache.h>		/* for L1_CACHE_BYTES */
  51#include <asm/uaccess.h>
  52#include <asm/page.h>
  53#include <asm/dma.h>
  54#include <asm/io.h>
  55#include <asm/hardware.h>       /* for register_module() */
  56#include <asm/parisc-device.h>
  57
 
 
  58/* 
  59** Choose "ccio" since that's what HP-UX calls it.
  60** Make it easier for folks to migrate from one to the other :^)
  61*/
  62#define MODULE_NAME "ccio"
  63
  64#undef DEBUG_CCIO_RES
  65#undef DEBUG_CCIO_RUN
  66#undef DEBUG_CCIO_INIT
  67#undef DEBUG_CCIO_RUN_SG
  68
  69#ifdef CONFIG_PROC_FS
  70/* depends on proc fs support. But costs CPU performance. */
  71#undef CCIO_COLLECT_STATS
  72#endif
  73
  74#include <asm/runway.h>		/* for proc_runway_root */
  75
  76#ifdef DEBUG_CCIO_INIT
  77#define DBG_INIT(x...)  printk(x)
  78#else
  79#define DBG_INIT(x...)
  80#endif
  81
  82#ifdef DEBUG_CCIO_RUN
  83#define DBG_RUN(x...)   printk(x)
  84#else
  85#define DBG_RUN(x...)
  86#endif
  87
  88#ifdef DEBUG_CCIO_RES
  89#define DBG_RES(x...)   printk(x)
  90#else
  91#define DBG_RES(x...)
  92#endif
  93
  94#ifdef DEBUG_CCIO_RUN_SG
  95#define DBG_RUN_SG(x...) printk(x)
  96#else
  97#define DBG_RUN_SG(x...)
  98#endif
  99
 100#define CCIO_INLINE	inline
 101#define WRITE_U32(value, addr) __raw_writel(value, addr)
 102#define READ_U32(addr) __raw_readl(addr)
 103
 104#define U2_IOA_RUNWAY 0x580
 105#define U2_BC_GSC     0x501
 106#define UTURN_IOA_RUNWAY 0x581
 107#define UTURN_BC_GSC     0x502
 108
 109#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
 110#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
 111#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
 112
 113struct ioa_registers {
 114        /* Runway Supervisory Set */
 115        int32_t    unused1[12];
 116        uint32_t   io_command;             /* Offset 12 */
 117        uint32_t   io_status;              /* Offset 13 */
 118        uint32_t   io_control;             /* Offset 14 */
 119        int32_t    unused2[1];
 120
 121        /* Runway Auxiliary Register Set */
 122        uint32_t   io_err_resp;            /* Offset  0 */
 123        uint32_t   io_err_info;            /* Offset  1 */
 124        uint32_t   io_err_req;             /* Offset  2 */
 125        uint32_t   io_err_resp_hi;         /* Offset  3 */
 126        uint32_t   io_tlb_entry_m;         /* Offset  4 */
 127        uint32_t   io_tlb_entry_l;         /* Offset  5 */
 128        uint32_t   unused3[1];
 129        uint32_t   io_pdir_base;           /* Offset  7 */
 130        uint32_t   io_io_low_hv;           /* Offset  8 */
 131        uint32_t   io_io_high_hv;          /* Offset  9 */
 132        uint32_t   unused4[1];
 133        uint32_t   io_chain_id_mask;       /* Offset 11 */
 134        uint32_t   unused5[2];
 135        uint32_t   io_io_low;              /* Offset 14 */
 136        uint32_t   io_io_high;             /* Offset 15 */
 137};
 138
 139/*
 140** IOA Registers
 141** -------------
 142**
 143** Runway IO_CONTROL Register (+0x38)
 144** 
 145** The Runway IO_CONTROL register controls the forwarding of transactions.
 146**
 147** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
 148** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
 149**
 150** o mode field indicates the address translation of transactions
 151**   forwarded from Runway to GSC+:
 152**       Mode Name     Value        Definition
 153**       Off (default)   0          Opaque to matching addresses.
 154**       Include         1          Transparent for matching addresses.
 155**       Peek            3          Map matching addresses.
 156**
 157**       + "Off" mode: Runway transactions which match the I/O range
 158**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
 159**       + "Include" mode: all addresses within the I/O range specified
 160**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
 161**         forwarded. This is the I/O Adapter's normal operating mode.
 162**       + "Peek" mode: used during system configuration to initialize the
 163**         GSC+ bus. Runway Write_Shorts in the address range specified by
 164**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
 165**         *AND* the GSC+ address is remapped to the Broadcast Physical
 166**         Address space by setting the 14 high order address bits of the
 167**         32 bit GSC+ address to ones.
 168**
 169** o TLB field affects transactions which are forwarded from GSC+ to Runway.
 170**   "Real" mode is the poweron default.
 171** 
 172**   TLB Mode  Value  Description
 173**   Real        0    No TLB translation. Address is directly mapped and the
 174**                    virtual address is composed of selected physical bits.
 175**   Error       1    Software fills the TLB manually.
 176**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
 177**
 178**
 179** IO_IO_LOW_HV	  +0x60 (HV dependent)
 180** IO_IO_HIGH_HV  +0x64 (HV dependent)
 181** IO_IO_LOW      +0x78	(Architected register)
 182** IO_IO_HIGH     +0x7c	(Architected register)
 183**
 184** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
 185** I/O Adapter address space, respectively.
 186**
 187** 0  ... 7 | 8 ... 15 |  16   ...   31 |
 188** 11111111 | 11111111 |      address   |
 189**
 190** Each LOW/HIGH pair describes a disjoint address space region.
 191** (2 per GSC+ port). Each incoming Runway transaction address is compared
 192** with both sets of LOW/HIGH registers. If the address is in the range
 193** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
 194** for forwarded to the respective GSC+ bus.
 195** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
 196** an address space region.
 197**
 198** In order for a Runway address to reside within GSC+ extended address space:
 199**	Runway Address [0:7]    must identically compare to 8'b11111111
 200**	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
 201** 	Runway Address [12:23]  must be greater than or equal to
 202**	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
 203**	Runway Address [24:39]  is not used in the comparison.
 204**
 205** When the Runway transaction is forwarded to GSC+, the GSC+ address is
 206** as follows:
 207**	GSC+ Address[0:3]	4'b1111
 208**	GSC+ Address[4:29]	Runway Address[12:37]
 209**	GSC+ Address[30:31]	2'b00
 210**
 211** All 4 Low/High registers must be initialized (by PDC) once the lower bus
 212** is interrogated and address space is defined. The operating system will
 213** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
 214** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
 215** and IO_IO_HIGH registers should not be subsequently altered by the OS.
 216** 
 217** Writes to both sets of registers will take effect immediately, bypassing
 218** the queues, which ensures that subsequent Runway transactions are checked
 219** against the updated bounds values. However reads are queued, introducing
 220** the possibility of a read being bypassed by a subsequent write to the same
 221** register. This sequence can be avoided by having software wait for read
 222** returns before issuing subsequent writes.
 223*/
 224
 225struct ioc {
 226	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
 227	u8  *res_map;	                /* resource map, bit == pdir entry */
 228	u64 *pdir_base;	                /* physical base address */
 229	u32 pdir_size; 			/* bytes, function of IOV Space size */
 230	u32 res_hint;	                /* next available IOVP - 
 231					   circular search */
 232	u32 res_size;		    	/* size of resource map in bytes */
 233	spinlock_t res_lock;
 234
 235#ifdef CCIO_COLLECT_STATS
 236#define CCIO_SEARCH_SAMPLE 0x100
 237	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
 238	unsigned long avg_idx;		  /* current index into avg_search */
 239	unsigned long used_pages;
 240	unsigned long msingle_calls;
 241	unsigned long msingle_pages;
 242	unsigned long msg_calls;
 243	unsigned long msg_pages;
 244	unsigned long usingle_calls;
 245	unsigned long usingle_pages;
 246	unsigned long usg_calls;
 247	unsigned long usg_pages;
 248#endif
 249	unsigned short cujo20_bug;
 250
 251	/* STUFF We don't need in performance path */
 252	u32 chainid_shift; 		/* specify bit location of chain_id */
 253	struct ioc *next;		/* Linked list of discovered iocs */
 254	const char *name;		/* device name from firmware */
 255	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
 256	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
 257	struct resource mmio_region[2]; /* The "routed" MMIO regions */
 258};
 259
 260static struct ioc *ioc_list;
 261static int ioc_count;
 262
 263/**************************************************************
 264*
 265*   I/O Pdir Resource Management
 266*
 267*   Bits set in the resource map are in use.
 268*   Each bit can represent a number of pages.
 269*   LSbs represent lower addresses (IOVA's).
 270*
 271*   This was was copied from sba_iommu.c. Don't try to unify
 272*   the two resource managers unless a way to have different
 273*   allocation policies is also adjusted. We'd like to avoid
 274*   I/O TLB thrashing by having resource allocation policy
 275*   match the I/O TLB replacement policy.
 276*
 277***************************************************************/
 278#define IOVP_SIZE PAGE_SIZE
 279#define IOVP_SHIFT PAGE_SHIFT
 280#define IOVP_MASK PAGE_MASK
 281
 282/* Convert from IOVP to IOVA and vice versa. */
 283#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
 284#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
 285
 286#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
 287#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
 288#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
 289
 290/*
 291** Don't worry about the 150% average search length on a miss.
 292** If the search wraps around, and passes the res_hint, it will
 293** cause the kernel to panic anyhow.
 294*/
 295#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
 296       for(; res_ptr < res_end; ++res_ptr) { \
 297		int ret;\
 298		unsigned int idx;\
 299		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
 300		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
 301		if ((0 == (*res_ptr & mask)) && !ret) { \
 302			*res_ptr |= mask; \
 303			res_idx = idx;\
 304			ioc->res_hint = res_idx + (size >> 3); \
 305			goto resource_found; \
 306		} \
 307	}
 308
 309#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
 310       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
 311       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
 312       CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
 313       res_ptr = (u##size *)&(ioc)->res_map[0]; \
 314       CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
 315
 316/*
 317** Find available bit in this ioa's resource map.
 318** Use a "circular" search:
 319**   o Most IOVA's are "temporary" - avg search time should be small.
 320** o keep a history of what happened for debugging
 321** o KISS.
 322**
 323** Perf optimizations:
 324** o search for log2(size) bits at a time.
 325** o search for available resource bits using byte/word/whatever.
 326** o use different search for "large" (eg > 4 pages) or "very large"
 327**   (eg > 16 pages) mappings.
 328*/
 329
 330/**
 331 * ccio_alloc_range - Allocate pages in the ioc's resource map.
 332 * @ioc: The I/O Controller.
 333 * @pages_needed: The requested number of pages to be mapped into the
 
 334 * I/O Pdir...
 335 *
 336 * This function searches the resource map of the ioc to locate a range
 337 * of available pages for the requested size.
 338 */
 339static int
 340ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 341{
 342	unsigned int pages_needed = size >> IOVP_SHIFT;
 343	unsigned int res_idx;
 344	unsigned long boundary_size;
 345#ifdef CCIO_COLLECT_STATS
 346	unsigned long cr_start = mfctl(16);
 347#endif
 348	
 349	BUG_ON(pages_needed == 0);
 350	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
 351     
 352	DBG_RES("%s() size: %d pages_needed %d\n", 
 353		__func__, size, pages_needed);
 354
 355	/*
 356	** "seek and ye shall find"...praying never hurts either...
 357	** ggg sacrifices another 710 to the computer gods.
 358	*/
 359
 360	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
 361			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
 362
 363	if (pages_needed <= 8) {
 364		/*
 365		 * LAN traffic will not thrash the TLB IFF the same NIC
 366		 * uses 8 adjacent pages to map separate payload data.
 367		 * ie the same byte in the resource bit map.
 368		 */
 369#if 0
 370		/* FIXME: bit search should shift it's way through
 371		 * an unsigned long - not byte at a time. As it is now,
 372		 * we effectively allocate this byte to this mapping.
 373		 */
 374		unsigned long mask = ~(~0UL >> pages_needed);
 375		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
 376#else
 377		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
 378#endif
 379	} else if (pages_needed <= 16) {
 380		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
 381	} else if (pages_needed <= 32) {
 382		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
 383#ifdef __LP64__
 384	} else if (pages_needed <= 64) {
 385		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
 386#endif
 387	} else {
 388		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
 389		       __FILE__,  __func__, pages_needed);
 390	}
 391
 392	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
 393	      __func__);
 394	
 395resource_found:
 396	
 397	DBG_RES("%s() res_idx %d res_hint: %d\n",
 398		__func__, res_idx, ioc->res_hint);
 399
 400#ifdef CCIO_COLLECT_STATS
 401	{
 402		unsigned long cr_end = mfctl(16);
 403		unsigned long tmp = cr_end - cr_start;
 404		/* check for roll over */
 405		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
 406	}
 407	ioc->avg_search[ioc->avg_idx++] = cr_start;
 408	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
 409	ioc->used_pages += pages_needed;
 410#endif
 411	/* 
 412	** return the bit address.
 413	*/
 414	return res_idx << 3;
 415}
 416
 417#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
 418        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
 419        BUG_ON((*res_ptr & mask) != mask); \
 420        *res_ptr &= ~(mask);
 421
 422/**
 423 * ccio_free_range - Free pages from the ioc's resource map.
 424 * @ioc: The I/O Controller.
 425 * @iova: The I/O Virtual Address.
 426 * @pages_mapped: The requested number of pages to be freed from the
 427 * I/O Pdir.
 428 *
 429 * This function frees the resouces allocated for the iova.
 430 */
 431static void
 432ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
 433{
 434	unsigned long iovp = CCIO_IOVP(iova);
 435	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
 436
 437	BUG_ON(pages_mapped == 0);
 438	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
 439	BUG_ON(pages_mapped > BITS_PER_LONG);
 440
 441	DBG_RES("%s():  res_idx: %d pages_mapped %d\n", 
 442		__func__, res_idx, pages_mapped);
 443
 444#ifdef CCIO_COLLECT_STATS
 445	ioc->used_pages -= pages_mapped;
 446#endif
 447
 448	if(pages_mapped <= 8) {
 449#if 0
 450		/* see matching comments in alloc_range */
 451		unsigned long mask = ~(~0UL >> pages_mapped);
 452		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
 453#else
 454		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
 455#endif
 456	} else if(pages_mapped <= 16) {
 457		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
 458	} else if(pages_mapped <= 32) {
 459		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
 460#ifdef __LP64__
 461	} else if(pages_mapped <= 64) {
 462		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
 463#endif
 464	} else {
 465		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
 466		      __func__);
 467	}
 468}
 469
 470/****************************************************************
 471**
 472**          CCIO dma_ops support routines
 473**
 474*****************************************************************/
 475
 476typedef unsigned long space_t;
 477#define KERNEL_SPACE 0
 478
 479/*
 480** DMA "Page Type" and Hints 
 481** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
 482**   set for subcacheline DMA transfers since we don't want to damage the
 483**   other part of a cacheline.
 484** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
 485**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
 486**   data can avoid this if the mapping covers full cache lines.
 487** o STOP_MOST is needed for atomicity across cachelines.
 488**   Apparently only "some EISA devices" need this.
 489**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
 490**   to use this hint iff the EISA devices needs this feature.
 491**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
 492** o PREFETCH should *not* be set for cases like Multiple PCI devices
 493**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
 494**   device can be fetched and multiply DMA streams will thrash the
 495**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
 496**   and Invalidation of Prefetch Entries".
 497**
 498** FIXME: the default hints need to be per GSC device - not global.
 499** 
 500** HP-UX dorks: linux device driver programming model is totally different
 501**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
 502**    do special things to work on non-coherent platforms...linux has to
 503**    be much more careful with this.
 504*/
 505#define IOPDIR_VALID    0x01UL
 506#define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
 507#ifdef CONFIG_EISA
 508#define HINT_STOP_MOST  0x04UL	/* LSL support */
 509#else
 510#define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
 511#endif
 512#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
 513#define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
 514
 515
 516/*
 517** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
 518** ccio_alloc_consistent() depends on this to get SAFE_DMA
 519** when it passes in BIDIRECTIONAL flag.
 520*/
 521static u32 hint_lookup[] = {
 522	[PCI_DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
 523	[PCI_DMA_TODEVICE]	= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
 524	[PCI_DMA_FROMDEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
 525};
 526
 527/**
 528 * ccio_io_pdir_entry - Initialize an I/O Pdir.
 529 * @pdir_ptr: A pointer into I/O Pdir.
 530 * @sid: The Space Identifier.
 531 * @vba: The virtual address.
 532 * @hints: The DMA Hint.
 533 *
 534 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
 535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
 536 * entry consists of 8 bytes as shown below (MSB == bit 0):
 537 *
 538 *
 539 * WORD 0:
 540 * +------+----------------+-----------------------------------------------+
 541 * | Phys | Virtual Index  |               Phys                            |
 542 * | 0:3  |     0:11       |               4:19                            |
 543 * |4 bits|   12 bits      |              16 bits                          |
 544 * +------+----------------+-----------------------------------------------+
 545 * WORD 1:
 546 * +-----------------------+-----------------------------------------------+
 547 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
 548 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
 549 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
 550 * +-----------------------+-----------------------------------------------+
 551 *
 552 * The virtual index field is filled with the results of the LCI
 553 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
 554 * index are bits 12:19 of the value returned by LCI.
 555 */ 
 556static void CCIO_INLINE
 557ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
 558		   unsigned long hints)
 559{
 560	register unsigned long pa;
 561	register unsigned long ci; /* coherent index */
 562
 563	/* We currently only support kernel addresses */
 564	BUG_ON(sid != KERNEL_SPACE);
 565
 566	mtsp(sid,1);
 567
 568	/*
 569	** WORD 1 - low order word
 570	** "hints" parm includes the VALID bit!
 571	** "dep" clobbers the physical address offset bits as well.
 572	*/
 573	pa = virt_to_phys(vba);
 574	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
 575	((u32 *)pdir_ptr)[1] = (u32) pa;
 576
 577	/*
 578	** WORD 0 - high order word
 579	*/
 580
 581#ifdef __LP64__
 582	/*
 583	** get bits 12:15 of physical address
 584	** shift bits 16:31 of physical address
 585	** and deposit them
 586	*/
 587	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
 588	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
 589	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
 590#else
 591	pa = 0;
 592#endif
 593	/*
 594	** get CPU coherency index bits
 595	** Grab virtual index [0:11]
 596	** Deposit virt_idx bits into I/O PDIR word
 597	*/
 598	asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
 599	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
 600	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
 601
 602	((u32 *)pdir_ptr)[0] = (u32) pa;
 603
 604
 605	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 606	**        PCX-U/U+ do. (eg C200/C240)
 607	**        PCX-T'? Don't know. (eg C110 or similar K-class)
 608	**
 609	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
 610	** Hopefully we can patch (NOP) these out at boot time somehow.
 611	**
 612	** "Since PCX-U employs an offset hash that is incompatible with
 613	** the real mode coherence index generation of U2, the PDIR entry
 614	** must be flushed to memory to retain coherence."
 615	*/
 616	asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
 617	asm volatile("sync");
 618}
 619
 620/**
 621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
 622 * @ioc: The I/O Controller.
 623 * @iovp: The I/O Virtual Page.
 624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 625 *
 626 * Purge invalid I/O PDIR entries from the I/O TLB.
 627 *
 628 * FIXME: Can we change the byte_cnt to pages_mapped?
 629 */
 630static CCIO_INLINE void
 631ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
 632{
 633	u32 chain_size = 1 << ioc->chainid_shift;
 634
 635	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
 636	byte_cnt += chain_size;
 637
 638	while(byte_cnt > chain_size) {
 639		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
 640		iovp += chain_size;
 641		byte_cnt -= chain_size;
 642	}
 643}
 644
 645/**
 646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
 647 * @ioc: The I/O Controller.
 648 * @iova: The I/O Virtual Address.
 649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 650 *
 651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
 652 * TLB entries.
 653 *
 654 * FIXME: at some threshold it might be "cheaper" to just blow
 655 *        away the entire I/O TLB instead of individual entries.
 656 *
 657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
 658 *        PDIR entry - just once for each possible TLB entry.
 659 *        (We do need to maker I/O PDIR entries invalid regardless).
 660 *
 661 * FIXME: Can we change byte_cnt to pages_mapped?
 662 */ 
 663static CCIO_INLINE void
 664ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 665{
 666	u32 iovp = (u32)CCIO_IOVP(iova);
 667	size_t saved_byte_cnt;
 668
 669	/* round up to nearest page size */
 670	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
 671
 672	while(byte_cnt > 0) {
 673		/* invalidate one page at a time */
 674		unsigned int idx = PDIR_INDEX(iovp);
 675		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
 676
 677		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
 678		pdir_ptr[7] = 0;	/* clear only VALID bit */ 
 679		/*
 680		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 681		**   PCX-U/U+ do. (eg C200/C240)
 682		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
 683		**
 684		** Hopefully someone figures out how to patch (NOP) the
 685		** FDC/SYNC out at boot time.
 686		*/
 687		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
 688
 689		iovp     += IOVP_SIZE;
 690		byte_cnt -= IOVP_SIZE;
 691	}
 692
 693	asm volatile("sync");
 694	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
 695}
 696
 697/****************************************************************
 698**
 699**          CCIO dma_ops
 700**
 701*****************************************************************/
 702
 703/**
 704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
 705 * @dev: The PCI device.
 706 * @mask: A bit mask describing the DMA address range of the device.
 707 */
 708static int 
 709ccio_dma_supported(struct device *dev, u64 mask)
 710{
 711	if(dev == NULL) {
 712		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
 713		BUG();
 714		return 0;
 715	}
 716
 717	/* only support 32-bit devices (ie PCI/GSC) */
 718	return (int)(mask == 0xffffffffUL);
 719}
 720
 721/**
 722 * ccio_map_single - Map an address range into the IOMMU.
 723 * @dev: The PCI device.
 724 * @addr: The start address of the DMA region.
 725 * @size: The length of the DMA region.
 726 * @direction: The direction of the DMA transaction (to/from device).
 727 *
 728 * This function implements the pci_map_single function.
 729 */
 730static dma_addr_t 
 731ccio_map_single(struct device *dev, void *addr, size_t size,
 732		enum dma_data_direction direction)
 733{
 734	int idx;
 735	struct ioc *ioc;
 736	unsigned long flags;
 737	dma_addr_t iovp;
 738	dma_addr_t offset;
 739	u64 *pdir_start;
 740	unsigned long hint = hint_lookup[(int)direction];
 741
 742	BUG_ON(!dev);
 743	ioc = GET_IOC(dev);
 
 
 744
 745	BUG_ON(size <= 0);
 746
 747	/* save offset bits */
 748	offset = ((unsigned long) addr) & ~IOVP_MASK;
 749
 750	/* round up to nearest IOVP_SIZE */
 751	size = ALIGN(size + offset, IOVP_SIZE);
 752	spin_lock_irqsave(&ioc->res_lock, flags);
 753
 754#ifdef CCIO_COLLECT_STATS
 755	ioc->msingle_calls++;
 756	ioc->msingle_pages += size >> IOVP_SHIFT;
 757#endif
 758
 759	idx = ccio_alloc_range(ioc, dev, size);
 760	iovp = (dma_addr_t)MKIOVP(idx);
 761
 762	pdir_start = &(ioc->pdir_base[idx]);
 763
 764	DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
 765		__func__, addr, (long)iovp | offset, size);
 766
 767	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
 768	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
 769		hint |= HINT_SAFE_DMA;
 770
 771	while(size > 0) {
 772		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
 773
 774		DBG_RUN(" pdir %p %08x%08x\n",
 775			pdir_start,
 776			(u32) (((u32 *) pdir_start)[0]),
 777			(u32) (((u32 *) pdir_start)[1]));
 778		++pdir_start;
 779		addr += IOVP_SIZE;
 780		size -= IOVP_SIZE;
 781	}
 782
 783	spin_unlock_irqrestore(&ioc->res_lock, flags);
 784
 785	/* form complete address */
 786	return CCIO_IOVA(iovp, offset);
 787}
 788
 789
 790static dma_addr_t
 791ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
 792		size_t size, enum dma_data_direction direction,
 793		struct dma_attrs *attrs)
 794{
 795	return ccio_map_single(dev, page_address(page) + offset, size,
 796			direction);
 797}
 798
 799
 800/**
 801 * ccio_unmap_page - Unmap an address range from the IOMMU.
 802 * @dev: The PCI device.
 803 * @addr: The start address of the DMA region.
 804 * @size: The length of the DMA region.
 805 * @direction: The direction of the DMA transaction (to/from device).
 
 806 */
 807static void 
 808ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
 809		enum dma_data_direction direction, struct dma_attrs *attrs)
 810{
 811	struct ioc *ioc;
 812	unsigned long flags; 
 813	dma_addr_t offset = iova & ~IOVP_MASK;
 814	
 815	BUG_ON(!dev);
 816	ioc = GET_IOC(dev);
 
 
 
 
 817
 818	DBG_RUN("%s() iovp 0x%lx/%x\n",
 819		__func__, (long)iova, size);
 820
 821	iova ^= offset;        /* clear offset bits */
 822	size += offset;
 823	size = ALIGN(size, IOVP_SIZE);
 824
 825	spin_lock_irqsave(&ioc->res_lock, flags);
 826
 827#ifdef CCIO_COLLECT_STATS
 828	ioc->usingle_calls++;
 829	ioc->usingle_pages += size >> IOVP_SHIFT;
 830#endif
 831
 832	ccio_mark_invalid(ioc, iova, size);
 833	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
 834	spin_unlock_irqrestore(&ioc->res_lock, flags);
 835}
 836
 837/**
 838 * ccio_alloc - Allocate a consistent DMA mapping.
 839 * @dev: The PCI device.
 840 * @size: The length of the DMA region.
 841 * @dma_handle: The DMA address handed back to the device (not the cpu).
 
 
 842 *
 843 * This function implements the pci_alloc_consistent function.
 844 */
 845static void * 
 846ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
 847		struct dma_attrs *attrs)
 848{
 849      void *ret;
 850#if 0
 851/* GRANT Need to establish hierarchy for non-PCI devs as well
 852** and then provide matching gsc_map_xxx() functions for them as well.
 853*/
 854	if(!hwdev) {
 855		/* only support PCI */
 856		*dma_handle = 0;
 857		return 0;
 858	}
 859#endif
 860        ret = (void *) __get_free_pages(flag, get_order(size));
 861
 862	if (ret) {
 863		memset(ret, 0, size);
 864		*dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
 865	}
 866
 867	return ret;
 868}
 869
 870/**
 871 * ccio_free - Free a consistent DMA mapping.
 872 * @dev: The PCI device.
 873 * @size: The length of the DMA region.
 874 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
 875 * @dma_handle: The device address returned from the ccio_alloc_consistent.
 
 876 *
 877 * This function implements the pci_free_consistent function.
 878 */
 879static void 
 880ccio_free(struct device *dev, size_t size, void *cpu_addr,
 881		dma_addr_t dma_handle, struct dma_attrs *attrs)
 882{
 883	ccio_unmap_page(dev, dma_handle, size, 0, NULL);
 884	free_pages((unsigned long)cpu_addr, get_order(size));
 885}
 886
 887/*
 888** Since 0 is a valid pdir_base index value, can't use that
 889** to determine if a value is valid or not. Use a flag to indicate
 890** the SG list entry contains a valid pdir index.
 891*/
 892#define PIDE_FLAG 0x80000000UL
 893
 894#ifdef CCIO_COLLECT_STATS
 895#define IOMMU_MAP_STATS
 896#endif
 897#include "iommu-helpers.h"
 898
 899/**
 900 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
 901 * @dev: The PCI device.
 902 * @sglist: The scatter/gather list to be mapped in the IOMMU.
 903 * @nents: The number of entries in the scatter/gather list.
 904 * @direction: The direction of the DMA transaction (to/from device).
 
 905 *
 906 * This function implements the pci_map_sg function.
 907 */
 908static int
 909ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 910	    enum dma_data_direction direction, struct dma_attrs *attrs)
 911{
 912	struct ioc *ioc;
 913	int coalesced, filled = 0;
 914	unsigned long flags;
 915	unsigned long hint = hint_lookup[(int)direction];
 916	unsigned long prev_len = 0, current_len = 0;
 917	int i;
 918	
 919	BUG_ON(!dev);
 920	ioc = GET_IOC(dev);
 
 
 921	
 922	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
 923
 924	/* Fast path single entry scatterlists. */
 925	if (nents == 1) {
 926		sg_dma_address(sglist) = ccio_map_single(dev,
 927				sg_virt(sglist), sglist->length,
 928				direction);
 929		sg_dma_len(sglist) = sglist->length;
 930		return 1;
 931	}
 932
 933	for(i = 0; i < nents; i++)
 934		prev_len += sglist[i].length;
 935	
 936	spin_lock_irqsave(&ioc->res_lock, flags);
 937
 938#ifdef CCIO_COLLECT_STATS
 939	ioc->msg_calls++;
 940#endif
 941
 942	/*
 943	** First coalesce the chunks and allocate I/O pdir space
 944	**
 945	** If this is one DMA stream, we can properly map using the
 946	** correct virtual address associated with each DMA page.
 947	** w/o this association, we wouldn't have coherent DMA!
 948	** Access to the virtual address is what forces a two pass algorithm.
 949	*/
 950	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
 951
 952	/*
 953	** Program the I/O Pdir
 954	**
 955	** map the virtual addresses to the I/O Pdir
 956	** o dma_address will contain the pdir index
 957	** o dma_len will contain the number of bytes to map 
 958	** o page/offset contain the virtual address.
 959	*/
 960	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
 961
 962	spin_unlock_irqrestore(&ioc->res_lock, flags);
 963
 964	BUG_ON(coalesced != filled);
 965
 966	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
 967
 968	for (i = 0; i < filled; i++)
 969		current_len += sg_dma_len(sglist + i);
 970
 971	BUG_ON(current_len != prev_len);
 972
 973	return filled;
 974}
 975
 976/**
 977 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
 978 * @dev: The PCI device.
 979 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
 980 * @nents: The number of entries in the scatter/gather list.
 981 * @direction: The direction of the DMA transaction (to/from device).
 
 982 *
 983 * This function implements the pci_unmap_sg function.
 984 */
 985static void 
 986ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 987	      enum dma_data_direction direction, struct dma_attrs *attrs)
 988{
 989	struct ioc *ioc;
 990
 991	BUG_ON(!dev);
 992	ioc = GET_IOC(dev);
 
 
 
 
 993
 994	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
 995		__func__, nents, sg_virt(sglist), sglist->length);
 996
 997#ifdef CCIO_COLLECT_STATS
 998	ioc->usg_calls++;
 999#endif
1000
1001	while(sg_dma_len(sglist) && nents--) {
1002
1003#ifdef CCIO_COLLECT_STATS
1004		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1005#endif
1006		ccio_unmap_page(dev, sg_dma_address(sglist),
1007				  sg_dma_len(sglist), direction, NULL);
1008		++sglist;
 
1009	}
1010
1011	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1012}
1013
1014static struct dma_map_ops ccio_ops = {
1015	.dma_supported =	ccio_dma_supported,
1016	.alloc =		ccio_alloc,
1017	.free =			ccio_free,
1018	.map_page =		ccio_map_page,
1019	.unmap_page =		ccio_unmap_page,
1020	.map_sg = 		ccio_map_sg,
1021	.unmap_sg = 		ccio_unmap_sg,
 
 
 
1022};
1023
1024#ifdef CONFIG_PROC_FS
1025static int ccio_proc_info(struct seq_file *m, void *p)
1026{
1027	struct ioc *ioc = ioc_list;
1028
1029	while (ioc != NULL) {
1030		unsigned int total_pages = ioc->res_size << 3;
1031#ifdef CCIO_COLLECT_STATS
1032		unsigned long avg = 0, min, max;
1033		int j;
1034#endif
1035
1036		seq_printf(m, "%s\n", ioc->name);
1037		
1038		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1039			   (ioc->cujo20_bug ? "yes" : "no"));
1040		
1041		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1042			   total_pages * 8, total_pages);
1043
1044#ifdef CCIO_COLLECT_STATS
1045		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1046			   total_pages - ioc->used_pages, ioc->used_pages,
1047			   (int)(ioc->used_pages * 100 / total_pages));
1048#endif
1049
1050		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1051			   ioc->res_size, total_pages);
1052
1053#ifdef CCIO_COLLECT_STATS
1054		min = max = ioc->avg_search[0];
1055		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1056			avg += ioc->avg_search[j];
1057			if(ioc->avg_search[j] > max) 
1058				max = ioc->avg_search[j];
1059			if(ioc->avg_search[j] < min) 
1060				min = ioc->avg_search[j];
1061		}
1062		avg /= CCIO_SEARCH_SAMPLE;
1063		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1064			   min, avg, max);
1065
1066		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1067			   ioc->msingle_calls, ioc->msingle_pages,
1068			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1069
1070		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1071		min = ioc->usingle_calls - ioc->usg_calls;
1072		max = ioc->usingle_pages - ioc->usg_pages;
1073		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1074			   min, max, (int)((max * 1000)/min));
1075 
1076		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1077			   ioc->msg_calls, ioc->msg_pages,
1078			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1079
1080		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1081			   ioc->usg_calls, ioc->usg_pages,
1082			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1083#endif	/* CCIO_COLLECT_STATS */
1084
1085		ioc = ioc->next;
1086	}
1087
1088	return 0;
1089}
1090
1091static int ccio_proc_info_open(struct inode *inode, struct file *file)
1092{
1093	return single_open(file, &ccio_proc_info, NULL);
1094}
1095
1096static const struct file_operations ccio_proc_info_fops = {
1097	.owner = THIS_MODULE,
1098	.open = ccio_proc_info_open,
1099	.read = seq_read,
1100	.llseek = seq_lseek,
1101	.release = single_release,
1102};
1103
1104static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1105{
1106	struct ioc *ioc = ioc_list;
1107
1108	while (ioc != NULL) {
1109		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1110			     ioc->res_size, false);
1111		seq_putc(m, '\n');
1112		ioc = ioc->next;
1113		break; /* XXX - remove me */
1114	}
1115
1116	return 0;
1117}
1118
1119static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1120{
1121	return single_open(file, &ccio_proc_bitmap_info, NULL);
1122}
1123
1124static const struct file_operations ccio_proc_bitmap_fops = {
1125	.owner = THIS_MODULE,
1126	.open = ccio_proc_bitmap_open,
1127	.read = seq_read,
1128	.llseek = seq_lseek,
1129	.release = single_release,
1130};
1131#endif /* CONFIG_PROC_FS */
1132
1133/**
1134 * ccio_find_ioc - Find the ioc in the ioc_list
1135 * @hw_path: The hardware path of the ioc.
1136 *
1137 * This function searches the ioc_list for an ioc that matches
1138 * the provide hardware path.
1139 */
1140static struct ioc * ccio_find_ioc(int hw_path)
1141{
1142	int i;
1143	struct ioc *ioc;
1144
1145	ioc = ioc_list;
1146	for (i = 0; i < ioc_count; i++) {
1147		if (ioc->hw_path == hw_path)
1148			return ioc;
1149
1150		ioc = ioc->next;
1151	}
1152
1153	return NULL;
1154}
1155
1156/**
1157 * ccio_get_iommu - Find the iommu which controls this device
1158 * @dev: The parisc device.
1159 *
1160 * This function searches through the registered IOMMU's and returns
1161 * the appropriate IOMMU for the device based on its hardware path.
1162 */
1163void * ccio_get_iommu(const struct parisc_device *dev)
1164{
1165	dev = find_pa_parent_type(dev, HPHW_IOA);
1166	if (!dev)
1167		return NULL;
1168
1169	return ccio_find_ioc(dev->hw_path);
1170}
1171
1172#define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1173
1174/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1175 * to/from certain pages.  To avoid this happening, we mark these pages
1176 * as `used', and ensure that nothing will try to allocate from them.
1177 */
1178void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1179{
1180	unsigned int idx;
1181	struct parisc_device *dev = parisc_parent(cujo);
1182	struct ioc *ioc = ccio_get_iommu(dev);
1183	u8 *res_ptr;
1184
1185	ioc->cujo20_bug = 1;
1186	res_ptr = ioc->res_map;
1187	idx = PDIR_INDEX(iovp) >> 3;
1188
1189	while (idx < ioc->res_size) {
1190 		res_ptr[idx] |= 0xff;
1191		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1192	}
1193}
1194
1195#if 0
1196/* GRANT -  is this needed for U2 or not? */
1197
1198/*
1199** Get the size of the I/O TLB for this I/O MMU.
1200**
1201** If spa_shift is non-zero (ie probably U2),
1202** then calculate the I/O TLB size using spa_shift.
1203**
1204** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1205** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1206** I think only Java (K/D/R-class too?) systems don't do this.
1207*/
1208static int
1209ccio_get_iotlb_size(struct parisc_device *dev)
1210{
1211	if (dev->spa_shift == 0) {
1212		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1213	}
1214	return (1 << dev->spa_shift);
1215}
1216#else
1217
1218/* Uturn supports 256 TLB entries */
1219#define CCIO_CHAINID_SHIFT	8
1220#define CCIO_CHAINID_MASK	0xff
1221#endif /* 0 */
1222
1223/* We *can't* support JAVA (T600). Venture there at your own risk. */
1224static const struct parisc_device_id ccio_tbl[] = {
1225	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1226	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1227	{ 0, }
1228};
1229
1230static int ccio_probe(struct parisc_device *dev);
1231
1232static struct parisc_driver ccio_driver = {
1233	.name =		"ccio",
1234	.id_table =	ccio_tbl,
1235	.probe =	ccio_probe,
1236};
1237
1238/**
1239 * ccio_ioc_init - Initialize the I/O Controller
1240 * @ioc: The I/O Controller.
1241 *
1242 * Initialize the I/O Controller which includes setting up the
1243 * I/O Page Directory, the resource map, and initalizing the
1244 * U2/Uturn chip into virtual mode.
1245 */
1246static void
1247ccio_ioc_init(struct ioc *ioc)
1248{
1249	int i;
1250	unsigned int iov_order;
1251	u32 iova_space_size;
1252
1253	/*
1254	** Determine IOVA Space size from memory size.
1255	**
1256	** Ideally, PCI drivers would register the maximum number
1257	** of DMA they can have outstanding for each device they
1258	** own.  Next best thing would be to guess how much DMA
1259	** can be outstanding based on PCI Class/sub-class. Both
1260	** methods still require some "extra" to support PCI
1261	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1262	*/
1263
1264	iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver));
1265
1266	/* limit IOVA space size to 1MB-1GB */
1267
1268	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1269		iova_space_size =  1 << (20 - PAGE_SHIFT);
1270#ifdef __LP64__
1271	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1272		iova_space_size =  1 << (30 - PAGE_SHIFT);
1273#endif
1274	}
1275
1276	/*
1277	** iova space must be log2() in size.
1278	** thus, pdir/res_map will also be log2().
1279	*/
1280
1281	/* We could use larger page sizes in order to *decrease* the number
1282	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1283	**
1284	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1285	**   since the pages must also be physically contiguous - typically
1286	**   this is the case under linux."
1287	*/
1288
1289	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1290
1291	/* iova_space_size is now bytes, not pages */
1292	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1293
1294	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1295
1296	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1297
1298	/* Verify it's a power of two */
1299	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1300
1301	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1302			__func__, ioc->ioc_regs,
1303			(unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1304			iova_space_size>>20,
1305			iov_order + PAGE_SHIFT);
1306
1307	ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 
1308						 get_order(ioc->pdir_size));
1309	if(NULL == ioc->pdir_base) {
1310		panic("%s() could not allocate I/O Page Table\n", __func__);
1311	}
1312	memset(ioc->pdir_base, 0, ioc->pdir_size);
1313
1314	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1315	DBG_INIT(" base %p\n", ioc->pdir_base);
1316
1317	/* resource map size dictated by pdir_size */
1318 	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1319	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1320	
1321	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1322					      get_order(ioc->res_size));
1323	if(NULL == ioc->res_map) {
1324		panic("%s() could not allocate resource map\n", __func__);
1325	}
1326	memset(ioc->res_map, 0, ioc->res_size);
1327
1328	/* Initialize the res_hint to 16 */
1329	ioc->res_hint = 16;
1330
1331	/* Initialize the spinlock */
1332	spin_lock_init(&ioc->res_lock);
1333
1334	/*
1335	** Chainid is the upper most bits of an IOVP used to determine
1336	** which TLB entry an IOVP will use.
1337	*/
1338	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1339	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1340
1341	/*
1342	** Initialize IOA hardware
1343	*/
1344	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1345		  &ioc->ioc_regs->io_chain_id_mask);
1346
1347	WRITE_U32(virt_to_phys(ioc->pdir_base), 
1348		  &ioc->ioc_regs->io_pdir_base);
1349
1350	/*
1351	** Go to "Virtual Mode"
1352	*/
1353	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1354
1355	/*
1356	** Initialize all I/O TLB entries to 0 (Valid bit off).
1357	*/
1358	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1359	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1360
1361	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1362		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1363			  &ioc->ioc_regs->io_command);
1364	}
1365}
1366
1367static void __init
1368ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1369{
1370	int result;
1371
1372	res->parent = NULL;
1373	res->flags = IORESOURCE_MEM;
1374	/*
1375	 * bracing ((signed) ...) are required for 64bit kernel because
1376	 * we only want to sign extend the lower 16 bits of the register.
1377	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1378	 */
1379	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1380	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1381	res->name = name;
1382	/*
1383	 * Check if this MMIO range is disable
1384	 */
1385	if (res->end + 1 == res->start)
1386		return;
1387
1388	/* On some platforms (e.g. K-Class), we have already registered
1389	 * resources for devices reported by firmware. Some are children
1390	 * of ccio.
1391	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1392	 */
1393	result = insert_resource(&iomem_resource, res);
1394	if (result < 0) {
1395		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1396			__func__, (unsigned long)res->start, (unsigned long)res->end);
1397	}
1398}
1399
1400static void __init ccio_init_resources(struct ioc *ioc)
1401{
1402	struct resource *res = ioc->mmio_region;
1403	char *name = kmalloc(14, GFP_KERNEL);
1404
 
1405	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1406
1407	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1408	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
 
1409}
1410
1411static int new_ioc_area(struct resource *res, unsigned long size,
1412		unsigned long min, unsigned long max, unsigned long align)
1413{
1414	if (max <= min)
1415		return -EBUSY;
1416
1417	res->start = (max - size + 1) &~ (align - 1);
1418	res->end = res->start + size;
1419	
1420	/* We might be trying to expand the MMIO range to include
1421	 * a child device that has already registered it's MMIO space.
1422	 * Use "insert" instead of request_resource().
1423	 */
1424	if (!insert_resource(&iomem_resource, res))
1425		return 0;
1426
1427	return new_ioc_area(res, size, min, max - size, align);
1428}
1429
1430static int expand_ioc_area(struct resource *res, unsigned long size,
1431		unsigned long min, unsigned long max, unsigned long align)
1432{
1433	unsigned long start, len;
1434
1435	if (!res->parent)
1436		return new_ioc_area(res, size, min, max, align);
1437
1438	start = (res->start - size) &~ (align - 1);
1439	len = res->end - start + 1;
1440	if (start >= min) {
1441		if (!adjust_resource(res, start, len))
1442			return 0;
1443	}
1444
1445	start = res->start;
1446	len = ((size + res->end + align) &~ (align - 1)) - start;
1447	if (start + len <= max) {
1448		if (!adjust_resource(res, start, len))
1449			return 0;
1450	}
1451
1452	return -EBUSY;
1453}
1454
1455/*
1456 * Dino calls this function.  Beware that we may get called on systems
1457 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1458 * So it's legal to find no parent IOC.
1459 *
1460 * Some other issues: one of the resources in the ioc may be unassigned.
1461 */
1462int ccio_allocate_resource(const struct parisc_device *dev,
1463		struct resource *res, unsigned long size,
1464		unsigned long min, unsigned long max, unsigned long align)
1465{
1466	struct resource *parent = &iomem_resource;
1467	struct ioc *ioc = ccio_get_iommu(dev);
1468	if (!ioc)
1469		goto out;
1470
1471	parent = ioc->mmio_region;
1472	if (parent->parent &&
1473	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1474		return 0;
1475
1476	if ((parent + 1)->parent &&
1477	    !allocate_resource(parent + 1, res, size, min, max, align,
1478				NULL, NULL))
1479		return 0;
1480
1481	if (!expand_ioc_area(parent, size, min, max, align)) {
1482		__raw_writel(((parent->start)>>16) | 0xffff0000,
1483			     &ioc->ioc_regs->io_io_low);
1484		__raw_writel(((parent->end)>>16) | 0xffff0000,
1485			     &ioc->ioc_regs->io_io_high);
1486	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1487		parent++;
1488		__raw_writel(((parent->start)>>16) | 0xffff0000,
1489			     &ioc->ioc_regs->io_io_low_hv);
1490		__raw_writel(((parent->end)>>16) | 0xffff0000,
1491			     &ioc->ioc_regs->io_io_high_hv);
1492	} else {
1493		return -EBUSY;
1494	}
1495
1496 out:
1497	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1498}
1499
1500int ccio_request_resource(const struct parisc_device *dev,
1501		struct resource *res)
1502{
1503	struct resource *parent;
1504	struct ioc *ioc = ccio_get_iommu(dev);
1505
1506	if (!ioc) {
1507		parent = &iomem_resource;
1508	} else if ((ioc->mmio_region->start <= res->start) &&
1509			(res->end <= ioc->mmio_region->end)) {
1510		parent = ioc->mmio_region;
1511	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1512			(res->end <= (ioc->mmio_region + 1)->end)) {
1513		parent = ioc->mmio_region + 1;
1514	} else {
1515		return -EBUSY;
1516	}
1517
1518	/* "transparent" bus bridges need to register MMIO resources
1519	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1520	 * registered their resources in the PDC "bus walk" (See
1521	 * arch/parisc/kernel/inventory.c).
1522	 */
1523	return insert_resource(parent, res);
1524}
1525
1526/**
1527 * ccio_probe - Determine if ccio should claim this device.
1528 * @dev: The device which has been found
1529 *
1530 * Determine if ccio should claim this chip (return 0) or not (return 1).
1531 * If so, initialize the chip and tell other partners in crime they
1532 * have work to do.
1533 */
1534static int __init ccio_probe(struct parisc_device *dev)
1535{
1536	int i;
1537	struct ioc *ioc, **ioc_p = &ioc_list;
 
1538
1539	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1540	if (ioc == NULL) {
1541		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1542		return 1;
1543	}
1544
1545	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1546
1547	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1548		(unsigned long)dev->hpa.start);
1549
1550	for (i = 0; i < ioc_count; i++) {
1551		ioc_p = &(*ioc_p)->next;
1552	}
1553	*ioc_p = ioc;
1554
1555	ioc->hw_path = dev->hw_path;
1556	ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
 
 
 
 
1557	ccio_ioc_init(ioc);
1558	ccio_init_resources(ioc);
 
 
 
 
1559	hppa_dma_ops = &ccio_ops;
1560	dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1561
 
1562	/* if this fails, no I/O cards will work, so may as well bug */
1563	BUG_ON(dev->dev.platform_data == NULL);
1564	HBA_DATA(dev->dev.platform_data)->iommu = ioc;
 
 
1565
1566#ifdef CONFIG_PROC_FS
1567	if (ioc_count == 0) {
1568		proc_create(MODULE_NAME, 0, proc_runway_root,
1569			    &ccio_proc_info_fops);
1570		proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root,
1571			    &ccio_proc_bitmap_fops);
 
 
 
 
 
1572	}
1573#endif
1574	ioc_count++;
1575
1576	parisc_has_iommu();
1577	return 0;
1578}
1579
1580/**
1581 * ccio_init - ccio initialization procedure.
1582 *
1583 * Register this driver.
1584 */
1585void __init ccio_init(void)
1586{
1587	register_parisc_driver(&ccio_driver);
1588}
1589
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3** ccio-dma.c:
   4**	DMA management routines for first generation cache-coherent machines.
   5**	Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
   6**
   7**	(c) Copyright 2000 Grant Grundler
   8**	(c) Copyright 2000 Ryan Bradetich
   9**	(c) Copyright 2000 Hewlett-Packard Company
  10**
 
 
 
 
 
 
  11**  "Real Mode" operation refers to U2/Uturn chip operation.
  12**  U2/Uturn were designed to perform coherency checks w/o using
  13**  the I/O MMU - basically what x86 does.
  14**
 
 
 
 
 
 
  15**  Drawbacks of using Real Mode are:
  16**	o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
  17**      o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
  18**	o Ability to do scatter/gather in HW is lost.
  19**	o Doesn't work under PCX-U/U+ machines since they didn't follow
  20**        the coherency design originally worked out. Only PCX-W does.
  21*/
  22
  23#include <linux/types.h>
  24#include <linux/kernel.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/spinlock.h>
  28#include <linux/slab.h>
  29#include <linux/string.h>
  30#include <linux/pci.h>
  31#include <linux/reboot.h>
  32#include <linux/proc_fs.h>
  33#include <linux/seq_file.h>
  34#include <linux/dma-map-ops.h>
  35#include <linux/scatterlist.h>
  36#include <linux/iommu-helper.h>
  37#include <linux/export.h>
  38
  39#include <asm/byteorder.h>
  40#include <asm/cache.h>		/* for L1_CACHE_BYTES */
  41#include <linux/uaccess.h>
  42#include <asm/page.h>
  43#include <asm/dma.h>
  44#include <asm/io.h>
  45#include <asm/hardware.h>       /* for register_module() */
  46#include <asm/parisc-device.h>
  47
  48#include "iommu.h"
  49
  50/* 
  51** Choose "ccio" since that's what HP-UX calls it.
  52** Make it easier for folks to migrate from one to the other :^)
  53*/
  54#define MODULE_NAME "ccio"
  55
  56#undef DEBUG_CCIO_RES
  57#undef DEBUG_CCIO_RUN
  58#undef DEBUG_CCIO_INIT
  59#undef DEBUG_CCIO_RUN_SG
  60
  61#ifdef CONFIG_PROC_FS
  62/* depends on proc fs support. But costs CPU performance. */
  63#undef CCIO_COLLECT_STATS
  64#endif
  65
 
 
  66#ifdef DEBUG_CCIO_INIT
  67#define DBG_INIT(x...)  printk(x)
  68#else
  69#define DBG_INIT(x...)
  70#endif
  71
  72#ifdef DEBUG_CCIO_RUN
  73#define DBG_RUN(x...)   printk(x)
  74#else
  75#define DBG_RUN(x...)
  76#endif
  77
  78#ifdef DEBUG_CCIO_RES
  79#define DBG_RES(x...)   printk(x)
  80#else
  81#define DBG_RES(x...)
  82#endif
  83
  84#ifdef DEBUG_CCIO_RUN_SG
  85#define DBG_RUN_SG(x...) printk(x)
  86#else
  87#define DBG_RUN_SG(x...)
  88#endif
  89
 
  90#define WRITE_U32(value, addr) __raw_writel(value, addr)
  91#define READ_U32(addr) __raw_readl(addr)
  92
  93#define U2_IOA_RUNWAY 0x580
  94#define U2_BC_GSC     0x501
  95#define UTURN_IOA_RUNWAY 0x581
  96#define UTURN_BC_GSC     0x502
  97
  98#define IOA_NORMAL_MODE      0x00020080 /* IO_CONTROL to turn on CCIO        */
  99#define CMD_TLB_DIRECT_WRITE 35         /* IO_COMMAND for I/O TLB Writes     */
 100#define CMD_TLB_PURGE        33         /* IO_COMMAND to Purge I/O TLB entry */
 101
 102struct ioa_registers {
 103	/* Runway Supervisory Set */
 104	int32_t    unused1[12];
 105	uint32_t   io_command;             /* Offset 12 */
 106	uint32_t   io_status;              /* Offset 13 */
 107	uint32_t   io_control;             /* Offset 14 */
 108	int32_t    unused2[1];
 109
 110	/* Runway Auxiliary Register Set */
 111	uint32_t   io_err_resp;            /* Offset  0 */
 112	uint32_t   io_err_info;            /* Offset  1 */
 113	uint32_t   io_err_req;             /* Offset  2 */
 114	uint32_t   io_err_resp_hi;         /* Offset  3 */
 115	uint32_t   io_tlb_entry_m;         /* Offset  4 */
 116	uint32_t   io_tlb_entry_l;         /* Offset  5 */
 117	uint32_t   unused3[1];
 118	uint32_t   io_pdir_base;           /* Offset  7 */
 119	uint32_t   io_io_low_hv;           /* Offset  8 */
 120	uint32_t   io_io_high_hv;          /* Offset  9 */
 121	uint32_t   unused4[1];
 122	uint32_t   io_chain_id_mask;       /* Offset 11 */
 123	uint32_t   unused5[2];
 124	uint32_t   io_io_low;              /* Offset 14 */
 125	uint32_t   io_io_high;             /* Offset 15 */
 126};
 127
 128/*
 129** IOA Registers
 130** -------------
 131**
 132** Runway IO_CONTROL Register (+0x38)
 133** 
 134** The Runway IO_CONTROL register controls the forwarding of transactions.
 135**
 136** | 0  ...  13  |  14 15 | 16 ... 21 | 22 | 23 24 |  25 ... 31 |
 137** |    HV       |   TLB  |  reserved | HV | mode  |  reserved  |
 138**
 139** o mode field indicates the address translation of transactions
 140**   forwarded from Runway to GSC+:
 141**       Mode Name     Value        Definition
 142**       Off (default)   0          Opaque to matching addresses.
 143**       Include         1          Transparent for matching addresses.
 144**       Peek            3          Map matching addresses.
 145**
 146**       + "Off" mode: Runway transactions which match the I/O range
 147**         specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
 148**       + "Include" mode: all addresses within the I/O range specified
 149**         by the IO_IO_LOW and IO_IO_HIGH registers are transparently
 150**         forwarded. This is the I/O Adapter's normal operating mode.
 151**       + "Peek" mode: used during system configuration to initialize the
 152**         GSC+ bus. Runway Write_Shorts in the address range specified by
 153**         IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
 154**         *AND* the GSC+ address is remapped to the Broadcast Physical
 155**         Address space by setting the 14 high order address bits of the
 156**         32 bit GSC+ address to ones.
 157**
 158** o TLB field affects transactions which are forwarded from GSC+ to Runway.
 159**   "Real" mode is the poweron default.
 160** 
 161**   TLB Mode  Value  Description
 162**   Real        0    No TLB translation. Address is directly mapped and the
 163**                    virtual address is composed of selected physical bits.
 164**   Error       1    Software fills the TLB manually.
 165**   Normal      2    IOA fetches IO TLB misses from IO PDIR (in host memory).
 166**
 167**
 168** IO_IO_LOW_HV	  +0x60 (HV dependent)
 169** IO_IO_HIGH_HV  +0x64 (HV dependent)
 170** IO_IO_LOW      +0x78	(Architected register)
 171** IO_IO_HIGH     +0x7c	(Architected register)
 172**
 173** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
 174** I/O Adapter address space, respectively.
 175**
 176** 0  ... 7 | 8 ... 15 |  16   ...   31 |
 177** 11111111 | 11111111 |      address   |
 178**
 179** Each LOW/HIGH pair describes a disjoint address space region.
 180** (2 per GSC+ port). Each incoming Runway transaction address is compared
 181** with both sets of LOW/HIGH registers. If the address is in the range
 182** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
 183** for forwarded to the respective GSC+ bus.
 184** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
 185** an address space region.
 186**
 187** In order for a Runway address to reside within GSC+ extended address space:
 188**	Runway Address [0:7]    must identically compare to 8'b11111111
 189**	Runway Address [8:11]   must be equal to IO_IO_LOW(_HV)[16:19]
 190**	Runway Address [12:23]  must be greater than or equal to
 191**	           IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
 192**	Runway Address [24:39]  is not used in the comparison.
 193**
 194** When the Runway transaction is forwarded to GSC+, the GSC+ address is
 195** as follows:
 196**	GSC+ Address[0:3]	4'b1111
 197**	GSC+ Address[4:29]	Runway Address[12:37]
 198**	GSC+ Address[30:31]	2'b00
 199**
 200** All 4 Low/High registers must be initialized (by PDC) once the lower bus
 201** is interrogated and address space is defined. The operating system will
 202** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
 203** the PDC initialization.  However, the hardware version dependent IO_IO_LOW
 204** and IO_IO_HIGH registers should not be subsequently altered by the OS.
 205** 
 206** Writes to both sets of registers will take effect immediately, bypassing
 207** the queues, which ensures that subsequent Runway transactions are checked
 208** against the updated bounds values. However reads are queued, introducing
 209** the possibility of a read being bypassed by a subsequent write to the same
 210** register. This sequence can be avoided by having software wait for read
 211** returns before issuing subsequent writes.
 212*/
 213
 214struct ioc {
 215	struct ioa_registers __iomem *ioc_regs;  /* I/O MMU base address */
 216	u8  *res_map;	                /* resource map, bit == pdir entry */
 217	__le64 *pdir_base;		/* physical base address */
 218	u32 pdir_size;			/* bytes, function of IOV Space size */
 219	u32 res_hint;			/* next available IOVP -
 220					   circular search */
 221	u32 res_size;			/* size of resource map in bytes */
 222	spinlock_t res_lock;
 223
 224#ifdef CCIO_COLLECT_STATS
 225#define CCIO_SEARCH_SAMPLE 0x100
 226	unsigned long avg_search[CCIO_SEARCH_SAMPLE];
 227	unsigned long avg_idx;		  /* current index into avg_search */
 228	unsigned long used_pages;
 229	unsigned long msingle_calls;
 230	unsigned long msingle_pages;
 231	unsigned long msg_calls;
 232	unsigned long msg_pages;
 233	unsigned long usingle_calls;
 234	unsigned long usingle_pages;
 235	unsigned long usg_calls;
 236	unsigned long usg_pages;
 237#endif
 238	unsigned short cujo20_bug;
 239
 240	/* STUFF We don't need in performance path */
 241	u32 chainid_shift;		/* specify bit location of chain_id */
 242	struct ioc *next;		/* Linked list of discovered iocs */
 243	const char *name;		/* device name from firmware */
 244	unsigned int hw_path;           /* the hardware path this ioc is associatd with */
 245	struct pci_dev *fake_pci_dev;   /* the fake pci_dev for non-pci devs */
 246	struct resource mmio_region[2]; /* The "routed" MMIO regions */
 247};
 248
 249static struct ioc *ioc_list;
 250static int ioc_count;
 251
 252/**************************************************************
 253*
 254*   I/O Pdir Resource Management
 255*
 256*   Bits set in the resource map are in use.
 257*   Each bit can represent a number of pages.
 258*   LSbs represent lower addresses (IOVA's).
 259*
 260*   This was copied from sba_iommu.c. Don't try to unify
 261*   the two resource managers unless a way to have different
 262*   allocation policies is also adjusted. We'd like to avoid
 263*   I/O TLB thrashing by having resource allocation policy
 264*   match the I/O TLB replacement policy.
 265*
 266***************************************************************/
 267#define IOVP_SIZE PAGE_SIZE
 268#define IOVP_SHIFT PAGE_SHIFT
 269#define IOVP_MASK PAGE_MASK
 270
 271/* Convert from IOVP to IOVA and vice versa. */
 272#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
 273#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
 274
 275#define PDIR_INDEX(iovp)    ((iovp)>>IOVP_SHIFT)
 276#define MKIOVP(pdir_idx)    ((long)(pdir_idx) << IOVP_SHIFT)
 277#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
 278
 279/*
 280** Don't worry about the 150% average search length on a miss.
 281** If the search wraps around, and passes the res_hint, it will
 282** cause the kernel to panic anyhow.
 283*/
 284#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size)  \
 285	for (; res_ptr < res_end; ++res_ptr) { \
 286		int ret;\
 287		unsigned int idx;\
 288		idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
 289		ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
 290		if ((0 == (*res_ptr & mask)) && !ret) { \
 291			*res_ptr |= mask; \
 292			res_idx = idx;\
 293			ioc->res_hint = res_idx + (size >> 3); \
 294			goto resource_found; \
 295		} \
 296	}
 297
 298#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
 299       u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
 300       u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
 301	CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
 302	res_ptr = (u##size *)&(ioc)->res_map[0]; \
 303	CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
 304
 305/*
 306** Find available bit in this ioa's resource map.
 307** Use a "circular" search:
 308**   o Most IOVA's are "temporary" - avg search time should be small.
 309** o keep a history of what happened for debugging
 310** o KISS.
 311**
 312** Perf optimizations:
 313** o search for log2(size) bits at a time.
 314** o search for available resource bits using byte/word/whatever.
 315** o use different search for "large" (eg > 4 pages) or "very large"
 316**   (eg > 16 pages) mappings.
 317*/
 318
 319/**
 320 * ccio_alloc_range - Allocate pages in the ioc's resource map.
 321 * @ioc: The I/O Controller.
 322 * @dev: The PCI device.
 323 * @size: The requested number of bytes to be mapped into the
 324 * I/O Pdir...
 325 *
 326 * This function searches the resource map of the ioc to locate a range
 327 * of available pages for the requested size.
 328 */
 329static int
 330ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
 331{
 332	unsigned int pages_needed = size >> IOVP_SHIFT;
 333	unsigned int res_idx;
 334	unsigned long boundary_size;
 335#ifdef CCIO_COLLECT_STATS
 336	unsigned long cr_start = mfctl(16);
 337#endif
 338	
 339	BUG_ON(pages_needed == 0);
 340	BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
 341
 342	DBG_RES("%s() size: %zu pages_needed %d\n",
 343			__func__, size, pages_needed);
 344
 345	/*
 346	** "seek and ye shall find"...praying never hurts either...
 347	** ggg sacrifices another 710 to the computer gods.
 348	*/
 349
 350	boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
 
 351
 352	if (pages_needed <= 8) {
 353		/*
 354		 * LAN traffic will not thrash the TLB IFF the same NIC
 355		 * uses 8 adjacent pages to map separate payload data.
 356		 * ie the same byte in the resource bit map.
 357		 */
 358#if 0
 359		/* FIXME: bit search should shift it's way through
 360		 * an unsigned long - not byte at a time. As it is now,
 361		 * we effectively allocate this byte to this mapping.
 362		 */
 363		unsigned long mask = ~(~0UL >> pages_needed);
 364		CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
 365#else
 366		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
 367#endif
 368	} else if (pages_needed <= 16) {
 369		CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
 370	} else if (pages_needed <= 32) {
 371		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
 372#ifdef __LP64__
 373	} else if (pages_needed <= 64) {
 374		CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
 375#endif
 376	} else {
 377		panic("%s: %s() Too many pages to map. pages_needed: %u\n",
 378		       __FILE__,  __func__, pages_needed);
 379	}
 380
 381	panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
 382	      __func__);
 383	
 384resource_found:
 385	
 386	DBG_RES("%s() res_idx %d res_hint: %d\n",
 387		__func__, res_idx, ioc->res_hint);
 388
 389#ifdef CCIO_COLLECT_STATS
 390	{
 391		unsigned long cr_end = mfctl(16);
 392		unsigned long tmp = cr_end - cr_start;
 393		/* check for roll over */
 394		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
 395	}
 396	ioc->avg_search[ioc->avg_idx++] = cr_start;
 397	ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
 398	ioc->used_pages += pages_needed;
 399#endif
 400	/* 
 401	** return the bit address.
 402	*/
 403	return res_idx << 3;
 404}
 405
 406#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
 407        u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
 408        BUG_ON((*res_ptr & mask) != mask); \
 409	*res_ptr &= ~(mask);
 410
 411/**
 412 * ccio_free_range - Free pages from the ioc's resource map.
 413 * @ioc: The I/O Controller.
 414 * @iova: The I/O Virtual Address.
 415 * @pages_mapped: The requested number of pages to be freed from the
 416 * I/O Pdir.
 417 *
 418 * This function frees the resouces allocated for the iova.
 419 */
 420static void
 421ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
 422{
 423	unsigned long iovp = CCIO_IOVP(iova);
 424	unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
 425
 426	BUG_ON(pages_mapped == 0);
 427	BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
 428	BUG_ON(pages_mapped > BITS_PER_LONG);
 429
 430	DBG_RES("%s():  res_idx: %d pages_mapped %lu\n",
 431		__func__, res_idx, pages_mapped);
 432
 433#ifdef CCIO_COLLECT_STATS
 434	ioc->used_pages -= pages_mapped;
 435#endif
 436
 437	if(pages_mapped <= 8) {
 438#if 0
 439		/* see matching comments in alloc_range */
 440		unsigned long mask = ~(~0UL >> pages_mapped);
 441		CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
 442#else
 443		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8);
 444#endif
 445	} else if(pages_mapped <= 16) {
 446		CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16);
 447	} else if(pages_mapped <= 32) {
 448		CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
 449#ifdef __LP64__
 450	} else if(pages_mapped <= 64) {
 451		CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
 452#endif
 453	} else {
 454		panic("%s:%s() Too many pages to unmap.\n", __FILE__,
 455		      __func__);
 456	}
 457}
 458
 459/****************************************************************
 460**
 461**          CCIO dma_ops support routines
 462**
 463*****************************************************************/
 464
 465typedef unsigned long space_t;
 466#define KERNEL_SPACE 0
 467
 468/*
 469** DMA "Page Type" and Hints 
 470** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
 471**   set for subcacheline DMA transfers since we don't want to damage the
 472**   other part of a cacheline.
 473** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
 474**   This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
 475**   data can avoid this if the mapping covers full cache lines.
 476** o STOP_MOST is needed for atomicity across cachelines.
 477**   Apparently only "some EISA devices" need this.
 478**   Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
 479**   to use this hint iff the EISA devices needs this feature.
 480**   According to the U2 ERS, STOP_MOST enabled pages hurt performance.
 481** o PREFETCH should *not* be set for cases like Multiple PCI devices
 482**   behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
 483**   device can be fetched and multiply DMA streams will thrash the
 484**   prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
 485**   and Invalidation of Prefetch Entries".
 486**
 487** FIXME: the default hints need to be per GSC device - not global.
 488** 
 489** HP-UX dorks: linux device driver programming model is totally different
 490**    than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
 491**    do special things to work on non-coherent platforms...linux has to
 492**    be much more careful with this.
 493*/
 494#define IOPDIR_VALID    0x01UL
 495#define HINT_SAFE_DMA   0x02UL	/* used for pci_alloc_consistent() pages */
 496#ifdef CONFIG_EISA
 497#define HINT_STOP_MOST  0x04UL	/* LSL support */
 498#else
 499#define HINT_STOP_MOST  0x00UL	/* only needed for "some EISA devices" */
 500#endif
 501#define HINT_UDPATE_ENB 0x08UL  /* not used/supported by U2 */
 502#define HINT_PREFETCH   0x10UL	/* for outbound pages which are not SAFE */
 503
 504
 505/*
 506** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
 507** ccio_alloc_consistent() depends on this to get SAFE_DMA
 508** when it passes in BIDIRECTIONAL flag.
 509*/
 510static u32 hint_lookup[] = {
 511	[DMA_BIDIRECTIONAL]	= HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
 512	[DMA_TO_DEVICE]		= HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
 513	[DMA_FROM_DEVICE]	= HINT_STOP_MOST | IOPDIR_VALID,
 514};
 515
 516/**
 517 * ccio_io_pdir_entry - Initialize an I/O Pdir.
 518 * @pdir_ptr: A pointer into I/O Pdir.
 519 * @sid: The Space Identifier.
 520 * @vba: The virtual address.
 521 * @hints: The DMA Hint.
 522 *
 523 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
 524 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
 525 * entry consists of 8 bytes as shown below (MSB == bit 0):
 526 *
 527 *
 528 * WORD 0:
 529 * +------+----------------+-----------------------------------------------+
 530 * | Phys | Virtual Index  |               Phys                            |
 531 * | 0:3  |     0:11       |               4:19                            |
 532 * |4 bits|   12 bits      |              16 bits                          |
 533 * +------+----------------+-----------------------------------------------+
 534 * WORD 1:
 535 * +-----------------------+-----------------------------------------------+
 536 * |      Phys    |  Rsvd  | Prefetch |Update |Rsvd  |Lock  |Safe  |Valid  |
 537 * |     20:39    |        | Enable   |Enable |      |Enable|DMA   |       |
 538 * |    20 bits   | 5 bits | 1 bit    |1 bit  |2 bits|1 bit |1 bit |1 bit  |
 539 * +-----------------------+-----------------------------------------------+
 540 *
 541 * The virtual index field is filled with the results of the LCI
 542 * (Load Coherence Index) instruction.  The 8 bits used for the virtual
 543 * index are bits 12:19 of the value returned by LCI.
 544 */ 
 545static void
 546ccio_io_pdir_entry(__le64 *pdir_ptr, space_t sid, unsigned long vba,
 547		   unsigned long hints)
 548{
 549	register unsigned long pa;
 550	register unsigned long ci; /* coherent index */
 551
 552	/* We currently only support kernel addresses */
 553	BUG_ON(sid != KERNEL_SPACE);
 554
 
 
 555	/*
 556	** WORD 1 - low order word
 557	** "hints" parm includes the VALID bit!
 558	** "dep" clobbers the physical address offset bits as well.
 559	*/
 560	pa = lpa(vba);
 561	asm volatile("depw  %1,31,12,%0" : "+r" (pa) : "r" (hints));
 562	((u32 *)pdir_ptr)[1] = (u32) pa;
 563
 564	/*
 565	** WORD 0 - high order word
 566	*/
 567
 568#ifdef __LP64__
 569	/*
 570	** get bits 12:15 of physical address
 571	** shift bits 16:31 of physical address
 572	** and deposit them
 573	*/
 574	asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
 575	asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
 576	asm volatile ("depd  %1,35,4,%0" : "+r" (pa) : "r" (ci));
 577#else
 578	pa = 0;
 579#endif
 580	/*
 581	** get CPU coherency index bits
 582	** Grab virtual index [0:11]
 583	** Deposit virt_idx bits into I/O PDIR word
 584	*/
 585	asm volatile ("lci %%r0(%1), %0" : "=r" (ci) : "r" (vba));
 586	asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
 587	asm volatile ("depw  %1,15,12,%0" : "+r" (pa) : "r" (ci));
 588
 589	((u32 *)pdir_ptr)[0] = (u32) pa;
 590
 591
 592	/* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 593	**        PCX-U/U+ do. (eg C200/C240)
 594	**        PCX-T'? Don't know. (eg C110 or similar K-class)
 595	**
 596	** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
 
 597	**
 598	** "Since PCX-U employs an offset hash that is incompatible with
 599	** the real mode coherence index generation of U2, the PDIR entry
 600	** must be flushed to memory to retain coherence."
 601	*/
 602	asm_io_fdc(pdir_ptr);
 603	asm_io_sync();
 604}
 605
 606/**
 607 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
 608 * @ioc: The I/O Controller.
 609 * @iovp: The I/O Virtual Page.
 610 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 611 *
 612 * Purge invalid I/O PDIR entries from the I/O TLB.
 613 *
 614 * FIXME: Can we change the byte_cnt to pages_mapped?
 615 */
 616static void
 617ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
 618{
 619	u32 chain_size = 1 << ioc->chainid_shift;
 620
 621	iovp &= IOVP_MASK;	/* clear offset bits, just want pagenum */
 622	byte_cnt += chain_size;
 623
 624	while(byte_cnt > chain_size) {
 625		WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
 626		iovp += chain_size;
 627		byte_cnt -= chain_size;
 628	}
 629}
 630
 631/**
 632 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
 633 * @ioc: The I/O Controller.
 634 * @iova: The I/O Virtual Address.
 635 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
 636 *
 637 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
 638 * TLB entries.
 639 *
 640 * FIXME: at some threshold it might be "cheaper" to just blow
 641 *        away the entire I/O TLB instead of individual entries.
 642 *
 643 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
 644 *        PDIR entry - just once for each possible TLB entry.
 645 *        (We do need to maker I/O PDIR entries invalid regardless).
 646 *
 647 * FIXME: Can we change byte_cnt to pages_mapped?
 648 */ 
 649static void
 650ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
 651{
 652	u32 iovp = (u32)CCIO_IOVP(iova);
 653	size_t saved_byte_cnt;
 654
 655	/* round up to nearest page size */
 656	saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
 657
 658	while(byte_cnt > 0) {
 659		/* invalidate one page at a time */
 660		unsigned int idx = PDIR_INDEX(iovp);
 661		char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
 662
 663		BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
 664		pdir_ptr[7] = 0;	/* clear only VALID bit */ 
 665		/*
 666		** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
 667		**   PCX-U/U+ do. (eg C200/C240)
 668		** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
 
 
 
 669		*/
 670		asm_io_fdc(pdir_ptr);
 671
 672		iovp     += IOVP_SIZE;
 673		byte_cnt -= IOVP_SIZE;
 674	}
 675
 676	asm_io_sync();
 677	ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
 678}
 679
 680/****************************************************************
 681**
 682**          CCIO dma_ops
 683**
 684*****************************************************************/
 685
 686/**
 687 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
 688 * @dev: The PCI device.
 689 * @mask: A bit mask describing the DMA address range of the device.
 690 */
 691static int 
 692ccio_dma_supported(struct device *dev, u64 mask)
 693{
 694	if(dev == NULL) {
 695		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
 696		BUG();
 697		return 0;
 698	}
 699
 700	/* only support 32-bit or better devices (ie PCI/GSC) */
 701	return (int)(mask >= 0xffffffffUL);
 702}
 703
 704/**
 705 * ccio_map_single - Map an address range into the IOMMU.
 706 * @dev: The PCI device.
 707 * @addr: The start address of the DMA region.
 708 * @size: The length of the DMA region.
 709 * @direction: The direction of the DMA transaction (to/from device).
 710 *
 711 * This function implements the pci_map_single function.
 712 */
 713static dma_addr_t 
 714ccio_map_single(struct device *dev, void *addr, size_t size,
 715		enum dma_data_direction direction)
 716{
 717	int idx;
 718	struct ioc *ioc;
 719	unsigned long flags;
 720	dma_addr_t iovp;
 721	dma_addr_t offset;
 722	__le64 *pdir_start;
 723	unsigned long hint = hint_lookup[(int)direction];
 724
 725	BUG_ON(!dev);
 726	ioc = GET_IOC(dev);
 727	if (!ioc)
 728		return DMA_MAPPING_ERROR;
 729
 730	BUG_ON(size <= 0);
 731
 732	/* save offset bits */
 733	offset = ((unsigned long) addr) & ~IOVP_MASK;
 734
 735	/* round up to nearest IOVP_SIZE */
 736	size = ALIGN(size + offset, IOVP_SIZE);
 737	spin_lock_irqsave(&ioc->res_lock, flags);
 738
 739#ifdef CCIO_COLLECT_STATS
 740	ioc->msingle_calls++;
 741	ioc->msingle_pages += size >> IOVP_SHIFT;
 742#endif
 743
 744	idx = ccio_alloc_range(ioc, dev, size);
 745	iovp = (dma_addr_t)MKIOVP(idx);
 746
 747	pdir_start = &(ioc->pdir_base[idx]);
 748
 749	DBG_RUN("%s() %px -> %#lx size: %zu\n",
 750		__func__, addr, (long)(iovp | offset), size);
 751
 752	/* If not cacheline aligned, force SAFE_DMA on the whole mess */
 753	if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
 754		hint |= HINT_SAFE_DMA;
 755
 756	while(size > 0) {
 757		ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
 758
 759		DBG_RUN(" pdir %p %08x%08x\n",
 760			pdir_start,
 761			(u32) (((u32 *) pdir_start)[0]),
 762			(u32) (((u32 *) pdir_start)[1]));
 763		++pdir_start;
 764		addr += IOVP_SIZE;
 765		size -= IOVP_SIZE;
 766	}
 767
 768	spin_unlock_irqrestore(&ioc->res_lock, flags);
 769
 770	/* form complete address */
 771	return CCIO_IOVA(iovp, offset);
 772}
 773
 774
 775static dma_addr_t
 776ccio_map_page(struct device *dev, struct page *page, unsigned long offset,
 777		size_t size, enum dma_data_direction direction,
 778		unsigned long attrs)
 779{
 780	return ccio_map_single(dev, page_address(page) + offset, size,
 781			direction);
 782}
 783
 784
 785/**
 786 * ccio_unmap_page - Unmap an address range from the IOMMU.
 787 * @dev: The PCI device.
 788 * @iova: The start address of the DMA region.
 789 * @size: The length of the DMA region.
 790 * @direction: The direction of the DMA transaction (to/from device).
 791 * @attrs: attributes
 792 */
 793static void 
 794ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
 795		enum dma_data_direction direction, unsigned long attrs)
 796{
 797	struct ioc *ioc;
 798	unsigned long flags; 
 799	dma_addr_t offset = iova & ~IOVP_MASK;
 800	
 801	BUG_ON(!dev);
 802	ioc = GET_IOC(dev);
 803	if (!ioc) {
 804		WARN_ON(!ioc);
 805		return;
 806	}
 807
 808	DBG_RUN("%s() iovp %#lx/%zx\n",
 809		__func__, (long)iova, size);
 810
 811	iova ^= offset;        /* clear offset bits */
 812	size += offset;
 813	size = ALIGN(size, IOVP_SIZE);
 814
 815	spin_lock_irqsave(&ioc->res_lock, flags);
 816
 817#ifdef CCIO_COLLECT_STATS
 818	ioc->usingle_calls++;
 819	ioc->usingle_pages += size >> IOVP_SHIFT;
 820#endif
 821
 822	ccio_mark_invalid(ioc, iova, size);
 823	ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
 824	spin_unlock_irqrestore(&ioc->res_lock, flags);
 825}
 826
 827/**
 828 * ccio_alloc - Allocate a consistent DMA mapping.
 829 * @dev: The PCI device.
 830 * @size: The length of the DMA region.
 831 * @dma_handle: The DMA address handed back to the device (not the cpu).
 832 * @flag: allocation flags
 833 * @attrs: attributes
 834 *
 835 * This function implements the pci_alloc_consistent function.
 836 */
 837static void * 
 838ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag,
 839		unsigned long attrs)
 840{
 841	void *ret;
 842#if 0
 843/* GRANT Need to establish hierarchy for non-PCI devs as well
 844** and then provide matching gsc_map_xxx() functions for them as well.
 845*/
 846	if(!hwdev) {
 847		/* only support PCI */
 848		*dma_handle = 0;
 849		return 0;
 850	}
 851#endif
 852	ret = (void *) __get_free_pages(flag, get_order(size));
 853
 854	if (ret) {
 855		memset(ret, 0, size);
 856		*dma_handle = ccio_map_single(dev, ret, size, DMA_BIDIRECTIONAL);
 857	}
 858
 859	return ret;
 860}
 861
 862/**
 863 * ccio_free - Free a consistent DMA mapping.
 864 * @dev: The PCI device.
 865 * @size: The length of the DMA region.
 866 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
 867 * @dma_handle: The device address returned from the ccio_alloc_consistent.
 868 * @attrs: attributes
 869 *
 870 * This function implements the pci_free_consistent function.
 871 */
 872static void 
 873ccio_free(struct device *dev, size_t size, void *cpu_addr,
 874		dma_addr_t dma_handle, unsigned long attrs)
 875{
 876	ccio_unmap_page(dev, dma_handle, size, 0, 0);
 877	free_pages((unsigned long)cpu_addr, get_order(size));
 878}
 879
 880/*
 881** Since 0 is a valid pdir_base index value, can't use that
 882** to determine if a value is valid or not. Use a flag to indicate
 883** the SG list entry contains a valid pdir index.
 884*/
 885#define PIDE_FLAG 0x80000000UL
 886
 887#ifdef CCIO_COLLECT_STATS
 888#define IOMMU_MAP_STATS
 889#endif
 890#include "iommu-helpers.h"
 891
 892/**
 893 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
 894 * @dev: The PCI device.
 895 * @sglist: The scatter/gather list to be mapped in the IOMMU.
 896 * @nents: The number of entries in the scatter/gather list.
 897 * @direction: The direction of the DMA transaction (to/from device).
 898 * @attrs: attributes
 899 *
 900 * This function implements the pci_map_sg function.
 901 */
 902static int
 903ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 904	    enum dma_data_direction direction, unsigned long attrs)
 905{
 906	struct ioc *ioc;
 907	int coalesced, filled = 0;
 908	unsigned long flags;
 909	unsigned long hint = hint_lookup[(int)direction];
 910	unsigned long prev_len = 0, current_len = 0;
 911	int i;
 912	
 913	BUG_ON(!dev);
 914	ioc = GET_IOC(dev);
 915	if (!ioc)
 916		return -EINVAL;
 917	
 918	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
 919
 920	/* Fast path single entry scatterlists. */
 921	if (nents == 1) {
 922		sg_dma_address(sglist) = ccio_map_single(dev,
 923				sg_virt(sglist), sglist->length,
 924				direction);
 925		sg_dma_len(sglist) = sglist->length;
 926		return 1;
 927	}
 928
 929	for(i = 0; i < nents; i++)
 930		prev_len += sglist[i].length;
 931	
 932	spin_lock_irqsave(&ioc->res_lock, flags);
 933
 934#ifdef CCIO_COLLECT_STATS
 935	ioc->msg_calls++;
 936#endif
 937
 938	/*
 939	** First coalesce the chunks and allocate I/O pdir space
 940	**
 941	** If this is one DMA stream, we can properly map using the
 942	** correct virtual address associated with each DMA page.
 943	** w/o this association, we wouldn't have coherent DMA!
 944	** Access to the virtual address is what forces a two pass algorithm.
 945	*/
 946	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
 947
 948	/*
 949	** Program the I/O Pdir
 950	**
 951	** map the virtual addresses to the I/O Pdir
 952	** o dma_address will contain the pdir index
 953	** o dma_len will contain the number of bytes to map 
 954	** o page/offset contain the virtual address.
 955	*/
 956	filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
 957
 958	spin_unlock_irqrestore(&ioc->res_lock, flags);
 959
 960	BUG_ON(coalesced != filled);
 961
 962	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
 963
 964	for (i = 0; i < filled; i++)
 965		current_len += sg_dma_len(sglist + i);
 966
 967	BUG_ON(current_len != prev_len);
 968
 969	return filled;
 970}
 971
 972/**
 973 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
 974 * @dev: The PCI device.
 975 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
 976 * @nents: The number of entries in the scatter/gather list.
 977 * @direction: The direction of the DMA transaction (to/from device).
 978 * @attrs: attributes
 979 *
 980 * This function implements the pci_unmap_sg function.
 981 */
 982static void 
 983ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 
 984	      enum dma_data_direction direction, unsigned long attrs)
 985{
 986	struct ioc *ioc;
 987
 988	BUG_ON(!dev);
 989	ioc = GET_IOC(dev);
 990	if (!ioc) {
 991		WARN_ON(!ioc);
 992		return;
 993	}
 994
 995	DBG_RUN_SG("%s() START %d entries, %p,%x\n",
 996		__func__, nents, sg_virt(sglist), sglist->length);
 997
 998#ifdef CCIO_COLLECT_STATS
 999	ioc->usg_calls++;
1000#endif
1001
1002	while (nents && sg_dma_len(sglist)) {
1003
1004#ifdef CCIO_COLLECT_STATS
1005		ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1006#endif
1007		ccio_unmap_page(dev, sg_dma_address(sglist),
1008				  sg_dma_len(sglist), direction, 0);
1009		++sglist;
1010		nents--;
1011	}
1012
1013	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents);
1014}
1015
1016static const struct dma_map_ops ccio_ops = {
1017	.dma_supported =	ccio_dma_supported,
1018	.alloc =		ccio_alloc,
1019	.free =			ccio_free,
1020	.map_page =		ccio_map_page,
1021	.unmap_page =		ccio_unmap_page,
1022	.map_sg =		ccio_map_sg,
1023	.unmap_sg =		ccio_unmap_sg,
1024	.get_sgtable =		dma_common_get_sgtable,
1025	.alloc_pages_op =	dma_common_alloc_pages,
1026	.free_pages =		dma_common_free_pages,
1027};
1028
1029#ifdef CONFIG_PROC_FS
1030static int ccio_proc_info(struct seq_file *m, void *p)
1031{
1032	struct ioc *ioc = ioc_list;
1033
1034	while (ioc != NULL) {
1035		unsigned int total_pages = ioc->res_size << 3;
1036#ifdef CCIO_COLLECT_STATS
1037		unsigned long avg = 0, min, max;
1038		int j;
1039#endif
1040
1041		seq_printf(m, "%s\n", ioc->name);
1042		
1043		seq_printf(m, "Cujo 2.0 bug    : %s\n",
1044			   (ioc->cujo20_bug ? "yes" : "no"));
1045		
1046		seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1047			   total_pages * 8, total_pages);
1048
1049#ifdef CCIO_COLLECT_STATS
1050		seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1051			   total_pages - ioc->used_pages, ioc->used_pages,
1052			   (int)(ioc->used_pages * 100 / total_pages));
1053#endif
1054
1055		seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1056			   ioc->res_size, total_pages);
1057
1058#ifdef CCIO_COLLECT_STATS
1059		min = max = ioc->avg_search[0];
1060		for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1061			avg += ioc->avg_search[j];
1062			if(ioc->avg_search[j] > max) 
1063				max = ioc->avg_search[j];
1064			if(ioc->avg_search[j] < min) 
1065				min = ioc->avg_search[j];
1066		}
1067		avg /= CCIO_SEARCH_SAMPLE;
1068		seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1069			   min, avg, max);
1070
1071		seq_printf(m, "pci_map_single(): %8ld calls  %8ld pages (avg %d/1000)\n",
1072			   ioc->msingle_calls, ioc->msingle_pages,
1073			   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1074
1075		/* KLUGE - unmap_sg calls unmap_page for each mapped page */
1076		min = ioc->usingle_calls - ioc->usg_calls;
1077		max = ioc->usingle_pages - ioc->usg_pages;
1078		seq_printf(m, "pci_unmap_single: %8ld calls  %8ld pages (avg %d/1000)\n",
1079			   min, max, (int)((max * 1000)/min));
1080
1081		seq_printf(m, "pci_map_sg()    : %8ld calls  %8ld pages (avg %d/1000)\n",
1082			   ioc->msg_calls, ioc->msg_pages,
1083			   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1084
1085		seq_printf(m, "pci_unmap_sg()  : %8ld calls  %8ld pages (avg %d/1000)\n\n\n",
1086			   ioc->usg_calls, ioc->usg_pages,
1087			   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1088#endif	/* CCIO_COLLECT_STATS */
1089
1090		ioc = ioc->next;
1091	}
1092
1093	return 0;
1094}
1095
 
 
 
 
 
 
 
 
 
 
 
 
 
1096static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1097{
1098	struct ioc *ioc = ioc_list;
1099
1100	while (ioc != NULL) {
1101		seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1102			     ioc->res_size, false);
1103		seq_putc(m, '\n');
1104		ioc = ioc->next;
1105		break; /* XXX - remove me */
1106	}
1107
1108	return 0;
1109}
 
 
 
 
 
 
 
 
 
 
 
 
 
1110#endif /* CONFIG_PROC_FS */
1111
1112/**
1113 * ccio_find_ioc - Find the ioc in the ioc_list
1114 * @hw_path: The hardware path of the ioc.
1115 *
1116 * This function searches the ioc_list for an ioc that matches
1117 * the provide hardware path.
1118 */
1119static struct ioc * ccio_find_ioc(int hw_path)
1120{
1121	int i;
1122	struct ioc *ioc;
1123
1124	ioc = ioc_list;
1125	for (i = 0; i < ioc_count; i++) {
1126		if (ioc->hw_path == hw_path)
1127			return ioc;
1128
1129		ioc = ioc->next;
1130	}
1131
1132	return NULL;
1133}
1134
1135/**
1136 * ccio_get_iommu - Find the iommu which controls this device
1137 * @dev: The parisc device.
1138 *
1139 * This function searches through the registered IOMMU's and returns
1140 * the appropriate IOMMU for the device based on its hardware path.
1141 */
1142void * ccio_get_iommu(const struct parisc_device *dev)
1143{
1144	dev = find_pa_parent_type(dev, HPHW_IOA);
1145	if (!dev)
1146		return NULL;
1147
1148	return ccio_find_ioc(dev->hw_path);
1149}
1150
1151#define CUJO_20_STEP       0x10000000	/* inc upper nibble */
1152
1153/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1154 * to/from certain pages.  To avoid this happening, we mark these pages
1155 * as `used', and ensure that nothing will try to allocate from them.
1156 */
1157void __init ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1158{
1159	unsigned int idx;
1160	struct parisc_device *dev = parisc_parent(cujo);
1161	struct ioc *ioc = ccio_get_iommu(dev);
1162	u8 *res_ptr;
1163
1164	ioc->cujo20_bug = 1;
1165	res_ptr = ioc->res_map;
1166	idx = PDIR_INDEX(iovp) >> 3;
1167
1168	while (idx < ioc->res_size) {
1169		res_ptr[idx] |= 0xff;
1170		idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1171	}
1172}
1173
1174#if 0
1175/* GRANT -  is this needed for U2 or not? */
1176
1177/*
1178** Get the size of the I/O TLB for this I/O MMU.
1179**
1180** If spa_shift is non-zero (ie probably U2),
1181** then calculate the I/O TLB size using spa_shift.
1182**
1183** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1184** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1185** I think only Java (K/D/R-class too?) systems don't do this.
1186*/
1187static int
1188ccio_get_iotlb_size(struct parisc_device *dev)
1189{
1190	if (dev->spa_shift == 0) {
1191		panic("%s() : Can't determine I/O TLB size.\n", __func__);
1192	}
1193	return (1 << dev->spa_shift);
1194}
1195#else
1196
1197/* Uturn supports 256 TLB entries */
1198#define CCIO_CHAINID_SHIFT	8
1199#define CCIO_CHAINID_MASK	0xff
1200#endif /* 0 */
1201
1202/* We *can't* support JAVA (T600). Venture there at your own risk. */
1203static const struct parisc_device_id ccio_tbl[] __initconst = {
1204	{ HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1205	{ HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1206	{ 0, }
1207};
1208
1209static int ccio_probe(struct parisc_device *dev);
1210
1211static struct parisc_driver ccio_driver __refdata = {
1212	.name =		"ccio",
1213	.id_table =	ccio_tbl,
1214	.probe =	ccio_probe,
1215};
1216
1217/**
1218 * ccio_ioc_init - Initialize the I/O Controller
1219 * @ioc: The I/O Controller.
1220 *
1221 * Initialize the I/O Controller which includes setting up the
1222 * I/O Page Directory, the resource map, and initalizing the
1223 * U2/Uturn chip into virtual mode.
1224 */
1225static void __init
1226ccio_ioc_init(struct ioc *ioc)
1227{
1228	int i;
1229	unsigned int iov_order;
1230	u32 iova_space_size;
1231
1232	/*
1233	** Determine IOVA Space size from memory size.
1234	**
1235	** Ideally, PCI drivers would register the maximum number
1236	** of DMA they can have outstanding for each device they
1237	** own.  Next best thing would be to guess how much DMA
1238	** can be outstanding based on PCI Class/sub-class. Both
1239	** methods still require some "extra" to support PCI
1240	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1241	*/
1242
1243	iova_space_size = (u32) (totalram_pages() / count_parisc_driver(&ccio_driver));
1244
1245	/* limit IOVA space size to 1MB-1GB */
1246
1247	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1248		iova_space_size =  1 << (20 - PAGE_SHIFT);
1249#ifdef __LP64__
1250	} else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1251		iova_space_size =  1 << (30 - PAGE_SHIFT);
1252#endif
1253	}
1254
1255	/*
1256	** iova space must be log2() in size.
1257	** thus, pdir/res_map will also be log2().
1258	*/
1259
1260	/* We could use larger page sizes in order to *decrease* the number
1261	** of mappings needed.  (ie 8k pages means 1/2 the mappings).
1262	**
1263	** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1264	**   since the pages must also be physically contiguous - typically
1265	**   this is the case under linux."
1266	*/
1267
1268	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1269
1270	/* iova_space_size is now bytes, not pages */
1271	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1272
1273	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1274
1275	BUG_ON(ioc->pdir_size > 8 * 1024 * 1024);   /* max pdir size <= 8MB */
1276
1277	/* Verify it's a power of two */
1278	BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1279
1280	DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1281			__func__, ioc->ioc_regs,
1282			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1283			iova_space_size>>20,
1284			iov_order + PAGE_SHIFT);
1285
1286	ioc->pdir_base = (__le64 *)__get_free_pages(GFP_KERNEL,
1287						 get_order(ioc->pdir_size));
1288	if(NULL == ioc->pdir_base) {
1289		panic("%s() could not allocate I/O Page Table\n", __func__);
1290	}
1291	memset(ioc->pdir_base, 0, ioc->pdir_size);
1292
1293	BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
1294	DBG_INIT(" base %p\n", ioc->pdir_base);
1295
1296	/* resource map size dictated by pdir_size */
1297	ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1298	DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size);
1299	
1300	ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 
1301					      get_order(ioc->res_size));
1302	if(NULL == ioc->res_map) {
1303		panic("%s() could not allocate resource map\n", __func__);
1304	}
1305	memset(ioc->res_map, 0, ioc->res_size);
1306
1307	/* Initialize the res_hint to 16 */
1308	ioc->res_hint = 16;
1309
1310	/* Initialize the spinlock */
1311	spin_lock_init(&ioc->res_lock);
1312
1313	/*
1314	** Chainid is the upper most bits of an IOVP used to determine
1315	** which TLB entry an IOVP will use.
1316	*/
1317	ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1318	DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1319
1320	/*
1321	** Initialize IOA hardware
1322	*/
1323	WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 
1324		  &ioc->ioc_regs->io_chain_id_mask);
1325
1326	WRITE_U32(virt_to_phys(ioc->pdir_base), 
1327		  &ioc->ioc_regs->io_pdir_base);
1328
1329	/*
1330	** Go to "Virtual Mode"
1331	*/
1332	WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1333
1334	/*
1335	** Initialize all I/O TLB entries to 0 (Valid bit off).
1336	*/
1337	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1338	WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1339
1340	for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1341		WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
1342			  &ioc->ioc_regs->io_command);
1343	}
1344}
1345
1346static void __init
1347ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1348{
1349	int result;
1350
1351	res->parent = NULL;
1352	res->flags = IORESOURCE_MEM;
1353	/*
1354	 * bracing ((signed) ...) are required for 64bit kernel because
1355	 * we only want to sign extend the lower 16 bits of the register.
1356	 * The upper 16-bits of range registers are hardcoded to 0xffff.
1357	 */
1358	res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1359	res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1360	res->name = name;
1361	/*
1362	 * Check if this MMIO range is disable
1363	 */
1364	if (res->end + 1 == res->start)
1365		return;
1366
1367	/* On some platforms (e.g. K-Class), we have already registered
1368	 * resources for devices reported by firmware. Some are children
1369	 * of ccio.
1370	 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1371	 */
1372	result = insert_resource(&iomem_resource, res);
1373	if (result < 0) {
1374		printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 
1375			__func__, (unsigned long)res->start, (unsigned long)res->end);
1376	}
1377}
1378
1379static int __init ccio_init_resources(struct ioc *ioc)
1380{
1381	struct resource *res = ioc->mmio_region;
1382	char *name = kmalloc(14, GFP_KERNEL);
1383	if (unlikely(!name))
1384		return -ENOMEM;
1385	snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1386
1387	ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1388	ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1389	return 0;
1390}
1391
1392static int new_ioc_area(struct resource *res, unsigned long size,
1393		unsigned long min, unsigned long max, unsigned long align)
1394{
1395	if (max <= min)
1396		return -EBUSY;
1397
1398	res->start = (max - size + 1) &~ (align - 1);
1399	res->end = res->start + size;
1400	
1401	/* We might be trying to expand the MMIO range to include
1402	 * a child device that has already registered it's MMIO space.
1403	 * Use "insert" instead of request_resource().
1404	 */
1405	if (!insert_resource(&iomem_resource, res))
1406		return 0;
1407
1408	return new_ioc_area(res, size, min, max - size, align);
1409}
1410
1411static int expand_ioc_area(struct resource *res, unsigned long size,
1412		unsigned long min, unsigned long max, unsigned long align)
1413{
1414	unsigned long start, len;
1415
1416	if (!res->parent)
1417		return new_ioc_area(res, size, min, max, align);
1418
1419	start = (res->start - size) &~ (align - 1);
1420	len = res->end - start + 1;
1421	if (start >= min) {
1422		if (!adjust_resource(res, start, len))
1423			return 0;
1424	}
1425
1426	start = res->start;
1427	len = ((size + res->end + align) &~ (align - 1)) - start;
1428	if (start + len <= max) {
1429		if (!adjust_resource(res, start, len))
1430			return 0;
1431	}
1432
1433	return -EBUSY;
1434}
1435
1436/*
1437 * Dino calls this function.  Beware that we may get called on systems
1438 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1439 * So it's legal to find no parent IOC.
1440 *
1441 * Some other issues: one of the resources in the ioc may be unassigned.
1442 */
1443int ccio_allocate_resource(const struct parisc_device *dev,
1444		struct resource *res, unsigned long size,
1445		unsigned long min, unsigned long max, unsigned long align)
1446{
1447	struct resource *parent = &iomem_resource;
1448	struct ioc *ioc = ccio_get_iommu(dev);
1449	if (!ioc)
1450		goto out;
1451
1452	parent = ioc->mmio_region;
1453	if (parent->parent &&
1454	    !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1455		return 0;
1456
1457	if ((parent + 1)->parent &&
1458	    !allocate_resource(parent + 1, res, size, min, max, align,
1459				NULL, NULL))
1460		return 0;
1461
1462	if (!expand_ioc_area(parent, size, min, max, align)) {
1463		__raw_writel(((parent->start)>>16) | 0xffff0000,
1464			     &ioc->ioc_regs->io_io_low);
1465		__raw_writel(((parent->end)>>16) | 0xffff0000,
1466			     &ioc->ioc_regs->io_io_high);
1467	} else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1468		parent++;
1469		__raw_writel(((parent->start)>>16) | 0xffff0000,
1470			     &ioc->ioc_regs->io_io_low_hv);
1471		__raw_writel(((parent->end)>>16) | 0xffff0000,
1472			     &ioc->ioc_regs->io_io_high_hv);
1473	} else {
1474		return -EBUSY;
1475	}
1476
1477 out:
1478	return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1479}
1480
1481int ccio_request_resource(const struct parisc_device *dev,
1482		struct resource *res)
1483{
1484	struct resource *parent;
1485	struct ioc *ioc = ccio_get_iommu(dev);
1486
1487	if (!ioc) {
1488		parent = &iomem_resource;
1489	} else if ((ioc->mmio_region->start <= res->start) &&
1490			(res->end <= ioc->mmio_region->end)) {
1491		parent = ioc->mmio_region;
1492	} else if (((ioc->mmio_region + 1)->start <= res->start) &&
1493			(res->end <= (ioc->mmio_region + 1)->end)) {
1494		parent = ioc->mmio_region + 1;
1495	} else {
1496		return -EBUSY;
1497	}
1498
1499	/* "transparent" bus bridges need to register MMIO resources
1500	 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1501	 * registered their resources in the PDC "bus walk" (See
1502	 * arch/parisc/kernel/inventory.c).
1503	 */
1504	return insert_resource(parent, res);
1505}
1506
1507/**
1508 * ccio_probe - Determine if ccio should claim this device.
1509 * @dev: The device which has been found
1510 *
1511 * Determine if ccio should claim this chip (return 0) or not (return 1).
1512 * If so, initialize the chip and tell other partners in crime they
1513 * have work to do.
1514 */
1515static int __init ccio_probe(struct parisc_device *dev)
1516{
1517	int i;
1518	struct ioc *ioc, **ioc_p = &ioc_list;
1519	struct pci_hba_data *hba;
1520
1521	ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1522	if (ioc == NULL) {
1523		printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1524		return -ENOMEM;
1525	}
1526
1527	ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1528
1529	printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name,
1530		(unsigned long)dev->hpa.start);
1531
1532	for (i = 0; i < ioc_count; i++) {
1533		ioc_p = &(*ioc_p)->next;
1534	}
1535	*ioc_p = ioc;
1536
1537	ioc->hw_path = dev->hw_path;
1538	ioc->ioc_regs = ioremap(dev->hpa.start, 4096);
1539	if (!ioc->ioc_regs) {
1540		kfree(ioc);
1541		return -ENOMEM;
1542	}
1543	ccio_ioc_init(ioc);
1544	if (ccio_init_resources(ioc)) {
1545		iounmap(ioc->ioc_regs);
1546		kfree(ioc);
1547		return -ENOMEM;
1548	}
1549	hppa_dma_ops = &ccio_ops;
 
1550
1551	hba = kzalloc(sizeof(*hba), GFP_KERNEL);
1552	/* if this fails, no I/O cards will work, so may as well bug */
1553	BUG_ON(hba == NULL);
1554
1555	hba->iommu = ioc;
1556	dev->dev.platform_data = hba;
1557
1558#ifdef CONFIG_PROC_FS
1559	if (ioc_count == 0) {
1560		struct proc_dir_entry *runway;
1561
1562		runway = proc_mkdir("bus/runway", NULL);
1563		if (runway) {
1564			proc_create_single(MODULE_NAME, 0, runway,
1565				ccio_proc_info);
1566			proc_create_single(MODULE_NAME"-bitmap", 0, runway,
1567				ccio_proc_bitmap_info);
1568		}
1569	}
1570#endif
1571	ioc_count++;
 
 
1572	return 0;
1573}
1574
1575/**
1576 * ccio_init - ccio initialization procedure.
1577 *
1578 * Register this driver.
1579 */
1580static int __init ccio_init(void)
1581{
1582	return register_parisc_driver(&ccio_driver);
1583}
1584arch_initcall(ccio_init);