Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block driver for media (i.e., flash cards)
   4 *
   5 * Copyright 2002 Hewlett-Packard Company
   6 * Copyright 2005-2008 Pierre Ossman
   7 *
   8 * Use consistent with the GNU GPL is permitted,
   9 * provided that this copyright notice is
  10 * preserved in its entirety in all copies and derived works.
  11 *
  12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
  13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
  14 * FITNESS FOR ANY PARTICULAR PURPOSE.
  15 *
  16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
  17 *
  18 * Author:  Andrew Christian
  19 *          28 May 2002
  20 */
  21#include <linux/moduleparam.h>
  22#include <linux/module.h>
  23#include <linux/init.h>
  24
  25#include <linux/kernel.h>
  26#include <linux/fs.h>
  27#include <linux/slab.h>
  28#include <linux/errno.h>
  29#include <linux/hdreg.h>
  30#include <linux/kdev_t.h>
  31#include <linux/kref.h>
  32#include <linux/blkdev.h>
  33#include <linux/cdev.h>
  34#include <linux/mutex.h>
  35#include <linux/scatterlist.h>
  36#include <linux/string.h>
  37#include <linux/string_helpers.h>
  38#include <linux/delay.h>
  39#include <linux/capability.h>
  40#include <linux/compat.h>
  41#include <linux/pm_runtime.h>
  42#include <linux/idr.h>
  43#include <linux/debugfs.h>
  44#include <linux/rpmb.h>
  45
  46#include <linux/mmc/ioctl.h>
  47#include <linux/mmc/card.h>
  48#include <linux/mmc/host.h>
  49#include <linux/mmc/mmc.h>
  50#include <linux/mmc/sd.h>
  51
  52#include <linux/uaccess.h>
  53#include <linux/unaligned.h>
  54
  55#include "queue.h"
  56#include "block.h"
  57#include "core.h"
  58#include "card.h"
  59#include "crypto.h"
  60#include "host.h"
  61#include "bus.h"
  62#include "mmc_ops.h"
  63#include "quirks.h"
  64#include "sd_ops.h"
  65
  66MODULE_ALIAS("mmc:block");
  67#ifdef MODULE_PARAM_PREFIX
  68#undef MODULE_PARAM_PREFIX
  69#endif
  70#define MODULE_PARAM_PREFIX "mmcblk."
  71
  72/*
  73 * Set a 10 second timeout for polling write request busy state. Note, mmc core
  74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
  75 * second software timer to timeout the whole request, so 10 seconds should be
  76 * ample.
  77 */
  78#define MMC_BLK_TIMEOUT_MS  (10 * 1000)
  79#define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
  80#define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
  81
  82/**
  83 * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
  84 *
  85 * @stuff        : stuff bytes
  86 * @key_mac      : The authentication key or the message authentication
  87 *                 code (MAC) depending on the request/response type.
  88 *                 The MAC will be delivered in the last (or the only)
  89 *                 block of data.
  90 * @data         : Data to be written or read by signed access.
  91 * @nonce        : Random number generated by the host for the requests
  92 *                 and copied to the response by the RPMB engine.
  93 * @write_counter: Counter value for the total amount of the successful
  94 *                 authenticated data write requests made by the host.
  95 * @addr         : Address of the data to be programmed to or read
  96 *                 from the RPMB. Address is the serial number of
  97 *                 the accessed block (half sector 256B).
  98 * @block_count  : Number of blocks (half sectors, 256B) requested to be
  99 *                 read/programmed.
 100 * @result       : Includes information about the status of the write counter
 101 *                 (valid, expired) and result of the access made to the RPMB.
 102 * @req_resp     : Defines the type of request and response to/from the memory.
 103 *
 104 * The stuff bytes and big-endian properties are modeled to fit to the spec.
 105 */
 106struct rpmb_frame {
 107	u8     stuff[196];
 108	u8     key_mac[32];
 109	u8     data[256];
 110	u8     nonce[16];
 111	__be32 write_counter;
 112	__be16 addr;
 113	__be16 block_count;
 114	__be16 result;
 115	__be16 req_resp;
 116} __packed;
 117
 118#define RPMB_PROGRAM_KEY       0x1    /* Program RPMB Authentication Key */
 119#define RPMB_GET_WRITE_COUNTER 0x2    /* Read RPMB write counter */
 120#define RPMB_WRITE_DATA        0x3    /* Write data to RPMB partition */
 121#define RPMB_READ_DATA         0x4    /* Read data from RPMB partition */
 122#define RPMB_RESULT_READ       0x5    /* Read result request  (Internal) */
 123
 124static DEFINE_MUTEX(block_mutex);
 125
 126/*
 127 * The defaults come from config options but can be overriden by module
 128 * or bootarg options.
 129 */
 130static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
 131
 132/*
 133 * We've only got one major, so number of mmcblk devices is
 134 * limited to (1 << 20) / number of minors per device.  It is also
 135 * limited by the MAX_DEVICES below.
 136 */
 137static int max_devices;
 138
 139#define MAX_DEVICES 256
 140
 141static DEFINE_IDA(mmc_blk_ida);
 142static DEFINE_IDA(mmc_rpmb_ida);
 143
 144struct mmc_blk_busy_data {
 145	struct mmc_card *card;
 146	u32 status;
 147};
 148
 149/*
 150 * There is one mmc_blk_data per slot.
 151 */
 152struct mmc_blk_data {
 153	struct device	*parent;
 154	struct gendisk	*disk;
 155	struct mmc_queue queue;
 156	struct list_head part;
 157	struct list_head rpmbs;
 158
 159	unsigned int	flags;
 160#define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
 161#define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
 162
 163	struct kref	kref;
 164	unsigned int	read_only;
 165	unsigned int	part_type;
 166	unsigned int	reset_done;
 167#define MMC_BLK_READ		BIT(0)
 168#define MMC_BLK_WRITE		BIT(1)
 169#define MMC_BLK_DISCARD		BIT(2)
 170#define MMC_BLK_SECDISCARD	BIT(3)
 171#define MMC_BLK_CQE_RECOVERY	BIT(4)
 172#define MMC_BLK_TRIM		BIT(5)
 173
 174	/*
 175	 * Only set in main mmc_blk_data associated
 176	 * with mmc_card with dev_set_drvdata, and keeps
 177	 * track of the current selected device partition.
 178	 */
 179	unsigned int	part_curr;
 180#define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
 181	int	area_type;
 182
 183	/* debugfs files (only in main mmc_blk_data) */
 184	struct dentry *status_dentry;
 185	struct dentry *ext_csd_dentry;
 186};
 187
 188/* Device type for RPMB character devices */
 189static dev_t mmc_rpmb_devt;
 190
 191/* Bus type for RPMB character devices */
 192static const struct bus_type mmc_rpmb_bus_type = {
 193	.name = "mmc_rpmb",
 194};
 195
 196/**
 197 * struct mmc_rpmb_data - special RPMB device type for these areas
 198 * @dev: the device for the RPMB area
 199 * @chrdev: character device for the RPMB area
 200 * @id: unique device ID number
 201 * @part_index: partition index (0 on first)
 202 * @md: parent MMC block device
 203 * @rdev: registered RPMB device
 204 * @node: list item, so we can put this device on a list
 205 */
 206struct mmc_rpmb_data {
 207	struct device dev;
 208	struct cdev chrdev;
 209	int id;
 210	unsigned int part_index;
 211	struct mmc_blk_data *md;
 212	struct rpmb_dev *rdev;
 213	struct list_head node;
 214};
 215
 216static DEFINE_MUTEX(open_lock);
 217
 218module_param(perdev_minors, int, 0444);
 219MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
 220
 221static inline int mmc_blk_part_switch(struct mmc_card *card,
 222				      unsigned int part_type);
 223static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
 224			       struct mmc_card *card,
 225			       int recovery_mode,
 226			       struct mmc_queue *mq);
 227static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
 228static int mmc_spi_err_check(struct mmc_card *card);
 229static int mmc_blk_busy_cb(void *cb_data, bool *busy);
 230
 231static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
 232{
 233	struct mmc_blk_data *md;
 234
 235	mutex_lock(&open_lock);
 236	md = disk->private_data;
 237	if (md && !kref_get_unless_zero(&md->kref))
 238		md = NULL;
 239	mutex_unlock(&open_lock);
 240
 241	return md;
 242}
 243
 244static inline int mmc_get_devidx(struct gendisk *disk)
 245{
 246	int devidx = disk->first_minor / perdev_minors;
 247	return devidx;
 248}
 249
 250static void mmc_blk_kref_release(struct kref *ref)
 251{
 252	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
 253	int devidx;
 254
 255	devidx = mmc_get_devidx(md->disk);
 256	ida_free(&mmc_blk_ida, devidx);
 257
 258	mutex_lock(&open_lock);
 259	md->disk->private_data = NULL;
 260	mutex_unlock(&open_lock);
 261
 262	put_disk(md->disk);
 263	kfree(md);
 264}
 265
 266static void mmc_blk_put(struct mmc_blk_data *md)
 267{
 268	kref_put(&md->kref, mmc_blk_kref_release);
 269}
 270
 271static ssize_t power_ro_lock_show(struct device *dev,
 272		struct device_attribute *attr, char *buf)
 273{
 274	int ret;
 275	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 276	struct mmc_card *card = md->queue.card;
 277	int locked = 0;
 278
 279	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
 280		locked = 2;
 281	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
 282		locked = 1;
 283
 284	ret = sysfs_emit(buf, "%d\n", locked);
 285
 286	mmc_blk_put(md);
 287
 288	return ret;
 289}
 290
 291static ssize_t power_ro_lock_store(struct device *dev,
 292		struct device_attribute *attr, const char *buf, size_t count)
 293{
 294	int ret;
 295	struct mmc_blk_data *md, *part_md;
 296	struct mmc_queue *mq;
 297	struct request *req;
 298	unsigned long set;
 299
 300	if (kstrtoul(buf, 0, &set))
 301		return -EINVAL;
 302
 303	if (set != 1)
 304		return count;
 305
 306	md = mmc_blk_get(dev_to_disk(dev));
 307	mq = &md->queue;
 308
 309	/* Dispatch locking to the block layer */
 310	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
 311	if (IS_ERR(req)) {
 312		count = PTR_ERR(req);
 313		goto out_put;
 314	}
 315	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
 316	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 317	blk_execute_rq(req, false);
 318	ret = req_to_mmc_queue_req(req)->drv_op_result;
 319	blk_mq_free_request(req);
 320
 321	if (!ret) {
 322		pr_info("%s: Locking boot partition ro until next power on\n",
 323			md->disk->disk_name);
 324		set_disk_ro(md->disk, 1);
 325
 326		list_for_each_entry(part_md, &md->part, part)
 327			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
 328				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
 329				set_disk_ro(part_md->disk, 1);
 330			}
 331	}
 332out_put:
 333	mmc_blk_put(md);
 334	return count;
 335}
 336
 337static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
 338		power_ro_lock_show, power_ro_lock_store);
 339
 340static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
 341			     char *buf)
 342{
 343	int ret;
 344	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 345
 346	ret = sysfs_emit(buf, "%d\n",
 347			 get_disk_ro(dev_to_disk(dev)) ^
 348			 md->read_only);
 349	mmc_blk_put(md);
 350	return ret;
 351}
 352
 353static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
 354			      const char *buf, size_t count)
 355{
 356	int ret;
 357	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 358	unsigned long set;
 359
 360	if (kstrtoul(buf, 0, &set)) {
 361		ret = -EINVAL;
 362		goto out;
 363	}
 364
 365	set_disk_ro(dev_to_disk(dev), set || md->read_only);
 366	ret = count;
 367out:
 368	mmc_blk_put(md);
 369	return ret;
 370}
 371
 372static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
 373
 374static struct attribute *mmc_disk_attrs[] = {
 375	&dev_attr_force_ro.attr,
 376	&dev_attr_ro_lock_until_next_power_on.attr,
 377	NULL,
 378};
 379
 380static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
 381		struct attribute *a, int n)
 382{
 383	struct device *dev = kobj_to_dev(kobj);
 384	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
 385	umode_t mode = a->mode;
 386
 387	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
 388	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
 389	    md->queue.card->ext_csd.boot_ro_lockable) {
 390		mode = S_IRUGO;
 391		if (!(md->queue.card->ext_csd.boot_ro_lock &
 392				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
 393			mode |= S_IWUSR;
 394	}
 395
 396	mmc_blk_put(md);
 397	return mode;
 398}
 399
 400static const struct attribute_group mmc_disk_attr_group = {
 401	.is_visible	= mmc_disk_attrs_is_visible,
 402	.attrs		= mmc_disk_attrs,
 403};
 404
 405static const struct attribute_group *mmc_disk_attr_groups[] = {
 406	&mmc_disk_attr_group,
 407	NULL,
 408};
 409
 410static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
 411{
 412	struct mmc_blk_data *md = mmc_blk_get(disk);
 413	int ret = -ENXIO;
 414
 415	mutex_lock(&block_mutex);
 416	if (md) {
 417		ret = 0;
 418		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
 419			mmc_blk_put(md);
 420			ret = -EROFS;
 421		}
 422	}
 423	mutex_unlock(&block_mutex);
 424
 425	return ret;
 426}
 427
 428static void mmc_blk_release(struct gendisk *disk)
 429{
 430	struct mmc_blk_data *md = disk->private_data;
 431
 432	mutex_lock(&block_mutex);
 433	mmc_blk_put(md);
 434	mutex_unlock(&block_mutex);
 435}
 436
 437static int
 438mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 439{
 440	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
 441	geo->heads = 4;
 442	geo->sectors = 16;
 443	return 0;
 444}
 445
 446struct mmc_blk_ioc_data {
 447	struct mmc_ioc_cmd ic;
 448	unsigned char *buf;
 449	u64 buf_bytes;
 450	unsigned int flags;
 451#define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
 452#define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
 453
 454	struct mmc_rpmb_data *rpmb;
 455};
 456
 457static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
 458	struct mmc_ioc_cmd __user *user)
 459{
 460	struct mmc_blk_ioc_data *idata;
 461	int err;
 462
 463	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
 464	if (!idata) {
 465		err = -ENOMEM;
 466		goto out;
 467	}
 468
 469	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
 470		err = -EFAULT;
 471		goto idata_err;
 472	}
 473
 474	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
 475	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
 476		err = -EOVERFLOW;
 477		goto idata_err;
 478	}
 479
 480	if (!idata->buf_bytes) {
 481		idata->buf = NULL;
 482		return idata;
 483	}
 484
 485	idata->buf = memdup_user((void __user *)(unsigned long)
 486				 idata->ic.data_ptr, idata->buf_bytes);
 487	if (IS_ERR(idata->buf)) {
 488		err = PTR_ERR(idata->buf);
 489		goto idata_err;
 490	}
 491
 492	return idata;
 493
 494idata_err:
 495	kfree(idata);
 496out:
 497	return ERR_PTR(err);
 498}
 499
 500static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
 501				      struct mmc_blk_ioc_data *idata)
 502{
 503	struct mmc_ioc_cmd *ic = &idata->ic;
 504
 505	if (copy_to_user(&(ic_ptr->response), ic->response,
 506			 sizeof(ic->response)))
 507		return -EFAULT;
 508
 509	if (!idata->ic.write_flag) {
 510		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
 511				 idata->buf, idata->buf_bytes))
 512			return -EFAULT;
 513	}
 514
 515	return 0;
 516}
 517
 518static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
 519			       struct mmc_blk_ioc_data **idatas, int i)
 520{
 521	struct mmc_command cmd = {}, sbc = {};
 522	struct mmc_data data = {};
 523	struct mmc_request mrq = {};
 524	struct scatterlist sg;
 525	bool r1b_resp;
 526	unsigned int busy_timeout_ms;
 527	int err;
 528	unsigned int target_part;
 529	struct mmc_blk_ioc_data *idata = idatas[i];
 530	struct mmc_blk_ioc_data *prev_idata = NULL;
 531
 532	if (!card || !md || !idata)
 533		return -EINVAL;
 534
 535	if (idata->flags & MMC_BLK_IOC_DROP)
 536		return 0;
 537
 538	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
 539		prev_idata = idatas[i - 1];
 540
 541	/*
 542	 * The RPMB accesses comes in from the character device, so we
 543	 * need to target these explicitly. Else we just target the
 544	 * partition type for the block device the ioctl() was issued
 545	 * on.
 546	 */
 547	if (idata->rpmb) {
 548		/* Support multiple RPMB partitions */
 549		target_part = idata->rpmb->part_index;
 550		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
 551	} else {
 552		target_part = md->part_type;
 553	}
 554
 555	cmd.opcode = idata->ic.opcode;
 556	cmd.arg = idata->ic.arg;
 557	cmd.flags = idata->ic.flags;
 558
 559	if (idata->buf_bytes) {
 560		data.sg = &sg;
 561		data.sg_len = 1;
 562		data.blksz = idata->ic.blksz;
 563		data.blocks = idata->ic.blocks;
 564
 565		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
 566
 567		if (idata->ic.write_flag)
 568			data.flags = MMC_DATA_WRITE;
 569		else
 570			data.flags = MMC_DATA_READ;
 571
 572		/* data.flags must already be set before doing this. */
 573		mmc_set_data_timeout(&data, card);
 574
 575		/* Allow overriding the timeout_ns for empirical tuning. */
 576		if (idata->ic.data_timeout_ns)
 577			data.timeout_ns = idata->ic.data_timeout_ns;
 578
 579		mrq.data = &data;
 580	}
 581
 582	mrq.cmd = &cmd;
 583
 584	err = mmc_blk_part_switch(card, target_part);
 585	if (err)
 586		return err;
 587
 588	if (idata->ic.is_acmd) {
 589		err = mmc_app_cmd(card->host, card);
 590		if (err)
 591			return err;
 592	}
 593
 594	if (idata->rpmb || prev_idata) {
 595		sbc.opcode = MMC_SET_BLOCK_COUNT;
 596		/*
 597		 * We don't do any blockcount validation because the max size
 598		 * may be increased by a future standard. We just copy the
 599		 * 'Reliable Write' bit here.
 600		 */
 601		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
 602		if (prev_idata)
 603			sbc.arg = prev_idata->ic.arg;
 604		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
 605		mrq.sbc = &sbc;
 606	}
 607
 608	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
 609	    (cmd.opcode == MMC_SWITCH))
 610		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
 611
 612	/* If it's an R1B response we need some more preparations. */
 613	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
 614	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
 615	if (r1b_resp)
 616		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
 617
 618	mmc_wait_for_req(card->host, &mrq);
 619	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
 620
 621	if (prev_idata) {
 622		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
 623		if (sbc.error) {
 624			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
 625							__func__, sbc.error);
 626			return sbc.error;
 627		}
 628	}
 629
 630	if (cmd.error) {
 631		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
 632						__func__, cmd.error);
 633		return cmd.error;
 634	}
 635	if (data.error) {
 636		dev_err(mmc_dev(card->host), "%s: data error %d\n",
 637						__func__, data.error);
 638		return data.error;
 639	}
 640
 641	/*
 642	 * Make sure the cache of the PARTITION_CONFIG register and
 643	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
 644	 * changed it successfully.
 645	 */
 646	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
 647	    (cmd.opcode == MMC_SWITCH)) {
 648		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 649		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
 650
 651		/*
 652		 * Update cache so the next mmc_blk_part_switch call operates
 653		 * on up-to-date data.
 654		 */
 655		card->ext_csd.part_config = value;
 656		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
 657	}
 658
 659	/*
 660	 * Make sure to update CACHE_CTRL in case it was changed. The cache
 661	 * will get turned back on if the card is re-initialized, e.g.
 662	 * suspend/resume or hw reset in recovery.
 663	 */
 664	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
 665	    (cmd.opcode == MMC_SWITCH)) {
 666		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
 667
 668		card->ext_csd.cache_ctrl = value;
 669	}
 670
 671	/*
 672	 * According to the SD specs, some commands require a delay after
 673	 * issuing the command.
 674	 */
 675	if (idata->ic.postsleep_min_us)
 676		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
 677
 678	if (mmc_host_is_spi(card->host)) {
 679		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
 680			return mmc_spi_err_check(card);
 681		return err;
 682	}
 683
 684	/*
 685	 * Ensure RPMB, writes and R1B responses are completed by polling with
 686	 * CMD13. Note that, usually we don't need to poll when using HW busy
 687	 * detection, but here it's needed since some commands may indicate the
 688	 * error through the R1 status bits.
 689	 */
 690	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
 691		struct mmc_blk_busy_data cb_data = {
 692			.card = card,
 693		};
 694
 695		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
 696					  &mmc_blk_busy_cb, &cb_data);
 697
 698		idata->ic.response[0] = cb_data.status;
 699	}
 700
 701	return err;
 702}
 703
 704static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
 705			     struct mmc_ioc_cmd __user *ic_ptr,
 706			     struct mmc_rpmb_data *rpmb)
 707{
 708	struct mmc_blk_ioc_data *idata;
 709	struct mmc_blk_ioc_data *idatas[1];
 710	struct mmc_queue *mq;
 711	struct mmc_card *card;
 712	int err = 0, ioc_err = 0;
 713	struct request *req;
 714
 715	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
 716	if (IS_ERR(idata))
 717		return PTR_ERR(idata);
 718	/* This will be NULL on non-RPMB ioctl():s */
 719	idata->rpmb = rpmb;
 720
 721	card = md->queue.card;
 722	if (IS_ERR(card)) {
 723		err = PTR_ERR(card);
 724		goto cmd_done;
 725	}
 726
 727	/*
 728	 * Dispatch the ioctl() into the block request queue.
 729	 */
 730	mq = &md->queue;
 731	req = blk_mq_alloc_request(mq->queue,
 732		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 733	if (IS_ERR(req)) {
 734		err = PTR_ERR(req);
 735		goto cmd_done;
 736	}
 737	idatas[0] = idata;
 738	req_to_mmc_queue_req(req)->drv_op =
 739		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 740	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 741	req_to_mmc_queue_req(req)->drv_op_data = idatas;
 742	req_to_mmc_queue_req(req)->ioc_count = 1;
 743	blk_execute_rq(req, false);
 744	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 745	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
 746	blk_mq_free_request(req);
 747
 748cmd_done:
 749	kfree(idata->buf);
 750	kfree(idata);
 751	return ioc_err ? ioc_err : err;
 752}
 753
 754static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
 755				   struct mmc_ioc_multi_cmd __user *user,
 756				   struct mmc_rpmb_data *rpmb)
 757{
 758	struct mmc_blk_ioc_data **idata = NULL;
 759	struct mmc_ioc_cmd __user *cmds = user->cmds;
 760	struct mmc_card *card;
 761	struct mmc_queue *mq;
 762	int err = 0, ioc_err = 0;
 763	__u64 num_of_cmds;
 764	unsigned int i, n;
 765	struct request *req;
 766
 767	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
 768			   sizeof(num_of_cmds)))
 769		return -EFAULT;
 770
 771	if (!num_of_cmds)
 772		return 0;
 773
 774	if (num_of_cmds > MMC_IOC_MAX_CMDS)
 775		return -EINVAL;
 776
 777	n = num_of_cmds;
 778	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
 779	if (!idata)
 780		return -ENOMEM;
 781
 782	for (i = 0; i < n; i++) {
 783		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
 784		if (IS_ERR(idata[i])) {
 785			err = PTR_ERR(idata[i]);
 786			n = i;
 787			goto cmd_err;
 788		}
 789		/* This will be NULL on non-RPMB ioctl():s */
 790		idata[i]->rpmb = rpmb;
 791	}
 792
 793	card = md->queue.card;
 794	if (IS_ERR(card)) {
 795		err = PTR_ERR(card);
 796		goto cmd_err;
 797	}
 798
 799
 800	/*
 801	 * Dispatch the ioctl()s into the block request queue.
 802	 */
 803	mq = &md->queue;
 804	req = blk_mq_alloc_request(mq->queue,
 805		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
 806	if (IS_ERR(req)) {
 807		err = PTR_ERR(req);
 808		goto cmd_err;
 809	}
 810	req_to_mmc_queue_req(req)->drv_op =
 811		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
 812	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
 813	req_to_mmc_queue_req(req)->drv_op_data = idata;
 814	req_to_mmc_queue_req(req)->ioc_count = n;
 815	blk_execute_rq(req, false);
 816	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
 817
 818	/* copy to user if data and response */
 819	for (i = 0; i < n && !err; i++)
 820		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
 821
 822	blk_mq_free_request(req);
 823
 824cmd_err:
 825	for (i = 0; i < n; i++) {
 826		kfree(idata[i]->buf);
 827		kfree(idata[i]);
 828	}
 829	kfree(idata);
 830	return ioc_err ? ioc_err : err;
 831}
 832
 833static int mmc_blk_check_blkdev(struct block_device *bdev)
 834{
 835	/*
 836	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
 837	 * whole block device, not on a partition.  This prevents overspray
 838	 * between sibling partitions.
 839	 */
 840	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
 841		return -EPERM;
 842	return 0;
 843}
 844
 845static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
 846	unsigned int cmd, unsigned long arg)
 847{
 848	struct mmc_blk_data *md;
 849	int ret;
 850
 851	switch (cmd) {
 852	case MMC_IOC_CMD:
 853		ret = mmc_blk_check_blkdev(bdev);
 854		if (ret)
 855			return ret;
 856		md = mmc_blk_get(bdev->bd_disk);
 857		if (!md)
 858			return -EINVAL;
 859		ret = mmc_blk_ioctl_cmd(md,
 860					(struct mmc_ioc_cmd __user *)arg,
 861					NULL);
 862		mmc_blk_put(md);
 863		return ret;
 864	case MMC_IOC_MULTI_CMD:
 865		ret = mmc_blk_check_blkdev(bdev);
 866		if (ret)
 867			return ret;
 868		md = mmc_blk_get(bdev->bd_disk);
 869		if (!md)
 870			return -EINVAL;
 871		ret = mmc_blk_ioctl_multi_cmd(md,
 872					(struct mmc_ioc_multi_cmd __user *)arg,
 873					NULL);
 874		mmc_blk_put(md);
 875		return ret;
 876	default:
 877		return -EINVAL;
 878	}
 879}
 880
 881#ifdef CONFIG_COMPAT
 882static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
 883	unsigned int cmd, unsigned long arg)
 884{
 885	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
 886}
 887#endif
 888
 889static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
 890					  sector_t *sector)
 891{
 892	struct mmc_blk_data *md;
 893	int ret;
 894
 895	md = mmc_blk_get(disk);
 896	if (!md)
 897		return -EINVAL;
 898
 899	if (md->queue.card)
 900		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
 901	else
 902		ret = -ENODEV;
 903
 904	mmc_blk_put(md);
 905
 906	return ret;
 907}
 908
 909static const struct block_device_operations mmc_bdops = {
 910	.open			= mmc_blk_open,
 911	.release		= mmc_blk_release,
 912	.getgeo			= mmc_blk_getgeo,
 913	.owner			= THIS_MODULE,
 914	.ioctl			= mmc_blk_ioctl,
 915#ifdef CONFIG_COMPAT
 916	.compat_ioctl		= mmc_blk_compat_ioctl,
 917#endif
 918	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
 919};
 920
 921static int mmc_blk_part_switch_pre(struct mmc_card *card,
 922				   unsigned int part_type)
 923{
 924	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
 925	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
 926	int ret = 0;
 927
 928	if ((part_type & mask) == rpmb) {
 929		if (card->ext_csd.cmdq_en) {
 930			ret = mmc_cmdq_disable(card);
 931			if (ret)
 932				return ret;
 933		}
 934		mmc_retune_pause(card->host);
 935	}
 936
 937	return ret;
 938}
 939
 940static int mmc_blk_part_switch_post(struct mmc_card *card,
 941				    unsigned int part_type)
 942{
 943	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
 944	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
 945	int ret = 0;
 946
 947	if ((part_type & mask) == rpmb) {
 948		mmc_retune_unpause(card->host);
 949		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
 950			ret = mmc_cmdq_enable(card);
 951	}
 952
 953	return ret;
 954}
 955
 956static inline int mmc_blk_part_switch(struct mmc_card *card,
 957				      unsigned int part_type)
 958{
 959	int ret = 0;
 960	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
 961
 962	if (main_md->part_curr == part_type)
 963		return 0;
 964
 965	if (mmc_card_mmc(card)) {
 966		u8 part_config = card->ext_csd.part_config;
 967
 968		ret = mmc_blk_part_switch_pre(card, part_type);
 969		if (ret)
 970			return ret;
 971
 972		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
 973		part_config |= part_type;
 974
 975		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 976				 EXT_CSD_PART_CONFIG, part_config,
 977				 card->ext_csd.part_time);
 978		if (ret) {
 979			mmc_blk_part_switch_post(card, part_type);
 980			return ret;
 981		}
 982
 983		card->ext_csd.part_config = part_config;
 984
 985		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
 986	}
 987
 988	main_md->part_curr = part_type;
 989	return ret;
 990}
 991
 992static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
 993{
 994	int err;
 995	u32 result;
 996	__be32 *blocks;
 997	u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
 998	unsigned int noio_flag;
 999
1000	struct mmc_request mrq = {};
1001	struct mmc_command cmd = {};
1002	struct mmc_data data = {};
1003	struct scatterlist sg;
1004
1005	err = mmc_app_cmd(card->host, card);
1006	if (err)
1007		return err;
1008
1009	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1010	cmd.arg = 0;
1011	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1012
1013	data.blksz = resp_sz;
1014	data.blocks = 1;
1015	data.flags = MMC_DATA_READ;
1016	data.sg = &sg;
1017	data.sg_len = 1;
1018	mmc_set_data_timeout(&data, card);
1019
1020	mrq.cmd = &cmd;
1021	mrq.data = &data;
1022
1023	noio_flag = memalloc_noio_save();
1024	blocks = kmalloc(resp_sz, GFP_KERNEL);
1025	memalloc_noio_restore(noio_flag);
1026	if (!blocks)
1027		return -ENOMEM;
1028
1029	sg_init_one(&sg, blocks, resp_sz);
1030
1031	mmc_wait_for_req(card->host, &mrq);
1032
1033	if (mmc_card_ult_capacity(card)) {
1034		/*
1035		 * Normally, ACMD22 returns the number of written sectors as
1036		 * u32. SDUC, however, returns it as u64.  This is not a
1037		 * superfluous requirement, because SDUC writes may exceed 2TB.
1038		 * For Linux mmc however, the previously write operation could
1039		 * not be more than the block layer limits, thus just make room
1040		 * for a u64 and cast the response back to u32.
1041		 */
1042		result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1043	} else {
1044		result = ntohl(*blocks);
1045	}
1046	kfree(blocks);
1047
1048	if (cmd.error || data.error)
1049		return -EIO;
1050
1051	*written_blocks = result;
1052
1053	return 0;
1054}
1055
1056static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1057{
1058	if (host->actual_clock)
1059		return host->actual_clock / 1000;
1060
1061	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1062	if (host->ios.clock)
1063		return host->ios.clock / 2000;
1064
1065	/* How can there be no clock */
1066	WARN_ON_ONCE(1);
1067	return 100; /* 100 kHz is minimum possible value */
1068}
1069
1070static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1071					    struct mmc_data *data)
1072{
1073	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1074	unsigned int khz;
1075
1076	if (data->timeout_clks) {
1077		khz = mmc_blk_clock_khz(host);
1078		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1079	}
1080
1081	return ms;
1082}
1083
1084/*
1085 * Attempts to reset the card and get back to the requested partition.
1086 * Therefore any error here must result in cancelling the block layer
1087 * request, it must not be reattempted without going through the mmc_blk
1088 * partition sanity checks.
1089 */
1090static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1091			 int type)
1092{
1093	int err;
1094	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1095
1096	if (md->reset_done & type)
1097		return -EEXIST;
1098
1099	md->reset_done |= type;
1100	err = mmc_hw_reset(host->card);
1101	/*
1102	 * A successful reset will leave the card in the main partition, but
1103	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1104	 * in that case.
1105	 */
1106	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1107	if (err)
1108		return err;
1109	/* Ensure we switch back to the correct partition */
1110	if (mmc_blk_part_switch(host->card, md->part_type))
1111		/*
1112		 * We have failed to get back into the correct
1113		 * partition, so we need to abort the whole request.
1114		 */
1115		return -ENODEV;
1116	return 0;
1117}
1118
1119static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1120{
1121	md->reset_done &= ~type;
1122}
1123
1124static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1125{
1126	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1127	int i;
1128
1129	for (i = 1; i < mq_rq->ioc_count; i++) {
1130		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1131		    mmc_op_multi(idata[i]->ic.opcode)) {
1132			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1133			idata[i]->flags |= MMC_BLK_IOC_SBC;
1134		}
1135	}
1136}
1137
1138/*
1139 * The non-block commands come back from the block layer after it queued it and
1140 * processed it with all other requests and then they get issued in this
1141 * function.
1142 */
1143static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1144{
1145	struct mmc_queue_req *mq_rq;
1146	struct mmc_card *card = mq->card;
1147	struct mmc_blk_data *md = mq->blkdata;
1148	struct mmc_blk_ioc_data **idata;
1149	bool rpmb_ioctl;
1150	u8 **ext_csd;
1151	u32 status;
1152	int ret;
1153	int i;
1154
1155	mq_rq = req_to_mmc_queue_req(req);
1156	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1157
1158	switch (mq_rq->drv_op) {
1159	case MMC_DRV_OP_IOCTL:
1160		if (card->ext_csd.cmdq_en) {
1161			ret = mmc_cmdq_disable(card);
1162			if (ret)
1163				break;
1164		}
1165
1166		mmc_blk_check_sbc(mq_rq);
1167
1168		fallthrough;
1169	case MMC_DRV_OP_IOCTL_RPMB:
1170		idata = mq_rq->drv_op_data;
1171		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1172			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1173			if (ret)
1174				break;
1175		}
1176		/* Always switch back to main area after RPMB access */
1177		if (rpmb_ioctl)
1178			mmc_blk_part_switch(card, 0);
1179		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1180			mmc_cmdq_enable(card);
1181		break;
1182	case MMC_DRV_OP_BOOT_WP:
1183		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1184				 card->ext_csd.boot_ro_lock |
1185				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1186				 card->ext_csd.part_time);
1187		if (ret)
1188			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1189			       md->disk->disk_name, ret);
1190		else
1191			card->ext_csd.boot_ro_lock |=
1192				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1193		break;
1194	case MMC_DRV_OP_GET_CARD_STATUS:
1195		ret = mmc_send_status(card, &status);
1196		if (!ret)
1197			ret = status;
1198		break;
1199	case MMC_DRV_OP_GET_EXT_CSD:
1200		ext_csd = mq_rq->drv_op_data;
1201		ret = mmc_get_ext_csd(card, ext_csd);
1202		break;
1203	default:
1204		pr_err("%s: unknown driver specific operation\n",
1205		       md->disk->disk_name);
1206		ret = -EINVAL;
1207		break;
1208	}
1209	mq_rq->drv_op_result = ret;
1210	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1211}
1212
1213static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1214				   int type, unsigned int erase_arg)
1215{
1216	struct mmc_blk_data *md = mq->blkdata;
1217	struct mmc_card *card = md->queue.card;
1218	unsigned int nr;
1219	sector_t from;
1220	int err = 0;
1221	blk_status_t status = BLK_STS_OK;
1222
1223	if (!mmc_can_erase(card)) {
1224		status = BLK_STS_NOTSUPP;
1225		goto fail;
1226	}
1227
1228	from = blk_rq_pos(req);
1229	nr = blk_rq_sectors(req);
1230
1231	do {
1232		err = 0;
1233		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1234			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1235					 INAND_CMD38_ARG_EXT_CSD,
1236					 erase_arg == MMC_TRIM_ARG ?
1237					 INAND_CMD38_ARG_TRIM :
1238					 INAND_CMD38_ARG_ERASE,
1239					 card->ext_csd.generic_cmd6_time);
1240		}
1241		if (!err)
1242			err = mmc_erase(card, from, nr, erase_arg);
1243	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1244	if (err)
1245		status = BLK_STS_IOERR;
1246	else
1247		mmc_blk_reset_success(md, type);
1248fail:
1249	blk_mq_end_request(req, status);
1250}
1251
1252static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1253{
1254	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1255}
1256
1257static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1258{
1259	struct mmc_blk_data *md = mq->blkdata;
1260	struct mmc_card *card = md->queue.card;
1261	unsigned int arg = card->erase_arg;
1262
1263	if (mmc_card_broken_sd_discard(card))
1264		arg = SD_ERASE_ARG;
1265
1266	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1267}
1268
1269static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1270				       struct request *req)
1271{
1272	struct mmc_blk_data *md = mq->blkdata;
1273	struct mmc_card *card = md->queue.card;
1274	unsigned int nr, arg;
1275	sector_t from;
1276	int err = 0, type = MMC_BLK_SECDISCARD;
1277	blk_status_t status = BLK_STS_OK;
1278
1279	if (!(mmc_can_secure_erase_trim(card))) {
1280		status = BLK_STS_NOTSUPP;
1281		goto out;
1282	}
1283
1284	from = blk_rq_pos(req);
1285	nr = blk_rq_sectors(req);
1286
1287	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1288		arg = MMC_SECURE_TRIM1_ARG;
1289	else
1290		arg = MMC_SECURE_ERASE_ARG;
1291
1292retry:
1293	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1294		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1295				 INAND_CMD38_ARG_EXT_CSD,
1296				 arg == MMC_SECURE_TRIM1_ARG ?
1297				 INAND_CMD38_ARG_SECTRIM1 :
1298				 INAND_CMD38_ARG_SECERASE,
1299				 card->ext_csd.generic_cmd6_time);
1300		if (err)
1301			goto out_retry;
1302	}
1303
1304	err = mmc_erase(card, from, nr, arg);
1305	if (err == -EIO)
1306		goto out_retry;
1307	if (err) {
1308		status = BLK_STS_IOERR;
1309		goto out;
1310	}
1311
1312	if (arg == MMC_SECURE_TRIM1_ARG) {
1313		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1314			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1315					 INAND_CMD38_ARG_EXT_CSD,
1316					 INAND_CMD38_ARG_SECTRIM2,
1317					 card->ext_csd.generic_cmd6_time);
1318			if (err)
1319				goto out_retry;
1320		}
1321
1322		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1323		if (err == -EIO)
1324			goto out_retry;
1325		if (err) {
1326			status = BLK_STS_IOERR;
1327			goto out;
1328		}
1329	}
1330
1331out_retry:
1332	if (err && !mmc_blk_reset(md, card->host, type))
1333		goto retry;
1334	if (!err)
1335		mmc_blk_reset_success(md, type);
1336out:
1337	blk_mq_end_request(req, status);
1338}
1339
1340static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1341{
1342	struct mmc_blk_data *md = mq->blkdata;
1343	struct mmc_card *card = md->queue.card;
1344	int ret = 0;
1345
1346	ret = mmc_flush_cache(card->host);
1347	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1348}
1349
1350/*
1351 * Reformat current write as a reliable write, supporting
1352 * both legacy and the enhanced reliable write MMC cards.
1353 * In each transfer we'll handle only as much as a single
1354 * reliable write can handle, thus finish the request in
1355 * partial completions.
1356 */
1357static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1358				    struct mmc_card *card,
1359				    struct request *req)
1360{
1361	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1362		/* Legacy mode imposes restrictions on transfers. */
1363		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1364			brq->data.blocks = 1;
1365
1366		if (brq->data.blocks > card->ext_csd.rel_sectors)
1367			brq->data.blocks = card->ext_csd.rel_sectors;
1368		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1369			brq->data.blocks = 1;
1370	}
1371}
1372
1373#define CMD_ERRORS_EXCL_OOR						\
1374	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1375	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1376	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1377	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1378	 R1_CC_ERROR |		/* Card controller error */		\
1379	 R1_ERROR)		/* General/unknown error */
1380
1381#define CMD_ERRORS							\
1382	(CMD_ERRORS_EXCL_OOR |						\
1383	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1384
1385static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1386{
1387	u32 val;
1388
1389	/*
1390	 * Per the SD specification(physical layer version 4.10)[1],
1391	 * section 4.3.3, it explicitly states that "When the last
1392	 * block of user area is read using CMD18, the host should
1393	 * ignore OUT_OF_RANGE error that may occur even the sequence
1394	 * is correct". And JESD84-B51 for eMMC also has a similar
1395	 * statement on section 6.8.3.
1396	 *
1397	 * Multiple block read/write could be done by either predefined
1398	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1399	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1400	 *
1401	 * However the spec[1] doesn't tell us whether we should also
1402	 * ignore that for predefined method. But per the spec[1], section
1403	 * 4.15 Set Block Count Command, it says"If illegal block count
1404	 * is set, out of range error will be indicated during read/write
1405	 * operation (For example, data transfer is stopped at user area
1406	 * boundary)." In another word, we could expect a out of range error
1407	 * in the response for the following CMD18/25. And if argument of
1408	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1409	 * we could also expect to get a -ETIMEDOUT or any error number from
1410	 * the host drivers due to missing data response(for write)/data(for
1411	 * read), as the cards will stop the data transfer by itself per the
1412	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1413	 */
1414
1415	if (!brq->stop.error) {
1416		bool oor_with_open_end;
1417		/* If there is no error yet, check R1 response */
1418
1419		val = brq->stop.resp[0] & CMD_ERRORS;
1420		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1421
1422		if (val && !oor_with_open_end)
1423			brq->stop.error = -EIO;
1424	}
1425}
1426
1427static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1428			      int recovery_mode, bool *do_rel_wr_p,
1429			      bool *do_data_tag_p)
1430{
1431	struct mmc_blk_data *md = mq->blkdata;
1432	struct mmc_card *card = md->queue.card;
1433	struct mmc_blk_request *brq = &mqrq->brq;
1434	struct request *req = mmc_queue_req_to_req(mqrq);
1435	bool do_rel_wr, do_data_tag;
1436
1437	/*
1438	 * Reliable writes are used to implement Forced Unit Access and
1439	 * are supported only on MMCs.
1440	 */
1441	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1442		    rq_data_dir(req) == WRITE &&
1443		    (md->flags & MMC_BLK_REL_WR);
1444
1445	memset(brq, 0, sizeof(struct mmc_blk_request));
1446
1447	mmc_crypto_prepare_req(mqrq);
1448
1449	brq->mrq.data = &brq->data;
1450	brq->mrq.tag = req->tag;
1451
1452	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1453	brq->stop.arg = 0;
1454
1455	if (rq_data_dir(req) == READ) {
1456		brq->data.flags = MMC_DATA_READ;
1457		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1458	} else {
1459		brq->data.flags = MMC_DATA_WRITE;
1460		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1461	}
1462
1463	brq->data.blksz = 512;
1464	brq->data.blocks = blk_rq_sectors(req);
1465	brq->data.blk_addr = blk_rq_pos(req);
1466
1467	/*
1468	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1469	 * The eMMC will give "high" priority tasks priority over "simple"
1470	 * priority tasks. Here we always set "simple" priority by not setting
1471	 * MMC_DATA_PRIO.
1472	 */
1473
1474	/*
1475	 * The block layer doesn't support all sector count
1476	 * restrictions, so we need to be prepared for too big
1477	 * requests.
1478	 */
1479	if (brq->data.blocks > card->host->max_blk_count)
1480		brq->data.blocks = card->host->max_blk_count;
1481
1482	if (brq->data.blocks > 1) {
1483		/*
1484		 * Some SD cards in SPI mode return a CRC error or even lock up
1485		 * completely when trying to read the last block using a
1486		 * multiblock read command.
1487		 */
1488		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1489		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1490		     get_capacity(md->disk)))
1491			brq->data.blocks--;
1492
1493		/*
1494		 * After a read error, we redo the request one (native) sector
1495		 * at a time in order to accurately determine which
1496		 * sectors can be read successfully.
1497		 */
1498		if (recovery_mode)
1499			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1500
1501		/*
1502		 * Some controllers have HW issues while operating
1503		 * in multiple I/O mode
1504		 */
1505		if (card->host->ops->multi_io_quirk)
1506			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1507						(rq_data_dir(req) == READ) ?
1508						MMC_DATA_READ : MMC_DATA_WRITE,
1509						brq->data.blocks);
1510	}
1511
1512	if (do_rel_wr) {
1513		mmc_apply_rel_rw(brq, card, req);
1514		brq->data.flags |= MMC_DATA_REL_WR;
1515	}
1516
1517	/*
1518	 * Data tag is used only during writing meta data to speed
1519	 * up write and any subsequent read of this meta data
1520	 */
1521	do_data_tag = card->ext_csd.data_tag_unit_size &&
1522		      (req->cmd_flags & REQ_META) &&
1523		      (rq_data_dir(req) == WRITE) &&
1524		      ((brq->data.blocks * brq->data.blksz) >=
1525		       card->ext_csd.data_tag_unit_size);
1526
1527	if (do_data_tag)
1528		brq->data.flags |= MMC_DATA_DAT_TAG;
1529
1530	mmc_set_data_timeout(&brq->data, card);
1531
1532	brq->data.sg = mqrq->sg;
1533	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1534
1535	/*
1536	 * Adjust the sg list so it is the same size as the
1537	 * request.
1538	 */
1539	if (brq->data.blocks != blk_rq_sectors(req)) {
1540		int i, data_size = brq->data.blocks << 9;
1541		struct scatterlist *sg;
1542
1543		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1544			data_size -= sg->length;
1545			if (data_size <= 0) {
1546				sg->length += data_size;
1547				i++;
1548				break;
1549			}
1550		}
1551		brq->data.sg_len = i;
1552	}
1553
1554	if (do_rel_wr_p)
1555		*do_rel_wr_p = do_rel_wr;
1556
1557	if (do_data_tag_p)
1558		*do_data_tag_p = do_data_tag;
1559}
1560
1561#define MMC_CQE_RETRIES 2
1562
1563static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1564{
1565	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1566	struct mmc_request *mrq = &mqrq->brq.mrq;
1567	struct request_queue *q = req->q;
1568	struct mmc_host *host = mq->card->host;
1569	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1570	unsigned long flags;
1571	bool put_card;
1572	int err;
1573
1574	mmc_cqe_post_req(host, mrq);
1575
1576	if (mrq->cmd && mrq->cmd->error)
1577		err = mrq->cmd->error;
1578	else if (mrq->data && mrq->data->error)
1579		err = mrq->data->error;
1580	else
1581		err = 0;
1582
1583	if (err) {
1584		if (mqrq->retries++ < MMC_CQE_RETRIES)
1585			blk_mq_requeue_request(req, true);
1586		else
1587			blk_mq_end_request(req, BLK_STS_IOERR);
1588	} else if (mrq->data) {
1589		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1590			blk_mq_requeue_request(req, true);
1591		else
1592			__blk_mq_end_request(req, BLK_STS_OK);
1593	} else if (mq->in_recovery) {
1594		blk_mq_requeue_request(req, true);
1595	} else {
1596		blk_mq_end_request(req, BLK_STS_OK);
1597	}
1598
1599	spin_lock_irqsave(&mq->lock, flags);
1600
1601	mq->in_flight[issue_type] -= 1;
1602
1603	put_card = (mmc_tot_in_flight(mq) == 0);
1604
1605	mmc_cqe_check_busy(mq);
1606
1607	spin_unlock_irqrestore(&mq->lock, flags);
1608
1609	if (!mq->cqe_busy)
1610		blk_mq_run_hw_queues(q, true);
1611
1612	if (put_card)
1613		mmc_put_card(mq->card, &mq->ctx);
1614}
1615
1616void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1617{
1618	struct mmc_card *card = mq->card;
1619	struct mmc_host *host = card->host;
1620	int err;
1621
1622	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1623
1624	err = mmc_cqe_recovery(host);
1625	if (err)
1626		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1627	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1628
1629	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1630}
1631
1632static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1633{
1634	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1635						  brq.mrq);
1636	struct request *req = mmc_queue_req_to_req(mqrq);
1637	struct request_queue *q = req->q;
1638	struct mmc_queue *mq = q->queuedata;
1639
1640	/*
1641	 * Block layer timeouts race with completions which means the normal
1642	 * completion path cannot be used during recovery.
1643	 */
1644	if (mq->in_recovery)
1645		mmc_blk_cqe_complete_rq(mq, req);
1646	else if (likely(!blk_should_fake_timeout(req->q)))
1647		blk_mq_complete_request(req);
1648}
1649
1650static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1651{
1652	mrq->done		= mmc_blk_cqe_req_done;
1653	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1654
1655	return mmc_cqe_start_req(host, mrq);
1656}
1657
1658static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1659						 struct request *req)
1660{
1661	struct mmc_blk_request *brq = &mqrq->brq;
1662
1663	memset(brq, 0, sizeof(*brq));
1664
1665	brq->mrq.cmd = &brq->cmd;
1666	brq->mrq.tag = req->tag;
1667
1668	return &brq->mrq;
1669}
1670
1671static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1672{
1673	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1675
1676	mrq->cmd->opcode = MMC_SWITCH;
1677	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1678			(EXT_CSD_FLUSH_CACHE << 16) |
1679			(1 << 8) |
1680			EXT_CSD_CMD_SET_NORMAL;
1681	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1682
1683	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1684}
1685
1686static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1687{
1688	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689	struct mmc_host *host = mq->card->host;
1690	int err;
1691
1692	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1693	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1694	mmc_pre_req(host, &mqrq->brq.mrq);
1695
1696	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1697	if (err)
1698		mmc_post_req(host, &mqrq->brq.mrq, err);
1699
1700	return err;
1701}
1702
1703static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1704{
1705	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1706	struct mmc_host *host = mq->card->host;
1707
1708	if (host->hsq_enabled)
1709		return mmc_blk_hsq_issue_rw_rq(mq, req);
1710
1711	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1712
1713	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1714}
1715
1716static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1717			       struct mmc_card *card,
1718			       int recovery_mode,
1719			       struct mmc_queue *mq)
1720{
1721	u32 readcmd, writecmd;
1722	struct mmc_blk_request *brq = &mqrq->brq;
1723	struct request *req = mmc_queue_req_to_req(mqrq);
1724	struct mmc_blk_data *md = mq->blkdata;
1725	bool do_rel_wr, do_data_tag;
1726
1727	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1728
1729	brq->mrq.cmd = &brq->cmd;
1730
1731	brq->cmd.arg = blk_rq_pos(req);
1732	if (!mmc_card_blockaddr(card))
1733		brq->cmd.arg <<= 9;
1734	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1735
1736	if (brq->data.blocks > 1 || do_rel_wr) {
1737		/* SPI multiblock writes terminate using a special
1738		 * token, not a STOP_TRANSMISSION request.
1739		 */
1740		if (!mmc_host_is_spi(card->host) ||
1741		    rq_data_dir(req) == READ)
1742			brq->mrq.stop = &brq->stop;
1743		readcmd = MMC_READ_MULTIPLE_BLOCK;
1744		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1745	} else {
1746		brq->mrq.stop = NULL;
1747		readcmd = MMC_READ_SINGLE_BLOCK;
1748		writecmd = MMC_WRITE_BLOCK;
1749	}
1750	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1751
1752	/*
1753	 * Pre-defined multi-block transfers are preferable to
1754	 * open ended-ones (and necessary for reliable writes).
1755	 * However, it is not sufficient to just send CMD23,
1756	 * and avoid the final CMD12, as on an error condition
1757	 * CMD12 (stop) needs to be sent anyway. This, coupled
1758	 * with Auto-CMD23 enhancements provided by some
1759	 * hosts, means that the complexity of dealing
1760	 * with this is best left to the host. If CMD23 is
1761	 * supported by card and host, we'll fill sbc in and let
1762	 * the host deal with handling it correctly. This means
1763	 * that for hosts that don't expose MMC_CAP_CMD23, no
1764	 * change of behavior will be observed.
1765	 *
1766	 * N.B: Some MMC cards experience perf degradation.
1767	 * We'll avoid using CMD23-bounded multiblock writes for
1768	 * these, while retaining features like reliable writes.
1769	 */
1770	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1771	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1772	     do_data_tag)) {
1773		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1774		brq->sbc.arg = brq->data.blocks |
1775			(do_rel_wr ? (1 << 31) : 0) |
1776			(do_data_tag ? (1 << 29) : 0);
1777		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1778		brq->mrq.sbc = &brq->sbc;
1779	}
1780
1781	if (mmc_card_ult_capacity(card)) {
1782		brq->cmd.ext_addr = blk_rq_pos(req) >> 32;
1783		brq->cmd.has_ext_addr = true;
1784	}
1785}
1786
1787#define MMC_MAX_RETRIES		5
1788#define MMC_DATA_RETRIES	2
1789#define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1790
1791static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1792{
1793	struct mmc_command cmd = {
1794		.opcode = MMC_STOP_TRANSMISSION,
1795		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1796		/* Some hosts wait for busy anyway, so provide a busy timeout */
1797		.busy_timeout = timeout,
1798	};
1799
1800	return mmc_wait_for_cmd(card->host, &cmd, 5);
1801}
1802
1803static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1804{
1805	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1806	struct mmc_blk_request *brq = &mqrq->brq;
1807	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1808	int err;
1809
1810	mmc_retune_hold_now(card->host);
1811
1812	mmc_blk_send_stop(card, timeout);
1813
1814	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1815
1816	mmc_retune_release(card->host);
1817
1818	return err;
1819}
1820
1821#define MMC_READ_SINGLE_RETRIES	2
1822
1823/* Single (native) sector read during recovery */
1824static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1825{
1826	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827	struct mmc_request *mrq = &mqrq->brq.mrq;
1828	struct mmc_card *card = mq->card;
1829	struct mmc_host *host = card->host;
1830	blk_status_t error = BLK_STS_OK;
1831	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1832
1833	do {
1834		u32 status;
1835		int err;
1836		int retries = 0;
1837
1838		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1839			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1840
1841			mmc_wait_for_req(host, mrq);
1842
1843			err = mmc_send_status(card, &status);
1844			if (err)
1845				goto error_exit;
1846
1847			if (!mmc_host_is_spi(host) &&
1848			    !mmc_ready_for_data(status)) {
1849				err = mmc_blk_fix_state(card, req);
1850				if (err)
1851					goto error_exit;
1852			}
1853
1854			if (!mrq->cmd->error)
1855				break;
1856		}
1857
1858		if (mrq->cmd->error ||
1859		    mrq->data->error ||
1860		    (!mmc_host_is_spi(host) &&
1861		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1862			error = BLK_STS_IOERR;
1863		else
1864			error = BLK_STS_OK;
1865
1866	} while (blk_update_request(req, error, bytes_per_read));
1867
1868	return;
1869
1870error_exit:
1871	mrq->data->bytes_xfered = 0;
1872	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1873	/* Let it try the remaining request again */
1874	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1875		mqrq->retries = MMC_MAX_RETRIES - 1;
1876}
1877
1878static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1879{
1880	return !!brq->mrq.sbc;
1881}
1882
1883static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1884{
1885	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1886}
1887
1888/*
1889 * Check for errors the host controller driver might not have seen such as
1890 * response mode errors or invalid card state.
1891 */
1892static bool mmc_blk_status_error(struct request *req, u32 status)
1893{
1894	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1895	struct mmc_blk_request *brq = &mqrq->brq;
1896	struct mmc_queue *mq = req->q->queuedata;
1897	u32 stop_err_bits;
1898
1899	if (mmc_host_is_spi(mq->card->host))
1900		return false;
1901
1902	stop_err_bits = mmc_blk_stop_err_bits(brq);
1903
1904	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1905	       brq->stop.resp[0] & stop_err_bits ||
1906	       status            & stop_err_bits ||
1907	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1908}
1909
1910static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1911{
1912	return !brq->sbc.error && !brq->cmd.error &&
1913	       !(brq->cmd.resp[0] & CMD_ERRORS);
1914}
1915
1916/*
1917 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1918 * policy:
1919 * 1. A request that has transferred at least some data is considered
1920 * successful and will be requeued if there is remaining data to
1921 * transfer.
1922 * 2. Otherwise the number of retries is incremented and the request
1923 * will be requeued if there are remaining retries.
1924 * 3. Otherwise the request will be errored out.
1925 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1926 * mqrq->retries. So there are only 4 possible actions here:
1927 *	1. do not accept the bytes_xfered value i.e. set it to zero
1928 *	2. change mqrq->retries to determine the number of retries
1929 *	3. try to reset the card
1930 *	4. read one sector at a time
1931 */
1932static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1933{
1934	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1935	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1936	struct mmc_blk_request *brq = &mqrq->brq;
1937	struct mmc_blk_data *md = mq->blkdata;
1938	struct mmc_card *card = mq->card;
1939	u32 status;
1940	u32 blocks;
1941	int err;
1942
1943	/*
1944	 * Some errors the host driver might not have seen. Set the number of
1945	 * bytes transferred to zero in that case.
1946	 */
1947	err = __mmc_send_status(card, &status, 0);
1948	if (err || mmc_blk_status_error(req, status))
1949		brq->data.bytes_xfered = 0;
1950
1951	mmc_retune_release(card->host);
1952
1953	/*
1954	 * Try again to get the status. This also provides an opportunity for
1955	 * re-tuning.
1956	 */
1957	if (err)
1958		err = __mmc_send_status(card, &status, 0);
1959
1960	/*
1961	 * Nothing more to do after the number of bytes transferred has been
1962	 * updated and there is no card.
1963	 */
1964	if (err && mmc_detect_card_removed(card->host))
1965		return;
1966
1967	/* Try to get back to "tran" state */
1968	if (!mmc_host_is_spi(mq->card->host) &&
1969	    (err || !mmc_ready_for_data(status)))
1970		err = mmc_blk_fix_state(mq->card, req);
1971
1972	/*
1973	 * Special case for SD cards where the card might record the number of
1974	 * blocks written.
1975	 */
1976	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1977	    rq_data_dir(req) == WRITE) {
1978		if (mmc_sd_num_wr_blocks(card, &blocks))
1979			brq->data.bytes_xfered = 0;
1980		else
1981			brq->data.bytes_xfered = blocks << 9;
1982	}
1983
1984	/* Reset if the card is in a bad state */
1985	if (!mmc_host_is_spi(mq->card->host) &&
1986	    err && mmc_blk_reset(md, card->host, type)) {
1987		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1988		mqrq->retries = MMC_NO_RETRIES;
1989		return;
1990	}
1991
1992	/*
1993	 * If anything was done, just return and if there is anything remaining
1994	 * on the request it will get requeued.
1995	 */
1996	if (brq->data.bytes_xfered)
1997		return;
1998
1999	/* Reset before last retry */
2000	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
2001	    mmc_blk_reset(md, card->host, type))
2002		return;
2003
2004	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
2005	if (brq->sbc.error || brq->cmd.error)
2006		return;
2007
2008	/* Reduce the remaining retries for data errors */
2009	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
2010		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
2011		return;
2012	}
2013
2014	if (rq_data_dir(req) == READ && brq->data.blocks >
2015			queue_physical_block_size(mq->queue) >> 9) {
2016		/* Read one (native) sector at a time */
2017		mmc_blk_read_single(mq, req);
2018		return;
2019	}
2020}
2021
2022static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2023{
2024	mmc_blk_eval_resp_error(brq);
2025
2026	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2027	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2028}
2029
2030static int mmc_spi_err_check(struct mmc_card *card)
2031{
2032	u32 status = 0;
2033	int err;
2034
2035	/*
2036	 * SPI does not have a TRAN state we have to wait on, instead the
2037	 * card is ready again when it no longer holds the line LOW.
2038	 * We still have to ensure two things here before we know the write
2039	 * was successful:
2040	 * 1. The card has not disconnected during busy and we actually read our
2041	 * own pull-up, thinking it was still connected, so ensure it
2042	 * still responds.
2043	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2044	 * just reconnected card after being disconnected during busy.
2045	 */
2046	err = __mmc_send_status(card, &status, 0);
2047	if (err)
2048		return err;
2049	/* All R1 and R2 bits of SPI are errors in our case */
2050	if (status)
2051		return -EIO;
2052	return 0;
2053}
2054
2055static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2056{
2057	struct mmc_blk_busy_data *data = cb_data;
2058	u32 status = 0;
2059	int err;
2060
2061	err = mmc_send_status(data->card, &status);
2062	if (err)
2063		return err;
2064
2065	/* Accumulate response error bits. */
2066	data->status |= status;
2067
2068	*busy = !mmc_ready_for_data(status);
2069	return 0;
2070}
2071
2072static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2073{
2074	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2075	struct mmc_blk_busy_data cb_data;
2076	int err;
2077
2078	if (rq_data_dir(req) == READ)
2079		return 0;
2080
2081	if (mmc_host_is_spi(card->host)) {
2082		err = mmc_spi_err_check(card);
2083		if (err)
2084			mqrq->brq.data.bytes_xfered = 0;
2085		return err;
2086	}
2087
2088	cb_data.card = card;
2089	cb_data.status = 0;
2090	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2091				  &mmc_blk_busy_cb, &cb_data);
2092
2093	/*
2094	 * Do not assume data transferred correctly if there are any error bits
2095	 * set.
2096	 */
2097	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2098		mqrq->brq.data.bytes_xfered = 0;
2099		err = err ? err : -EIO;
2100	}
2101
2102	/* Copy the exception bit so it will be seen later on */
2103	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2104		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2105
2106	return err;
2107}
2108
2109static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2110					    struct request *req)
2111{
2112	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2113
2114	mmc_blk_reset_success(mq->blkdata, type);
2115}
2116
2117static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2118{
2119	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2120	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2121
2122	if (nr_bytes) {
2123		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2124			blk_mq_requeue_request(req, true);
2125		else
2126			__blk_mq_end_request(req, BLK_STS_OK);
2127	} else if (!blk_rq_bytes(req)) {
2128		__blk_mq_end_request(req, BLK_STS_IOERR);
2129	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2130		blk_mq_requeue_request(req, true);
2131	} else {
2132		if (mmc_card_removed(mq->card))
2133			req->rq_flags |= RQF_QUIET;
2134		blk_mq_end_request(req, BLK_STS_IOERR);
2135	}
2136}
2137
2138static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2139					struct mmc_queue_req *mqrq)
2140{
2141	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2142	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2143		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2144}
2145
2146static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2147				 struct mmc_queue_req *mqrq)
2148{
2149	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2150		mmc_run_bkops(mq->card);
2151}
2152
2153static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2154{
2155	struct mmc_queue_req *mqrq =
2156		container_of(mrq, struct mmc_queue_req, brq.mrq);
2157	struct request *req = mmc_queue_req_to_req(mqrq);
2158	struct request_queue *q = req->q;
2159	struct mmc_queue *mq = q->queuedata;
2160	struct mmc_host *host = mq->card->host;
2161	unsigned long flags;
2162
2163	if (mmc_blk_rq_error(&mqrq->brq) ||
2164	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2165		spin_lock_irqsave(&mq->lock, flags);
2166		mq->recovery_needed = true;
2167		mq->recovery_req = req;
2168		spin_unlock_irqrestore(&mq->lock, flags);
2169
2170		host->cqe_ops->cqe_recovery_start(host);
2171
2172		schedule_work(&mq->recovery_work);
2173		return;
2174	}
2175
2176	mmc_blk_rw_reset_success(mq, req);
2177
2178	/*
2179	 * Block layer timeouts race with completions which means the normal
2180	 * completion path cannot be used during recovery.
2181	 */
2182	if (mq->in_recovery)
2183		mmc_blk_cqe_complete_rq(mq, req);
2184	else if (likely(!blk_should_fake_timeout(req->q)))
2185		blk_mq_complete_request(req);
2186}
2187
2188void mmc_blk_mq_complete(struct request *req)
2189{
2190	struct mmc_queue *mq = req->q->queuedata;
2191	struct mmc_host *host = mq->card->host;
2192
2193	if (host->cqe_enabled)
2194		mmc_blk_cqe_complete_rq(mq, req);
2195	else if (likely(!blk_should_fake_timeout(req->q)))
2196		mmc_blk_mq_complete_rq(mq, req);
2197}
2198
2199static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2200				       struct request *req)
2201{
2202	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2203	struct mmc_host *host = mq->card->host;
2204
2205	if (mmc_blk_rq_error(&mqrq->brq) ||
2206	    mmc_blk_card_busy(mq->card, req)) {
2207		mmc_blk_mq_rw_recovery(mq, req);
2208	} else {
2209		mmc_blk_rw_reset_success(mq, req);
2210		mmc_retune_release(host);
2211	}
2212
2213	mmc_blk_urgent_bkops(mq, mqrq);
2214}
2215
2216static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2217{
2218	unsigned long flags;
2219	bool put_card;
2220
2221	spin_lock_irqsave(&mq->lock, flags);
2222
2223	mq->in_flight[issue_type] -= 1;
2224
2225	put_card = (mmc_tot_in_flight(mq) == 0);
2226
2227	spin_unlock_irqrestore(&mq->lock, flags);
2228
2229	if (put_card)
2230		mmc_put_card(mq->card, &mq->ctx);
2231}
2232
2233static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2234				bool can_sleep)
2235{
2236	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2237	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2238	struct mmc_request *mrq = &mqrq->brq.mrq;
2239	struct mmc_host *host = mq->card->host;
2240
2241	mmc_post_req(host, mrq, 0);
2242
2243	/*
2244	 * Block layer timeouts race with completions which means the normal
2245	 * completion path cannot be used during recovery.
2246	 */
2247	if (mq->in_recovery) {
2248		mmc_blk_mq_complete_rq(mq, req);
2249	} else if (likely(!blk_should_fake_timeout(req->q))) {
2250		if (can_sleep)
2251			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2252		else
2253			blk_mq_complete_request(req);
2254	}
2255
2256	mmc_blk_mq_dec_in_flight(mq, issue_type);
2257}
2258
2259void mmc_blk_mq_recovery(struct mmc_queue *mq)
2260{
2261	struct request *req = mq->recovery_req;
2262	struct mmc_host *host = mq->card->host;
2263	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2264
2265	mq->recovery_req = NULL;
2266	mq->rw_wait = false;
2267
2268	if (mmc_blk_rq_error(&mqrq->brq)) {
2269		mmc_retune_hold_now(host);
2270		mmc_blk_mq_rw_recovery(mq, req);
2271	}
2272
2273	mmc_blk_urgent_bkops(mq, mqrq);
2274
2275	mmc_blk_mq_post_req(mq, req, true);
2276}
2277
2278static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2279					 struct request **prev_req)
2280{
2281	if (mmc_host_done_complete(mq->card->host))
2282		return;
2283
2284	mutex_lock(&mq->complete_lock);
2285
2286	if (!mq->complete_req)
2287		goto out_unlock;
2288
2289	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2290
2291	if (prev_req)
2292		*prev_req = mq->complete_req;
2293	else
2294		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2295
2296	mq->complete_req = NULL;
2297
2298out_unlock:
2299	mutex_unlock(&mq->complete_lock);
2300}
2301
2302void mmc_blk_mq_complete_work(struct work_struct *work)
2303{
2304	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2305					    complete_work);
2306
2307	mmc_blk_mq_complete_prev_req(mq, NULL);
2308}
2309
2310static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2311{
2312	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2313						  brq.mrq);
2314	struct request *req = mmc_queue_req_to_req(mqrq);
2315	struct request_queue *q = req->q;
2316	struct mmc_queue *mq = q->queuedata;
2317	struct mmc_host *host = mq->card->host;
2318	unsigned long flags;
2319
2320	if (!mmc_host_done_complete(host)) {
2321		bool waiting;
2322
2323		/*
2324		 * We cannot complete the request in this context, so record
2325		 * that there is a request to complete, and that a following
2326		 * request does not need to wait (although it does need to
2327		 * complete complete_req first).
2328		 */
2329		spin_lock_irqsave(&mq->lock, flags);
2330		mq->complete_req = req;
2331		mq->rw_wait = false;
2332		waiting = mq->waiting;
2333		spin_unlock_irqrestore(&mq->lock, flags);
2334
2335		/*
2336		 * If 'waiting' then the waiting task will complete this
2337		 * request, otherwise queue a work to do it. Note that
2338		 * complete_work may still race with the dispatch of a following
2339		 * request.
2340		 */
2341		if (waiting)
2342			wake_up(&mq->wait);
2343		else
2344			queue_work(mq->card->complete_wq, &mq->complete_work);
2345
2346		return;
2347	}
2348
2349	/* Take the recovery path for errors or urgent background operations */
2350	if (mmc_blk_rq_error(&mqrq->brq) ||
2351	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2352		spin_lock_irqsave(&mq->lock, flags);
2353		mq->recovery_needed = true;
2354		mq->recovery_req = req;
2355		spin_unlock_irqrestore(&mq->lock, flags);
2356		wake_up(&mq->wait);
2357		schedule_work(&mq->recovery_work);
2358		return;
2359	}
2360
2361	mmc_blk_rw_reset_success(mq, req);
2362
2363	mq->rw_wait = false;
2364	wake_up(&mq->wait);
2365
2366	/* context unknown */
2367	mmc_blk_mq_post_req(mq, req, false);
2368}
2369
2370static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2371{
2372	unsigned long flags;
2373	bool done;
2374
2375	/*
2376	 * Wait while there is another request in progress, but not if recovery
2377	 * is needed. Also indicate whether there is a request waiting to start.
2378	 */
2379	spin_lock_irqsave(&mq->lock, flags);
2380	if (mq->recovery_needed) {
2381		*err = -EBUSY;
2382		done = true;
2383	} else {
2384		done = !mq->rw_wait;
2385	}
2386	mq->waiting = !done;
2387	spin_unlock_irqrestore(&mq->lock, flags);
2388
2389	return done;
2390}
2391
2392static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2393{
2394	int err = 0;
2395
2396	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2397
2398	/* Always complete the previous request if there is one */
2399	mmc_blk_mq_complete_prev_req(mq, prev_req);
2400
2401	return err;
2402}
2403
2404static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2405				  struct request *req)
2406{
2407	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2408	struct mmc_host *host = mq->card->host;
2409	struct request *prev_req = NULL;
2410	int err = 0;
2411
2412	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2413
2414	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2415
2416	mmc_pre_req(host, &mqrq->brq.mrq);
2417
2418	err = mmc_blk_rw_wait(mq, &prev_req);
2419	if (err)
2420		goto out_post_req;
2421
2422	mq->rw_wait = true;
2423
2424	err = mmc_start_request(host, &mqrq->brq.mrq);
2425
2426	if (prev_req)
2427		mmc_blk_mq_post_req(mq, prev_req, true);
2428
2429	if (err)
2430		mq->rw_wait = false;
2431
2432	/* Release re-tuning here where there is no synchronization required */
2433	if (err || mmc_host_done_complete(host))
2434		mmc_retune_release(host);
2435
2436out_post_req:
2437	if (err)
2438		mmc_post_req(host, &mqrq->brq.mrq, err);
2439
2440	return err;
2441}
2442
2443static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2444{
2445	if (host->cqe_enabled)
2446		return host->cqe_ops->cqe_wait_for_idle(host);
2447
2448	return mmc_blk_rw_wait(mq, NULL);
2449}
2450
2451enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2452{
2453	struct mmc_blk_data *md = mq->blkdata;
2454	struct mmc_card *card = md->queue.card;
2455	struct mmc_host *host = card->host;
2456	int ret;
2457
2458	ret = mmc_blk_part_switch(card, md->part_type);
2459	if (ret)
2460		return MMC_REQ_FAILED_TO_START;
2461
2462	switch (mmc_issue_type(mq, req)) {
2463	case MMC_ISSUE_SYNC:
2464		ret = mmc_blk_wait_for_idle(mq, host);
2465		if (ret)
2466			return MMC_REQ_BUSY;
2467		switch (req_op(req)) {
2468		case REQ_OP_DRV_IN:
2469		case REQ_OP_DRV_OUT:
2470			mmc_blk_issue_drv_op(mq, req);
2471			break;
2472		case REQ_OP_DISCARD:
2473			mmc_blk_issue_discard_rq(mq, req);
2474			break;
2475		case REQ_OP_SECURE_ERASE:
2476			mmc_blk_issue_secdiscard_rq(mq, req);
2477			break;
2478		case REQ_OP_WRITE_ZEROES:
2479			mmc_blk_issue_trim_rq(mq, req);
2480			break;
2481		case REQ_OP_FLUSH:
2482			mmc_blk_issue_flush(mq, req);
2483			break;
2484		default:
2485			WARN_ON_ONCE(1);
2486			return MMC_REQ_FAILED_TO_START;
2487		}
2488		return MMC_REQ_FINISHED;
2489	case MMC_ISSUE_DCMD:
2490	case MMC_ISSUE_ASYNC:
2491		switch (req_op(req)) {
2492		case REQ_OP_FLUSH:
2493			if (!mmc_cache_enabled(host)) {
2494				blk_mq_end_request(req, BLK_STS_OK);
2495				return MMC_REQ_FINISHED;
2496			}
2497			ret = mmc_blk_cqe_issue_flush(mq, req);
2498			break;
2499		case REQ_OP_WRITE:
2500			card->written_flag = true;
2501			fallthrough;
2502		case REQ_OP_READ:
2503			if (host->cqe_enabled)
2504				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2505			else
2506				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2507			break;
2508		default:
2509			WARN_ON_ONCE(1);
2510			ret = -EINVAL;
2511		}
2512		if (!ret)
2513			return MMC_REQ_STARTED;
2514		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2515	default:
2516		WARN_ON_ONCE(1);
2517		return MMC_REQ_FAILED_TO_START;
2518	}
2519}
2520
2521static inline int mmc_blk_readonly(struct mmc_card *card)
2522{
2523	return mmc_card_readonly(card) ||
2524	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2525}
2526
2527/*
2528 * Search for a declared partitions node for the disk in mmc-card related node.
2529 *
2530 * This is to permit support for partition table defined in DT in special case
2531 * where a partition table is not written in the disk and is expected to be
2532 * passed from the running system.
2533 *
2534 * For the user disk, "partitions" node is searched.
2535 * For the special HW disk, "partitions-" node with the appended name is used
2536 * following this conversion table (to adhere to JEDEC naming)
2537 * - boot0 -> partitions-boot1
2538 * - boot1 -> partitions-boot2
2539 * - gp0 -> partitions-gp1
2540 * - gp1 -> partitions-gp2
2541 * - gp2 -> partitions-gp3
2542 * - gp3 -> partitions-gp4
2543 */
2544static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev,
2545							 const char *subname)
2546{
2547	const char *node_name = "partitions";
2548
2549	if (subname) {
2550		mmc_dev = mmc_dev->parent;
2551
2552		/*
2553		 * Check if we are allocating a BOOT disk boot0/1 disk.
2554		 * In DT we use the JEDEC naming boot1/2.
2555		 */
2556		if (!strcmp(subname, "boot0"))
2557			node_name = "partitions-boot1";
2558		if (!strcmp(subname, "boot1"))
2559			node_name = "partitions-boot2";
2560		/*
2561		 * Check if we are allocating a GP disk gp0/1/2/3 disk.
2562		 * In DT we use the JEDEC naming gp1/2/3/4.
2563		 */
2564		if (!strcmp(subname, "gp0"))
2565			node_name = "partitions-gp1";
2566		if (!strcmp(subname, "gp1"))
2567			node_name = "partitions-gp2";
2568		if (!strcmp(subname, "gp2"))
2569			node_name = "partitions-gp3";
2570		if (!strcmp(subname, "gp3"))
2571			node_name = "partitions-gp4";
2572	}
2573
2574	return device_get_named_child_node(mmc_dev, node_name);
2575}
2576
2577static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2578					      struct device *parent,
2579					      sector_t size,
2580					      bool default_ro,
2581					      const char *subname,
2582					      int area_type,
2583					      unsigned int part_type)
2584{
2585	struct fwnode_handle *disk_fwnode;
2586	struct mmc_blk_data *md;
2587	int devidx, ret;
2588	char cap_str[10];
2589	unsigned int features = 0;
2590
2591	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2592	if (devidx < 0) {
2593		/*
2594		 * We get -ENOSPC because there are no more any available
2595		 * devidx. The reason may be that, either userspace haven't yet
2596		 * unmounted the partitions, which postpones mmc_blk_release()
2597		 * from being called, or the device has more partitions than
2598		 * what we support.
2599		 */
2600		if (devidx == -ENOSPC)
2601			dev_err(mmc_dev(card->host),
2602				"no more device IDs available\n");
2603
2604		return ERR_PTR(devidx);
2605	}
2606
2607	md = kzalloc(sizeof(*md), GFP_KERNEL);
2608	if (!md) {
2609		ret = -ENOMEM;
2610		goto out;
2611	}
2612
2613	md->area_type = area_type;
2614
2615	/*
2616	 * Set the read-only status based on the supported commands
2617	 * and the write protect switch.
2618	 */
2619	md->read_only = mmc_blk_readonly(card);
2620
2621	if (mmc_host_cmd23(card->host)) {
2622		if ((mmc_card_mmc(card) &&
2623		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2624		    (mmc_card_sd(card) && !mmc_card_ult_capacity(card) &&
2625		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2626			md->flags |= MMC_BLK_CMD23;
2627	}
2628
2629	if (md->flags & MMC_BLK_CMD23 &&
2630	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2631	     card->ext_csd.rel_sectors)) {
2632		md->flags |= MMC_BLK_REL_WR;
2633		features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2634	} else if (mmc_cache_enabled(card->host)) {
2635		features |= BLK_FEAT_WRITE_CACHE;
2636	}
2637
2638	md->disk = mmc_init_queue(&md->queue, card, features);
2639	if (IS_ERR(md->disk)) {
2640		ret = PTR_ERR(md->disk);
2641		goto err_kfree;
2642	}
2643
2644	INIT_LIST_HEAD(&md->part);
2645	INIT_LIST_HEAD(&md->rpmbs);
2646	kref_init(&md->kref);
2647
2648	md->queue.blkdata = md;
2649	md->part_type = part_type;
2650
2651	md->disk->major	= MMC_BLOCK_MAJOR;
2652	md->disk->minors = perdev_minors;
2653	md->disk->first_minor = devidx * perdev_minors;
2654	md->disk->fops = &mmc_bdops;
2655	md->disk->private_data = md;
2656	md->parent = parent;
2657	set_disk_ro(md->disk, md->read_only || default_ro);
2658	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2659		md->disk->flags |= GENHD_FL_NO_PART;
2660
2661	/*
2662	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2663	 *
2664	 * - be set for removable media with permanent block devices
2665	 * - be unset for removable block devices with permanent media
2666	 *
2667	 * Since MMC block devices clearly fall under the second
2668	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2669	 * should use the block device creation/destruction hotplug
2670	 * messages to tell when the card is present.
2671	 */
2672
2673	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2674		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2675
2676	set_capacity(md->disk, size);
2677
2678	string_get_size((u64)size, 512, STRING_UNITS_2,
2679			cap_str, sizeof(cap_str));
2680	pr_info("%s: %s %s %s%s\n",
2681		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2682		cap_str, md->read_only ? " (ro)" : "");
2683
2684	/* used in ->open, must be set before add_disk: */
2685	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2686		dev_set_drvdata(&card->dev, md);
2687	disk_fwnode = mmc_blk_get_partitions_node(parent, subname);
2688	ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups,
2689			      disk_fwnode);
2690	if (ret)
2691		goto err_put_disk;
2692	return md;
2693
2694 err_put_disk:
2695	put_disk(md->disk);
2696	blk_mq_free_tag_set(&md->queue.tag_set);
2697 err_kfree:
2698	kfree(md);
2699 out:
2700	ida_free(&mmc_blk_ida, devidx);
2701	return ERR_PTR(ret);
2702}
2703
2704static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2705{
2706	sector_t size;
2707
2708	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2709		/*
2710		 * The EXT_CSD sector count is in number or 512 byte
2711		 * sectors.
2712		 */
2713		size = card->ext_csd.sectors;
2714	} else {
2715		/*
2716		 * The CSD capacity field is in units of read_blkbits.
2717		 * set_capacity takes units of 512 bytes.
2718		 */
2719		size = (typeof(sector_t))card->csd.capacity
2720			<< (card->csd.read_blkbits - 9);
2721	}
2722
2723	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2724					MMC_BLK_DATA_AREA_MAIN, 0);
2725}
2726
2727static int mmc_blk_alloc_part(struct mmc_card *card,
2728			      struct mmc_blk_data *md,
2729			      unsigned int part_type,
2730			      sector_t size,
2731			      bool default_ro,
2732			      const char *subname,
2733			      int area_type)
2734{
2735	struct mmc_blk_data *part_md;
2736
2737	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2738				    subname, area_type, part_type);
2739	if (IS_ERR(part_md))
2740		return PTR_ERR(part_md);
2741	list_add(&part_md->part, &md->part);
2742
2743	return 0;
2744}
2745
2746/**
2747 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2748 * @filp: the character device file
2749 * @cmd: the ioctl() command
2750 * @arg: the argument from userspace
2751 *
2752 * This will essentially just redirect the ioctl()s coming in over to
2753 * the main block device spawning the RPMB character device.
2754 */
2755static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2756			   unsigned long arg)
2757{
2758	struct mmc_rpmb_data *rpmb = filp->private_data;
2759	int ret;
2760
2761	switch (cmd) {
2762	case MMC_IOC_CMD:
2763		ret = mmc_blk_ioctl_cmd(rpmb->md,
2764					(struct mmc_ioc_cmd __user *)arg,
2765					rpmb);
2766		break;
2767	case MMC_IOC_MULTI_CMD:
2768		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2769					(struct mmc_ioc_multi_cmd __user *)arg,
2770					rpmb);
2771		break;
2772	default:
2773		ret = -EINVAL;
2774		break;
2775	}
2776
2777	return ret;
2778}
2779
2780#ifdef CONFIG_COMPAT
2781static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2782			      unsigned long arg)
2783{
2784	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2785}
2786#endif
2787
2788static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2789{
2790	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2791						  struct mmc_rpmb_data, chrdev);
2792
2793	get_device(&rpmb->dev);
2794	filp->private_data = rpmb;
2795
2796	return nonseekable_open(inode, filp);
2797}
2798
2799static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2800{
2801	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2802						  struct mmc_rpmb_data, chrdev);
2803
2804	put_device(&rpmb->dev);
2805
2806	return 0;
2807}
2808
2809static const struct file_operations mmc_rpmb_fileops = {
2810	.release = mmc_rpmb_chrdev_release,
2811	.open = mmc_rpmb_chrdev_open,
2812	.owner = THIS_MODULE,
2813	.unlocked_ioctl = mmc_rpmb_ioctl,
2814#ifdef CONFIG_COMPAT
2815	.compat_ioctl = mmc_rpmb_ioctl_compat,
2816#endif
2817};
2818
2819static void mmc_blk_rpmb_device_release(struct device *dev)
2820{
2821	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2822
2823	rpmb_dev_unregister(rpmb->rdev);
2824	mmc_blk_put(rpmb->md);
2825	ida_free(&mmc_rpmb_ida, rpmb->id);
2826	kfree(rpmb);
2827}
2828
2829static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2830{
2831	unsigned int n;
2832
2833	for (n = 0; n < cmd_count; n++)
2834		kfree(idata[n]);
2835	kfree(idata);
2836}
2837
2838static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2839					     unsigned int cmd_count)
2840{
2841	struct mmc_blk_ioc_data **idata;
2842	unsigned int n;
2843
2844	idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2845	if (!idata)
2846		return NULL;
2847
2848	for (n = 0; n < cmd_count; n++) {
2849		idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2850		if (!idata[n]) {
2851			free_idata(idata, n);
2852			return NULL;
2853		}
2854		idata[n]->rpmb = rpmb;
2855	}
2856
2857	return idata;
2858}
2859
2860static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2861		      int write_flag, u8 *buf, unsigned int buf_bytes)
2862{
2863	/*
2864	 * The size of an RPMB frame must match what's expected by the
2865	 * hardware.
2866	 */
2867	BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2868
2869	idata->ic.opcode = opcode;
2870	idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2871	idata->ic.write_flag = write_flag;
2872	idata->ic.blksz = sizeof(struct rpmb_frame);
2873	idata->ic.blocks = buf_bytes /  idata->ic.blksz;
2874	idata->buf = buf;
2875	idata->buf_bytes = buf_bytes;
2876}
2877
2878static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2879				 unsigned int req_len, u8 *resp,
2880				 unsigned int resp_len)
2881{
2882	struct rpmb_frame *frm = (struct rpmb_frame *)req;
2883	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2884	struct mmc_blk_data *md = rpmb->md;
2885	struct mmc_blk_ioc_data **idata;
2886	struct mmc_queue_req *mq_rq;
2887	unsigned int cmd_count;
2888	struct request *rq;
2889	u16 req_type;
2890	bool write;
2891	int ret;
2892
2893	if (IS_ERR(md->queue.card))
2894		return PTR_ERR(md->queue.card);
2895
2896	if (req_len < sizeof(*frm))
2897		return -EINVAL;
2898
2899	req_type = be16_to_cpu(frm->req_resp);
2900	switch (req_type) {
2901	case RPMB_PROGRAM_KEY:
2902		if (req_len != sizeof(struct rpmb_frame) ||
2903		    resp_len != sizeof(struct rpmb_frame))
2904			return -EINVAL;
2905		write = true;
2906		break;
2907	case RPMB_GET_WRITE_COUNTER:
2908		if (req_len != sizeof(struct rpmb_frame) ||
2909		    resp_len != sizeof(struct rpmb_frame))
2910			return -EINVAL;
2911		write = false;
2912		break;
2913	case RPMB_WRITE_DATA:
2914		if (req_len % sizeof(struct rpmb_frame) ||
2915		    resp_len != sizeof(struct rpmb_frame))
2916			return -EINVAL;
2917		write = true;
2918		break;
2919	case RPMB_READ_DATA:
2920		if (req_len != sizeof(struct rpmb_frame) ||
2921		    resp_len % sizeof(struct rpmb_frame))
2922			return -EINVAL;
2923		write = false;
2924		break;
2925	default:
2926		return -EINVAL;
2927	}
2928
2929	if (write)
2930		cmd_count = 3;
2931	else
2932		cmd_count = 2;
2933
2934	idata = alloc_idata(rpmb, cmd_count);
2935	if (!idata)
2936		return -ENOMEM;
2937
2938	if (write) {
2939		struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2940
2941		/* Send write request frame(s) */
2942		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2943			  1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2944
2945		/* Send result request frame */
2946		memset(frm, 0, sizeof(*frm));
2947		frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2948		set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2949			  resp_len);
2950
2951		/* Read response frame */
2952		set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2953	} else {
2954		/* Send write request frame(s) */
2955		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2956
2957		/* Read response frame */
2958		set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2959	}
2960
2961	rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2962	if (IS_ERR(rq)) {
2963		ret = PTR_ERR(rq);
2964		goto out;
2965	}
2966
2967	mq_rq = req_to_mmc_queue_req(rq);
2968	mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2969	mq_rq->drv_op_result = -EIO;
2970	mq_rq->drv_op_data = idata;
2971	mq_rq->ioc_count = cmd_count;
2972	blk_execute_rq(rq, false);
2973	ret = req_to_mmc_queue_req(rq)->drv_op_result;
2974
2975	blk_mq_free_request(rq);
2976
2977out:
2978	free_idata(idata, cmd_count);
2979	return ret;
2980}
2981
2982static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2983				   struct mmc_blk_data *md,
2984				   unsigned int part_index,
2985				   sector_t size,
2986				   const char *subname)
2987{
2988	int devidx, ret;
2989	char rpmb_name[DISK_NAME_LEN];
2990	char cap_str[10];
2991	struct mmc_rpmb_data *rpmb;
2992
2993	/* This creates the minor number for the RPMB char device */
2994	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2995	if (devidx < 0)
2996		return devidx;
2997
2998	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2999	if (!rpmb) {
3000		ida_free(&mmc_rpmb_ida, devidx);
3001		return -ENOMEM;
3002	}
3003
3004	snprintf(rpmb_name, sizeof(rpmb_name),
3005		 "mmcblk%u%s", card->host->index, subname ? subname : "");
3006
3007	rpmb->id = devidx;
3008	rpmb->part_index = part_index;
3009	rpmb->dev.init_name = rpmb_name;
3010	rpmb->dev.bus = &mmc_rpmb_bus_type;
3011	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
3012	rpmb->dev.parent = &card->dev;
3013	rpmb->dev.release = mmc_blk_rpmb_device_release;
3014	device_initialize(&rpmb->dev);
3015	dev_set_drvdata(&rpmb->dev, rpmb);
3016	mmc_blk_get(md->disk);
3017	rpmb->md = md;
3018
3019	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
3020	rpmb->chrdev.owner = THIS_MODULE;
3021	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
3022	if (ret) {
3023		pr_err("%s: could not add character device\n", rpmb_name);
3024		goto out_put_device;
3025	}
3026
3027	list_add(&rpmb->node, &md->rpmbs);
3028
3029	string_get_size((u64)size, 512, STRING_UNITS_2,
3030			cap_str, sizeof(cap_str));
3031
3032	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
3033		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
3034		MAJOR(mmc_rpmb_devt), rpmb->id);
3035
3036	return 0;
3037
3038out_put_device:
3039	put_device(&rpmb->dev);
3040	return ret;
3041}
3042
3043static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
3044
3045{
3046	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
3047	put_device(&rpmb->dev);
3048}
3049
3050/* MMC Physical partitions consist of two boot partitions and
3051 * up to four general purpose partitions.
3052 * For each partition enabled in EXT_CSD a block device will be allocatedi
3053 * to provide access to the partition.
3054 */
3055
3056static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
3057{
3058	int idx, ret;
3059
3060	if (!mmc_card_mmc(card))
3061		return 0;
3062
3063	for (idx = 0; idx < card->nr_parts; idx++) {
3064		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3065			/*
3066			 * RPMB partitions does not provide block access, they
3067			 * are only accessed using ioctl():s. Thus create
3068			 * special RPMB block devices that do not have a
3069			 * backing block queue for these.
3070			 */
3071			ret = mmc_blk_alloc_rpmb_part(card, md,
3072				card->part[idx].part_cfg,
3073				card->part[idx].size >> 9,
3074				card->part[idx].name);
3075			if (ret)
3076				return ret;
3077		} else if (card->part[idx].size) {
3078			ret = mmc_blk_alloc_part(card, md,
3079				card->part[idx].part_cfg,
3080				card->part[idx].size >> 9,
3081				card->part[idx].force_ro,
3082				card->part[idx].name,
3083				card->part[idx].area_type);
3084			if (ret)
3085				return ret;
3086		}
3087	}
3088
3089	return 0;
3090}
3091
3092static void mmc_blk_remove_req(struct mmc_blk_data *md)
3093{
3094	/*
3095	 * Flush remaining requests and free queues. It is freeing the queue
3096	 * that stops new requests from being accepted.
3097	 */
3098	del_gendisk(md->disk);
3099	mmc_cleanup_queue(&md->queue);
3100	mmc_blk_put(md);
3101}
3102
3103static void mmc_blk_remove_parts(struct mmc_card *card,
3104				 struct mmc_blk_data *md)
3105{
3106	struct list_head *pos, *q;
3107	struct mmc_blk_data *part_md;
3108	struct mmc_rpmb_data *rpmb;
3109
3110	/* Remove RPMB partitions */
3111	list_for_each_safe(pos, q, &md->rpmbs) {
3112		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3113		list_del(pos);
3114		mmc_blk_remove_rpmb_part(rpmb);
3115	}
3116	/* Remove block partitions */
3117	list_for_each_safe(pos, q, &md->part) {
3118		part_md = list_entry(pos, struct mmc_blk_data, part);
3119		list_del(pos);
3120		mmc_blk_remove_req(part_md);
3121	}
3122}
3123
3124#ifdef CONFIG_DEBUG_FS
3125
3126static int mmc_dbg_card_status_get(void *data, u64 *val)
3127{
3128	struct mmc_card *card = data;
3129	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3130	struct mmc_queue *mq = &md->queue;
3131	struct request *req;
3132	int ret;
3133
3134	/* Ask the block layer about the card status */
3135	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3136	if (IS_ERR(req))
3137		return PTR_ERR(req);
3138	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3139	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3140	blk_execute_rq(req, false);
3141	ret = req_to_mmc_queue_req(req)->drv_op_result;
3142	if (ret >= 0) {
3143		*val = ret;
3144		ret = 0;
3145	}
3146	blk_mq_free_request(req);
3147
3148	return ret;
3149}
3150DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3151			 NULL, "%08llx\n");
3152
3153/* That is two digits * 512 + 1 for newline */
3154#define EXT_CSD_STR_LEN 1025
3155
3156static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3157{
3158	struct mmc_card *card = inode->i_private;
3159	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3160	struct mmc_queue *mq = &md->queue;
3161	struct request *req;
3162	char *buf;
3163	ssize_t n = 0;
3164	u8 *ext_csd;
3165	int err, i;
3166
3167	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3168	if (!buf)
3169		return -ENOMEM;
3170
3171	/* Ask the block layer for the EXT CSD */
3172	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3173	if (IS_ERR(req)) {
3174		err = PTR_ERR(req);
3175		goto out_free;
3176	}
3177	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3178	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3179	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3180	blk_execute_rq(req, false);
3181	err = req_to_mmc_queue_req(req)->drv_op_result;
3182	blk_mq_free_request(req);
3183	if (err) {
3184		pr_err("FAILED %d\n", err);
3185		goto out_free;
3186	}
3187
3188	for (i = 0; i < 512; i++)
3189		n += sprintf(buf + n, "%02x", ext_csd[i]);
3190	n += sprintf(buf + n, "\n");
3191
3192	if (n != EXT_CSD_STR_LEN) {
3193		err = -EINVAL;
3194		kfree(ext_csd);
3195		goto out_free;
3196	}
3197
3198	filp->private_data = buf;
3199	kfree(ext_csd);
3200	return 0;
3201
3202out_free:
3203	kfree(buf);
3204	return err;
3205}
3206
3207static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3208				size_t cnt, loff_t *ppos)
3209{
3210	char *buf = filp->private_data;
3211
3212	return simple_read_from_buffer(ubuf, cnt, ppos,
3213				       buf, EXT_CSD_STR_LEN);
3214}
3215
3216static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3217{
3218	kfree(file->private_data);
3219	return 0;
3220}
3221
3222static const struct file_operations mmc_dbg_ext_csd_fops = {
3223	.open		= mmc_ext_csd_open,
3224	.read		= mmc_ext_csd_read,
3225	.release	= mmc_ext_csd_release,
3226	.llseek		= default_llseek,
3227};
3228
3229static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3230{
3231	struct dentry *root;
3232
3233	if (!card->debugfs_root)
3234		return;
3235
3236	root = card->debugfs_root;
3237
3238	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3239		md->status_dentry =
3240			debugfs_create_file_unsafe("status", 0400, root,
3241						   card,
3242						   &mmc_dbg_card_status_fops);
3243	}
3244
3245	if (mmc_card_mmc(card)) {
3246		md->ext_csd_dentry =
3247			debugfs_create_file("ext_csd", S_IRUSR, root, card,
3248					    &mmc_dbg_ext_csd_fops);
3249	}
3250}
3251
3252static void mmc_blk_remove_debugfs(struct mmc_card *card,
3253				   struct mmc_blk_data *md)
3254{
3255	if (!card->debugfs_root)
3256		return;
3257
3258	debugfs_remove(md->status_dentry);
3259	md->status_dentry = NULL;
3260
3261	debugfs_remove(md->ext_csd_dentry);
3262	md->ext_csd_dentry = NULL;
3263}
3264
3265#else
3266
3267static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3268{
3269}
3270
3271static void mmc_blk_remove_debugfs(struct mmc_card *card,
3272				   struct mmc_blk_data *md)
3273{
3274}
3275
3276#endif /* CONFIG_DEBUG_FS */
3277
3278static void mmc_blk_rpmb_add(struct mmc_card *card)
3279{
3280	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3281	struct mmc_rpmb_data *rpmb;
3282	struct rpmb_dev *rdev;
3283	unsigned int n;
3284	u32 cid[4];
3285	struct rpmb_descr descr = {
3286		.type = RPMB_TYPE_EMMC,
3287		.route_frames = mmc_route_rpmb_frames,
3288		.reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3289				     2 : 32,
3290		.capacity = card->ext_csd.raw_rpmb_size_mult,
3291		.dev_id = (void *)cid,
3292		.dev_id_len = sizeof(cid),
3293	};
3294
3295	/*
3296	 * Provice CID as an octet array. The CID needs to be interpreted
3297	 * when used as input to derive the RPMB key since some fields
3298	 * will change due to firmware updates.
3299	 */
3300	for (n = 0; n < 4; n++)
3301		cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3302
3303	list_for_each_entry(rpmb, &md->rpmbs, node) {
3304		rdev = rpmb_dev_register(&rpmb->dev, &descr);
3305		if (IS_ERR(rdev)) {
3306			pr_warn("%s: could not register RPMB device\n",
3307				dev_name(&rpmb->dev));
3308			continue;
3309		}
3310		rpmb->rdev = rdev;
3311	}
3312}
3313
3314static int mmc_blk_probe(struct mmc_card *card)
3315{
3316	struct mmc_blk_data *md;
3317	int ret = 0;
3318
3319	/*
3320	 * Check that the card supports the command class(es) we need.
3321	 */
3322	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3323		return -ENODEV;
3324
3325	mmc_fixup_device(card, mmc_blk_fixups);
3326
3327	card->complete_wq = alloc_workqueue("mmc_complete",
3328					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3329	if (!card->complete_wq) {
3330		pr_err("Failed to create mmc completion workqueue");
3331		return -ENOMEM;
3332	}
3333
3334	md = mmc_blk_alloc(card);
3335	if (IS_ERR(md)) {
3336		ret = PTR_ERR(md);
3337		goto out_free;
3338	}
3339
3340	ret = mmc_blk_alloc_parts(card, md);
3341	if (ret)
3342		goto out;
3343
3344	/* Add two debugfs entries */
3345	mmc_blk_add_debugfs(card, md);
3346
3347	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3348	pm_runtime_use_autosuspend(&card->dev);
3349
3350	/*
3351	 * Don't enable runtime PM for SD-combo cards here. Leave that
3352	 * decision to be taken during the SDIO init sequence instead.
3353	 */
3354	if (!mmc_card_sd_combo(card)) {
3355		pm_runtime_set_active(&card->dev);
3356		pm_runtime_enable(&card->dev);
3357	}
3358
3359	mmc_blk_rpmb_add(card);
3360
3361	return 0;
3362
3363out:
3364	mmc_blk_remove_parts(card, md);
3365	mmc_blk_remove_req(md);
3366out_free:
3367	destroy_workqueue(card->complete_wq);
3368	return ret;
3369}
3370
3371static void mmc_blk_remove(struct mmc_card *card)
3372{
3373	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3374
3375	mmc_blk_remove_debugfs(card, md);
3376	mmc_blk_remove_parts(card, md);
3377	pm_runtime_get_sync(&card->dev);
3378	if (md->part_curr != md->part_type) {
3379		mmc_claim_host(card->host);
3380		mmc_blk_part_switch(card, md->part_type);
3381		mmc_release_host(card->host);
3382	}
3383	if (!mmc_card_sd_combo(card))
3384		pm_runtime_disable(&card->dev);
3385	pm_runtime_put_noidle(&card->dev);
3386	mmc_blk_remove_req(md);
3387	destroy_workqueue(card->complete_wq);
3388}
3389
3390static int _mmc_blk_suspend(struct mmc_card *card)
3391{
3392	struct mmc_blk_data *part_md;
3393	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3394
3395	if (md) {
3396		mmc_queue_suspend(&md->queue);
3397		list_for_each_entry(part_md, &md->part, part) {
3398			mmc_queue_suspend(&part_md->queue);
3399		}
3400	}
3401	return 0;
3402}
3403
3404static void mmc_blk_shutdown(struct mmc_card *card)
3405{
3406	_mmc_blk_suspend(card);
3407}
3408
3409#ifdef CONFIG_PM_SLEEP
3410static int mmc_blk_suspend(struct device *dev)
3411{
3412	struct mmc_card *card = mmc_dev_to_card(dev);
3413
3414	return _mmc_blk_suspend(card);
3415}
3416
3417static int mmc_blk_resume(struct device *dev)
3418{
3419	struct mmc_blk_data *part_md;
3420	struct mmc_blk_data *md = dev_get_drvdata(dev);
3421
3422	if (md) {
3423		/*
3424		 * Resume involves the card going into idle state,
3425		 * so current partition is always the main one.
3426		 */
3427		md->part_curr = md->part_type;
3428		mmc_queue_resume(&md->queue);
3429		list_for_each_entry(part_md, &md->part, part) {
3430			mmc_queue_resume(&part_md->queue);
3431		}
3432	}
3433	return 0;
3434}
3435#endif
3436
3437static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3438
3439static struct mmc_driver mmc_driver = {
3440	.drv		= {
3441		.name	= "mmcblk",
3442		.pm	= &mmc_blk_pm_ops,
3443	},
3444	.probe		= mmc_blk_probe,
3445	.remove		= mmc_blk_remove,
3446	.shutdown	= mmc_blk_shutdown,
3447};
3448
3449static int __init mmc_blk_init(void)
3450{
3451	int res;
3452
3453	res  = bus_register(&mmc_rpmb_bus_type);
3454	if (res < 0) {
3455		pr_err("mmcblk: could not register RPMB bus type\n");
3456		return res;
3457	}
3458	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3459	if (res < 0) {
3460		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3461		goto out_bus_unreg;
3462	}
3463
3464	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3465		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3466
3467	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3468
3469	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3470	if (res)
3471		goto out_chrdev_unreg;
3472
3473	res = mmc_register_driver(&mmc_driver);
3474	if (res)
3475		goto out_blkdev_unreg;
3476
3477	return 0;
3478
3479out_blkdev_unreg:
3480	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3481out_chrdev_unreg:
3482	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3483out_bus_unreg:
3484	bus_unregister(&mmc_rpmb_bus_type);
3485	return res;
3486}
3487
3488static void __exit mmc_blk_exit(void)
3489{
3490	mmc_unregister_driver(&mmc_driver);
3491	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3492	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3493	bus_unregister(&mmc_rpmb_bus_type);
3494}
3495
3496module_init(mmc_blk_init);
3497module_exit(mmc_blk_exit);
3498
3499MODULE_LICENSE("GPL");
3500MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");