Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2022 Intel Corporation
  4 */
  5
  6#include "i915_drv.h"
  7#include "intel_gt.h"
  8#include "intel_gt_mcr.h"
  9#include "intel_gt_print.h"
 10#include "intel_gt_regs.h"
 11
 12/**
 13 * DOC: GT Multicast/Replicated (MCR) Register Support
 14 *
 15 * Some GT registers are designed as "multicast" or "replicated" registers:
 16 * multiple instances of the same register share a single MMIO offset.  MCR
 17 * registers are generally used when the hardware needs to potentially track
 18 * independent values of a register per hardware unit (e.g., per-subslice,
 19 * per-L3bank, etc.).  The specific types of replication that exist vary
 20 * per-platform.
 21 *
 22 * MMIO accesses to MCR registers are controlled according to the settings
 23 * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
 24 * registers can be done in either a (i.e., a single write updates all
 25 * instances of the register to the same value) or unicast (a write updates only
 26 * one specific instance).  Reads of MCR registers always operate in a unicast
 27 * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
 28 * Selection of a specific MCR instance for unicast operations is referred to
 29 * as "steering."
 30 *
 31 * If MCR register operations are steered toward a hardware unit that is
 32 * fused off or currently powered down due to power gating, the MMIO operation
 33 * is "terminated" by the hardware.  Terminated read operations will return a
 34 * value of zero and terminated unicast write operations will be silently
 35 * ignored.
 36 */
 37
 38#define HAS_MSLICE_STEERING(i915)	(INTEL_INFO(i915)->has_mslice_steering)
 39
 40static const char * const intel_steering_types[] = {
 41	"L3BANK",
 42	"MSLICE",
 43	"LNCF",
 44	"GAM",
 45	"DSS",
 46	"OADDRM",
 47	"INSTANCE 0",
 48};
 49
 50static const struct intel_mmio_range icl_l3bank_steering_table[] = {
 51	{ 0x00B100, 0x00B3FF },
 52	{},
 53};
 54
 55/*
 56 * Although the bspec lists more "MSLICE" ranges than shown here, some of those
 57 * are of a "GAM" subclass that has special rules.  Thus we use a separate
 58 * GAM table farther down for those.
 59 */
 60static const struct intel_mmio_range dg2_mslice_steering_table[] = {
 61	{ 0x00DD00, 0x00DDFF },
 62	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
 63	{},
 64};
 65
 66static const struct intel_mmio_range dg2_lncf_steering_table[] = {
 67	{ 0x00B000, 0x00B0FF },
 68	{ 0x00D880, 0x00D8FF },
 69	{},
 70};
 71
 72static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
 73	{ 0x000B00, 0x000BFF },         /* SQIDI */
 74	{ 0x001000, 0x001FFF },         /* SQIDI */
 75	{ 0x004000, 0x0048FF },         /* GAM */
 76	{ 0x008700, 0x0087FF },         /* SQIDI */
 77	{ 0x00B000, 0x00B0FF },         /* NODE */
 78	{ 0x00C800, 0x00CFFF },         /* GAM */
 79	{ 0x00D880, 0x00D8FF },         /* NODE */
 80	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
 81	{},
 82};
 83
 84static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
 85	{ 0x00B100, 0x00B3FF },
 86	{},
 87};
 88
 89/* DSS steering is used for SLICE ranges as well */
 90static const struct intel_mmio_range xelpg_dss_steering_table[] = {
 91	{ 0x005200, 0x0052FF },		/* SLICE */
 92	{ 0x005500, 0x007FFF },		/* SLICE */
 93	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
 94	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
 95	{ 0x009680, 0x0096FF },		/* DSS */
 96	{ 0x00D800, 0x00D87F },		/* SLICE */
 97	{ 0x00DC00, 0x00DCFF },		/* SLICE */
 98	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
 99	{},
100};
101
102static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
103	{ 0x393200, 0x39323F },
104	{ 0x393400, 0x3934FF },
105	{},
106};
107
108void intel_gt_mcr_init(struct intel_gt *gt)
109{
110	struct drm_i915_private *i915 = gt->i915;
111	unsigned long fuse;
112	int i;
113
114	spin_lock_init(&gt->mcr_lock);
115
116	/*
117	 * An mslice is unavailable only if both the meml3 for the slice is
118	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
119	 */
120	if (HAS_MSLICE_STEERING(i915)) {
121		gt->info.mslice_mask =
122			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
123							  GEN_DSS_PER_MSLICE);
124		gt->info.mslice_mask |=
125			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
126			 GEN12_MEML3_EN_MASK);
127
128		if (!gt->info.mslice_mask) /* should be impossible! */
129			gt_warn(gt, "mslice mask all zero!\n");
130	}
131
132	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
133		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
134	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
135		/* Wa_14016747170 */
136		if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
137		    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
138			fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
139					     intel_uncore_read(gt->uncore,
140							       MTL_GT_ACTIVITY_FACTOR));
141		else
142			fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
143					     intel_uncore_read(gt->uncore, XEHP_FUSE4));
144
145		/*
146		 * Despite the register field being named "exclude mask" the
147		 * bits actually represent enabled banks (two banks per bit).
148		 */
149		for_each_set_bit(i, &fuse, 3)
150			gt->info.l3bank_mask |= 0x3 << 2 * i;
151
152		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
153		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
154		gt->steering_table[DSS] = xelpg_dss_steering_table;
155	} else if (IS_DG2(i915)) {
156		gt->steering_table[MSLICE] = dg2_mslice_steering_table;
157		gt->steering_table[LNCF] = dg2_lncf_steering_table;
158		/*
159		 * No need to hook up the GAM table since it has a dedicated
160		 * steering control register on DG2 and can use implicit
161		 * steering.
162		 */
163	} else if (GRAPHICS_VER(i915) >= 11 &&
164		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 55)) {
165		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
166		gt->info.l3bank_mask =
167			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
168			GEN10_L3BANK_MASK;
169		if (!gt->info.l3bank_mask) /* should be impossible! */
170			gt_warn(gt, "L3 bank mask is all zero!\n");
171	} else if (GRAPHICS_VER(i915) >= 11) {
172		/*
173		 * We expect all modern platforms to have at least some
174		 * type of steering that needs to be initialized.
175		 */
176		MISSING_CASE(INTEL_INFO(i915)->platform);
177	}
178}
179
180/*
181 * Although the rest of the driver should use MCR-specific functions to
182 * read/write MCR registers, we still use the regular intel_uncore_* functions
183 * internally to implement those, so we need a way for the functions in this
184 * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
185 */
186static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
187{
188	i915_reg_t r = { .reg = mcr.reg };
189
190	return r;
191}
192
193/*
194 * rw_with_mcr_steering_fw - Access a register with specific MCR steering
195 * @gt: GT to read register from
196 * @reg: register being accessed
197 * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
198 * @group: group number (documented as "sliceid" on older platforms)
199 * @instance: instance number (documented as "subsliceid" on older platforms)
200 * @value: register value to be written (ignored for read)
201 *
202 * Context: The caller must hold the MCR lock
203 * Return: 0 for write access. register value for read access.
204 *
205 * Caller needs to make sure the relevant forcewake wells are up.
206 */
207static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
208				   i915_mcr_reg_t reg, u8 rw_flag,
209				   int group, int instance, u32 value)
210{
211	struct intel_uncore *uncore = gt->uncore;
212	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
213
214	lockdep_assert_held(&gt->mcr_lock);
215
216	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
217		/*
218		 * Always leave the hardware in multicast mode when doing reads
219		 * (see comment about Wa_22013088509 below) and only change it
220		 * to unicast mode when doing writes of a specific instance.
221		 *
222		 * No need to save old steering reg value.
223		 */
224		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
225				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
226				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
227				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
228	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
229		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
230		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
231
232		/*
233		 * Wa_22013088509
234		 *
235		 * The setting of the multicast/unicast bit usually wouldn't
236		 * matter for read operations (which always return the value
237		 * from a single register instance regardless of how that bit
238		 * is set), but some platforms have a workaround requiring us
239		 * to remain in multicast mode for reads.  There's no real
240		 * downside to this, so we'll just go ahead and do so on all
241		 * platforms; we'll only clear the multicast bit from the mask
242		 * when exlicitly doing a write operation.
243		 */
244		if (rw_flag == FW_REG_WRITE)
245			mcr_mask |= GEN11_MCR_MULTICAST;
246
247		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
248		old_mcr = mcr;
249
250		mcr &= ~mcr_mask;
251		mcr |= mcr_ss;
252		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
253	} else {
254		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
255		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
256
257		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
258		old_mcr = mcr;
259
260		mcr &= ~mcr_mask;
261		mcr |= mcr_ss;
262		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
263	}
264
265	if (rw_flag == FW_REG_READ)
266		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
267	else
268		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
269
270	/*
271	 * For pre-MTL platforms, we need to restore the old value of the
272	 * steering control register to ensure that implicit steering continues
273	 * to behave as expected.  For MTL and beyond, we need only reinstate
274	 * the 'multicast' bit (and only if we did a write that cleared it).
275	 */
276	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
277		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
278	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
279		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
280
281	return val;
282}
283
284static u32 rw_with_mcr_steering(struct intel_gt *gt,
285				i915_mcr_reg_t reg, u8 rw_flag,
286				int group, int instance,
287				u32 value)
288{
289	struct intel_uncore *uncore = gt->uncore;
290	enum forcewake_domains fw_domains;
291	unsigned long flags;
292	u32 val;
293
294	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
295						    rw_flag);
296	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
297						     GEN8_MCR_SELECTOR,
298						     FW_REG_READ | FW_REG_WRITE);
299
300	intel_gt_mcr_lock(gt, &flags);
301	spin_lock(&uncore->lock);
302	intel_uncore_forcewake_get__locked(uncore, fw_domains);
303
304	val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
305
306	intel_uncore_forcewake_put__locked(uncore, fw_domains);
307	spin_unlock(&uncore->lock);
308	intel_gt_mcr_unlock(gt, flags);
309
310	return val;
311}
312
313/**
314 * intel_gt_mcr_lock - Acquire MCR steering lock
315 * @gt: GT structure
316 * @flags: storage to save IRQ flags to
317 *
318 * Performs locking to protect the steering for the duration of an MCR
319 * operation.  On MTL and beyond, a hardware lock will also be taken to
320 * serialize access not only for the driver, but also for external hardware and
321 * firmware agents.
322 *
323 * Context: Takes gt->mcr_lock.  uncore->lock should *not* be held when this
324 *          function is called, although it may be acquired after this
325 *          function call.
326 */
327void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
328	__acquires(&gt->mcr_lock)
329{
330	unsigned long __flags;
331	int err = 0;
332
333	lockdep_assert_not_held(&gt->uncore->lock);
334
335	/*
336	 * Starting with MTL, we need to coordinate not only with other
337	 * driver threads, but also with hardware/firmware agents.  A dedicated
338	 * locking register is used.
339	 */
340	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
341		/*
342		 * The steering control and semaphore registers are inside an
343		 * "always on" power domain with respect to RC6.  However there
344		 * are some issues if higher-level platform sleep states are
345		 * entering/exiting at the same time these registers are
346		 * accessed.  Grabbing GT forcewake and holding it over the
347		 * entire lock/steer/unlock cycle ensures that those sleep
348		 * states have been fully exited before we access these
349		 * registers.  This wakeref will be released in the unlock
350		 * routine.
351		 *
352		 * Wa_22018931422
353		 */
354		intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT);
355
356		err = wait_for(intel_uncore_read_fw(gt->uncore,
357						    MTL_STEER_SEMAPHORE) == 0x1, 100);
358	}
359
360	/*
361	 * Even on platforms with a hardware lock, we'll continue to grab
362	 * a software spinlock too for lockdep purposes.  If the hardware lock
363	 * was already acquired, there should never be contention on the
364	 * software lock.
365	 */
366	spin_lock_irqsave(&gt->mcr_lock, __flags);
367
368	*flags = __flags;
369
370	/*
371	 * In theory we should never fail to acquire the HW semaphore; this
372	 * would indicate some hardware/firmware is misbehaving and not
373	 * releasing it properly.
374	 */
375	if (err == -ETIMEDOUT) {
376		gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
377		add_taint_for_CI(gt->i915, TAINT_WARN);  /* CI is now unreliable */
378	}
379}
380
381/**
382 * intel_gt_mcr_unlock - Release MCR steering lock
383 * @gt: GT structure
384 * @flags: IRQ flags to restore
385 *
386 * Releases the lock acquired by intel_gt_mcr_lock().
387 *
388 * Context: Releases gt->mcr_lock
389 */
390void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
391	__releases(&gt->mcr_lock)
392{
393	spin_unlock_irqrestore(&gt->mcr_lock, flags);
394
395	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
396		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
397
398		intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT);
399	}
400}
401
402/**
403 * intel_gt_mcr_lock_sanitize - Sanitize MCR steering lock
404 * @gt: GT structure
405 *
406 * This will be used to sanitize the initial status of the hardware lock
407 * during driver load and resume since there won't be any concurrent access
408 * from other agents at those times, but it's possible that boot firmware
409 * may have left the lock in a bad state.
410 *
411 */
412void intel_gt_mcr_lock_sanitize(struct intel_gt *gt)
413{
414	/*
415	 * This gets called at load/resume time, so we shouldn't be
416	 * racing with other driver threads grabbing the mcr lock.
417	 */
418	lockdep_assert_not_held(&gt->mcr_lock);
419
420	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
421		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
422}
423
424/**
425 * intel_gt_mcr_read - read a specific instance of an MCR register
426 * @gt: GT structure
427 * @reg: the MCR register to read
428 * @group: the MCR group
429 * @instance: the MCR instance
430 *
431 * Context: Takes and releases gt->mcr_lock
432 *
433 * Returns the value read from an MCR register after steering toward a specific
434 * group/instance.
435 */
436u32 intel_gt_mcr_read(struct intel_gt *gt,
437		      i915_mcr_reg_t reg,
438		      int group, int instance)
439{
440	return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
441}
442
443/**
444 * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
445 * @gt: GT structure
446 * @reg: the MCR register to write
447 * @value: value to write
448 * @group: the MCR group
449 * @instance: the MCR instance
450 *
451 * Write an MCR register in unicast mode after steering toward a specific
452 * group/instance.
453 *
454 * Context: Calls a function that takes and releases gt->mcr_lock
455 */
456void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
457				int group, int instance)
458{
459	rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
460}
461
462/**
463 * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
464 * @gt: GT structure
465 * @reg: the MCR register to write
466 * @value: value to write
467 *
468 * Write an MCR register in multicast mode to update all instances.
469 *
470 * Context: Takes and releases gt->mcr_lock
471 */
472void intel_gt_mcr_multicast_write(struct intel_gt *gt,
473				  i915_mcr_reg_t reg, u32 value)
474{
475	unsigned long flags;
476
477	intel_gt_mcr_lock(gt, &flags);
478
479	/*
480	 * Ensure we have multicast behavior, just in case some non-i915 agent
481	 * left the hardware in unicast mode.
482	 */
483	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
484		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
485
486	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
487
488	intel_gt_mcr_unlock(gt, flags);
489}
490
491/**
492 * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
493 * @gt: GT structure
494 * @reg: the MCR register to write
495 * @value: value to write
496 *
497 * Write an MCR register in multicast mode to update all instances.  This
498 * function assumes the caller is already holding any necessary forcewake
499 * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
500 * be obtained automatically.
501 *
502 * Context: The caller must hold gt->mcr_lock.
503 */
504void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
505{
506	lockdep_assert_held(&gt->mcr_lock);
507
508	/*
509	 * Ensure we have multicast behavior, just in case some non-i915 agent
510	 * left the hardware in unicast mode.
511	 */
512	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
513		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
514
515	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
516}
517
518/**
519 * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
520 * @gt: GT structure
521 * @reg: the MCR register to read and write
522 * @clear: bits to clear during RMW
523 * @set: bits to set during RMW
524 *
525 * Performs a read-modify-write on an MCR register in a multicast manner.
526 * This operation only makes sense on MCR registers where all instances are
527 * expected to have the same value.  The read will target any non-terminated
528 * instance and the write will be applied to all instances.
529 *
530 * This function assumes the caller is already holding any necessary forcewake
531 * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
532 * be obtained automatically.
533 *
534 * Context: Calls functions that take and release gt->mcr_lock
535 *
536 * Returns the old (unmodified) value read.
537 */
538u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
539			       u32 clear, u32 set)
540{
541	u32 val = intel_gt_mcr_read_any(gt, reg);
542
543	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
544
545	return val;
546}
547
548/*
549 * reg_needs_read_steering - determine whether a register read requires
550 *     explicit steering
551 * @gt: GT structure
552 * @reg: the register to check steering requirements for
553 * @type: type of multicast steering to check
554 *
555 * Determines whether @reg needs explicit steering of a specific type for
556 * reads.
557 *
558 * Returns false if @reg does not belong to a register range of the given
559 * steering type, or if the default (subslice-based) steering IDs are suitable
560 * for @type steering too.
561 */
562static bool reg_needs_read_steering(struct intel_gt *gt,
563				    i915_mcr_reg_t reg,
564				    enum intel_steering_type type)
565{
566	u32 offset = i915_mmio_reg_offset(reg);
567	const struct intel_mmio_range *entry;
568
569	if (likely(!gt->steering_table[type]))
570		return false;
571
572	if (IS_GSI_REG(offset))
573		offset += gt->uncore->gsi_offset;
574
575	for (entry = gt->steering_table[type]; entry->end; entry++) {
576		if (offset >= entry->start && offset <= entry->end)
577			return true;
578	}
579
580	return false;
581}
582
583/*
584 * get_nonterminated_steering - determines valid IDs for a class of MCR steering
585 * @gt: GT structure
586 * @type: multicast register type
587 * @group: Group ID returned
588 * @instance: Instance ID returned
589 *
590 * Determines group and instance values that will steer reads of the specified
591 * MCR class to a non-terminated instance.
592 */
593static void get_nonterminated_steering(struct intel_gt *gt,
594				       enum intel_steering_type type,
595				       u8 *group, u8 *instance)
596{
597	u32 dss;
598
599	switch (type) {
600	case L3BANK:
601		*group = 0;		/* unused */
602		*instance = __ffs(gt->info.l3bank_mask);
603		break;
604	case MSLICE:
605		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
606		*group = __ffs(gt->info.mslice_mask);
607		*instance = 0;	/* unused */
608		break;
609	case LNCF:
610		/*
611		 * An LNCF is always present if its mslice is present, so we
612		 * can safely just steer to LNCF 0 in all cases.
613		 */
614		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
615		*group = __ffs(gt->info.mslice_mask) << 1;
616		*instance = 0;	/* unused */
617		break;
618	case GAM:
619		*group = IS_DG2(gt->i915) ? 1 : 0;
620		*instance = 0;
621		break;
622	case DSS:
623		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
624		*group = dss / GEN_DSS_PER_GSLICE;
625		*instance = dss % GEN_DSS_PER_GSLICE;
626		break;
627	case INSTANCE0:
628		/*
629		 * There are a lot of MCR types for which instance (0, 0)
630		 * will always provide a non-terminated value.
631		 */
632		*group = 0;
633		*instance = 0;
634		break;
635	case OADDRM:
636		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
637			*group = 0;
638		else
639			*group = 1;
640		*instance = 0;
641		break;
642	default:
643		MISSING_CASE(type);
644		*group = 0;
645		*instance = 0;
646	}
647}
648
649/**
650 * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
651 *    will steer a register to a non-terminated instance
652 * @gt: GT structure
653 * @reg: register for which the steering is required
654 * @group: return variable for group steering
655 * @instance: return variable for instance steering
656 *
657 * This function returns a group/instance pair that is guaranteed to work for
658 * read steering of the given register. Note that a value will be returned even
659 * if the register is not replicated and therefore does not actually require
660 * steering.
661 */
662void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
663					     i915_mcr_reg_t reg,
664					     u8 *group, u8 *instance)
665{
666	int type;
667
668	for (type = 0; type < NUM_STEERING_TYPES; type++) {
669		if (reg_needs_read_steering(gt, reg, type)) {
670			get_nonterminated_steering(gt, type, group, instance);
671			return;
672		}
673	}
674
675	*group = gt->default_steering.groupid;
676	*instance = gt->default_steering.instanceid;
677}
678
679/**
680 * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
681 * @gt: GT structure
682 * @reg: register to read
683 *
684 * Reads a GT MCR register.  The read will be steered to a non-terminated
685 * instance (i.e., one that isn't fused off or powered down by power gating).
686 * This function assumes the caller is already holding any necessary forcewake
687 * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
688 * obtained automatically.
689 *
690 * Context: The caller must hold gt->mcr_lock.
691 *
692 * Returns the value from a non-terminated instance of @reg.
693 */
694u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
695{
696	int type;
697	u8 group, instance;
698
699	lockdep_assert_held(&gt->mcr_lock);
700
701	for (type = 0; type < NUM_STEERING_TYPES; type++) {
702		if (reg_needs_read_steering(gt, reg, type)) {
703			get_nonterminated_steering(gt, type, &group, &instance);
704			return rw_with_mcr_steering_fw(gt, reg,
705						       FW_REG_READ,
706						       group, instance, 0);
707		}
708	}
709
710	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
711}
712
713/**
714 * intel_gt_mcr_read_any - reads one instance of an MCR register
715 * @gt: GT structure
716 * @reg: register to read
717 *
718 * Reads a GT MCR register.  The read will be steered to a non-terminated
719 * instance (i.e., one that isn't fused off or powered down by power gating).
720 *
721 * Context: Calls a function that takes and releases gt->mcr_lock.
722 *
723 * Returns the value from a non-terminated instance of @reg.
724 */
725u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
726{
727	int type;
728	u8 group, instance;
729
730	for (type = 0; type < NUM_STEERING_TYPES; type++) {
731		if (reg_needs_read_steering(gt, reg, type)) {
732			get_nonterminated_steering(gt, type, &group, &instance);
733			return rw_with_mcr_steering(gt, reg,
734						    FW_REG_READ,
735						    group, instance, 0);
736		}
737	}
738
739	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
740}
741
742static void report_steering_type(struct drm_printer *p,
743				 struct intel_gt *gt,
744				 enum intel_steering_type type,
745				 bool dump_table)
746{
747	const struct intel_mmio_range *entry;
748	u8 group, instance;
749
750	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
751
752	if (!gt->steering_table[type]) {
753		drm_printf(p, "%s steering: uses default steering\n",
754			   intel_steering_types[type]);
755		return;
756	}
757
758	get_nonterminated_steering(gt, type, &group, &instance);
759	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
760		   intel_steering_types[type], group, instance);
761
762	if (!dump_table)
763		return;
764
765	for (entry = gt->steering_table[type]; entry->end; entry++)
766		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
767}
768
769void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
770				  bool dump_table)
771{
772	/*
773	 * Starting with MTL we no longer have default steering;
774	 * all ranges are explicitly steered.
775	 */
776	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
777		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
778			   gt->default_steering.groupid,
779			   gt->default_steering.instanceid);
780
781	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
782		for (int i = 0; i < NUM_STEERING_TYPES; i++)
783			if (gt->steering_table[i])
784				report_steering_type(p, gt, i, dump_table);
785	} else if (HAS_MSLICE_STEERING(gt->i915)) {
786		report_steering_type(p, gt, MSLICE, dump_table);
787		report_steering_type(p, gt, LNCF, dump_table);
788	}
789}
790
791/**
792 * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
793 * @gt: GT structure
794 * @dss: DSS ID to obtain steering for
795 * @group: pointer to storage for steering group ID
796 * @instance: pointer to storage for steering instance ID
797 *
798 * Returns the steering IDs (via the @group and @instance parameters) that
799 * correspond to a specific subslice/DSS ID.
800 */
801void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
802				   unsigned int *group, unsigned int *instance)
803{
804	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 55)) {
805		*group = dss / GEN_DSS_PER_GSLICE;
806		*instance = dss % GEN_DSS_PER_GSLICE;
807	} else {
808		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
809		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
810		return;
811	}
812}
813
814/**
815 * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
816 * @gt: GT structure
817 * @reg: the register to read
818 * @mask: mask to apply to register value
819 * @value: value to wait for
820 * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
821 * @slow_timeout_ms: slow timeout in millisecond
822 *
823 * This routine waits until the target register @reg contains the expected
824 * @value after applying the @mask, i.e. it waits until ::
825 *
826 *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
827 *
828 * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
829 * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
830 * must be not larger than 20,0000 microseconds.
831 *
832 * This function is basically an MCR-friendly version of
833 * __intel_wait_for_register_fw().  Generally this function will only be used
834 * on GAM registers which are a bit special --- although they're MCR registers,
835 * reads (e.g., waiting for status updates) are always directed to the primary
836 * instance.
837 *
838 * Note that this routine assumes the caller holds forcewake asserted, it is
839 * not suitable for very long waits.
840 *
841 * Context: Calls a function that takes and releases gt->mcr_lock
842 * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
843 */
844int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
845			      i915_mcr_reg_t reg,
846			      u32 mask,
847			      u32 value,
848			      unsigned int fast_timeout_us,
849			      unsigned int slow_timeout_ms)
850{
851	int ret;
852
853	lockdep_assert_not_held(&gt->mcr_lock);
854
855#define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
856
857	/* Catch any overuse of this function */
858	might_sleep_if(slow_timeout_ms);
859	GEM_BUG_ON(fast_timeout_us > 20000);
860	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
861
862	ret = -ETIMEDOUT;
863	if (fast_timeout_us && fast_timeout_us <= 20000)
864		ret = _wait_for_atomic(done, fast_timeout_us, 0);
865	if (ret && slow_timeout_ms)
866		ret = wait_for(done, slow_timeout_ms);
867
868	return ret;
869#undef done
870}