Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * property.c - Unified device property interface.
   3 *
   4 * Copyright (C) 2014, Intel Corporation
   5 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   6 *          Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/acpi.h>
 
  14#include <linux/export.h>
  15#include <linux/kernel.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/property.h>
  19#include <linux/etherdevice.h>
  20#include <linux/phy.h>
 
 
 
  21
  22static inline bool is_pset_node(struct fwnode_handle *fwnode)
  23{
  24	return !IS_ERR_OR_NULL(fwnode) && fwnode->type == FWNODE_PDATA;
  25}
  26
  27static inline struct property_set *to_pset_node(struct fwnode_handle *fwnode)
  28{
  29	return is_pset_node(fwnode) ?
  30		container_of(fwnode, struct property_set, fwnode) : NULL;
  31}
  32
  33static struct property_entry *pset_prop_get(struct property_set *pset,
  34					    const char *name)
  35{
  36	struct property_entry *prop;
  37
  38	if (!pset || !pset->properties)
  39		return NULL;
  40
  41	for (prop = pset->properties; prop->name; prop++)
  42		if (!strcmp(name, prop->name))
  43			return prop;
  44
  45	return NULL;
  46}
  47
  48static void *pset_prop_find(struct property_set *pset, const char *propname,
  49			    size_t length)
  50{
  51	struct property_entry *prop;
  52	void *pointer;
  53
  54	prop = pset_prop_get(pset, propname);
  55	if (!prop)
  56		return ERR_PTR(-EINVAL);
  57	if (prop->is_array)
  58		pointer = prop->pointer.raw_data;
  59	else
  60		pointer = &prop->value.raw_data;
  61	if (!pointer)
  62		return ERR_PTR(-ENODATA);
  63	if (length > prop->length)
  64		return ERR_PTR(-EOVERFLOW);
  65	return pointer;
  66}
  67
  68static int pset_prop_read_u8_array(struct property_set *pset,
  69				   const char *propname,
  70				   u8 *values, size_t nval)
  71{
  72	void *pointer;
  73	size_t length = nval * sizeof(*values);
  74
  75	pointer = pset_prop_find(pset, propname, length);
  76	if (IS_ERR(pointer))
  77		return PTR_ERR(pointer);
  78
  79	memcpy(values, pointer, length);
  80	return 0;
  81}
  82
  83static int pset_prop_read_u16_array(struct property_set *pset,
  84				    const char *propname,
  85				    u16 *values, size_t nval)
  86{
  87	void *pointer;
  88	size_t length = nval * sizeof(*values);
  89
  90	pointer = pset_prop_find(pset, propname, length);
  91	if (IS_ERR(pointer))
  92		return PTR_ERR(pointer);
  93
  94	memcpy(values, pointer, length);
  95	return 0;
  96}
  97
  98static int pset_prop_read_u32_array(struct property_set *pset,
  99				    const char *propname,
 100				    u32 *values, size_t nval)
 101{
 102	void *pointer;
 103	size_t length = nval * sizeof(*values);
 104
 105	pointer = pset_prop_find(pset, propname, length);
 106	if (IS_ERR(pointer))
 107		return PTR_ERR(pointer);
 108
 109	memcpy(values, pointer, length);
 110	return 0;
 111}
 112
 113static int pset_prop_read_u64_array(struct property_set *pset,
 114				    const char *propname,
 115				    u64 *values, size_t nval)
 116{
 117	void *pointer;
 118	size_t length = nval * sizeof(*values);
 119
 120	pointer = pset_prop_find(pset, propname, length);
 121	if (IS_ERR(pointer))
 122		return PTR_ERR(pointer);
 123
 124	memcpy(values, pointer, length);
 125	return 0;
 126}
 127
 128static int pset_prop_count_elems_of_size(struct property_set *pset,
 129					 const char *propname, size_t length)
 130{
 131	struct property_entry *prop;
 132
 133	prop = pset_prop_get(pset, propname);
 134	if (!prop)
 135		return -EINVAL;
 136
 137	return prop->length / length;
 138}
 139
 140static int pset_prop_read_string_array(struct property_set *pset,
 141				       const char *propname,
 142				       const char **strings, size_t nval)
 143{
 144	void *pointer;
 145	size_t length = nval * sizeof(*strings);
 146
 147	pointer = pset_prop_find(pset, propname, length);
 148	if (IS_ERR(pointer))
 149		return PTR_ERR(pointer);
 150
 151	memcpy(strings, pointer, length);
 152	return 0;
 153}
 154
 155static int pset_prop_read_string(struct property_set *pset,
 156				 const char *propname, const char **strings)
 157{
 158	struct property_entry *prop;
 159	const char **pointer;
 160
 161	prop = pset_prop_get(pset, propname);
 162	if (!prop)
 163		return -EINVAL;
 164	if (!prop->is_string)
 165		return -EILSEQ;
 166	if (prop->is_array) {
 167		pointer = prop->pointer.str;
 168		if (!pointer)
 169			return -ENODATA;
 170	} else {
 171		pointer = &prop->value.str;
 172		if (*pointer && strnlen(*pointer, prop->length) >= prop->length)
 173			return -EILSEQ;
 174	}
 175
 176	*strings = *pointer;
 177	return 0;
 178}
 
 179
 180static inline struct fwnode_handle *dev_fwnode(struct device *dev)
 181{
 182	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
 183		&dev->of_node->fwnode : dev->fwnode;
 184}
 
 185
 186/**
 187 * device_property_present - check if a property of a device is present
 188 * @dev: Device whose property is being checked
 189 * @propname: Name of the property
 190 *
 191 * Check if property @propname is present in the device firmware description.
 
 
 192 */
 193bool device_property_present(struct device *dev, const char *propname)
 194{
 195	return fwnode_property_present(dev_fwnode(dev), propname);
 196}
 197EXPORT_SYMBOL_GPL(device_property_present);
 198
 199static bool __fwnode_property_present(struct fwnode_handle *fwnode,
 200				      const char *propname)
 201{
 202	if (is_of_node(fwnode))
 203		return of_property_read_bool(to_of_node(fwnode), propname);
 204	else if (is_acpi_node(fwnode))
 205		return !acpi_node_prop_get(fwnode, propname, NULL);
 206	else if (is_pset_node(fwnode))
 207		return !!pset_prop_get(to_pset_node(fwnode), propname);
 208	return false;
 209}
 210
 211/**
 212 * fwnode_property_present - check if a property of a firmware node is present
 213 * @fwnode: Firmware node whose property to check
 214 * @propname: Name of the property
 
 
 215 */
 216bool fwnode_property_present(struct fwnode_handle *fwnode, const char *propname)
 
 217{
 218	bool ret;
 219
 220	ret = __fwnode_property_present(fwnode, propname);
 221	if (ret == false && !IS_ERR_OR_NULL(fwnode) &&
 222	    !IS_ERR_OR_NULL(fwnode->secondary))
 223		ret = __fwnode_property_present(fwnode->secondary, propname);
 224	return ret;
 
 
 
 225}
 226EXPORT_SYMBOL_GPL(fwnode_property_present);
 227
 228/**
 229 * device_property_read_u8_array - return a u8 array property of a device
 230 * @dev: Device to get the property of
 231 * @propname: Name of the property
 232 * @val: The values are stored here or %NULL to return the number of values
 233 * @nval: Size of the @val array
 234 *
 235 * Function reads an array of u8 properties with @propname from the device
 236 * firmware description and stores them to @val if found.
 237 *
 
 
 
 238 * Return: number of values if @val was %NULL,
 239 *         %0 if the property was found (success),
 240 *	   %-EINVAL if given arguments are not valid,
 241 *	   %-ENODATA if the property does not have a value,
 242 *	   %-EPROTO if the property is not an array of numbers,
 243 *	   %-EOVERFLOW if the size of the property is not as expected.
 244 *	   %-ENXIO if no suitable firmware interface is present.
 245 */
 246int device_property_read_u8_array(struct device *dev, const char *propname,
 247				  u8 *val, size_t nval)
 248{
 249	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
 250}
 251EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 252
 253/**
 254 * device_property_read_u16_array - return a u16 array property of a device
 255 * @dev: Device to get the property of
 256 * @propname: Name of the property
 257 * @val: The values are stored here or %NULL to return the number of values
 258 * @nval: Size of the @val array
 259 *
 260 * Function reads an array of u16 properties with @propname from the device
 261 * firmware description and stores them to @val if found.
 262 *
 
 
 
 263 * Return: number of values if @val was %NULL,
 264 *         %0 if the property was found (success),
 265 *	   %-EINVAL if given arguments are not valid,
 266 *	   %-ENODATA if the property does not have a value,
 267 *	   %-EPROTO if the property is not an array of numbers,
 268 *	   %-EOVERFLOW if the size of the property is not as expected.
 269 *	   %-ENXIO if no suitable firmware interface is present.
 270 */
 271int device_property_read_u16_array(struct device *dev, const char *propname,
 272				   u16 *val, size_t nval)
 273{
 274	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 275}
 276EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 277
 278/**
 279 * device_property_read_u32_array - return a u32 array property of a device
 280 * @dev: Device to get the property of
 281 * @propname: Name of the property
 282 * @val: The values are stored here or %NULL to return the number of values
 283 * @nval: Size of the @val array
 284 *
 285 * Function reads an array of u32 properties with @propname from the device
 286 * firmware description and stores them to @val if found.
 287 *
 
 
 
 288 * Return: number of values if @val was %NULL,
 289 *         %0 if the property was found (success),
 290 *	   %-EINVAL if given arguments are not valid,
 291 *	   %-ENODATA if the property does not have a value,
 292 *	   %-EPROTO if the property is not an array of numbers,
 293 *	   %-EOVERFLOW if the size of the property is not as expected.
 294 *	   %-ENXIO if no suitable firmware interface is present.
 295 */
 296int device_property_read_u32_array(struct device *dev, const char *propname,
 297				   u32 *val, size_t nval)
 298{
 299	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 300}
 301EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 302
 303/**
 304 * device_property_read_u64_array - return a u64 array property of a device
 305 * @dev: Device to get the property of
 306 * @propname: Name of the property
 307 * @val: The values are stored here or %NULL to return the number of values
 308 * @nval: Size of the @val array
 309 *
 310 * Function reads an array of u64 properties with @propname from the device
 311 * firmware description and stores them to @val if found.
 312 *
 
 
 
 313 * Return: number of values if @val was %NULL,
 314 *         %0 if the property was found (success),
 315 *	   %-EINVAL if given arguments are not valid,
 316 *	   %-ENODATA if the property does not have a value,
 317 *	   %-EPROTO if the property is not an array of numbers,
 318 *	   %-EOVERFLOW if the size of the property is not as expected.
 319 *	   %-ENXIO if no suitable firmware interface is present.
 320 */
 321int device_property_read_u64_array(struct device *dev, const char *propname,
 322				   u64 *val, size_t nval)
 323{
 324	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 325}
 326EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 327
 328/**
 329 * device_property_read_string_array - return a string array property of device
 330 * @dev: Device to get the property of
 331 * @propname: Name of the property
 332 * @val: The values are stored here or %NULL to return the number of values
 333 * @nval: Size of the @val array
 334 *
 335 * Function reads an array of string properties with @propname from the device
 336 * firmware description and stores them to @val if found.
 337 *
 338 * Return: number of values if @val was %NULL,
 339 *         %0 if the property was found (success),
 
 
 
 340 *	   %-EINVAL if given arguments are not valid,
 341 *	   %-ENODATA if the property does not have a value,
 342 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 343 *	   %-EOVERFLOW if the size of the property is not as expected.
 344 *	   %-ENXIO if no suitable firmware interface is present.
 345 */
 346int device_property_read_string_array(struct device *dev, const char *propname,
 347				      const char **val, size_t nval)
 348{
 349	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 350}
 351EXPORT_SYMBOL_GPL(device_property_read_string_array);
 352
 353/**
 354 * device_property_read_string - return a string property of a device
 355 * @dev: Device to get the property of
 356 * @propname: Name of the property
 357 * @val: The value is stored here
 358 *
 359 * Function reads property @propname from the device firmware description and
 360 * stores the value into @val if found. The value is checked to be a string.
 361 *
 362 * Return: %0 if the property was found (success),
 363 *	   %-EINVAL if given arguments are not valid,
 364 *	   %-ENODATA if the property does not have a value,
 365 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 366 *	   %-ENXIO if no suitable firmware interface is present.
 367 */
 368int device_property_read_string(struct device *dev, const char *propname,
 369				const char **val)
 370{
 371	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 372}
 373EXPORT_SYMBOL_GPL(device_property_read_string);
 374
 375/**
 376 * device_property_match_string - find a string in an array and return index
 377 * @dev: Device to get the property of
 378 * @propname: Name of the property holding the array
 379 * @string: String to look for
 380 *
 381 * Find a given string in a string array and if it is found return the
 382 * index back.
 383 *
 384 * Return: %0 if the property was found (success),
 385 *	   %-EINVAL if given arguments are not valid,
 386 *	   %-ENODATA if the property does not have a value,
 387 *	   %-EPROTO if the property is not an array of strings,
 388 *	   %-ENXIO if no suitable firmware interface is present.
 389 */
 390int device_property_match_string(struct device *dev, const char *propname,
 391				 const char *string)
 392{
 393	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 394}
 395EXPORT_SYMBOL_GPL(device_property_match_string);
 396
 397#define OF_DEV_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 398	(val) ? of_property_read_##type##_array((node), (propname), (val), (nval))	\
 399	      : of_property_count_elems_of_size((node), (propname), sizeof(type))
 400
 401#define PSET_PROP_READ_ARRAY(node, propname, type, val, nval)				\
 402	(val) ? pset_prop_read_##type##_array((node), (propname), (val), (nval))	\
 403	      : pset_prop_count_elems_of_size((node), (propname), sizeof(type))
 404
 405#define FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 406({											\
 407	int _ret_;									\
 408	if (is_of_node(_fwnode_))							\
 409		_ret_ = OF_DEV_PROP_READ_ARRAY(to_of_node(_fwnode_), _propname_,	\
 410					       _type_, _val_, _nval_);			\
 411	else if (is_acpi_node(_fwnode_))						\
 412		_ret_ = acpi_node_prop_read(_fwnode_, _propname_, _proptype_,		\
 413					    _val_, _nval_);				\
 414	else if (is_pset_node(_fwnode_)) 						\
 415		_ret_ = PSET_PROP_READ_ARRAY(to_pset_node(_fwnode_), _propname_,	\
 416					     _type_, _val_, _nval_);			\
 417	else										\
 418		_ret_ = -ENXIO;								\
 419	_ret_;										\
 420})
 421
 422#define FWNODE_PROP_READ_ARRAY(_fwnode_, _propname_, _type_, _proptype_, _val_, _nval_)	\
 423({											\
 424	int _ret_;									\
 425	_ret_ = FWNODE_PROP_READ(_fwnode_, _propname_, _type_, _proptype_,		\
 426				 _val_, _nval_);					\
 427	if (_ret_ == -EINVAL && !IS_ERR_OR_NULL(_fwnode_) &&				\
 428	    !IS_ERR_OR_NULL(_fwnode_->secondary))					\
 429		_ret_ = FWNODE_PROP_READ(_fwnode_->secondary, _propname_, _type_,	\
 430				_proptype_, _val_, _nval_);				\
 431	_ret_;										\
 432})
 433
 434/**
 435 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 436 * @fwnode: Firmware node to get the property of
 437 * @propname: Name of the property
 438 * @val: The values are stored here or %NULL to return the number of values
 439 * @nval: Size of the @val array
 440 *
 441 * Read an array of u8 properties with @propname from @fwnode and stores them to
 442 * @val if found.
 443 *
 
 
 
 444 * Return: number of values if @val was %NULL,
 445 *         %0 if the property was found (success),
 446 *	   %-EINVAL if given arguments are not valid,
 447 *	   %-ENODATA if the property does not have a value,
 448 *	   %-EPROTO if the property is not an array of numbers,
 449 *	   %-EOVERFLOW if the size of the property is not as expected,
 450 *	   %-ENXIO if no suitable firmware interface is present.
 451 */
 452int fwnode_property_read_u8_array(struct fwnode_handle *fwnode,
 453				  const char *propname, u8 *val, size_t nval)
 454{
 455	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u8, DEV_PROP_U8,
 456				      val, nval);
 457}
 458EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 459
 460/**
 461 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 462 * @fwnode: Firmware node to get the property of
 463 * @propname: Name of the property
 464 * @val: The values are stored here or %NULL to return the number of values
 465 * @nval: Size of the @val array
 466 *
 467 * Read an array of u16 properties with @propname from @fwnode and store them to
 468 * @val if found.
 469 *
 
 
 
 470 * Return: number of values if @val was %NULL,
 471 *         %0 if the property was found (success),
 472 *	   %-EINVAL if given arguments are not valid,
 473 *	   %-ENODATA if the property does not have a value,
 474 *	   %-EPROTO if the property is not an array of numbers,
 475 *	   %-EOVERFLOW if the size of the property is not as expected,
 476 *	   %-ENXIO if no suitable firmware interface is present.
 477 */
 478int fwnode_property_read_u16_array(struct fwnode_handle *fwnode,
 479				   const char *propname, u16 *val, size_t nval)
 480{
 481	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u16, DEV_PROP_U16,
 482				      val, nval);
 483}
 484EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 485
 486/**
 487 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 488 * @fwnode: Firmware node to get the property of
 489 * @propname: Name of the property
 490 * @val: The values are stored here or %NULL to return the number of values
 491 * @nval: Size of the @val array
 492 *
 493 * Read an array of u32 properties with @propname from @fwnode store them to
 494 * @val if found.
 495 *
 
 
 
 496 * Return: number of values if @val was %NULL,
 497 *         %0 if the property was found (success),
 498 *	   %-EINVAL if given arguments are not valid,
 499 *	   %-ENODATA if the property does not have a value,
 500 *	   %-EPROTO if the property is not an array of numbers,
 501 *	   %-EOVERFLOW if the size of the property is not as expected,
 502 *	   %-ENXIO if no suitable firmware interface is present.
 503 */
 504int fwnode_property_read_u32_array(struct fwnode_handle *fwnode,
 505				   const char *propname, u32 *val, size_t nval)
 506{
 507	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u32, DEV_PROP_U32,
 508				      val, nval);
 509}
 510EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 511
 512/**
 513 * fwnode_property_read_u64_array - return a u64 array property firmware node
 514 * @fwnode: Firmware node to get the property of
 515 * @propname: Name of the property
 516 * @val: The values are stored here or %NULL to return the number of values
 517 * @nval: Size of the @val array
 518 *
 519 * Read an array of u64 properties with @propname from @fwnode and store them to
 520 * @val if found.
 521 *
 
 
 
 522 * Return: number of values if @val was %NULL,
 523 *         %0 if the property was found (success),
 524 *	   %-EINVAL if given arguments are not valid,
 525 *	   %-ENODATA if the property does not have a value,
 526 *	   %-EPROTO if the property is not an array of numbers,
 527 *	   %-EOVERFLOW if the size of the property is not as expected,
 528 *	   %-ENXIO if no suitable firmware interface is present.
 529 */
 530int fwnode_property_read_u64_array(struct fwnode_handle *fwnode,
 531				   const char *propname, u64 *val, size_t nval)
 532{
 533	return FWNODE_PROP_READ_ARRAY(fwnode, propname, u64, DEV_PROP_U64,
 534				      val, nval);
 535}
 536EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 537
 538static int __fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 539					       const char *propname,
 540					       const char **val, size_t nval)
 541{
 542	if (is_of_node(fwnode))
 543		return val ?
 544			of_property_read_string_array(to_of_node(fwnode),
 545						      propname, val, nval) :
 546			of_property_count_strings(to_of_node(fwnode), propname);
 547	else if (is_acpi_node(fwnode))
 548		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 549					   val, nval);
 550	else if (is_pset_node(fwnode))
 551		return val ?
 552			pset_prop_read_string_array(to_pset_node(fwnode),
 553						    propname, val, nval) :
 554			pset_prop_count_elems_of_size(to_pset_node(fwnode),
 555						      propname,
 556						      sizeof(const char *));
 557	return -ENXIO;
 558}
 559
 560static int __fwnode_property_read_string(struct fwnode_handle *fwnode,
 561					 const char *propname, const char **val)
 562{
 563	if (is_of_node(fwnode))
 564		return of_property_read_string(to_of_node(fwnode), propname, val);
 565	else if (is_acpi_node(fwnode))
 566		return acpi_node_prop_read(fwnode, propname, DEV_PROP_STRING,
 567					   val, 1);
 568	else if (is_pset_node(fwnode))
 569		return pset_prop_read_string(to_pset_node(fwnode), propname, val);
 570	return -ENXIO;
 571}
 572
 573/**
 574 * fwnode_property_read_string_array - return string array property of a node
 575 * @fwnode: Firmware node to get the property of
 576 * @propname: Name of the property
 577 * @val: The values are stored here or %NULL to return the number of values
 578 * @nval: Size of the @val array
 579 *
 580 * Read an string list property @propname from the given firmware node and store
 581 * them to @val if found.
 582 *
 583 * Return: number of values if @val was %NULL,
 584 *         %0 if the property was found (success),
 
 
 
 585 *	   %-EINVAL if given arguments are not valid,
 586 *	   %-ENODATA if the property does not have a value,
 587 *	   %-EPROTO if the property is not an array of strings,
 588 *	   %-EOVERFLOW if the size of the property is not as expected,
 589 *	   %-ENXIO if no suitable firmware interface is present.
 590 */
 591int fwnode_property_read_string_array(struct fwnode_handle *fwnode,
 592				      const char *propname, const char **val,
 593				      size_t nval)
 594{
 595	int ret;
 596
 597	ret = __fwnode_property_read_string_array(fwnode, propname, val, nval);
 598	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 599	    !IS_ERR_OR_NULL(fwnode->secondary))
 600		ret = __fwnode_property_read_string_array(fwnode->secondary,
 601							  propname, val, nval);
 602	return ret;
 
 
 
 
 603}
 604EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 605
 606/**
 607 * fwnode_property_read_string - return a string property of a firmware node
 608 * @fwnode: Firmware node to get the property of
 609 * @propname: Name of the property
 610 * @val: The value is stored here
 611 *
 612 * Read property @propname from the given firmware node and store the value into
 613 * @val if found.  The value is checked to be a string.
 614 *
 615 * Return: %0 if the property was found (success),
 616 *	   %-EINVAL if given arguments are not valid,
 617 *	   %-ENODATA if the property does not have a value,
 618 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 619 *	   %-ENXIO if no suitable firmware interface is present.
 620 */
 621int fwnode_property_read_string(struct fwnode_handle *fwnode,
 622				const char *propname, const char **val)
 623{
 624	int ret;
 625
 626	ret = __fwnode_property_read_string(fwnode, propname, val);
 627	if (ret == -EINVAL && !IS_ERR_OR_NULL(fwnode) &&
 628	    !IS_ERR_OR_NULL(fwnode->secondary))
 629		ret = __fwnode_property_read_string(fwnode->secondary,
 630						    propname, val);
 631	return ret;
 632}
 633EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 634
 635/**
 636 * fwnode_property_match_string - find a string in an array and return index
 637 * @fwnode: Firmware node to get the property of
 638 * @propname: Name of the property holding the array
 639 * @string: String to look for
 640 *
 641 * Find a given string in a string array and if it is found return the
 642 * index back.
 643 *
 644 * Return: %0 if the property was found (success),
 645 *	   %-EINVAL if given arguments are not valid,
 646 *	   %-ENODATA if the property does not have a value,
 647 *	   %-EPROTO if the property is not an array of strings,
 648 *	   %-ENXIO if no suitable firmware interface is present.
 649 */
 650int fwnode_property_match_string(struct fwnode_handle *fwnode,
 651	const char *propname, const char *string)
 652{
 653	const char **values;
 654	int nval, ret;
 655
 656	nval = fwnode_property_read_string_array(fwnode, propname, NULL, 0);
 657	if (nval < 0)
 658		return nval;
 659
 660	if (nval == 0)
 661		return -ENODATA;
 662
 663	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 664	if (!values)
 665		return -ENOMEM;
 666
 667	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 668	if (ret < 0)
 669		goto out;
 670
 671	ret = match_string(values, nval, string);
 672	if (ret < 0)
 673		ret = -ENODATA;
 674out:
 
 675	kfree(values);
 676	return ret;
 677}
 678EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 679
 680/**
 681 * pset_free_set - releases memory allocated for copied property set
 682 * @pset: Property set to release
 
 
 
 
 
 
 683 *
 684 * Function takes previously copied property set and releases all the
 685 * memory allocated to it.
 
 
 
 
 686 */
 687static void pset_free_set(struct property_set *pset)
 
 688{
 689	const struct property_entry *prop;
 690	size_t i, nval;
 691
 692	if (!pset)
 693		return;
 694
 695	for (prop = pset->properties; prop->name; prop++) {
 696		if (prop->is_array) {
 697			if (prop->is_string && prop->pointer.str) {
 698				nval = prop->length / sizeof(const char *);
 699				for (i = 0; i < nval; i++)
 700					kfree(prop->pointer.str[i]);
 701			}
 702			kfree(prop->pointer.raw_data);
 703		} else if (prop->is_string) {
 704			kfree(prop->value.str);
 705		}
 706		kfree(prop->name);
 707	}
 708
 709	kfree(pset->properties);
 710	kfree(pset);
 
 
 
 
 
 
 
 711}
 
 712
 713static int pset_copy_entry(struct property_entry *dst,
 714			   const struct property_entry *src)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715{
 716	const char **d, **s;
 717	size_t i, nval;
 718
 719	dst->name = kstrdup(src->name, GFP_KERNEL);
 720	if (!dst->name)
 721		return -ENOMEM;
 722
 723	if (src->is_array) {
 724		if (!src->length)
 725			return -ENODATA;
 726
 727		if (src->is_string) {
 728			nval = src->length / sizeof(const char *);
 729			dst->pointer.str = kcalloc(nval, sizeof(const char *),
 730						   GFP_KERNEL);
 731			if (!dst->pointer.str)
 732				return -ENOMEM;
 733
 734			d = dst->pointer.str;
 735			s = src->pointer.str;
 736			for (i = 0; i < nval; i++) {
 737				d[i] = kstrdup(s[i], GFP_KERNEL);
 738				if (!d[i] && s[i])
 739					return -ENOMEM;
 740			}
 741		} else {
 742			dst->pointer.raw_data = kmemdup(src->pointer.raw_data,
 743							src->length, GFP_KERNEL);
 744			if (!dst->pointer.raw_data)
 745				return -ENOMEM;
 746		}
 747	} else if (src->is_string) {
 748		dst->value.str = kstrdup(src->value.str, GFP_KERNEL);
 749		if (!dst->value.str && src->value.str)
 750			return -ENOMEM;
 751	} else {
 752		dst->value.raw_data = src->value.raw_data;
 753	}
 754
 755	dst->length = src->length;
 756	dst->is_array = src->is_array;
 757	dst->is_string = src->is_string;
 758
 759	return 0;
 
 760}
 
 761
 762/**
 763 * pset_copy_set - copies property set
 764 * @pset: Property set to copy
 
 
 
 
 
 
 
 765 *
 766 * This function takes a deep copy of the given property set and returns
 767 * pointer to the copy. Call device_free_property_set() to free resources
 768 * allocated in this function.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 769 *
 770 * Return: Pointer to the new property set or error pointer.
 771 */
 772static struct property_set *pset_copy_set(const struct property_set *pset)
 773{
 774	const struct property_entry *entry;
 775	struct property_set *p;
 776	size_t i, n = 0;
 777
 778	p = kzalloc(sizeof(*p), GFP_KERNEL);
 779	if (!p)
 780		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 781
 782	while (pset->properties[n].name)
 783		n++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 784
 785	p->properties = kcalloc(n + 1, sizeof(*entry), GFP_KERNEL);
 786	if (!p->properties) {
 787		kfree(p);
 788		return ERR_PTR(-ENOMEM);
 789	}
 790
 791	for (i = 0; i < n; i++) {
 792		int ret = pset_copy_entry(&p->properties[i],
 793					  &pset->properties[i]);
 794		if (ret) {
 795			pset_free_set(p);
 796			return ERR_PTR(ret);
 797		}
 798	}
 799
 800	return p;
 801}
 
 802
 803/**
 804 * device_remove_property_set - Remove properties from a device object.
 805 * @dev: Device whose properties to remove.
 806 *
 807 * The function removes properties previously associated to the device
 808 * secondary firmware node with device_add_property_set(). Memory allocated
 809 * to the properties will also be released.
 
 
 810 */
 811void device_remove_property_set(struct device *dev)
 812{
 813	struct fwnode_handle *fwnode;
 
 
 814
 815	fwnode = dev_fwnode(dev);
 816	if (!fwnode)
 817		return;
 818	/*
 819	 * Pick either primary or secondary node depending which one holds
 820	 * the pset. If there is no real firmware node (ACPI/DT) primary
 821	 * will hold the pset.
 822	 */
 823	if (is_pset_node(fwnode)) {
 824		set_primary_fwnode(dev, NULL);
 825		pset_free_set(to_pset_node(fwnode));
 826	} else {
 827		fwnode = fwnode->secondary;
 828		if (!IS_ERR(fwnode) && is_pset_node(fwnode)) {
 829			set_secondary_fwnode(dev, NULL);
 830			pset_free_set(to_pset_node(fwnode));
 831		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832	}
 
 833}
 834EXPORT_SYMBOL_GPL(device_remove_property_set);
 835
 836/**
 837 * device_add_property_set - Add a collection of properties to a device object.
 838 * @dev: Device to add properties to.
 839 * @pset: Collection of properties to add.
 840 *
 841 * Associate a collection of device properties represented by @pset with @dev
 842 * as its secondary firmware node. The function takes a copy of @pset.
 
 843 */
 844int device_add_property_set(struct device *dev, const struct property_set *pset)
 
 
 845{
 846	struct property_set *p;
 
 
 847
 848	if (!pset)
 849		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850
 851	p = pset_copy_set(pset);
 852	if (IS_ERR(p))
 853		return PTR_ERR(p);
 854
 855	p->fwnode.type = FWNODE_PDATA;
 856	set_secondary_fwnode(dev, &p->fwnode);
 857	return 0;
 858}
 859EXPORT_SYMBOL_GPL(device_add_property_set);
 860
 861/**
 862 * device_get_next_child_node - Return the next child node handle for a device
 863 * @dev: Device to find the next child node for.
 864 * @child: Handle to one of the device's child nodes or a null handle.
 
 
 
 
 865 */
 866struct fwnode_handle *device_get_next_child_node(struct device *dev,
 867						 struct fwnode_handle *child)
 868{
 869	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 870		struct device_node *node;
 871
 872		node = of_get_next_available_child(dev->of_node, to_of_node(child));
 873		if (node)
 874			return &node->fwnode;
 875	} else if (IS_ENABLED(CONFIG_ACPI)) {
 876		return acpi_get_next_subnode(dev, child);
 877	}
 878	return NULL;
 
 
 
 879}
 880EXPORT_SYMBOL_GPL(device_get_next_child_node);
 881
 882/**
 883 * fwnode_handle_put - Drop reference to a device node
 884 * @fwnode: Pointer to the device node to drop the reference to.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885 *
 886 * This has to be used when terminating device_for_each_child_node() iteration
 887 * with break or return to prevent stale device node references from being left
 888 * behind.
 
 889 */
 890void fwnode_handle_put(struct fwnode_handle *fwnode)
 891{
 892	if (is_of_node(fwnode))
 893		of_node_put(to_of_node(fwnode));
 
 
 894}
 895EXPORT_SYMBOL_GPL(fwnode_handle_put);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896
 897/**
 898 * device_get_child_node_count - return the number of child nodes for device
 899 * @dev: Device to cound the child nodes for
 
 
 900 */
 901unsigned int device_get_child_node_count(struct device *dev)
 902{
 903	struct fwnode_handle *child;
 904	unsigned int count = 0;
 905
 906	device_for_each_child_node(dev, child)
 907		count++;
 908
 909	return count;
 910}
 911EXPORT_SYMBOL_GPL(device_get_child_node_count);
 912
 913bool device_dma_supported(struct device *dev)
 914{
 915	/* For DT, this is always supported.
 916	 * For ACPI, this depends on CCA, which
 917	 * is determined by the acpi_dma_supported().
 918	 */
 919	if (IS_ENABLED(CONFIG_OF) && dev->of_node)
 920		return true;
 921
 922	return acpi_dma_supported(ACPI_COMPANION(dev));
 923}
 924EXPORT_SYMBOL_GPL(device_dma_supported);
 925
 926enum dev_dma_attr device_get_dma_attr(struct device *dev)
 927{
 928	enum dev_dma_attr attr = DEV_DMA_NOT_SUPPORTED;
 929
 930	if (IS_ENABLED(CONFIG_OF) && dev->of_node) {
 931		if (of_dma_is_coherent(dev->of_node))
 932			attr = DEV_DMA_COHERENT;
 933		else
 934			attr = DEV_DMA_NON_COHERENT;
 935	} else
 936		attr = acpi_get_dma_attr(ACPI_COMPANION(dev));
 937
 938	return attr;
 939}
 940EXPORT_SYMBOL_GPL(device_get_dma_attr);
 941
 942/**
 943 * device_get_phy_mode - Get phy mode for given device
 944 * @dev:	Pointer to the given device
 945 *
 946 * The function gets phy interface string from property 'phy-mode' or
 947 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 948 * error case.
 949 */
 950int device_get_phy_mode(struct device *dev)
 951{
 952	const char *pm;
 953	int err, i;
 954
 955	err = device_property_read_string(dev, "phy-mode", &pm);
 956	if (err < 0)
 957		err = device_property_read_string(dev,
 958						  "phy-connection-type", &pm);
 959	if (err < 0)
 960		return err;
 961
 962	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 963		if (!strcasecmp(pm, phy_modes(i)))
 964			return i;
 965
 966	return -ENODEV;
 967}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 968EXPORT_SYMBOL_GPL(device_get_phy_mode);
 969
 970static void *device_get_mac_addr(struct device *dev,
 971				 const char *name, char *addr,
 972				 int alen)
 
 
 
 
 
 973{
 974	int ret = device_property_read_u8_array(dev, name, addr, alen);
 
 
 975
 976	if (ret == 0 && alen == ETH_ALEN && is_valid_ether_addr(addr))
 977		return addr;
 978	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979}
 
 980
 981/**
 982 * device_get_mac_address - Get the MAC for a given device
 983 * @dev:	Pointer to the device
 984 * @addr:	Address of buffer to store the MAC in
 985 * @alen:	Length of the buffer pointed to by addr, should be ETH_ALEN
 986 *
 987 * Search the firmware node for the best MAC address to use.  'mac-address' is
 988 * checked first, because that is supposed to contain to "most recent" MAC
 989 * address. If that isn't set, then 'local-mac-address' is checked next,
 990 * because that is the default address.  If that isn't set, then the obsolete
 991 * 'address' is checked, just in case we're using an old device tree.
 992 *
 993 * Note that the 'address' property is supposed to contain a virtual address of
 994 * the register set, but some DTS files have redefined that property to be the
 995 * MAC address.
 996 *
 997 * All-zero MAC addresses are rejected, because those could be properties that
 998 * exist in the firmware tables, but were not updated by the firmware.  For
 999 * example, the DTS could define 'mac-address' and 'local-mac-address', with
1000 * zero MAC addresses.  Some older U-Boots only initialized 'local-mac-address'.
1001 * In this case, the real MAC is in 'local-mac-address', and 'mac-address'
1002 * exists but is all zeros.
1003*/
1004void *device_get_mac_address(struct device *dev, char *addr, int alen)
1005{
1006	char *res;
1007
1008	res = device_get_mac_addr(dev, "mac-address", addr, alen);
1009	if (res)
1010		return res;
1011
1012	res = device_get_mac_addr(dev, "local-mac-address", addr, alen);
1013	if (res)
1014		return res;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016	return device_get_mac_addr(dev, "address", addr, alen);
1017}
1018EXPORT_SYMBOL(device_get_mac_address);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * property.c - Unified device property interface.
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Authors: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
   7 *          Mika Westerberg <mika.westerberg@linux.intel.com>
 
 
 
 
   8 */
   9
  10#include <linux/device.h>
  11#include <linux/err.h>
  12#include <linux/export.h>
  13#include <linux/kconfig.h>
  14#include <linux/of.h>
 
  15#include <linux/property.h>
 
  16#include <linux/phy.h>
  17#include <linux/slab.h>
  18#include <linux/string.h>
  19#include <linux/types.h>
  20
  21struct fwnode_handle *__dev_fwnode(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  22{
  23	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  24		of_fwnode_handle(dev->of_node) : dev->fwnode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  25}
  26EXPORT_SYMBOL_GPL(__dev_fwnode);
  27
  28const struct fwnode_handle *__dev_fwnode_const(const struct device *dev)
  29{
  30	return IS_ENABLED(CONFIG_OF) && dev->of_node ?
  31		of_fwnode_handle(dev->of_node) : dev->fwnode;
  32}
  33EXPORT_SYMBOL_GPL(__dev_fwnode_const);
  34
  35/**
  36 * device_property_present - check if a property of a device is present
  37 * @dev: Device whose property is being checked
  38 * @propname: Name of the property
  39 *
  40 * Check if property @propname is present in the device firmware description.
  41 *
  42 * Return: true if property @propname is present. Otherwise, returns false.
  43 */
  44bool device_property_present(const struct device *dev, const char *propname)
  45{
  46	return fwnode_property_present(dev_fwnode(dev), propname);
  47}
  48EXPORT_SYMBOL_GPL(device_property_present);
  49
 
 
 
 
 
 
 
 
 
 
 
 
  50/**
  51 * fwnode_property_present - check if a property of a firmware node is present
  52 * @fwnode: Firmware node whose property to check
  53 * @propname: Name of the property
  54 *
  55 * Return: true if property @propname is present. Otherwise, returns false.
  56 */
  57bool fwnode_property_present(const struct fwnode_handle *fwnode,
  58			     const char *propname)
  59{
  60	bool ret;
  61
  62	if (IS_ERR_OR_NULL(fwnode))
  63		return false;
  64
  65	ret = fwnode_call_bool_op(fwnode, property_present, propname);
  66	if (ret)
  67		return ret;
  68
  69	return fwnode_call_bool_op(fwnode->secondary, property_present, propname);
  70}
  71EXPORT_SYMBOL_GPL(fwnode_property_present);
  72
  73/**
  74 * device_property_read_u8_array - return a u8 array property of a device
  75 * @dev: Device to get the property of
  76 * @propname: Name of the property
  77 * @val: The values are stored here or %NULL to return the number of values
  78 * @nval: Size of the @val array
  79 *
  80 * Function reads an array of u8 properties with @propname from the device
  81 * firmware description and stores them to @val if found.
  82 *
  83 * It's recommended to call device_property_count_u8() instead of calling
  84 * this function with @val equals %NULL and @nval equals 0.
  85 *
  86 * Return: number of values if @val was %NULL,
  87 *         %0 if the property was found (success),
  88 *	   %-EINVAL if given arguments are not valid,
  89 *	   %-ENODATA if the property does not have a value,
  90 *	   %-EPROTO if the property is not an array of numbers,
  91 *	   %-EOVERFLOW if the size of the property is not as expected.
  92 *	   %-ENXIO if no suitable firmware interface is present.
  93 */
  94int device_property_read_u8_array(const struct device *dev, const char *propname,
  95				  u8 *val, size_t nval)
  96{
  97	return fwnode_property_read_u8_array(dev_fwnode(dev), propname, val, nval);
  98}
  99EXPORT_SYMBOL_GPL(device_property_read_u8_array);
 100
 101/**
 102 * device_property_read_u16_array - return a u16 array property of a device
 103 * @dev: Device to get the property of
 104 * @propname: Name of the property
 105 * @val: The values are stored here or %NULL to return the number of values
 106 * @nval: Size of the @val array
 107 *
 108 * Function reads an array of u16 properties with @propname from the device
 109 * firmware description and stores them to @val if found.
 110 *
 111 * It's recommended to call device_property_count_u16() instead of calling
 112 * this function with @val equals %NULL and @nval equals 0.
 113 *
 114 * Return: number of values if @val was %NULL,
 115 *         %0 if the property was found (success),
 116 *	   %-EINVAL if given arguments are not valid,
 117 *	   %-ENODATA if the property does not have a value,
 118 *	   %-EPROTO if the property is not an array of numbers,
 119 *	   %-EOVERFLOW if the size of the property is not as expected.
 120 *	   %-ENXIO if no suitable firmware interface is present.
 121 */
 122int device_property_read_u16_array(const struct device *dev, const char *propname,
 123				   u16 *val, size_t nval)
 124{
 125	return fwnode_property_read_u16_array(dev_fwnode(dev), propname, val, nval);
 126}
 127EXPORT_SYMBOL_GPL(device_property_read_u16_array);
 128
 129/**
 130 * device_property_read_u32_array - return a u32 array property of a device
 131 * @dev: Device to get the property of
 132 * @propname: Name of the property
 133 * @val: The values are stored here or %NULL to return the number of values
 134 * @nval: Size of the @val array
 135 *
 136 * Function reads an array of u32 properties with @propname from the device
 137 * firmware description and stores them to @val if found.
 138 *
 139 * It's recommended to call device_property_count_u32() instead of calling
 140 * this function with @val equals %NULL and @nval equals 0.
 141 *
 142 * Return: number of values if @val was %NULL,
 143 *         %0 if the property was found (success),
 144 *	   %-EINVAL if given arguments are not valid,
 145 *	   %-ENODATA if the property does not have a value,
 146 *	   %-EPROTO if the property is not an array of numbers,
 147 *	   %-EOVERFLOW if the size of the property is not as expected.
 148 *	   %-ENXIO if no suitable firmware interface is present.
 149 */
 150int device_property_read_u32_array(const struct device *dev, const char *propname,
 151				   u32 *val, size_t nval)
 152{
 153	return fwnode_property_read_u32_array(dev_fwnode(dev), propname, val, nval);
 154}
 155EXPORT_SYMBOL_GPL(device_property_read_u32_array);
 156
 157/**
 158 * device_property_read_u64_array - return a u64 array property of a device
 159 * @dev: Device to get the property of
 160 * @propname: Name of the property
 161 * @val: The values are stored here or %NULL to return the number of values
 162 * @nval: Size of the @val array
 163 *
 164 * Function reads an array of u64 properties with @propname from the device
 165 * firmware description and stores them to @val if found.
 166 *
 167 * It's recommended to call device_property_count_u64() instead of calling
 168 * this function with @val equals %NULL and @nval equals 0.
 169 *
 170 * Return: number of values if @val was %NULL,
 171 *         %0 if the property was found (success),
 172 *	   %-EINVAL if given arguments are not valid,
 173 *	   %-ENODATA if the property does not have a value,
 174 *	   %-EPROTO if the property is not an array of numbers,
 175 *	   %-EOVERFLOW if the size of the property is not as expected.
 176 *	   %-ENXIO if no suitable firmware interface is present.
 177 */
 178int device_property_read_u64_array(const struct device *dev, const char *propname,
 179				   u64 *val, size_t nval)
 180{
 181	return fwnode_property_read_u64_array(dev_fwnode(dev), propname, val, nval);
 182}
 183EXPORT_SYMBOL_GPL(device_property_read_u64_array);
 184
 185/**
 186 * device_property_read_string_array - return a string array property of device
 187 * @dev: Device to get the property of
 188 * @propname: Name of the property
 189 * @val: The values are stored here or %NULL to return the number of values
 190 * @nval: Size of the @val array
 191 *
 192 * Function reads an array of string properties with @propname from the device
 193 * firmware description and stores them to @val if found.
 194 *
 195 * It's recommended to call device_property_string_array_count() instead of calling
 196 * this function with @val equals %NULL and @nval equals 0.
 197 *
 198 * Return: number of values read on success if @val is non-NULL,
 199 *	   number of values available on success if @val is NULL,
 200 *	   %-EINVAL if given arguments are not valid,
 201 *	   %-ENODATA if the property does not have a value,
 202 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 203 *	   %-EOVERFLOW if the size of the property is not as expected.
 204 *	   %-ENXIO if no suitable firmware interface is present.
 205 */
 206int device_property_read_string_array(const struct device *dev, const char *propname,
 207				      const char **val, size_t nval)
 208{
 209	return fwnode_property_read_string_array(dev_fwnode(dev), propname, val, nval);
 210}
 211EXPORT_SYMBOL_GPL(device_property_read_string_array);
 212
 213/**
 214 * device_property_read_string - return a string property of a device
 215 * @dev: Device to get the property of
 216 * @propname: Name of the property
 217 * @val: The value is stored here
 218 *
 219 * Function reads property @propname from the device firmware description and
 220 * stores the value into @val if found. The value is checked to be a string.
 221 *
 222 * Return: %0 if the property was found (success),
 223 *	   %-EINVAL if given arguments are not valid,
 224 *	   %-ENODATA if the property does not have a value,
 225 *	   %-EPROTO or %-EILSEQ if the property type is not a string.
 226 *	   %-ENXIO if no suitable firmware interface is present.
 227 */
 228int device_property_read_string(const struct device *dev, const char *propname,
 229				const char **val)
 230{
 231	return fwnode_property_read_string(dev_fwnode(dev), propname, val);
 232}
 233EXPORT_SYMBOL_GPL(device_property_read_string);
 234
 235/**
 236 * device_property_match_string - find a string in an array and return index
 237 * @dev: Device to get the property of
 238 * @propname: Name of the property holding the array
 239 * @string: String to look for
 240 *
 241 * Find a given string in a string array and if it is found return the
 242 * index back.
 243 *
 244 * Return: index, starting from %0, if the property was found (success),
 245 *	   %-EINVAL if given arguments are not valid,
 246 *	   %-ENODATA if the property does not have a value,
 247 *	   %-EPROTO if the property is not an array of strings,
 248 *	   %-ENXIO if no suitable firmware interface is present.
 249 */
 250int device_property_match_string(const struct device *dev, const char *propname,
 251				 const char *string)
 252{
 253	return fwnode_property_match_string(dev_fwnode(dev), propname, string);
 254}
 255EXPORT_SYMBOL_GPL(device_property_match_string);
 256
 257static int fwnode_property_read_int_array(const struct fwnode_handle *fwnode,
 258					  const char *propname,
 259					  unsigned int elem_size, void *val,
 260					  size_t nval)
 261{
 262	int ret;
 263
 264	if (IS_ERR_OR_NULL(fwnode))
 265		return -EINVAL;
 266
 267	ret = fwnode_call_int_op(fwnode, property_read_int_array, propname,
 268				 elem_size, val, nval);
 269	if (ret != -EINVAL)
 270		return ret;
 271
 272	return fwnode_call_int_op(fwnode->secondary, property_read_int_array, propname,
 273				  elem_size, val, nval);
 274}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275
 276/**
 277 * fwnode_property_read_u8_array - return a u8 array property of firmware node
 278 * @fwnode: Firmware node to get the property of
 279 * @propname: Name of the property
 280 * @val: The values are stored here or %NULL to return the number of values
 281 * @nval: Size of the @val array
 282 *
 283 * Read an array of u8 properties with @propname from @fwnode and stores them to
 284 * @val if found.
 285 *
 286 * It's recommended to call fwnode_property_count_u8() instead of calling
 287 * this function with @val equals %NULL and @nval equals 0.
 288 *
 289 * Return: number of values if @val was %NULL,
 290 *         %0 if the property was found (success),
 291 *	   %-EINVAL if given arguments are not valid,
 292 *	   %-ENODATA if the property does not have a value,
 293 *	   %-EPROTO if the property is not an array of numbers,
 294 *	   %-EOVERFLOW if the size of the property is not as expected,
 295 *	   %-ENXIO if no suitable firmware interface is present.
 296 */
 297int fwnode_property_read_u8_array(const struct fwnode_handle *fwnode,
 298				  const char *propname, u8 *val, size_t nval)
 299{
 300	return fwnode_property_read_int_array(fwnode, propname, sizeof(u8),
 301					      val, nval);
 302}
 303EXPORT_SYMBOL_GPL(fwnode_property_read_u8_array);
 304
 305/**
 306 * fwnode_property_read_u16_array - return a u16 array property of firmware node
 307 * @fwnode: Firmware node to get the property of
 308 * @propname: Name of the property
 309 * @val: The values are stored here or %NULL to return the number of values
 310 * @nval: Size of the @val array
 311 *
 312 * Read an array of u16 properties with @propname from @fwnode and store them to
 313 * @val if found.
 314 *
 315 * It's recommended to call fwnode_property_count_u16() instead of calling
 316 * this function with @val equals %NULL and @nval equals 0.
 317 *
 318 * Return: number of values if @val was %NULL,
 319 *         %0 if the property was found (success),
 320 *	   %-EINVAL if given arguments are not valid,
 321 *	   %-ENODATA if the property does not have a value,
 322 *	   %-EPROTO if the property is not an array of numbers,
 323 *	   %-EOVERFLOW if the size of the property is not as expected,
 324 *	   %-ENXIO if no suitable firmware interface is present.
 325 */
 326int fwnode_property_read_u16_array(const struct fwnode_handle *fwnode,
 327				   const char *propname, u16 *val, size_t nval)
 328{
 329	return fwnode_property_read_int_array(fwnode, propname, sizeof(u16),
 330					      val, nval);
 331}
 332EXPORT_SYMBOL_GPL(fwnode_property_read_u16_array);
 333
 334/**
 335 * fwnode_property_read_u32_array - return a u32 array property of firmware node
 336 * @fwnode: Firmware node to get the property of
 337 * @propname: Name of the property
 338 * @val: The values are stored here or %NULL to return the number of values
 339 * @nval: Size of the @val array
 340 *
 341 * Read an array of u32 properties with @propname from @fwnode store them to
 342 * @val if found.
 343 *
 344 * It's recommended to call fwnode_property_count_u32() instead of calling
 345 * this function with @val equals %NULL and @nval equals 0.
 346 *
 347 * Return: number of values if @val was %NULL,
 348 *         %0 if the property was found (success),
 349 *	   %-EINVAL if given arguments are not valid,
 350 *	   %-ENODATA if the property does not have a value,
 351 *	   %-EPROTO if the property is not an array of numbers,
 352 *	   %-EOVERFLOW if the size of the property is not as expected,
 353 *	   %-ENXIO if no suitable firmware interface is present.
 354 */
 355int fwnode_property_read_u32_array(const struct fwnode_handle *fwnode,
 356				   const char *propname, u32 *val, size_t nval)
 357{
 358	return fwnode_property_read_int_array(fwnode, propname, sizeof(u32),
 359					      val, nval);
 360}
 361EXPORT_SYMBOL_GPL(fwnode_property_read_u32_array);
 362
 363/**
 364 * fwnode_property_read_u64_array - return a u64 array property firmware node
 365 * @fwnode: Firmware node to get the property of
 366 * @propname: Name of the property
 367 * @val: The values are stored here or %NULL to return the number of values
 368 * @nval: Size of the @val array
 369 *
 370 * Read an array of u64 properties with @propname from @fwnode and store them to
 371 * @val if found.
 372 *
 373 * It's recommended to call fwnode_property_count_u64() instead of calling
 374 * this function with @val equals %NULL and @nval equals 0.
 375 *
 376 * Return: number of values if @val was %NULL,
 377 *         %0 if the property was found (success),
 378 *	   %-EINVAL if given arguments are not valid,
 379 *	   %-ENODATA if the property does not have a value,
 380 *	   %-EPROTO if the property is not an array of numbers,
 381 *	   %-EOVERFLOW if the size of the property is not as expected,
 382 *	   %-ENXIO if no suitable firmware interface is present.
 383 */
 384int fwnode_property_read_u64_array(const struct fwnode_handle *fwnode,
 385				   const char *propname, u64 *val, size_t nval)
 386{
 387	return fwnode_property_read_int_array(fwnode, propname, sizeof(u64),
 388					      val, nval);
 389}
 390EXPORT_SYMBOL_GPL(fwnode_property_read_u64_array);
 391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 392/**
 393 * fwnode_property_read_string_array - return string array property of a node
 394 * @fwnode: Firmware node to get the property of
 395 * @propname: Name of the property
 396 * @val: The values are stored here or %NULL to return the number of values
 397 * @nval: Size of the @val array
 398 *
 399 * Read an string list property @propname from the given firmware node and store
 400 * them to @val if found.
 401 *
 402 * It's recommended to call fwnode_property_string_array_count() instead of calling
 403 * this function with @val equals %NULL and @nval equals 0.
 404 *
 405 * Return: number of values read on success if @val is non-NULL,
 406 *	   number of values available on success if @val is NULL,
 407 *	   %-EINVAL if given arguments are not valid,
 408 *	   %-ENODATA if the property does not have a value,
 409 *	   %-EPROTO or %-EILSEQ if the property is not an array of strings,
 410 *	   %-EOVERFLOW if the size of the property is not as expected,
 411 *	   %-ENXIO if no suitable firmware interface is present.
 412 */
 413int fwnode_property_read_string_array(const struct fwnode_handle *fwnode,
 414				      const char *propname, const char **val,
 415				      size_t nval)
 416{
 417	int ret;
 418
 419	if (IS_ERR_OR_NULL(fwnode))
 420		return -EINVAL;
 421
 422	ret = fwnode_call_int_op(fwnode, property_read_string_array, propname,
 423				 val, nval);
 424	if (ret != -EINVAL)
 425		return ret;
 426
 427	return fwnode_call_int_op(fwnode->secondary, property_read_string_array, propname,
 428				  val, nval);
 429}
 430EXPORT_SYMBOL_GPL(fwnode_property_read_string_array);
 431
 432/**
 433 * fwnode_property_read_string - return a string property of a firmware node
 434 * @fwnode: Firmware node to get the property of
 435 * @propname: Name of the property
 436 * @val: The value is stored here
 437 *
 438 * Read property @propname from the given firmware node and store the value into
 439 * @val if found.  The value is checked to be a string.
 440 *
 441 * Return: %0 if the property was found (success),
 442 *	   %-EINVAL if given arguments are not valid,
 443 *	   %-ENODATA if the property does not have a value,
 444 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 445 *	   %-ENXIO if no suitable firmware interface is present.
 446 */
 447int fwnode_property_read_string(const struct fwnode_handle *fwnode,
 448				const char *propname, const char **val)
 449{
 450	int ret = fwnode_property_read_string_array(fwnode, propname, val, 1);
 451
 452	return ret < 0 ? ret : 0;
 
 
 
 
 
 453}
 454EXPORT_SYMBOL_GPL(fwnode_property_read_string);
 455
 456/**
 457 * fwnode_property_match_string - find a string in an array and return index
 458 * @fwnode: Firmware node to get the property of
 459 * @propname: Name of the property holding the array
 460 * @string: String to look for
 461 *
 462 * Find a given string in a string array and if it is found return the
 463 * index back.
 464 *
 465 * Return: index, starting from %0, if the property was found (success),
 466 *	   %-EINVAL if given arguments are not valid,
 467 *	   %-ENODATA if the property does not have a value,
 468 *	   %-EPROTO if the property is not an array of strings,
 469 *	   %-ENXIO if no suitable firmware interface is present.
 470 */
 471int fwnode_property_match_string(const struct fwnode_handle *fwnode,
 472	const char *propname, const char *string)
 473{
 474	const char **values;
 475	int nval, ret;
 476
 477	nval = fwnode_property_string_array_count(fwnode, propname);
 478	if (nval < 0)
 479		return nval;
 480
 481	if (nval == 0)
 482		return -ENODATA;
 483
 484	values = kcalloc(nval, sizeof(*values), GFP_KERNEL);
 485	if (!values)
 486		return -ENOMEM;
 487
 488	ret = fwnode_property_read_string_array(fwnode, propname, values, nval);
 489	if (ret < 0)
 490		goto out_free;
 491
 492	ret = match_string(values, nval, string);
 493	if (ret < 0)
 494		ret = -ENODATA;
 495
 496out_free:
 497	kfree(values);
 498	return ret;
 499}
 500EXPORT_SYMBOL_GPL(fwnode_property_match_string);
 501
 502/**
 503 * fwnode_property_match_property_string - find a property string value in an array and return index
 504 * @fwnode: Firmware node to get the property of
 505 * @propname: Name of the property holding the string value
 506 * @array: String array to search in
 507 * @n: Size of the @array
 508 *
 509 * Find a property string value in a given @array and if it is found return
 510 * the index back.
 511 *
 512 * Return: index, starting from %0, if the string value was found in the @array (success),
 513 *	   %-ENOENT when the string value was not found in the @array,
 514 *	   %-EINVAL if given arguments are not valid,
 515 *	   %-ENODATA if the property does not have a value,
 516 *	   %-EPROTO or %-EILSEQ if the property is not a string,
 517 *	   %-ENXIO if no suitable firmware interface is present.
 518 */
 519int fwnode_property_match_property_string(const struct fwnode_handle *fwnode,
 520	const char *propname, const char * const *array, size_t n)
 521{
 522	const char *string;
 523	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524
 525	ret = fwnode_property_read_string(fwnode, propname, &string);
 526	if (ret)
 527		return ret;
 528
 529	ret = match_string(array, n, string);
 530	if (ret < 0)
 531		ret = -ENOENT;
 532
 533	return ret;
 534}
 535EXPORT_SYMBOL_GPL(fwnode_property_match_property_string);
 536
 537/**
 538 * fwnode_property_get_reference_args() - Find a reference with arguments
 539 * @fwnode:	Firmware node where to look for the reference
 540 * @prop:	The name of the property
 541 * @nargs_prop:	The name of the property telling the number of
 542 *		arguments in the referred node. NULL if @nargs is known,
 543 *		otherwise @nargs is ignored. Only relevant on OF.
 544 * @nargs:	Number of arguments. Ignored if @nargs_prop is non-NULL.
 545 * @index:	Index of the reference, from zero onwards.
 546 * @args:	Result structure with reference and integer arguments.
 547 *		May be NULL.
 548 *
 549 * Obtain a reference based on a named property in an fwnode, with
 550 * integer arguments.
 551 *
 552 * The caller is responsible for calling fwnode_handle_put() on the returned
 553 * @args->fwnode pointer.
 554 *
 555 * Return: %0 on success
 556 *	    %-ENOENT when the index is out of bounds, the index has an empty
 557 *		     reference or the property was not found
 558 *	    %-EINVAL on parse error
 559 */
 560int fwnode_property_get_reference_args(const struct fwnode_handle *fwnode,
 561				       const char *prop, const char *nargs_prop,
 562				       unsigned int nargs, unsigned int index,
 563				       struct fwnode_reference_args *args)
 564{
 565	int ret;
 
 566
 567	if (IS_ERR_OR_NULL(fwnode))
 568		return -ENOENT;
 
 569
 570	ret = fwnode_call_int_op(fwnode, get_reference_args, prop, nargs_prop,
 571				 nargs, index, args);
 572	if (ret == 0)
 573		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575	if (IS_ERR_OR_NULL(fwnode->secondary))
 576		return ret;
 
 577
 578	return fwnode_call_int_op(fwnode->secondary, get_reference_args, prop, nargs_prop,
 579				  nargs, index, args);
 580}
 581EXPORT_SYMBOL_GPL(fwnode_property_get_reference_args);
 582
 583/**
 584 * fwnode_find_reference - Find named reference to a fwnode_handle
 585 * @fwnode: Firmware node where to look for the reference
 586 * @name: The name of the reference
 587 * @index: Index of the reference
 588 *
 589 * @index can be used when the named reference holds a table of references.
 590 *
 591 * The caller is responsible for calling fwnode_handle_put() on the returned
 592 * fwnode pointer.
 593 *
 594 * Return: a pointer to the reference fwnode, when found. Otherwise,
 595 * returns an error pointer.
 596 */
 597struct fwnode_handle *fwnode_find_reference(const struct fwnode_handle *fwnode,
 598					    const char *name,
 599					    unsigned int index)
 600{
 601	struct fwnode_reference_args args;
 602	int ret;
 603
 604	ret = fwnode_property_get_reference_args(fwnode, name, NULL, 0, index,
 605						 &args);
 606	return ret ? ERR_PTR(ret) : args.fwnode;
 607}
 608EXPORT_SYMBOL_GPL(fwnode_find_reference);
 609
 610/**
 611 * fwnode_get_name - Return the name of a node
 612 * @fwnode: The firmware node
 613 *
 614 * Return: a pointer to the node name, or %NULL.
 615 */
 616const char *fwnode_get_name(const struct fwnode_handle *fwnode)
 617{
 618	return fwnode_call_ptr_op(fwnode, get_name);
 619}
 620EXPORT_SYMBOL_GPL(fwnode_get_name);
 621
 622/**
 623 * fwnode_get_name_prefix - Return the prefix of node for printing purposes
 624 * @fwnode: The firmware node
 625 *
 626 * Return: the prefix of a node, intended to be printed right before the node.
 627 * The prefix works also as a separator between the nodes.
 628 */
 629const char *fwnode_get_name_prefix(const struct fwnode_handle *fwnode)
 630{
 631	return fwnode_call_ptr_op(fwnode, get_name_prefix);
 632}
 633
 634/**
 635 * fwnode_name_eq - Return true if node name is equal
 636 * @fwnode: The firmware node
 637 * @name: The name to which to compare the node name
 638 *
 639 * Compare the name provided as an argument to the name of the node, stopping
 640 * the comparison at either NUL or '@' character, whichever comes first. This
 641 * function is generally used for comparing node names while ignoring the
 642 * possible unit address of the node.
 643 *
 644 * Return: true if the node name matches with the name provided in the @name
 645 * argument, false otherwise.
 646 */
 647bool fwnode_name_eq(const struct fwnode_handle *fwnode, const char *name)
 648{
 649	const char *node_name;
 650	ptrdiff_t len;
 651
 652	node_name = fwnode_get_name(fwnode);
 653	if (!node_name)
 654		return false;
 
 
 655
 656	len = strchrnul(node_name, '@') - node_name;
 
 
 
 
 
 
 
 657
 658	return str_has_prefix(node_name, name) == len;
 659}
 660EXPORT_SYMBOL_GPL(fwnode_name_eq);
 661
 662/**
 663 * fwnode_get_parent - Return parent firwmare node
 664 * @fwnode: Firmware whose parent is retrieved
 665 *
 666 * The caller is responsible for calling fwnode_handle_put() on the returned
 667 * fwnode pointer.
 668 *
 669 * Return: parent firmware node of the given node if possible or %NULL if no
 670 * parent was available.
 671 */
 672struct fwnode_handle *fwnode_get_parent(const struct fwnode_handle *fwnode)
 673{
 674	return fwnode_call_ptr_op(fwnode, get_parent);
 675}
 676EXPORT_SYMBOL_GPL(fwnode_get_parent);
 677
 678/**
 679 * fwnode_get_next_parent - Iterate to the node's parent
 680 * @fwnode: Firmware whose parent is retrieved
 681 *
 682 * This is like fwnode_get_parent() except that it drops the refcount
 683 * on the passed node, making it suitable for iterating through a
 684 * node's parents.
 685 *
 686 * The caller is responsible for calling fwnode_handle_put() on the returned
 687 * fwnode pointer. Note that this function also puts a reference to @fwnode
 688 * unconditionally.
 689 *
 690 * Return: parent firmware node of the given node if possible or %NULL if no
 691 * parent was available.
 692 */
 693struct fwnode_handle *fwnode_get_next_parent(struct fwnode_handle *fwnode)
 694{
 695	struct fwnode_handle *parent = fwnode_get_parent(fwnode);
 696
 697	fwnode_handle_put(fwnode);
 698
 699	return parent;
 700}
 701EXPORT_SYMBOL_GPL(fwnode_get_next_parent);
 702
 703/**
 704 * fwnode_count_parents - Return the number of parents a node has
 705 * @fwnode: The node the parents of which are to be counted
 706 *
 707 * Return: the number of parents a node has.
 708 */
 709unsigned int fwnode_count_parents(const struct fwnode_handle *fwnode)
 710{
 711	struct fwnode_handle *parent;
 712	unsigned int count = 0;
 713
 714	fwnode_for_each_parent_node(fwnode, parent)
 715		count++;
 716
 717	return count;
 718}
 719EXPORT_SYMBOL_GPL(fwnode_count_parents);
 720
 721/**
 722 * fwnode_get_nth_parent - Return an nth parent of a node
 723 * @fwnode: The node the parent of which is requested
 724 * @depth: Distance of the parent from the node
 725 *
 726 * The caller is responsible for calling fwnode_handle_put() on the returned
 727 * fwnode pointer.
 728 *
 729 * Return: the nth parent of a node. If there is no parent at the requested
 730 * @depth, %NULL is returned. If @depth is 0, the functionality is equivalent to
 731 * fwnode_handle_get(). For @depth == 1, it is fwnode_get_parent() and so on.
 732 */
 733struct fwnode_handle *fwnode_get_nth_parent(struct fwnode_handle *fwnode,
 734					    unsigned int depth)
 735{
 736	struct fwnode_handle *parent;
 737
 738	if (depth == 0)
 739		return fwnode_handle_get(fwnode);
 740
 741	fwnode_for_each_parent_node(fwnode, parent) {
 742		if (--depth == 0)
 743			return parent;
 744	}
 745	return NULL;
 746}
 747EXPORT_SYMBOL_GPL(fwnode_get_nth_parent);
 748
 749/**
 750 * fwnode_get_next_child_node - Return the next child node handle for a node
 751 * @fwnode: Firmware node to find the next child node for.
 752 * @child: Handle to one of the node's child nodes or a %NULL handle.
 753 *
 754 * The caller is responsible for calling fwnode_handle_put() on the returned
 755 * fwnode pointer. Note that this function also puts a reference to @child
 756 * unconditionally.
 757 */
 758struct fwnode_handle *
 759fwnode_get_next_child_node(const struct fwnode_handle *fwnode,
 760			   struct fwnode_handle *child)
 761{
 762	return fwnode_call_ptr_op(fwnode, get_next_child_node, child);
 763}
 764EXPORT_SYMBOL_GPL(fwnode_get_next_child_node);
 765
 766/**
 767 * fwnode_get_next_available_child_node - Return the next available child node handle for a node
 768 * @fwnode: Firmware node to find the next child node for.
 769 * @child: Handle to one of the node's child nodes or a %NULL handle.
 770 *
 771 * The caller is responsible for calling fwnode_handle_put() on the returned
 772 * fwnode pointer. Note that this function also puts a reference to @child
 773 * unconditionally.
 774 */
 775struct fwnode_handle *
 776fwnode_get_next_available_child_node(const struct fwnode_handle *fwnode,
 777				     struct fwnode_handle *child)
 778{
 779	struct fwnode_handle *next_child = child;
 780
 781	if (IS_ERR_OR_NULL(fwnode))
 782		return NULL;
 783
 784	do {
 785		next_child = fwnode_get_next_child_node(fwnode, next_child);
 786		if (!next_child)
 787			return NULL;
 788	} while (!fwnode_device_is_available(next_child));
 789
 790	return next_child;
 791}
 792EXPORT_SYMBOL_GPL(fwnode_get_next_available_child_node);
 793
 794/**
 795 * device_get_next_child_node - Return the next child node handle for a device
 796 * @dev: Device to find the next child node for.
 797 * @child: Handle to one of the device's child nodes or a %NULL handle.
 798 *
 799 * The caller is responsible for calling fwnode_handle_put() on the returned
 800 * fwnode pointer. Note that this function also puts a reference to @child
 801 * unconditionally.
 802 */
 803struct fwnode_handle *device_get_next_child_node(const struct device *dev,
 804						 struct fwnode_handle *child)
 805{
 806	const struct fwnode_handle *fwnode = dev_fwnode(dev);
 807	struct fwnode_handle *next;
 808
 809	if (IS_ERR_OR_NULL(fwnode))
 810		return NULL;
 811
 812	/* Try to find a child in primary fwnode */
 813	next = fwnode_get_next_child_node(fwnode, child);
 814	if (next)
 815		return next;
 816
 817	/* When no more children in primary, continue with secondary */
 818	return fwnode_get_next_child_node(fwnode->secondary, child);
 819}
 820EXPORT_SYMBOL_GPL(device_get_next_child_node);
 821
 822/**
 823 * fwnode_get_named_child_node - Return first matching named child node handle
 824 * @fwnode: Firmware node to find the named child node for.
 825 * @childname: String to match child node name against.
 826 *
 827 * The caller is responsible for calling fwnode_handle_put() on the returned
 828 * fwnode pointer.
 829 */
 830struct fwnode_handle *
 831fwnode_get_named_child_node(const struct fwnode_handle *fwnode,
 832			    const char *childname)
 833{
 834	return fwnode_call_ptr_op(fwnode, get_named_child_node, childname);
 835}
 836EXPORT_SYMBOL_GPL(fwnode_get_named_child_node);
 837
 838/**
 839 * device_get_named_child_node - Return first matching named child node handle
 840 * @dev: Device to find the named child node for.
 841 * @childname: String to match child node name against.
 842 *
 843 * The caller is responsible for calling fwnode_handle_put() on the returned
 844 * fwnode pointer.
 845 */
 846struct fwnode_handle *device_get_named_child_node(const struct device *dev,
 847						  const char *childname)
 848{
 849	return fwnode_get_named_child_node(dev_fwnode(dev), childname);
 850}
 851EXPORT_SYMBOL_GPL(device_get_named_child_node);
 852
 853/**
 854 * fwnode_handle_get - Obtain a reference to a device node
 855 * @fwnode: Pointer to the device node to obtain the reference to.
 856 *
 857 * The caller is responsible for calling fwnode_handle_put() on the returned
 858 * fwnode pointer.
 859 *
 860 * Return: the fwnode handle.
 861 */
 862struct fwnode_handle *fwnode_handle_get(struct fwnode_handle *fwnode)
 863{
 864	if (!fwnode_has_op(fwnode, get))
 865		return fwnode;
 866
 867	return fwnode_call_ptr_op(fwnode, get);
 868}
 869EXPORT_SYMBOL_GPL(fwnode_handle_get);
 870
 871/**
 872 * fwnode_device_is_available - check if a device is available for use
 873 * @fwnode: Pointer to the fwnode of the device.
 874 *
 875 * Return: true if device is available for use. Otherwise, returns false.
 876 *
 877 * For fwnode node types that don't implement the .device_is_available()
 878 * operation, this function returns true.
 879 */
 880bool fwnode_device_is_available(const struct fwnode_handle *fwnode)
 881{
 882	if (IS_ERR_OR_NULL(fwnode))
 883		return false;
 884
 885	if (!fwnode_has_op(fwnode, device_is_available))
 886		return true;
 887
 888	return fwnode_call_bool_op(fwnode, device_is_available);
 889}
 890EXPORT_SYMBOL_GPL(fwnode_device_is_available);
 891
 892/**
 893 * device_get_child_node_count - return the number of child nodes for device
 894 * @dev: Device to count the child nodes for
 895 *
 896 * Return: the number of child nodes for a given device.
 897 */
 898unsigned int device_get_child_node_count(const struct device *dev)
 899{
 900	struct fwnode_handle *child;
 901	unsigned int count = 0;
 902
 903	device_for_each_child_node(dev, child)
 904		count++;
 905
 906	return count;
 907}
 908EXPORT_SYMBOL_GPL(device_get_child_node_count);
 909
 910bool device_dma_supported(const struct device *dev)
 911{
 912	return fwnode_call_bool_op(dev_fwnode(dev), device_dma_supported);
 
 
 
 
 
 
 
 913}
 914EXPORT_SYMBOL_GPL(device_dma_supported);
 915
 916enum dev_dma_attr device_get_dma_attr(const struct device *dev)
 917{
 918	if (!fwnode_has_op(dev_fwnode(dev), device_get_dma_attr))
 919		return DEV_DMA_NOT_SUPPORTED;
 
 
 
 
 
 
 
 920
 921	return fwnode_call_int_op(dev_fwnode(dev), device_get_dma_attr);
 922}
 923EXPORT_SYMBOL_GPL(device_get_dma_attr);
 924
 925/**
 926 * fwnode_get_phy_mode - Get phy mode for given firmware node
 927 * @fwnode:	Pointer to the given node
 928 *
 929 * The function gets phy interface string from property 'phy-mode' or
 930 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 931 * error case.
 932 */
 933int fwnode_get_phy_mode(const struct fwnode_handle *fwnode)
 934{
 935	const char *pm;
 936	int err, i;
 937
 938	err = fwnode_property_read_string(fwnode, "phy-mode", &pm);
 939	if (err < 0)
 940		err = fwnode_property_read_string(fwnode,
 941						  "phy-connection-type", &pm);
 942	if (err < 0)
 943		return err;
 944
 945	for (i = 0; i < PHY_INTERFACE_MODE_MAX; i++)
 946		if (!strcasecmp(pm, phy_modes(i)))
 947			return i;
 948
 949	return -ENODEV;
 950}
 951EXPORT_SYMBOL_GPL(fwnode_get_phy_mode);
 952
 953/**
 954 * device_get_phy_mode - Get phy mode for given device
 955 * @dev:	Pointer to the given device
 956 *
 957 * The function gets phy interface string from property 'phy-mode' or
 958 * 'phy-connection-type', and return its index in phy_modes table, or errno in
 959 * error case.
 960 */
 961int device_get_phy_mode(struct device *dev)
 962{
 963	return fwnode_get_phy_mode(dev_fwnode(dev));
 964}
 965EXPORT_SYMBOL_GPL(device_get_phy_mode);
 966
 967/**
 968 * fwnode_iomap - Maps the memory mapped IO for a given fwnode
 969 * @fwnode:	Pointer to the firmware node
 970 * @index:	Index of the IO range
 971 *
 972 * Return: a pointer to the mapped memory.
 973 */
 974void __iomem *fwnode_iomap(struct fwnode_handle *fwnode, int index)
 975{
 976	return fwnode_call_ptr_op(fwnode, iomap, index);
 977}
 978EXPORT_SYMBOL(fwnode_iomap);
 979
 980/**
 981 * fwnode_irq_get - Get IRQ directly from a fwnode
 982 * @fwnode:	Pointer to the firmware node
 983 * @index:	Zero-based index of the IRQ
 984 *
 985 * Return: Linux IRQ number on success. Negative errno on failure.
 986 */
 987int fwnode_irq_get(const struct fwnode_handle *fwnode, unsigned int index)
 988{
 989	int ret;
 990
 991	ret = fwnode_call_int_op(fwnode, irq_get, index);
 992	/* We treat mapping errors as invalid case */
 993	if (ret == 0)
 994		return -EINVAL;
 995
 996	return ret;
 997}
 998EXPORT_SYMBOL(fwnode_irq_get);
 999
1000/**
1001 * fwnode_irq_get_byname - Get IRQ from a fwnode using its name
1002 * @fwnode:	Pointer to the firmware node
1003 * @name:	IRQ name
1004 *
1005 * Description:
1006 * Find a match to the string @name in the 'interrupt-names' string array
1007 * in _DSD for ACPI, or of_node for Device Tree. Then get the Linux IRQ
1008 * number of the IRQ resource corresponding to the index of the matched
1009 * string.
1010 *
1011 * Return: Linux IRQ number on success, or negative errno otherwise.
1012 */
1013int fwnode_irq_get_byname(const struct fwnode_handle *fwnode, const char *name)
1014{
1015	int index;
1016
1017	if (!name)
1018		return -EINVAL;
1019
1020	index = fwnode_property_match_string(fwnode, "interrupt-names",  name);
1021	if (index < 0)
1022		return index;
1023
1024	return fwnode_irq_get(fwnode, index);
1025}
1026EXPORT_SYMBOL(fwnode_irq_get_byname);
1027
1028/**
1029 * fwnode_graph_get_next_endpoint - Get next endpoint firmware node
1030 * @fwnode: Pointer to the parent firmware node
1031 * @prev: Previous endpoint node or %NULL to get the first
1032 *
1033 * The caller is responsible for calling fwnode_handle_put() on the returned
1034 * fwnode pointer. Note that this function also puts a reference to @prev
1035 * unconditionally.
1036 *
1037 * Return: an endpoint firmware node pointer or %NULL if no more endpoints
1038 * are available.
1039 */
1040struct fwnode_handle *
1041fwnode_graph_get_next_endpoint(const struct fwnode_handle *fwnode,
1042			       struct fwnode_handle *prev)
1043{
1044	struct fwnode_handle *ep, *port_parent = NULL;
1045	const struct fwnode_handle *parent;
1046
1047	/*
1048	 * If this function is in a loop and the previous iteration returned
1049	 * an endpoint from fwnode->secondary, then we need to use the secondary
1050	 * as parent rather than @fwnode.
1051	 */
1052	if (prev) {
1053		port_parent = fwnode_graph_get_port_parent(prev);
1054		parent = port_parent;
1055	} else {
1056		parent = fwnode;
1057	}
1058	if (IS_ERR_OR_NULL(parent))
1059		return NULL;
1060
1061	ep = fwnode_call_ptr_op(parent, graph_get_next_endpoint, prev);
1062	if (ep)
1063		goto out_put_port_parent;
1064
1065	ep = fwnode_graph_get_next_endpoint(parent->secondary, NULL);
1066
1067out_put_port_parent:
1068	fwnode_handle_put(port_parent);
1069	return ep;
1070}
1071EXPORT_SYMBOL_GPL(fwnode_graph_get_next_endpoint);
1072
1073/**
1074 * fwnode_graph_get_port_parent - Return the device fwnode of a port endpoint
1075 * @endpoint: Endpoint firmware node of the port
1076 *
1077 * The caller is responsible for calling fwnode_handle_put() on the returned
1078 * fwnode pointer.
1079 *
1080 * Return: the firmware node of the device the @endpoint belongs to.
1081 */
1082struct fwnode_handle *
1083fwnode_graph_get_port_parent(const struct fwnode_handle *endpoint)
1084{
1085	struct fwnode_handle *port, *parent;
1086
1087	port = fwnode_get_parent(endpoint);
1088	parent = fwnode_call_ptr_op(port, graph_get_port_parent);
1089
1090	fwnode_handle_put(port);
1091
1092	return parent;
1093}
1094EXPORT_SYMBOL_GPL(fwnode_graph_get_port_parent);
1095
1096/**
1097 * fwnode_graph_get_remote_port_parent - Return fwnode of a remote device
1098 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1099 *
1100 * Extracts firmware node of a remote device the @fwnode points to.
1101 *
1102 * The caller is responsible for calling fwnode_handle_put() on the returned
1103 * fwnode pointer.
1104 */
1105struct fwnode_handle *
1106fwnode_graph_get_remote_port_parent(const struct fwnode_handle *fwnode)
1107{
1108	struct fwnode_handle *endpoint, *parent;
1109
1110	endpoint = fwnode_graph_get_remote_endpoint(fwnode);
1111	parent = fwnode_graph_get_port_parent(endpoint);
1112
1113	fwnode_handle_put(endpoint);
1114
1115	return parent;
1116}
1117EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port_parent);
1118
1119/**
1120 * fwnode_graph_get_remote_port - Return fwnode of a remote port
1121 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1122 *
1123 * Extracts firmware node of a remote port the @fwnode points to.
1124 *
1125 * The caller is responsible for calling fwnode_handle_put() on the returned
1126 * fwnode pointer.
1127 */
1128struct fwnode_handle *
1129fwnode_graph_get_remote_port(const struct fwnode_handle *fwnode)
1130{
1131	return fwnode_get_next_parent(fwnode_graph_get_remote_endpoint(fwnode));
1132}
1133EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_port);
1134
1135/**
1136 * fwnode_graph_get_remote_endpoint - Return fwnode of a remote endpoint
1137 * @fwnode: Endpoint firmware node pointing to the remote endpoint
1138 *
1139 * Extracts firmware node of a remote endpoint the @fwnode points to.
1140 *
1141 * The caller is responsible for calling fwnode_handle_put() on the returned
1142 * fwnode pointer.
1143 */
1144struct fwnode_handle *
1145fwnode_graph_get_remote_endpoint(const struct fwnode_handle *fwnode)
1146{
1147	return fwnode_call_ptr_op(fwnode, graph_get_remote_endpoint);
1148}
1149EXPORT_SYMBOL_GPL(fwnode_graph_get_remote_endpoint);
1150
1151static bool fwnode_graph_remote_available(struct fwnode_handle *ep)
1152{
1153	struct fwnode_handle *dev_node;
1154	bool available;
1155
1156	dev_node = fwnode_graph_get_remote_port_parent(ep);
1157	available = fwnode_device_is_available(dev_node);
1158	fwnode_handle_put(dev_node);
1159
1160	return available;
1161}
1162
1163/**
1164 * fwnode_graph_get_endpoint_by_id - get endpoint by port and endpoint numbers
1165 * @fwnode: parent fwnode_handle containing the graph
1166 * @port: identifier of the port node
1167 * @endpoint: identifier of the endpoint node under the port node
1168 * @flags: fwnode lookup flags
1169 *
1170 * The caller is responsible for calling fwnode_handle_put() on the returned
1171 * fwnode pointer.
1172 *
1173 * Return: the fwnode handle of the local endpoint corresponding the port and
1174 * endpoint IDs or %NULL if not found.
1175 *
1176 * If FWNODE_GRAPH_ENDPOINT_NEXT is passed in @flags and the specified endpoint
1177 * has not been found, look for the closest endpoint ID greater than the
1178 * specified one and return the endpoint that corresponds to it, if present.
1179 *
1180 * Does not return endpoints that belong to disabled devices or endpoints that
1181 * are unconnected, unless FWNODE_GRAPH_DEVICE_DISABLED is passed in @flags.
1182 */
1183struct fwnode_handle *
1184fwnode_graph_get_endpoint_by_id(const struct fwnode_handle *fwnode,
1185				u32 port, u32 endpoint, unsigned long flags)
1186{
1187	struct fwnode_handle *ep, *best_ep = NULL;
1188	unsigned int best_ep_id = 0;
1189	bool endpoint_next = flags & FWNODE_GRAPH_ENDPOINT_NEXT;
1190	bool enabled_only = !(flags & FWNODE_GRAPH_DEVICE_DISABLED);
1191
1192	fwnode_graph_for_each_endpoint(fwnode, ep) {
1193		struct fwnode_endpoint fwnode_ep = { 0 };
1194		int ret;
1195
1196		if (enabled_only && !fwnode_graph_remote_available(ep))
1197			continue;
1198
1199		ret = fwnode_graph_parse_endpoint(ep, &fwnode_ep);
1200		if (ret < 0)
1201			continue;
1202
1203		if (fwnode_ep.port != port)
1204			continue;
1205
1206		if (fwnode_ep.id == endpoint)
1207			return ep;
1208
1209		if (!endpoint_next)
1210			continue;
1211
1212		/*
1213		 * If the endpoint that has just been found is not the first
1214		 * matching one and the ID of the one found previously is closer
1215		 * to the requested endpoint ID, skip it.
1216		 */
1217		if (fwnode_ep.id < endpoint ||
1218		    (best_ep && best_ep_id < fwnode_ep.id))
1219			continue;
1220
1221		fwnode_handle_put(best_ep);
1222		best_ep = fwnode_handle_get(ep);
1223		best_ep_id = fwnode_ep.id;
1224	}
1225
1226	return best_ep;
1227}
1228EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_by_id);
1229
1230/**
1231 * fwnode_graph_get_endpoint_count - Count endpoints on a device node
1232 * @fwnode: The node related to a device
1233 * @flags: fwnode lookup flags
1234 * Count endpoints in a device node.
1235 *
1236 * If FWNODE_GRAPH_DEVICE_DISABLED flag is specified, also unconnected endpoints
1237 * and endpoints connected to disabled devices are counted.
1238 */
1239unsigned int fwnode_graph_get_endpoint_count(const struct fwnode_handle *fwnode,
1240					     unsigned long flags)
1241{
1242	struct fwnode_handle *ep;
1243	unsigned int count = 0;
1244
1245	fwnode_graph_for_each_endpoint(fwnode, ep) {
1246		if (flags & FWNODE_GRAPH_DEVICE_DISABLED ||
1247		    fwnode_graph_remote_available(ep))
1248			count++;
1249	}
1250
1251	return count;
1252}
1253EXPORT_SYMBOL_GPL(fwnode_graph_get_endpoint_count);
1254
1255/**
1256 * fwnode_graph_parse_endpoint - parse common endpoint node properties
1257 * @fwnode: pointer to endpoint fwnode_handle
1258 * @endpoint: pointer to the fwnode endpoint data structure
1259 *
1260 * Parse @fwnode representing a graph endpoint node and store the
1261 * information in @endpoint. The caller must hold a reference to
1262 * @fwnode.
1263 */
1264int fwnode_graph_parse_endpoint(const struct fwnode_handle *fwnode,
1265				struct fwnode_endpoint *endpoint)
1266{
1267	memset(endpoint, 0, sizeof(*endpoint));
1268
1269	return fwnode_call_int_op(fwnode, graph_parse_endpoint, endpoint);
1270}
1271EXPORT_SYMBOL(fwnode_graph_parse_endpoint);
1272
1273const void *device_get_match_data(const struct device *dev)
1274{
1275	return fwnode_call_ptr_op(dev_fwnode(dev), device_get_match_data, dev);
1276}
1277EXPORT_SYMBOL_GPL(device_get_match_data);
1278
1279static unsigned int fwnode_graph_devcon_matches(const struct fwnode_handle *fwnode,
1280						const char *con_id, void *data,
1281						devcon_match_fn_t match,
1282						void **matches,
1283						unsigned int matches_len)
1284{
1285	struct fwnode_handle *node;
1286	struct fwnode_handle *ep;
1287	unsigned int count = 0;
1288	void *ret;
1289
1290	fwnode_graph_for_each_endpoint(fwnode, ep) {
1291		if (matches && count >= matches_len) {
1292			fwnode_handle_put(ep);
1293			break;
1294		}
1295
1296		node = fwnode_graph_get_remote_port_parent(ep);
1297		if (!fwnode_device_is_available(node)) {
1298			fwnode_handle_put(node);
1299			continue;
1300		}
1301
1302		ret = match(node, con_id, data);
1303		fwnode_handle_put(node);
1304		if (ret) {
1305			if (matches)
1306				matches[count] = ret;
1307			count++;
1308		}
1309	}
1310	return count;
1311}
1312
1313static unsigned int fwnode_devcon_matches(const struct fwnode_handle *fwnode,
1314					  const char *con_id, void *data,
1315					  devcon_match_fn_t match,
1316					  void **matches,
1317					  unsigned int matches_len)
1318{
1319	struct fwnode_handle *node;
1320	unsigned int count = 0;
1321	unsigned int i;
1322	void *ret;
1323
1324	for (i = 0; ; i++) {
1325		if (matches && count >= matches_len)
1326			break;
1327
1328		node = fwnode_find_reference(fwnode, con_id, i);
1329		if (IS_ERR(node))
1330			break;
1331
1332		ret = match(node, NULL, data);
1333		fwnode_handle_put(node);
1334		if (ret) {
1335			if (matches)
1336				matches[count] = ret;
1337			count++;
1338		}
1339	}
1340
1341	return count;
1342}
1343
1344/**
1345 * fwnode_connection_find_match - Find connection from a device node
1346 * @fwnode: Device node with the connection
1347 * @con_id: Identifier for the connection
1348 * @data: Data for the match function
1349 * @match: Function to check and convert the connection description
1350 *
1351 * Find a connection with unique identifier @con_id between @fwnode and another
1352 * device node. @match will be used to convert the connection description to
1353 * data the caller is expecting to be returned.
1354 */
1355void *fwnode_connection_find_match(const struct fwnode_handle *fwnode,
1356				   const char *con_id, void *data,
1357				   devcon_match_fn_t match)
1358{
1359	unsigned int count;
1360	void *ret;
1361
1362	if (!fwnode || !match)
1363		return NULL;
1364
1365	count = fwnode_graph_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1366	if (count)
1367		return ret;
1368
1369	count = fwnode_devcon_matches(fwnode, con_id, data, match, &ret, 1);
1370	return count ? ret : NULL;
1371}
1372EXPORT_SYMBOL_GPL(fwnode_connection_find_match);
1373
1374/**
1375 * fwnode_connection_find_matches - Find connections from a device node
1376 * @fwnode: Device node with the connection
1377 * @con_id: Identifier for the connection
1378 * @data: Data for the match function
1379 * @match: Function to check and convert the connection description
1380 * @matches: (Optional) array of pointers to fill with matches
1381 * @matches_len: Length of @matches
1382 *
1383 * Find up to @matches_len connections with unique identifier @con_id between
1384 * @fwnode and other device nodes. @match will be used to convert the
1385 * connection description to data the caller is expecting to be returned
1386 * through the @matches array.
1387 *
1388 * If @matches is %NULL @matches_len is ignored and the total number of resolved
1389 * matches is returned.
1390 *
1391 * Return: Number of matches resolved, or negative errno.
1392 */
1393int fwnode_connection_find_matches(const struct fwnode_handle *fwnode,
1394				   const char *con_id, void *data,
1395				   devcon_match_fn_t match,
1396				   void **matches, unsigned int matches_len)
1397{
1398	unsigned int count_graph;
1399	unsigned int count_ref;
1400
1401	if (!fwnode || !match)
1402		return -EINVAL;
1403
1404	count_graph = fwnode_graph_devcon_matches(fwnode, con_id, data, match,
1405						  matches, matches_len);
1406
1407	if (matches) {
1408		matches += count_graph;
1409		matches_len -= count_graph;
1410	}
1411
1412	count_ref = fwnode_devcon_matches(fwnode, con_id, data, match,
1413					  matches, matches_len);
1414
1415	return count_graph + count_ref;
1416}
1417EXPORT_SYMBOL_GPL(fwnode_connection_find_matches);