Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * bio-integrity.c - bio data integrity extensions
  3 *
  4 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
  5 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public License version
  9 * 2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful, but
 12 * WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14 * General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; see the file COPYING.  If not, write to
 18 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139,
 19 * USA.
 20 *
 21 */
 22
 23#include <linux/blkdev.h>
 24#include <linux/mempool.h>
 25#include <linux/export.h>
 26#include <linux/bio.h>
 27#include <linux/workqueue.h>
 28#include <linux/slab.h>
 29
 30#define BIP_INLINE_VECS	4
 31
 32static struct kmem_cache *bip_slab;
 33static struct workqueue_struct *kintegrityd_wq;
 34
 35void blk_flush_integrity(void)
 36{
 37	flush_workqueue(kintegrityd_wq);
 38}
 39
 40/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 41 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
 42 * @bio:	bio to attach integrity metadata to
 43 * @gfp_mask:	Memory allocation mask
 44 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 45 *
 46 * Description: This function prepares a bio for attaching integrity
 47 * metadata.  nr_vecs specifies the maximum number of pages containing
 48 * integrity metadata that can be attached.
 49 */
 50struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
 51						  gfp_t gfp_mask,
 52						  unsigned int nr_vecs)
 53{
 54	struct bio_integrity_payload *bip;
 55	struct bio_set *bs = bio->bi_pool;
 56	unsigned long idx = BIO_POOL_NONE;
 57	unsigned inline_vecs;
 58
 59	if (!bs || !bs->bio_integrity_pool) {
 60		bip = kmalloc(sizeof(struct bio_integrity_payload) +
 61			      sizeof(struct bio_vec) * nr_vecs, gfp_mask);
 
 
 62		inline_vecs = nr_vecs;
 63	} else {
 64		bip = mempool_alloc(bs->bio_integrity_pool, gfp_mask);
 65		inline_vecs = BIP_INLINE_VECS;
 66	}
 67
 68	if (unlikely(!bip))
 69		return ERR_PTR(-ENOMEM);
 70
 71	memset(bip, 0, sizeof(*bip));
 72
 
 
 73	if (nr_vecs > inline_vecs) {
 74		bip->bip_vec = bvec_alloc(gfp_mask, nr_vecs, &idx,
 75					  bs->bvec_integrity_pool);
 76		if (!bip->bip_vec)
 77			goto err;
 78		bip->bip_max_vcnt = bvec_nr_vecs(idx);
 79	} else {
 80		bip->bip_vec = bip->bip_inline_vecs;
 81		bip->bip_max_vcnt = inline_vecs;
 82	}
 83
 84	bip->bip_slab = idx;
 85	bip->bip_bio = bio;
 86	bio->bi_integrity = bip;
 87	bio->bi_rw |= REQ_INTEGRITY;
 88
 89	return bip;
 90err:
 91	mempool_free(bip, bs->bio_integrity_pool);
 
 
 
 92	return ERR_PTR(-ENOMEM);
 93}
 94EXPORT_SYMBOL(bio_integrity_alloc);
 95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96/**
 97 * bio_integrity_free - Free bio integrity payload
 98 * @bio:	bio containing bip to be freed
 99 *
100 * Description: Used to free the integrity portion of a bio. Usually
101 * called from bio_free().
102 */
103void bio_integrity_free(struct bio *bio)
104{
105	struct bio_integrity_payload *bip = bio_integrity(bio);
106	struct bio_set *bs = bio->bi_pool;
107
108	if (bip->bip_flags & BIP_BLOCK_INTEGRITY)
109		kfree(page_address(bip->bip_vec->bv_page) +
110		      bip->bip_vec->bv_offset);
111
112	if (bs && bs->bio_integrity_pool) {
113		if (bip->bip_slab != BIO_POOL_NONE)
114			bvec_free(bs->bvec_integrity_pool, bip->bip_vec,
115				  bip->bip_slab);
116
117		mempool_free(bip, bs->bio_integrity_pool);
118	} else {
119		kfree(bip);
 
 
120	}
121
122	bio->bi_integrity = NULL;
 
123}
124EXPORT_SYMBOL(bio_integrity_free);
125
126/**
127 * bio_integrity_add_page - Attach integrity metadata
128 * @bio:	bio to update
129 * @page:	page containing integrity metadata
130 * @len:	number of bytes of integrity metadata in page
131 * @offset:	start offset within page
132 *
133 * Description: Attach a page containing integrity metadata to bio.
134 */
135int bio_integrity_add_page(struct bio *bio, struct page *page,
136			   unsigned int len, unsigned int offset)
137{
 
138	struct bio_integrity_payload *bip = bio_integrity(bio);
139	struct bio_vec *iv;
140
141	if (bip->bip_vcnt >= bip->bip_max_vcnt) {
142		printk(KERN_ERR "%s: bip_vec full\n", __func__);
143		return 0;
144	}
 
 
 
 
 
145
146	iv = bip->bip_vec + bip->bip_vcnt;
 
 
147
148	if (bip->bip_vcnt &&
149	    bvec_gap_to_prev(bdev_get_queue(bio->bi_bdev),
150			     &bip->bip_vec[bip->bip_vcnt - 1], offset))
151		return 0;
 
 
 
152
153	iv->bv_page = page;
154	iv->bv_len = len;
155	iv->bv_offset = offset;
156	bip->bip_vcnt++;
 
157
158	return len;
159}
160EXPORT_SYMBOL(bio_integrity_add_page);
161
162/**
163 * bio_integrity_enabled - Check whether integrity can be passed
164 * @bio:	bio to check
165 *
166 * Description: Determines whether bio_integrity_prep() can be called
167 * on this bio or not.	bio data direction and target device must be
168 * set prior to calling.  The functions honors the write_generate and
169 * read_verify flags in sysfs.
170 */
171bool bio_integrity_enabled(struct bio *bio)
172{
173	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
 
 
 
 
174
175	if (!bio_is_rw(bio))
176		return false;
 
177
178	/* Already protected? */
179	if (bio_integrity(bio))
180		return false;
 
 
 
181
182	if (bi == NULL)
183		return false;
 
184
185	if (bio_data_dir(bio) == READ && bi->profile->verify_fn != NULL &&
186	    (bi->flags & BLK_INTEGRITY_VERIFY))
187		return true;
 
 
 
188
189	if (bio_data_dir(bio) == WRITE && bi->profile->generate_fn != NULL &&
190	    (bi->flags & BLK_INTEGRITY_GENERATE))
191		return true;
 
192
193	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194}
195EXPORT_SYMBOL(bio_integrity_enabled);
196
197/**
198 * bio_integrity_intervals - Return number of integrity intervals for a bio
199 * @bi:		blk_integrity profile for device
200 * @sectors:	Size of the bio in 512-byte sectors
201 *
202 * Description: The block layer calculates everything in 512 byte
203 * sectors but integrity metadata is done in terms of the data integrity
204 * interval size of the storage device.  Convert the block layer sectors
205 * to the appropriate number of integrity intervals.
206 */
207static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
208						   unsigned int sectors)
209{
210	return sectors >> (bi->interval_exp - 9);
 
 
 
 
 
 
 
 
 
211}
212
213static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
214					       unsigned int sectors)
215{
216	return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
217}
218
219/**
220 * bio_integrity_process - Process integrity metadata for a bio
221 * @bio:	bio to generate/verify integrity metadata for
222 * @proc_fn:	Pointer to the relevant processing function
223 */
224static int bio_integrity_process(struct bio *bio,
225				 integrity_processing_fn *proc_fn)
226{
227	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
228	struct blk_integrity_iter iter;
229	struct bvec_iter bviter;
230	struct bio_vec bv;
231	struct bio_integrity_payload *bip = bio_integrity(bio);
232	unsigned int ret = 0;
233	void *prot_buf = page_address(bip->bip_vec->bv_page) +
234		bip->bip_vec->bv_offset;
235
236	iter.disk_name = bio->bi_bdev->bd_disk->disk_name;
237	iter.interval = 1 << bi->interval_exp;
238	iter.seed = bip_get_seed(bip);
239	iter.prot_buf = prot_buf;
240
241	bio_for_each_segment(bv, bio, bviter) {
242		void *kaddr = kmap_atomic(bv.bv_page);
243
244		iter.data_buf = kaddr + bv.bv_offset;
245		iter.data_size = bv.bv_len;
246
247		ret = proc_fn(&iter);
248		if (ret) {
249			kunmap_atomic(kaddr);
250			return ret;
251		}
252
253		kunmap_atomic(kaddr);
 
 
254	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255	return ret;
256}
257
258/**
259 * bio_integrity_prep - Prepare bio for integrity I/O
260 * @bio:	bio to prepare
261 *
262 * Description: Allocates a buffer for integrity metadata, maps the
263 * pages and attaches them to a bio.  The bio must have data
264 * direction, target device and start sector set priot to calling.  In
265 * the WRITE case, integrity metadata will be generated using the
266 * block device's integrity function.  In the READ case, the buffer
 
267 * will be prepared for DMA and a suitable end_io handler set up.
268 */
269int bio_integrity_prep(struct bio *bio)
270{
271	struct bio_integrity_payload *bip;
272	struct blk_integrity *bi;
273	struct request_queue *q;
274	void *buf;
275	unsigned long start, end;
276	unsigned int len, nr_pages;
277	unsigned int bytes, offset, i;
278	unsigned int intervals;
279
280	bi = bdev_get_integrity(bio->bi_bdev);
281	q = bdev_get_queue(bio->bi_bdev);
282	BUG_ON(bi == NULL);
283	BUG_ON(bio_integrity(bio));
284
285	intervals = bio_integrity_intervals(bi, bio_sectors(bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286
287	/* Allocate kernel buffer for protection data */
288	len = intervals * bi->tuple_size;
289	buf = kmalloc(len, GFP_NOIO | q->bounce_gfp);
290	if (unlikely(buf == NULL)) {
291		printk(KERN_ERR "could not allocate integrity buffer\n");
292		return -ENOMEM;
293	}
294
295	end = (((unsigned long) buf) + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
296	start = ((unsigned long) buf) >> PAGE_SHIFT;
297	nr_pages = end - start;
298
299	/* Allocate bio integrity payload and integrity vectors */
300	bip = bio_integrity_alloc(bio, GFP_NOIO, nr_pages);
301	if (IS_ERR(bip)) {
302		printk(KERN_ERR "could not allocate data integrity bioset\n");
303		kfree(buf);
304		return PTR_ERR(bip);
305	}
306
307	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
308	bip->bip_iter.bi_size = len;
309	bip_set_seed(bip, bio->bi_iter.bi_sector);
310
311	if (bi->flags & BLK_INTEGRITY_IP_CHECKSUM)
312		bip->bip_flags |= BIP_IP_CHECKSUM;
313
314	/* Map it */
315	offset = offset_in_page(buf);
316	for (i = 0 ; i < nr_pages ; i++) {
317		int ret;
318		bytes = PAGE_SIZE - offset;
319
320		if (len <= 0)
321			break;
322
323		if (bytes > len)
324			bytes = len;
325
326		ret = bio_integrity_add_page(bio, virt_to_page(buf),
327					     bytes, offset);
328
329		if (ret == 0)
330			return 0;
331
332		if (ret < bytes)
333			break;
334
335		buf += bytes;
336		len -= bytes;
337		offset = 0;
338	}
339
340	/* Install custom I/O completion handler if read verify is enabled */
341	if (bio_data_dir(bio) == READ) {
342		bip->bip_end_io = bio->bi_end_io;
343		bio->bi_end_io = bio_integrity_endio;
344	}
345
346	/* Auto-generate integrity metadata if this is a write */
347	if (bio_data_dir(bio) == WRITE)
348		bio_integrity_process(bio, bi->profile->generate_fn);
 
 
 
349
350	return 0;
 
 
 
351}
352EXPORT_SYMBOL(bio_integrity_prep);
353
354/**
355 * bio_integrity_verify_fn - Integrity I/O completion worker
356 * @work:	Work struct stored in bio to be verified
357 *
358 * Description: This workqueue function is called to complete a READ
359 * request.  The function verifies the transferred integrity metadata
360 * and then calls the original bio end_io function.
361 */
362static void bio_integrity_verify_fn(struct work_struct *work)
363{
364	struct bio_integrity_payload *bip =
365		container_of(work, struct bio_integrity_payload, bip_work);
366	struct bio *bio = bip->bip_bio;
367	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
368
369	bio->bi_error = bio_integrity_process(bio, bi->profile->verify_fn);
370
371	/* Restore original bio completion handler */
372	bio->bi_end_io = bip->bip_end_io;
373	bio_endio(bio);
374}
375
376/**
377 * bio_integrity_endio - Integrity I/O completion function
378 * @bio:	Protected bio
379 * @error:	Pointer to errno
380 *
381 * Description: Completion for integrity I/O
382 *
383 * Normally I/O completion is done in interrupt context.  However,
384 * verifying I/O integrity is a time-consuming task which must be run
385 * in process context.	This function postpones completion
386 * accordingly.
387 */
388void bio_integrity_endio(struct bio *bio)
389{
 
390	struct bio_integrity_payload *bip = bio_integrity(bio);
391
392	BUG_ON(bip->bip_bio != bio);
393
394	/* In case of an I/O error there is no point in verifying the
395	 * integrity metadata.  Restore original bio end_io handler
396	 * and run it.
397	 */
398	if (bio->bi_error) {
399		bio->bi_end_io = bip->bip_end_io;
400		bio_endio(bio);
401
402		return;
403	}
404
405	INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
406	queue_work(kintegrityd_wq, &bip->bip_work);
 
407}
408EXPORT_SYMBOL(bio_integrity_endio);
409
410/**
411 * bio_integrity_advance - Advance integrity vector
412 * @bio:	bio whose integrity vector to update
413 * @bytes_done:	number of data bytes that have been completed
414 *
415 * Description: This function calculates how many integrity bytes the
416 * number of completed data bytes correspond to and advances the
417 * integrity vector accordingly.
418 */
419void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
420{
421	struct bio_integrity_payload *bip = bio_integrity(bio);
422	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
423	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
424
 
425	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
426}
427EXPORT_SYMBOL(bio_integrity_advance);
428
429/**
430 * bio_integrity_trim - Trim integrity vector
431 * @bio:	bio whose integrity vector to update
432 * @offset:	offset to first data sector
433 * @sectors:	number of data sectors
434 *
435 * Description: Used to trim the integrity vector in a cloned bio.
436 * The ivec will be advanced corresponding to 'offset' data sectors
437 * and the length will be truncated corresponding to 'len' data
438 * sectors.
439 */
440void bio_integrity_trim(struct bio *bio, unsigned int offset,
441			unsigned int sectors)
442{
443	struct bio_integrity_payload *bip = bio_integrity(bio);
444	struct blk_integrity *bi = bdev_get_integrity(bio->bi_bdev);
445
446	bio_integrity_advance(bio, offset << 9);
447	bip->bip_iter.bi_size = bio_integrity_bytes(bi, sectors);
448}
449EXPORT_SYMBOL(bio_integrity_trim);
450
451/**
452 * bio_integrity_clone - Callback for cloning bios with integrity metadata
453 * @bio:	New bio
454 * @bio_src:	Original bio
455 * @gfp_mask:	Memory allocation mask
456 *
457 * Description:	Called to allocate a bip when cloning a bio
458 */
459int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
460			gfp_t gfp_mask)
461{
462	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
463	struct bio_integrity_payload *bip;
464
465	BUG_ON(bip_src == NULL);
466
467	bip = bio_integrity_alloc(bio, gfp_mask, bip_src->bip_vcnt);
468	if (IS_ERR(bip))
469		return PTR_ERR(bip);
470
471	memcpy(bip->bip_vec, bip_src->bip_vec,
472	       bip_src->bip_vcnt * sizeof(struct bio_vec));
473
474	bip->bip_vcnt = bip_src->bip_vcnt;
475	bip->bip_iter = bip_src->bip_iter;
 
476
477	return 0;
478}
479EXPORT_SYMBOL(bio_integrity_clone);
480
481int bioset_integrity_create(struct bio_set *bs, int pool_size)
482{
483	if (bs->bio_integrity_pool)
484		return 0;
485
486	bs->bio_integrity_pool = mempool_create_slab_pool(pool_size, bip_slab);
487	if (!bs->bio_integrity_pool)
488		return -1;
489
490	bs->bvec_integrity_pool = biovec_create_pool(pool_size);
491	if (!bs->bvec_integrity_pool) {
492		mempool_destroy(bs->bio_integrity_pool);
493		return -1;
494	}
495
496	return 0;
497}
498EXPORT_SYMBOL(bioset_integrity_create);
499
500void bioset_integrity_free(struct bio_set *bs)
501{
502	if (bs->bio_integrity_pool)
503		mempool_destroy(bs->bio_integrity_pool);
504
505	if (bs->bvec_integrity_pool)
506		mempool_destroy(bs->bvec_integrity_pool);
507}
508EXPORT_SYMBOL(bioset_integrity_free);
509
510void __init bio_integrity_init(void)
511{
512	/*
513	 * kintegrityd won't block much but may burn a lot of CPU cycles.
514	 * Make it highpri CPU intensive wq with max concurrency of 1.
515	 */
516	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
517					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
518	if (!kintegrityd_wq)
519		panic("Failed to create kintegrityd\n");
520
521	bip_slab = kmem_cache_create("bio_integrity_payload",
522				     sizeof(struct bio_integrity_payload) +
523				     sizeof(struct bio_vec) * BIP_INLINE_VECS,
524				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
525}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * bio-integrity.c - bio data integrity extensions
  4 *
  5 * Copyright (C) 2007, 2008, 2009 Oracle Corporation
  6 * Written by: Martin K. Petersen <martin.petersen@oracle.com>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  7 */
  8
  9#include <linux/blk-integrity.h>
 10#include <linux/mempool.h>
 11#include <linux/export.h>
 12#include <linux/bio.h>
 13#include <linux/workqueue.h>
 14#include <linux/slab.h>
 15#include "blk.h"
 
 16
 17static struct kmem_cache *bip_slab;
 18static struct workqueue_struct *kintegrityd_wq;
 19
 20void blk_flush_integrity(void)
 21{
 22	flush_workqueue(kintegrityd_wq);
 23}
 24
 25/**
 26 * bio_integrity_free - Free bio integrity payload
 27 * @bio:	bio containing bip to be freed
 28 *
 29 * Description: Free the integrity portion of a bio.
 30 */
 31void bio_integrity_free(struct bio *bio)
 32{
 33	struct bio_integrity_payload *bip = bio_integrity(bio);
 34	struct bio_set *bs = bio->bi_pool;
 35
 36	if (bs && mempool_initialized(&bs->bio_integrity_pool)) {
 37		if (bip->bip_vec)
 38			bvec_free(&bs->bvec_integrity_pool, bip->bip_vec,
 39				  bip->bip_max_vcnt);
 40		mempool_free(bip, &bs->bio_integrity_pool);
 41	} else {
 42		kfree(bip);
 43	}
 44	bio->bi_integrity = NULL;
 45	bio->bi_opf &= ~REQ_INTEGRITY;
 46}
 47
 48/**
 49 * bio_integrity_alloc - Allocate integrity payload and attach it to bio
 50 * @bio:	bio to attach integrity metadata to
 51 * @gfp_mask:	Memory allocation mask
 52 * @nr_vecs:	Number of integrity metadata scatter-gather elements
 53 *
 54 * Description: This function prepares a bio for attaching integrity
 55 * metadata.  nr_vecs specifies the maximum number of pages containing
 56 * integrity metadata that can be attached.
 57 */
 58struct bio_integrity_payload *bio_integrity_alloc(struct bio *bio,
 59						  gfp_t gfp_mask,
 60						  unsigned int nr_vecs)
 61{
 62	struct bio_integrity_payload *bip;
 63	struct bio_set *bs = bio->bi_pool;
 
 64	unsigned inline_vecs;
 65
 66	if (WARN_ON_ONCE(bio_has_crypt_ctx(bio)))
 67		return ERR_PTR(-EOPNOTSUPP);
 68
 69	if (!bs || !mempool_initialized(&bs->bio_integrity_pool)) {
 70		bip = kmalloc(struct_size(bip, bip_inline_vecs, nr_vecs), gfp_mask);
 71		inline_vecs = nr_vecs;
 72	} else {
 73		bip = mempool_alloc(&bs->bio_integrity_pool, gfp_mask);
 74		inline_vecs = BIO_INLINE_VECS;
 75	}
 76
 77	if (unlikely(!bip))
 78		return ERR_PTR(-ENOMEM);
 79
 80	memset(bip, 0, sizeof(*bip));
 81
 82	/* always report as many vecs as asked explicitly, not inline vecs */
 83	bip->bip_max_vcnt = nr_vecs;
 84	if (nr_vecs > inline_vecs) {
 85		bip->bip_vec = bvec_alloc(&bs->bvec_integrity_pool,
 86					  &bip->bip_max_vcnt, gfp_mask);
 87		if (!bip->bip_vec)
 88			goto err;
 89	} else if (nr_vecs) {
 
 90		bip->bip_vec = bip->bip_inline_vecs;
 
 91	}
 92
 
 93	bip->bip_bio = bio;
 94	bio->bi_integrity = bip;
 95	bio->bi_opf |= REQ_INTEGRITY;
 96
 97	return bip;
 98err:
 99	if (bs && mempool_initialized(&bs->bio_integrity_pool))
100		mempool_free(bip, &bs->bio_integrity_pool);
101	else
102		kfree(bip);
103	return ERR_PTR(-ENOMEM);
104}
105EXPORT_SYMBOL(bio_integrity_alloc);
106
107static void bio_integrity_unpin_bvec(struct bio_vec *bv, int nr_vecs,
108				     bool dirty)
109{
110	int i;
111
112	for (i = 0; i < nr_vecs; i++) {
113		if (dirty && !PageCompound(bv[i].bv_page))
114			set_page_dirty_lock(bv[i].bv_page);
115		unpin_user_page(bv[i].bv_page);
116	}
117}
118
119static void bio_integrity_uncopy_user(struct bio_integrity_payload *bip)
120{
121	unsigned short orig_nr_vecs = bip->bip_max_vcnt - 1;
122	struct bio_vec *orig_bvecs = &bip->bip_vec[1];
123	struct bio_vec *bounce_bvec = &bip->bip_vec[0];
124	size_t bytes = bounce_bvec->bv_len;
125	struct iov_iter orig_iter;
126	int ret;
127
128	iov_iter_bvec(&orig_iter, ITER_DEST, orig_bvecs, orig_nr_vecs, bytes);
129	ret = copy_to_iter(bvec_virt(bounce_bvec), bytes, &orig_iter);
130	WARN_ON_ONCE(ret != bytes);
131
132	bio_integrity_unpin_bvec(orig_bvecs, orig_nr_vecs, true);
133}
134
135/**
136 * bio_integrity_unmap_user - Unmap user integrity payload
137 * @bio:	bio containing bip to be unmapped
138 *
139 * Unmap the user mapped integrity portion of a bio.
 
140 */
141void bio_integrity_unmap_user(struct bio *bio)
142{
143	struct bio_integrity_payload *bip = bio_integrity(bio);
 
 
 
 
 
 
 
 
 
 
144
145	if (bip->bip_flags & BIP_COPY_USER) {
146		if (bio_data_dir(bio) == READ)
147			bio_integrity_uncopy_user(bip);
148		kfree(bvec_virt(bip->bip_vec));
149		return;
150	}
151
152	bio_integrity_unpin_bvec(bip->bip_vec, bip->bip_max_vcnt,
153			bio_data_dir(bio) == READ);
154}
 
155
156/**
157 * bio_integrity_add_page - Attach integrity metadata
158 * @bio:	bio to update
159 * @page:	page containing integrity metadata
160 * @len:	number of bytes of integrity metadata in page
161 * @offset:	start offset within page
162 *
163 * Description: Attach a page containing integrity metadata to bio.
164 */
165int bio_integrity_add_page(struct bio *bio, struct page *page,
166			   unsigned int len, unsigned int offset)
167{
168	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
169	struct bio_integrity_payload *bip = bio_integrity(bio);
 
170
171	if (bip->bip_vcnt > 0) {
172		struct bio_vec *bv = &bip->bip_vec[bip->bip_vcnt - 1];
173		bool same_page = false;
174
175		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
176					   &same_page)) {
177			bip->bip_iter.bi_size += len;
178			return len;
179		}
180
181		if (bip->bip_vcnt >=
182		    min(bip->bip_max_vcnt, queue_max_integrity_segments(q)))
183			return 0;
184
185		/*
186		 * If the queue doesn't support SG gaps and adding this segment
187		 * would create a gap, disallow it.
188		 */
189		if (bvec_gap_to_prev(&q->limits, bv, offset))
190			return 0;
191	}
192
193	bvec_set_page(&bip->bip_vec[bip->bip_vcnt], page, len, offset);
 
 
194	bip->bip_vcnt++;
195	bip->bip_iter.bi_size += len;
196
197	return len;
198}
199EXPORT_SYMBOL(bio_integrity_add_page);
200
201static int bio_integrity_copy_user(struct bio *bio, struct bio_vec *bvec,
202				   int nr_vecs, unsigned int len,
203				   unsigned int direction)
 
 
 
 
 
 
 
204{
205	bool write = direction == ITER_SOURCE;
206	struct bio_integrity_payload *bip;
207	struct iov_iter iter;
208	void *buf;
209	int ret;
210
211	buf = kmalloc(len, GFP_KERNEL);
212	if (!buf)
213		return -ENOMEM;
214
215	if (write) {
216		iov_iter_bvec(&iter, direction, bvec, nr_vecs, len);
217		if (!copy_from_iter_full(buf, len, &iter)) {
218			ret = -EFAULT;
219			goto free_buf;
220		}
221
222		bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
223	} else {
224		memset(buf, 0, len);
225
226		/*
227		 * We need to preserve the original bvec and the number of vecs
228		 * in it for completion handling
229		 */
230		bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs + 1);
231	}
232
233	if (IS_ERR(bip)) {
234		ret = PTR_ERR(bip);
235		goto free_buf;
236	}
237
238	if (write)
239		bio_integrity_unpin_bvec(bvec, nr_vecs, false);
240	else
241		memcpy(&bip->bip_vec[1], bvec, nr_vecs * sizeof(*bvec));
242
243	ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
244				     offset_in_page(buf));
245	if (ret != len) {
246		ret = -ENOMEM;
247		goto free_bip;
248	}
249
250	bip->bip_flags |= BIP_COPY_USER;
251	bip->bip_vcnt = nr_vecs;
252	return 0;
253free_bip:
254	bio_integrity_free(bio);
255free_buf:
256	kfree(buf);
257	return ret;
258}
 
259
260static int bio_integrity_init_user(struct bio *bio, struct bio_vec *bvec,
261				   int nr_vecs, unsigned int len)
 
 
 
 
 
 
 
 
 
 
262{
263	struct bio_integrity_payload *bip;
264
265	bip = bio_integrity_alloc(bio, GFP_KERNEL, nr_vecs);
266	if (IS_ERR(bip))
267		return PTR_ERR(bip);
268
269	memcpy(bip->bip_vec, bvec, nr_vecs * sizeof(*bvec));
270	bip->bip_iter.bi_size = len;
271	bip->bip_vcnt = nr_vecs;
272	return 0;
273}
274
275static unsigned int bvec_from_pages(struct bio_vec *bvec, struct page **pages,
276				    int nr_vecs, ssize_t bytes, ssize_t offset)
277{
278	unsigned int nr_bvecs = 0;
279	int i, j;
280
281	for (i = 0; i < nr_vecs; i = j) {
282		size_t size = min_t(size_t, bytes, PAGE_SIZE - offset);
283		struct folio *folio = page_folio(pages[i]);
284
285		bytes -= size;
286		for (j = i + 1; j < nr_vecs; j++) {
287			size_t next = min_t(size_t, PAGE_SIZE, bytes);
288
289			if (page_folio(pages[j]) != folio ||
290			    pages[j] != pages[j - 1] + 1)
291				break;
292			unpin_user_page(pages[j]);
293			size += next;
294			bytes -= next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
295		}
296
297		bvec_set_page(&bvec[nr_bvecs], pages[i], size, offset);
298		offset = 0;
299		nr_bvecs++;
300	}
301
302	return nr_bvecs;
303}
304
305int bio_integrity_map_user(struct bio *bio, void __user *ubuf, ssize_t bytes)
306{
307	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
308	unsigned int align = blk_lim_dma_alignment_and_pad(&q->limits);
309	struct page *stack_pages[UIO_FASTIOV], **pages = stack_pages;
310	struct bio_vec stack_vec[UIO_FASTIOV], *bvec = stack_vec;
311	unsigned int direction, nr_bvecs;
312	struct iov_iter iter;
313	int ret, nr_vecs;
314	size_t offset;
315	bool copy;
316
317	if (bio_integrity(bio))
318		return -EINVAL;
319	if (bytes >> SECTOR_SHIFT > queue_max_hw_sectors(q))
320		return -E2BIG;
321
322	if (bio_data_dir(bio) == READ)
323		direction = ITER_DEST;
324	else
325		direction = ITER_SOURCE;
326
327	iov_iter_ubuf(&iter, direction, ubuf, bytes);
328	nr_vecs = iov_iter_npages(&iter, BIO_MAX_VECS + 1);
329	if (nr_vecs > BIO_MAX_VECS)
330		return -E2BIG;
331	if (nr_vecs > UIO_FASTIOV) {
332		bvec = kcalloc(nr_vecs, sizeof(*bvec), GFP_KERNEL);
333		if (!bvec)
334			return -ENOMEM;
335		pages = NULL;
336	}
337
338	copy = !iov_iter_is_aligned(&iter, align, align);
339	ret = iov_iter_extract_pages(&iter, &pages, bytes, nr_vecs, 0, &offset);
340	if (unlikely(ret < 0))
341		goto free_bvec;
342
343	nr_bvecs = bvec_from_pages(bvec, pages, nr_vecs, bytes, offset);
344	if (pages != stack_pages)
345		kvfree(pages);
346	if (nr_bvecs > queue_max_integrity_segments(q))
347		copy = true;
348
349	if (copy)
350		ret = bio_integrity_copy_user(bio, bvec, nr_bvecs, bytes,
351					      direction);
352	else
353		ret = bio_integrity_init_user(bio, bvec, nr_bvecs, bytes);
354	if (ret)
355		goto release_pages;
356	if (bvec != stack_vec)
357		kfree(bvec);
358
359	return 0;
360
361release_pages:
362	bio_integrity_unpin_bvec(bvec, nr_bvecs, false);
363free_bvec:
364	if (bvec != stack_vec)
365		kfree(bvec);
366	return ret;
367}
368
369/**
370 * bio_integrity_prep - Prepare bio for integrity I/O
371 * @bio:	bio to prepare
372 *
373 * Description:  Checks if the bio already has an integrity payload attached.
374 * If it does, the payload has been generated by another kernel subsystem,
375 * and we just pass it through. Otherwise allocates integrity payload.
376 * The bio must have data direction, target device and start sector set priot
377 * to calling.  In the WRITE case, integrity metadata will be generated using
378 * the block device's integrity function.  In the READ case, the buffer
379 * will be prepared for DMA and a suitable end_io handler set up.
380 */
381bool bio_integrity_prep(struct bio *bio)
382{
383	struct bio_integrity_payload *bip;
384	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
385	unsigned int len;
386	void *buf;
387	gfp_t gfp = GFP_NOIO;
 
 
 
 
 
 
 
 
388
389	if (!bi)
390		return true;
391
392	if (!bio_sectors(bio))
393		return true;
394
395	/* Already protected? */
396	if (bio_integrity(bio))
397		return true;
398
399	switch (bio_op(bio)) {
400	case REQ_OP_READ:
401		if (bi->flags & BLK_INTEGRITY_NOVERIFY)
402			return true;
403		break;
404	case REQ_OP_WRITE:
405		if (bi->flags & BLK_INTEGRITY_NOGENERATE)
406			return true;
407
408		/*
409		 * Zero the memory allocated to not leak uninitialized kernel
410		 * memory to disk for non-integrity metadata where nothing else
411		 * initializes the memory.
412		 */
413		if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE)
414			gfp |= __GFP_ZERO;
415		break;
416	default:
417		return true;
418	}
419
420	/* Allocate kernel buffer for protection data */
421	len = bio_integrity_bytes(bi, bio_sectors(bio));
422	buf = kmalloc(len, gfp);
423	if (unlikely(buf == NULL)) {
424		goto err_end_io;
 
425	}
426
427	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
 
 
 
 
 
428	if (IS_ERR(bip)) {
 
429		kfree(buf);
430		goto err_end_io;
431	}
432
433	bip->bip_flags |= BIP_BLOCK_INTEGRITY;
 
434	bip_set_seed(bip, bio->bi_iter.bi_sector);
435
436	if (bi->csum_type == BLK_INTEGRITY_CSUM_IP)
437		bip->bip_flags |= BIP_IP_CHECKSUM;
438
439	if (bio_integrity_add_page(bio, virt_to_page(buf), len,
440			offset_in_page(buf)) < len) {
441		printk(KERN_ERR "could not attach integrity payload\n");
442		goto err_end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443	}
444
445	/* Auto-generate integrity metadata if this is a write */
446	if (bio_data_dir(bio) == WRITE)
447		blk_integrity_generate(bio);
448	else
449		bip->bio_iter = bio->bi_iter;
450	return true;
451
452err_end_io:
453	bio->bi_status = BLK_STS_RESOURCE;
454	bio_endio(bio);
455	return false;
456}
457EXPORT_SYMBOL(bio_integrity_prep);
458
459/**
460 * bio_integrity_verify_fn - Integrity I/O completion worker
461 * @work:	Work struct stored in bio to be verified
462 *
463 * Description: This workqueue function is called to complete a READ
464 * request.  The function verifies the transferred integrity metadata
465 * and then calls the original bio end_io function.
466 */
467static void bio_integrity_verify_fn(struct work_struct *work)
468{
469	struct bio_integrity_payload *bip =
470		container_of(work, struct bio_integrity_payload, bip_work);
471	struct bio *bio = bip->bip_bio;
 
472
473	blk_integrity_verify(bio);
474
475	kfree(bvec_virt(bip->bip_vec));
476	bio_integrity_free(bio);
477	bio_endio(bio);
478}
479
480/**
481 * __bio_integrity_endio - Integrity I/O completion function
482 * @bio:	Protected bio
 
483 *
484 * Description: Completion for integrity I/O
485 *
486 * Normally I/O completion is done in interrupt context.  However,
487 * verifying I/O integrity is a time-consuming task which must be run
488 * in process context.	This function postpones completion
489 * accordingly.
490 */
491bool __bio_integrity_endio(struct bio *bio)
492{
493	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
494	struct bio_integrity_payload *bip = bio_integrity(bio);
495
496	if (bio_op(bio) == REQ_OP_READ && !bio->bi_status && bi->csum_type) {
497		INIT_WORK(&bip->bip_work, bio_integrity_verify_fn);
498		queue_work(kintegrityd_wq, &bip->bip_work);
499		return false;
 
 
 
 
 
 
 
500	}
501
502	kfree(bvec_virt(bip->bip_vec));
503	bio_integrity_free(bio);
504	return true;
505}
 
506
507/**
508 * bio_integrity_advance - Advance integrity vector
509 * @bio:	bio whose integrity vector to update
510 * @bytes_done:	number of data bytes that have been completed
511 *
512 * Description: This function calculates how many integrity bytes the
513 * number of completed data bytes correspond to and advances the
514 * integrity vector accordingly.
515 */
516void bio_integrity_advance(struct bio *bio, unsigned int bytes_done)
517{
518	struct bio_integrity_payload *bip = bio_integrity(bio);
519	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
520	unsigned bytes = bio_integrity_bytes(bi, bytes_done >> 9);
521
522	bip->bip_iter.bi_sector += bio_integrity_intervals(bi, bytes_done >> 9);
523	bvec_iter_advance(bip->bip_vec, &bip->bip_iter, bytes);
524}
 
525
526/**
527 * bio_integrity_trim - Trim integrity vector
528 * @bio:	bio whose integrity vector to update
 
 
529 *
530 * Description: Used to trim the integrity vector in a cloned bio.
 
 
 
531 */
532void bio_integrity_trim(struct bio *bio)
 
533{
534	struct bio_integrity_payload *bip = bio_integrity(bio);
535	struct blk_integrity *bi = blk_get_integrity(bio->bi_bdev->bd_disk);
536
537	bip->bip_iter.bi_size = bio_integrity_bytes(bi, bio_sectors(bio));
 
538}
539EXPORT_SYMBOL(bio_integrity_trim);
540
541/**
542 * bio_integrity_clone - Callback for cloning bios with integrity metadata
543 * @bio:	New bio
544 * @bio_src:	Original bio
545 * @gfp_mask:	Memory allocation mask
546 *
547 * Description:	Called to allocate a bip when cloning a bio
548 */
549int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
550			gfp_t gfp_mask)
551{
552	struct bio_integrity_payload *bip_src = bio_integrity(bio_src);
553	struct bio_integrity_payload *bip;
554
555	BUG_ON(bip_src == NULL);
556
557	bip = bio_integrity_alloc(bio, gfp_mask, 0);
558	if (IS_ERR(bip))
559		return PTR_ERR(bip);
560
561	bip->bip_vec = bip_src->bip_vec;
 
 
 
562	bip->bip_iter = bip_src->bip_iter;
563	bip->bip_flags = bip_src->bip_flags & ~BIP_BLOCK_INTEGRITY;
564
565	return 0;
566}
 
567
568int bioset_integrity_create(struct bio_set *bs, int pool_size)
569{
570	if (mempool_initialized(&bs->bio_integrity_pool))
571		return 0;
572
573	if (mempool_init_slab_pool(&bs->bio_integrity_pool,
574				   pool_size, bip_slab))
575		return -1;
576
577	if (biovec_init_pool(&bs->bvec_integrity_pool, pool_size)) {
578		mempool_exit(&bs->bio_integrity_pool);
 
579		return -1;
580	}
581
582	return 0;
583}
584EXPORT_SYMBOL(bioset_integrity_create);
585
586void bioset_integrity_free(struct bio_set *bs)
587{
588	mempool_exit(&bs->bio_integrity_pool);
589	mempool_exit(&bs->bvec_integrity_pool);
 
 
 
590}
 
591
592void __init bio_integrity_init(void)
593{
594	/*
595	 * kintegrityd won't block much but may burn a lot of CPU cycles.
596	 * Make it highpri CPU intensive wq with max concurrency of 1.
597	 */
598	kintegrityd_wq = alloc_workqueue("kintegrityd", WQ_MEM_RECLAIM |
599					 WQ_HIGHPRI | WQ_CPU_INTENSIVE, 1);
600	if (!kintegrityd_wq)
601		panic("Failed to create kintegrityd\n");
602
603	bip_slab = kmem_cache_create("bio_integrity_payload",
604				     sizeof(struct bio_integrity_payload) +
605				     sizeof(struct bio_vec) * BIO_INLINE_VECS,
606				     0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
607}