Linux Audio

Check our new training course

Loading...
v4.6
 
  1/* 
  2 * Code to handle x86 style IRQs plus some generic interrupt stuff.
  3 *
  4 * Copyright (C) 1992 Linus Torvalds
  5 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
  6 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  7 * Copyright (C) 1999-2000 Grant Grundler
  8 * Copyright (c) 2005 Matthew Wilcox
  9 *
 10 *    This program is free software; you can redistribute it and/or modify
 11 *    it under the terms of the GNU General Public License as published by
 12 *    the Free Software Foundation; either version 2, or (at your option)
 13 *    any later version.
 14 *
 15 *    This program is distributed in the hope that it will be useful,
 16 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 17 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 18 *    GNU General Public License for more details.
 19 *
 20 *    You should have received a copy of the GNU General Public License
 21 *    along with this program; if not, write to the Free Software
 22 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 23 */
 24#include <linux/bitops.h>
 25#include <linux/errno.h>
 26#include <linux/init.h>
 27#include <linux/interrupt.h>
 28#include <linux/kernel_stat.h>
 29#include <linux/seq_file.h>
 30#include <linux/types.h>
 
 31#include <asm/io.h>
 32
 
 33#include <asm/smp.h>
 34#include <asm/ldcw.h>
 35
 36#undef PARISC_IRQ_CR16_COUNTS
 37
 38extern irqreturn_t timer_interrupt(int, void *);
 39extern irqreturn_t ipi_interrupt(int, void *);
 40
 41#define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
 42
 43/* Bits in EIEM correlate with cpu_irq_action[].
 44** Numbered *Big Endian*! (ie bit 0 is MSB)
 45*/
 46static volatile unsigned long cpu_eiem = 0;
 47
 48/*
 49** local ACK bitmap ... habitually set to 1, but reset to zero
 50** between ->ack() and ->end() of the interrupt to prevent
 51** re-interruption of a processing interrupt.
 52*/
 53static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
 54
 55static void cpu_mask_irq(struct irq_data *d)
 56{
 57	unsigned long eirr_bit = EIEM_MASK(d->irq);
 58
 59	cpu_eiem &= ~eirr_bit;
 60	/* Do nothing on the other CPUs.  If they get this interrupt,
 61	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
 62	 * handle it, and the set_eiem() at the bottom will ensure it
 63	 * then gets disabled */
 64}
 65
 66static void __cpu_unmask_irq(unsigned int irq)
 67{
 68	unsigned long eirr_bit = EIEM_MASK(irq);
 69
 70	cpu_eiem |= eirr_bit;
 71
 72	/* This is just a simple NOP IPI.  But what it does is cause
 73	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
 74	 * of the interrupt handler */
 75	smp_send_all_nop();
 76}
 77
 78static void cpu_unmask_irq(struct irq_data *d)
 79{
 80	__cpu_unmask_irq(d->irq);
 81}
 82
 83void cpu_ack_irq(struct irq_data *d)
 84{
 85	unsigned long mask = EIEM_MASK(d->irq);
 86	int cpu = smp_processor_id();
 87
 88	/* Clear in EIEM so we can no longer process */
 89	per_cpu(local_ack_eiem, cpu) &= ~mask;
 90
 91	/* disable the interrupt */
 92	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 93
 94	/* and now ack it */
 95	mtctl(mask, 23);
 96}
 97
 98void cpu_eoi_irq(struct irq_data *d)
 99{
100	unsigned long mask = EIEM_MASK(d->irq);
101	int cpu = smp_processor_id();
102
103	/* set it in the eiems---it's no longer in process */
104	per_cpu(local_ack_eiem, cpu) |= mask;
105
106	/* enable the interrupt */
107	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
108}
109
110#ifdef CONFIG_SMP
111int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
112{
113	int cpu_dest;
114
115	/* timer and ipi have to always be received on all CPUs */
116	if (irqd_is_per_cpu(d))
117		return -EINVAL;
118
119	/* whatever mask they set, we just allow one CPU */
120	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
 
 
121
122	return cpu_dest;
123}
124
125static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
126				bool force)
127{
128	int cpu_dest;
129
130	cpu_dest = cpu_check_affinity(d, dest);
131	if (cpu_dest < 0)
132		return -1;
133
134	cpumask_copy(irq_data_get_affinity_mask(d), dest);
135
136	return 0;
137}
138#endif
139
140static struct irq_chip cpu_interrupt_type = {
141	.name			= "CPU",
142	.irq_mask		= cpu_mask_irq,
143	.irq_unmask		= cpu_unmask_irq,
144	.irq_ack		= cpu_ack_irq,
145	.irq_eoi		= cpu_eoi_irq,
146#ifdef CONFIG_SMP
147	.irq_set_affinity	= cpu_set_affinity_irq,
148#endif
149	/* XXX: Needs to be written.  We managed without it so far, but
150	 * we really ought to write it.
151	 */
152	.irq_retrigger	= NULL,
153};
154
155DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
156#define irq_stats(x)		(&per_cpu(irq_stat, x))
157
158/*
159 * /proc/interrupts printing for arch specific interrupts
160 */
161int arch_show_interrupts(struct seq_file *p, int prec)
162{
163	int j;
164
165#ifdef CONFIG_DEBUG_STACKOVERFLOW
166	seq_printf(p, "%*s: ", prec, "STK");
167	for_each_online_cpu(j)
168		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
169	seq_puts(p, "  Kernel stack usage\n");
170# ifdef CONFIG_IRQSTACKS
171	seq_printf(p, "%*s: ", prec, "IST");
172	for_each_online_cpu(j)
173		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
174	seq_puts(p, "  Interrupt stack usage\n");
175# endif
176#endif
177#ifdef CONFIG_SMP
178	seq_printf(p, "%*s: ", prec, "RES");
179	for_each_online_cpu(j)
180		seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
181	seq_puts(p, "  Rescheduling interrupts\n");
 
 
 
 
 
 
182#endif
183	seq_printf(p, "%*s: ", prec, "UAH");
184	for_each_online_cpu(j)
185		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
186	seq_puts(p, "  Unaligned access handler traps\n");
187	seq_printf(p, "%*s: ", prec, "FPA");
188	for_each_online_cpu(j)
189		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
190	seq_puts(p, "  Floating point assist traps\n");
191	seq_printf(p, "%*s: ", prec, "TLB");
192	for_each_online_cpu(j)
193		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
194	seq_puts(p, "  TLB shootdowns\n");
195	return 0;
196}
197
198int show_interrupts(struct seq_file *p, void *v)
199{
200	int i = *(loff_t *) v, j;
201	unsigned long flags;
202
203	if (i == 0) {
204		seq_puts(p, "    ");
205		for_each_online_cpu(j)
206			seq_printf(p, "       CPU%d", j);
207
208#ifdef PARISC_IRQ_CR16_COUNTS
209		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
210#endif
211		seq_putc(p, '\n');
212	}
213
214	if (i < NR_IRQS) {
215		struct irq_desc *desc = irq_to_desc(i);
216		struct irqaction *action;
217
218		raw_spin_lock_irqsave(&desc->lock, flags);
219		action = desc->action;
220		if (!action)
221			goto skip;
222		seq_printf(p, "%3d: ", i);
223#ifdef CONFIG_SMP
224		for_each_online_cpu(j)
225			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
226#else
227		seq_printf(p, "%10u ", kstat_irqs(i));
228#endif
229
230		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
231#ifndef PARISC_IRQ_CR16_COUNTS
232		seq_printf(p, "  %s", action->name);
233
234		while ((action = action->next))
235			seq_printf(p, ", %s", action->name);
236#else
237		for ( ;action; action = action->next) {
238			unsigned int k, avg, min, max;
239
240			min = max = action->cr16_hist[0];
241
242			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
243				int hist = action->cr16_hist[k];
244
245				if (hist) {
246					avg += hist;
247				} else
248					break;
249
250				if (hist > max) max = hist;
251				if (hist < min) min = hist;
252			}
253
254			avg /= k;
255			seq_printf(p, " %s[%d/%d/%d]", action->name,
256					min,avg,max);
257		}
258#endif
259
260		seq_putc(p, '\n');
261 skip:
262		raw_spin_unlock_irqrestore(&desc->lock, flags);
263	}
264
265	if (i == NR_IRQS)
266		arch_show_interrupts(p, 3);
267
268	return 0;
269}
270
271
272
273/*
274** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
275** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
276**
277** To use txn_XXX() interfaces, get a Virtual IRQ first.
278** Then use that to get the Transaction address and data.
279*/
280
281int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
282{
283	if (irq_has_action(irq))
284		return -EBUSY;
285	if (irq_get_chip(irq) != &cpu_interrupt_type)
286		return -EBUSY;
287
288	/* for iosapic interrupts */
289	if (type) {
290		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
291		irq_set_chip_data(irq, data);
292		__cpu_unmask_irq(irq);
293	}
294	return 0;
295}
296
297int txn_claim_irq(int irq)
298{
299	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
300}
301
302/*
303 * The bits_wide parameter accommodates the limitations of the HW/SW which
304 * use these bits:
305 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
306 * V-class (EPIC):          6 bits
307 * N/L/A-class (iosapic):   8 bits
308 * PCI 2.2 MSI:            16 bits
309 * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
310 *
311 * On the service provider side:
312 * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
313 * o PA 2.0 wide mode                   6-bits (per processor)
314 * o IA64                               8-bits (0-256 total)
315 *
316 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
317 * by the processor...and the N/L-class I/O subsystem supports more bits than
318 * PA2.0 has. The first case is the problem.
319 */
320int txn_alloc_irq(unsigned int bits_wide)
321{
322	int irq;
323
324	/* never return irq 0 cause that's the interval timer */
325	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
326		if (cpu_claim_irq(irq, NULL, NULL) < 0)
327			continue;
328		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
329			continue;
330		return irq;
331	}
332
333	/* unlikely, but be prepared */
334	return -1;
335}
336
337
338unsigned long txn_affinity_addr(unsigned int irq, int cpu)
339{
340#ifdef CONFIG_SMP
341	struct irq_data *d = irq_get_irq_data(irq);
342	cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu));
343#endif
344
345	return per_cpu(cpu_data, cpu).txn_addr;
346}
347
348
349unsigned long txn_alloc_addr(unsigned int virt_irq)
350{
351	static int next_cpu = -1;
352
353	next_cpu++; /* assign to "next" CPU we want this bugger on */
354
355	/* validate entry */
356	while ((next_cpu < nr_cpu_ids) &&
357		(!per_cpu(cpu_data, next_cpu).txn_addr ||
358		 !cpu_online(next_cpu)))
359		next_cpu++;
360
361	if (next_cpu >= nr_cpu_ids) 
362		next_cpu = 0;	/* nothing else, assign monarch */
363
364	return txn_affinity_addr(virt_irq, next_cpu);
365}
366
367
368unsigned int txn_alloc_data(unsigned int virt_irq)
369{
370	return virt_irq - CPU_IRQ_BASE;
371}
372
373static inline int eirr_to_irq(unsigned long eirr)
374{
375	int bit = fls_long(eirr);
376	return (BITS_PER_LONG - bit) + TIMER_IRQ;
377}
378
379#ifdef CONFIG_IRQSTACKS
380/*
381 * IRQ STACK - used for irq handler
382 */
383#define IRQ_STACK_SIZE      (4096 << 2) /* 16k irq stack size */
 
 
 
 
384
385union irq_stack_union {
386	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
387	volatile unsigned int slock[4];
388	volatile unsigned int lock[1];
389};
390
391DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
392		.slock = { 1,1,1,1 },
393	};
394#endif
395
396
397int sysctl_panic_on_stackoverflow = 1;
398
399static inline void stack_overflow_check(struct pt_regs *regs)
400{
401#ifdef CONFIG_DEBUG_STACKOVERFLOW
402	#define STACK_MARGIN	(256*6)
403
404	/* Our stack starts directly behind the thread_info struct. */
405	unsigned long stack_start = (unsigned long) current_thread_info();
406	unsigned long sp = regs->gr[30];
407	unsigned long stack_usage;
408	unsigned int *last_usage;
409	int cpu = smp_processor_id();
410
411	/* if sr7 != 0, we interrupted a userspace process which we do not want
412	 * to check for stack overflow. We will only check the kernel stack. */
413	if (regs->sr[7])
414		return;
415
 
 
 
 
416	/* calculate kernel stack usage */
417	stack_usage = sp - stack_start;
418#ifdef CONFIG_IRQSTACKS
419	if (likely(stack_usage <= THREAD_SIZE))
420		goto check_kernel_stack; /* found kernel stack */
421
422	/* check irq stack usage */
423	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
424	stack_usage = sp - stack_start;
425
426	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
427	if (unlikely(stack_usage > *last_usage))
428		*last_usage = stack_usage;
429
430	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
431		return;
432
433	pr_emerg("stackcheck: %s will most likely overflow irq stack "
434		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
435		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
436	goto panic_check;
437
438check_kernel_stack:
439#endif
440
441	/* check kernel stack usage */
442	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
443
444	if (unlikely(stack_usage > *last_usage))
445		*last_usage = stack_usage;
446
447	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
448		return;
449
450	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
451		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
452		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
453
454#ifdef CONFIG_IRQSTACKS
455panic_check:
456#endif
457	if (sysctl_panic_on_stackoverflow)
 
458		panic("low stack detected by irq handler - check messages\n");
 
459#endif
460}
461
462#ifdef CONFIG_IRQSTACKS
463/* in entry.S: */
464void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
465
466static void execute_on_irq_stack(void *func, unsigned long param1)
467{
468	union irq_stack_union *union_ptr;
469	unsigned long irq_stack;
470	volatile unsigned int *irq_stack_in_use;
471
472	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
473	irq_stack = (unsigned long) &union_ptr->stack;
474	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
475			 64); /* align for stack frame usage */
476
477	/* We may be called recursive. If we are already using the irq stack,
478	 * just continue to use it. Use spinlocks to serialize
479	 * the irq stack usage.
480	 */
481	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
482	if (!__ldcw(irq_stack_in_use)) {
483		void (*direct_call)(unsigned long p1) = func;
484
485		/* We are using the IRQ stack already.
486		 * Do direct call on current stack. */
487		direct_call(param1);
488		return;
489	}
490
491	/* This is where we switch to the IRQ stack. */
492	call_on_stack(param1, func, irq_stack);
493
494	/* free up irq stack usage. */
495	*irq_stack_in_use = 1;
496}
497
 
498void do_softirq_own_stack(void)
499{
500	execute_on_irq_stack(__do_softirq, 0);
501}
 
502#endif /* CONFIG_IRQSTACKS */
503
504/* ONLY called from entry.S:intr_extint() */
505void do_cpu_irq_mask(struct pt_regs *regs)
506{
507	struct pt_regs *old_regs;
508	unsigned long eirr_val;
509	int irq, cpu = smp_processor_id();
510	struct irq_data *irq_data;
511#ifdef CONFIG_SMP
512	cpumask_t dest;
513#endif
514
515	old_regs = set_irq_regs(regs);
516	local_irq_disable();
517	irq_enter();
518
519	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
520	if (!eirr_val)
521		goto set_out;
522	irq = eirr_to_irq(eirr_val);
523
524	irq_data = irq_get_irq_data(irq);
525
526	/* Filter out spurious interrupts, mostly from serial port at bootup */
527	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
528		goto set_out;
529
530#ifdef CONFIG_SMP
531	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
532	if (irqd_is_per_cpu(irq_data) &&
533	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
534		int cpu = cpumask_first(&dest);
535
536		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
537		       irq, smp_processor_id(), cpu);
538		gsc_writel(irq + CPU_IRQ_BASE,
539			   per_cpu(cpu_data, cpu).hpa);
540		goto set_out;
541	}
542#endif
543	stack_overflow_check(regs);
544
545#ifdef CONFIG_IRQSTACKS
546	execute_on_irq_stack(&generic_handle_irq, irq);
547#else
548	generic_handle_irq(irq);
549#endif /* CONFIG_IRQSTACKS */
550
551 out:
552	irq_exit();
553	set_irq_regs(old_regs);
554	return;
555
556 set_out:
557	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
558	goto out;
559}
560
561static struct irqaction timer_action = {
562	.handler = timer_interrupt,
563	.name = "timer",
564	.flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL,
565};
566
567#ifdef CONFIG_SMP
568static struct irqaction ipi_action = {
569	.handler = ipi_interrupt,
570	.name = "IPI",
571	.flags = IRQF_PERCPU,
572};
573#endif
574
575static void claim_cpu_irqs(void)
576{
 
577	int i;
 
578	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
579		irq_set_chip_and_handler(i, &cpu_interrupt_type,
580					 handle_percpu_irq);
581	}
582
583	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
584	setup_irq(TIMER_IRQ, &timer_action);
 
585#ifdef CONFIG_SMP
586	irq_set_handler(IPI_IRQ, handle_percpu_irq);
587	setup_irq(IPI_IRQ, &ipi_action);
 
588#endif
589}
590
591void __init init_IRQ(void)
592{
593	local_irq_disable();	/* PARANOID - should already be disabled */
594	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
595#ifdef CONFIG_SMP
596	if (!cpu_eiem) {
597		claim_cpu_irqs();
598		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
599	}
600#else
601	claim_cpu_irqs();
602	cpu_eiem = EIEM_MASK(TIMER_IRQ);
603#endif
604        set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
605}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* 
  3 * Code to handle x86 style IRQs plus some generic interrupt stuff.
  4 *
  5 * Copyright (C) 1992 Linus Torvalds
  6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
  7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  8 * Copyright (C) 1999-2000 Grant Grundler
  9 * Copyright (c) 2005 Matthew Wilcox
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 10 */
 11#include <linux/bitops.h>
 12#include <linux/errno.h>
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/seq_file.h>
 17#include <linux/types.h>
 18#include <linux/sched/task_stack.h>
 19#include <asm/io.h>
 20
 21#include <asm/softirq_stack.h>
 22#include <asm/smp.h>
 23#include <asm/ldcw.h>
 24
 25#undef PARISC_IRQ_CR16_COUNTS
 26
 
 
 
 27#define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
 28
 29/* Bits in EIEM correlate with cpu_irq_action[].
 30** Numbered *Big Endian*! (ie bit 0 is MSB)
 31*/
 32static volatile unsigned long cpu_eiem = 0;
 33
 34/*
 35** local ACK bitmap ... habitually set to 1, but reset to zero
 36** between ->ack() and ->end() of the interrupt to prevent
 37** re-interruption of a processing interrupt.
 38*/
 39static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
 40
 41static void cpu_mask_irq(struct irq_data *d)
 42{
 43	unsigned long eirr_bit = EIEM_MASK(d->irq);
 44
 45	cpu_eiem &= ~eirr_bit;
 46	/* Do nothing on the other CPUs.  If they get this interrupt,
 47	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
 48	 * handle it, and the set_eiem() at the bottom will ensure it
 49	 * then gets disabled */
 50}
 51
 52static void __cpu_unmask_irq(unsigned int irq)
 53{
 54	unsigned long eirr_bit = EIEM_MASK(irq);
 55
 56	cpu_eiem |= eirr_bit;
 57
 58	/* This is just a simple NOP IPI.  But what it does is cause
 59	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
 60	 * of the interrupt handler */
 61	smp_send_all_nop();
 62}
 63
 64static void cpu_unmask_irq(struct irq_data *d)
 65{
 66	__cpu_unmask_irq(d->irq);
 67}
 68
 69void cpu_ack_irq(struct irq_data *d)
 70{
 71	unsigned long mask = EIEM_MASK(d->irq);
 72	int cpu = smp_processor_id();
 73
 74	/* Clear in EIEM so we can no longer process */
 75	per_cpu(local_ack_eiem, cpu) &= ~mask;
 76
 77	/* disable the interrupt */
 78	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 79
 80	/* and now ack it */
 81	mtctl(mask, 23);
 82}
 83
 84void cpu_eoi_irq(struct irq_data *d)
 85{
 86	unsigned long mask = EIEM_MASK(d->irq);
 87	int cpu = smp_processor_id();
 88
 89	/* set it in the eiems---it's no longer in process */
 90	per_cpu(local_ack_eiem, cpu) |= mask;
 91
 92	/* enable the interrupt */
 93	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 94}
 95
 96#ifdef CONFIG_SMP
 97int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
 98{
 99	int cpu_dest;
100
101	/* timer and ipi have to always be received on all CPUs */
102	if (irqd_is_per_cpu(d))
103		return -EINVAL;
104
 
105	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
106	if (cpu_dest >= nr_cpu_ids)
107		cpu_dest = cpumask_first(cpu_online_mask);
108
109	return cpu_dest;
110}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111#endif
112
113static struct irq_chip cpu_interrupt_type = {
114	.name			= "CPU",
115	.irq_mask		= cpu_mask_irq,
116	.irq_unmask		= cpu_unmask_irq,
117	.irq_ack		= cpu_ack_irq,
118	.irq_eoi		= cpu_eoi_irq,
 
 
 
119	/* XXX: Needs to be written.  We managed without it so far, but
120	 * we really ought to write it.
121	 */
122	.irq_retrigger	= NULL,
123};
124
125DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
126#define irq_stats(x)		(&per_cpu(irq_stat, x))
127
128/*
129 * /proc/interrupts printing for arch specific interrupts
130 */
131int arch_show_interrupts(struct seq_file *p, int prec)
132{
133	int j;
134
135#ifdef CONFIG_DEBUG_STACKOVERFLOW
136	seq_printf(p, "%*s: ", prec, "STK");
137	for_each_online_cpu(j)
138		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
139	seq_puts(p, "  Kernel stack usage\n");
140# ifdef CONFIG_IRQSTACKS
141	seq_printf(p, "%*s: ", prec, "IST");
142	for_each_online_cpu(j)
143		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
144	seq_puts(p, "  Interrupt stack usage\n");
145# endif
146#endif
147#ifdef CONFIG_SMP
148	if (num_online_cpus() > 1) {
149		seq_printf(p, "%*s: ", prec, "RES");
150		for_each_online_cpu(j)
151			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
152		seq_puts(p, "  Rescheduling interrupts\n");
153		seq_printf(p, "%*s: ", prec, "CAL");
154		for_each_online_cpu(j)
155			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
156		seq_puts(p, "  Function call interrupts\n");
157	}
158#endif
159	seq_printf(p, "%*s: ", prec, "UAH");
160	for_each_online_cpu(j)
161		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
162	seq_puts(p, "  Unaligned access handler traps\n");
163	seq_printf(p, "%*s: ", prec, "FPA");
164	for_each_online_cpu(j)
165		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
166	seq_puts(p, "  Floating point assist traps\n");
167	seq_printf(p, "%*s: ", prec, "TLB");
168	for_each_online_cpu(j)
169		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
170	seq_puts(p, "  TLB shootdowns\n");
171	return 0;
172}
173
174int show_interrupts(struct seq_file *p, void *v)
175{
176	int i = *(loff_t *) v, j;
177	unsigned long flags;
178
179	if (i == 0) {
180		seq_puts(p, "    ");
181		for_each_online_cpu(j)
182			seq_printf(p, "       CPU%d", j);
183
184#ifdef PARISC_IRQ_CR16_COUNTS
185		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
186#endif
187		seq_putc(p, '\n');
188	}
189
190	if (i < NR_IRQS) {
191		struct irq_desc *desc = irq_to_desc(i);
192		struct irqaction *action;
193
194		raw_spin_lock_irqsave(&desc->lock, flags);
195		action = desc->action;
196		if (!action)
197			goto skip;
198		seq_printf(p, "%3d: ", i);
199
200		for_each_online_cpu(j)
201			seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
 
 
 
202
203		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
204#ifndef PARISC_IRQ_CR16_COUNTS
205		seq_printf(p, "  %s", action->name);
206
207		while ((action = action->next))
208			seq_printf(p, ", %s", action->name);
209#else
210		for ( ;action; action = action->next) {
211			unsigned int k, avg, min, max;
212
213			min = max = action->cr16_hist[0];
214
215			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
216				int hist = action->cr16_hist[k];
217
218				if (hist) {
219					avg += hist;
220				} else
221					break;
222
223				if (hist > max) max = hist;
224				if (hist < min) min = hist;
225			}
226
227			avg /= k;
228			seq_printf(p, " %s[%d/%d/%d]", action->name,
229					min,avg,max);
230		}
231#endif
232
233		seq_putc(p, '\n');
234 skip:
235		raw_spin_unlock_irqrestore(&desc->lock, flags);
236	}
237
238	if (i == NR_IRQS)
239		arch_show_interrupts(p, 3);
240
241	return 0;
242}
243
244
245
246/*
247** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
248** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
249**
250** To use txn_XXX() interfaces, get a Virtual IRQ first.
251** Then use that to get the Transaction address and data.
252*/
253
254int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
255{
256	if (irq_has_action(irq))
257		return -EBUSY;
258	if (irq_get_chip(irq) != &cpu_interrupt_type)
259		return -EBUSY;
260
261	/* for iosapic interrupts */
262	if (type) {
263		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
264		irq_set_chip_data(irq, data);
265		__cpu_unmask_irq(irq);
266	}
267	return 0;
268}
269
270int txn_claim_irq(int irq)
271{
272	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
273}
274
275/*
276 * The bits_wide parameter accommodates the limitations of the HW/SW which
277 * use these bits:
278 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
279 * V-class (EPIC):          6 bits
280 * N/L/A-class (iosapic):   8 bits
281 * PCI 2.2 MSI:            16 bits
282 * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
283 *
284 * On the service provider side:
285 * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
286 * o PA 2.0 wide mode                   6-bits (per processor)
287 * o IA64                               8-bits (0-256 total)
288 *
289 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
290 * by the processor...and the N/L-class I/O subsystem supports more bits than
291 * PA2.0 has. The first case is the problem.
292 */
293int txn_alloc_irq(unsigned int bits_wide)
294{
295	int irq;
296
297	/* never return irq 0 cause that's the interval timer */
298	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
299		if (cpu_claim_irq(irq, NULL, NULL) < 0)
300			continue;
301		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
302			continue;
303		return irq;
304	}
305
306	/* unlikely, but be prepared */
307	return -1;
308}
309
310
311unsigned long txn_affinity_addr(unsigned int irq, int cpu)
312{
313#ifdef CONFIG_SMP
314	struct irq_data *d = irq_get_irq_data(irq);
315	irq_data_update_affinity(d, cpumask_of(cpu));
316#endif
317
318	return per_cpu(cpu_data, cpu).txn_addr;
319}
320
321
322unsigned long txn_alloc_addr(unsigned int virt_irq)
323{
324	static int next_cpu = -1;
325
326	next_cpu++; /* assign to "next" CPU we want this bugger on */
327
328	/* validate entry */
329	while ((next_cpu < nr_cpu_ids) &&
330		(!per_cpu(cpu_data, next_cpu).txn_addr ||
331		 !cpu_online(next_cpu)))
332		next_cpu++;
333
334	if (next_cpu >= nr_cpu_ids) 
335		next_cpu = 0;	/* nothing else, assign monarch */
336
337	return txn_affinity_addr(virt_irq, next_cpu);
338}
339
340
341unsigned int txn_alloc_data(unsigned int virt_irq)
342{
343	return virt_irq - CPU_IRQ_BASE;
344}
345
346static inline int eirr_to_irq(unsigned long eirr)
347{
348	int bit = fls_long(eirr);
349	return (BITS_PER_LONG - bit) + TIMER_IRQ;
350}
351
352#ifdef CONFIG_IRQSTACKS
353/*
354 * IRQ STACK - used for irq handler
355 */
356#ifdef CONFIG_64BIT
357#define IRQ_STACK_SIZE      (4096 << 4) /* 64k irq stack size */
358#else
359#define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
360#endif
361
362union irq_stack_union {
363	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
364	volatile unsigned int slock[4];
365	volatile unsigned int lock[1];
366};
367
368static DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
369		.slock = { 1,1,1,1 },
370	};
371#endif
372
373
374int sysctl_panic_on_stackoverflow = 1;
375
376static inline void stack_overflow_check(struct pt_regs *regs)
377{
378#ifdef CONFIG_DEBUG_STACKOVERFLOW
379	#define STACK_MARGIN	(256*6)
380
381	unsigned long stack_start = (unsigned long) task_stack_page(current);
 
382	unsigned long sp = regs->gr[30];
383	unsigned long stack_usage;
384	unsigned int *last_usage;
385	int cpu = smp_processor_id();
386
387	/* if sr7 != 0, we interrupted a userspace process which we do not want
388	 * to check for stack overflow. We will only check the kernel stack. */
389	if (regs->sr[7])
390		return;
391
392	/* exit if already in panic */
393	if (sysctl_panic_on_stackoverflow < 0)
394		return;
395
396	/* calculate kernel stack usage */
397	stack_usage = sp - stack_start;
398#ifdef CONFIG_IRQSTACKS
399	if (likely(stack_usage <= THREAD_SIZE))
400		goto check_kernel_stack; /* found kernel stack */
401
402	/* check irq stack usage */
403	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
404	stack_usage = sp - stack_start;
405
406	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
407	if (unlikely(stack_usage > *last_usage))
408		*last_usage = stack_usage;
409
410	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
411		return;
412
413	pr_emerg("stackcheck: %s will most likely overflow irq stack "
414		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
415		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
416	goto panic_check;
417
418check_kernel_stack:
419#endif
420
421	/* check kernel stack usage */
422	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
423
424	if (unlikely(stack_usage > *last_usage))
425		*last_usage = stack_usage;
426
427	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
428		return;
429
430	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
431		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
432		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
433
434#ifdef CONFIG_IRQSTACKS
435panic_check:
436#endif
437	if (sysctl_panic_on_stackoverflow) {
438		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
439		panic("low stack detected by irq handler - check messages\n");
440	}
441#endif
442}
443
444#ifdef CONFIG_IRQSTACKS
445/* in entry.S: */
446void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
447
448static void execute_on_irq_stack(void *func, unsigned long param1)
449{
450	union irq_stack_union *union_ptr;
451	unsigned long irq_stack;
452	volatile unsigned int *irq_stack_in_use;
453
454	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
455	irq_stack = (unsigned long) &union_ptr->stack;
456	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
457			FRAME_ALIGN); /* align for stack frame usage */
458
459	/* We may be called recursive. If we are already using the irq stack,
460	 * just continue to use it. Use spinlocks to serialize
461	 * the irq stack usage.
462	 */
463	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
464	if (!__ldcw(irq_stack_in_use)) {
465		void (*direct_call)(unsigned long p1) = func;
466
467		/* We are using the IRQ stack already.
468		 * Do direct call on current stack. */
469		direct_call(param1);
470		return;
471	}
472
473	/* This is where we switch to the IRQ stack. */
474	call_on_stack(param1, func, irq_stack);
475
476	/* free up irq stack usage. */
477	*irq_stack_in_use = 1;
478}
479
480#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
481void do_softirq_own_stack(void)
482{
483	execute_on_irq_stack(__do_softirq, 0);
484}
485#endif
486#endif /* CONFIG_IRQSTACKS */
487
488/* ONLY called from entry.S:intr_extint() */
489asmlinkage void do_cpu_irq_mask(struct pt_regs *regs)
490{
491	struct pt_regs *old_regs;
492	unsigned long eirr_val;
493	int irq, cpu = smp_processor_id();
494	struct irq_data *irq_data;
495#ifdef CONFIG_SMP
496	cpumask_t dest;
497#endif
498
499	old_regs = set_irq_regs(regs);
500	local_irq_disable();
501	irq_enter_rcu();
502
503	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
504	if (!eirr_val)
505		goto set_out;
506	irq = eirr_to_irq(eirr_val);
507
508	irq_data = irq_get_irq_data(irq);
509
510	/* Filter out spurious interrupts, mostly from serial port at bootup */
511	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
512		goto set_out;
513
514#ifdef CONFIG_SMP
515	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
516	if (irqd_is_per_cpu(irq_data) &&
517	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
518		int cpu = cpumask_first(&dest);
519
520		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
521		       irq, smp_processor_id(), cpu);
522		gsc_writel(irq + CPU_IRQ_BASE,
523			   per_cpu(cpu_data, cpu).hpa);
524		goto set_out;
525	}
526#endif
527	stack_overflow_check(regs);
528
529#ifdef CONFIG_IRQSTACKS
530	execute_on_irq_stack(&generic_handle_irq, irq);
531#else
532	generic_handle_irq(irq);
533#endif /* CONFIG_IRQSTACKS */
534
535 out:
536	irq_exit_rcu();
537	set_irq_regs(old_regs);
538	return;
539
540 set_out:
541	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
542	goto out;
543}
544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
545static void claim_cpu_irqs(void)
546{
547	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
548	int i;
549
550	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
551		irq_set_chip_and_handler(i, &cpu_interrupt_type,
552					 handle_percpu_irq);
553	}
554
555	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
556	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
557		pr_err("Failed to register timer interrupt\n");
558#ifdef CONFIG_SMP
559	irq_set_handler(IPI_IRQ, handle_percpu_irq);
560	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
561		pr_err("Failed to register IPI interrupt\n");
562#endif
563}
564
565void init_IRQ(void)
566{
567	local_irq_disable();	/* PARANOID - should already be disabled */
568	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
569#ifdef CONFIG_SMP
570	if (!cpu_eiem) {
571		claim_cpu_irqs();
572		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
573	}
574#else
575	claim_cpu_irqs();
576	cpu_eiem = EIEM_MASK(TIMER_IRQ);
577#endif
578        set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
579}