Loading...
1/*
2 * Code to handle x86 style IRQs plus some generic interrupt stuff.
3 *
4 * Copyright (C) 1992 Linus Torvalds
5 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
6 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
7 * Copyright (C) 1999-2000 Grant Grundler
8 * Copyright (c) 2005 Matthew Wilcox
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2, or (at your option)
13 * any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24#include <linux/bitops.h>
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/kernel_stat.h>
29#include <linux/seq_file.h>
30#include <linux/types.h>
31#include <asm/io.h>
32
33#include <asm/smp.h>
34#include <asm/ldcw.h>
35
36#undef PARISC_IRQ_CR16_COUNTS
37
38extern irqreturn_t timer_interrupt(int, void *);
39extern irqreturn_t ipi_interrupt(int, void *);
40
41#define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq))
42
43/* Bits in EIEM correlate with cpu_irq_action[].
44** Numbered *Big Endian*! (ie bit 0 is MSB)
45*/
46static volatile unsigned long cpu_eiem = 0;
47
48/*
49** local ACK bitmap ... habitually set to 1, but reset to zero
50** between ->ack() and ->end() of the interrupt to prevent
51** re-interruption of a processing interrupt.
52*/
53static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
54
55static void cpu_mask_irq(struct irq_data *d)
56{
57 unsigned long eirr_bit = EIEM_MASK(d->irq);
58
59 cpu_eiem &= ~eirr_bit;
60 /* Do nothing on the other CPUs. If they get this interrupt,
61 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
62 * handle it, and the set_eiem() at the bottom will ensure it
63 * then gets disabled */
64}
65
66static void __cpu_unmask_irq(unsigned int irq)
67{
68 unsigned long eirr_bit = EIEM_MASK(irq);
69
70 cpu_eiem |= eirr_bit;
71
72 /* This is just a simple NOP IPI. But what it does is cause
73 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
74 * of the interrupt handler */
75 smp_send_all_nop();
76}
77
78static void cpu_unmask_irq(struct irq_data *d)
79{
80 __cpu_unmask_irq(d->irq);
81}
82
83void cpu_ack_irq(struct irq_data *d)
84{
85 unsigned long mask = EIEM_MASK(d->irq);
86 int cpu = smp_processor_id();
87
88 /* Clear in EIEM so we can no longer process */
89 per_cpu(local_ack_eiem, cpu) &= ~mask;
90
91 /* disable the interrupt */
92 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
93
94 /* and now ack it */
95 mtctl(mask, 23);
96}
97
98void cpu_eoi_irq(struct irq_data *d)
99{
100 unsigned long mask = EIEM_MASK(d->irq);
101 int cpu = smp_processor_id();
102
103 /* set it in the eiems---it's no longer in process */
104 per_cpu(local_ack_eiem, cpu) |= mask;
105
106 /* enable the interrupt */
107 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
108}
109
110#ifdef CONFIG_SMP
111int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
112{
113 int cpu_dest;
114
115 /* timer and ipi have to always be received on all CPUs */
116 if (irqd_is_per_cpu(d))
117 return -EINVAL;
118
119 /* whatever mask they set, we just allow one CPU */
120 cpu_dest = cpumask_first_and(dest, cpu_online_mask);
121
122 return cpu_dest;
123}
124
125static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
126 bool force)
127{
128 int cpu_dest;
129
130 cpu_dest = cpu_check_affinity(d, dest);
131 if (cpu_dest < 0)
132 return -1;
133
134 cpumask_copy(irq_data_get_affinity_mask(d), dest);
135
136 return 0;
137}
138#endif
139
140static struct irq_chip cpu_interrupt_type = {
141 .name = "CPU",
142 .irq_mask = cpu_mask_irq,
143 .irq_unmask = cpu_unmask_irq,
144 .irq_ack = cpu_ack_irq,
145 .irq_eoi = cpu_eoi_irq,
146#ifdef CONFIG_SMP
147 .irq_set_affinity = cpu_set_affinity_irq,
148#endif
149 /* XXX: Needs to be written. We managed without it so far, but
150 * we really ought to write it.
151 */
152 .irq_retrigger = NULL,
153};
154
155DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
156#define irq_stats(x) (&per_cpu(irq_stat, x))
157
158/*
159 * /proc/interrupts printing for arch specific interrupts
160 */
161int arch_show_interrupts(struct seq_file *p, int prec)
162{
163 int j;
164
165#ifdef CONFIG_DEBUG_STACKOVERFLOW
166 seq_printf(p, "%*s: ", prec, "STK");
167 for_each_online_cpu(j)
168 seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
169 seq_puts(p, " Kernel stack usage\n");
170# ifdef CONFIG_IRQSTACKS
171 seq_printf(p, "%*s: ", prec, "IST");
172 for_each_online_cpu(j)
173 seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
174 seq_puts(p, " Interrupt stack usage\n");
175# endif
176#endif
177#ifdef CONFIG_SMP
178 seq_printf(p, "%*s: ", prec, "RES");
179 for_each_online_cpu(j)
180 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
181 seq_puts(p, " Rescheduling interrupts\n");
182#endif
183 seq_printf(p, "%*s: ", prec, "UAH");
184 for_each_online_cpu(j)
185 seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
186 seq_puts(p, " Unaligned access handler traps\n");
187 seq_printf(p, "%*s: ", prec, "FPA");
188 for_each_online_cpu(j)
189 seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
190 seq_puts(p, " Floating point assist traps\n");
191 seq_printf(p, "%*s: ", prec, "TLB");
192 for_each_online_cpu(j)
193 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
194 seq_puts(p, " TLB shootdowns\n");
195 return 0;
196}
197
198int show_interrupts(struct seq_file *p, void *v)
199{
200 int i = *(loff_t *) v, j;
201 unsigned long flags;
202
203 if (i == 0) {
204 seq_puts(p, " ");
205 for_each_online_cpu(j)
206 seq_printf(p, " CPU%d", j);
207
208#ifdef PARISC_IRQ_CR16_COUNTS
209 seq_printf(p, " [min/avg/max] (CPU cycle counts)");
210#endif
211 seq_putc(p, '\n');
212 }
213
214 if (i < NR_IRQS) {
215 struct irq_desc *desc = irq_to_desc(i);
216 struct irqaction *action;
217
218 raw_spin_lock_irqsave(&desc->lock, flags);
219 action = desc->action;
220 if (!action)
221 goto skip;
222 seq_printf(p, "%3d: ", i);
223#ifdef CONFIG_SMP
224 for_each_online_cpu(j)
225 seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
226#else
227 seq_printf(p, "%10u ", kstat_irqs(i));
228#endif
229
230 seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
231#ifndef PARISC_IRQ_CR16_COUNTS
232 seq_printf(p, " %s", action->name);
233
234 while ((action = action->next))
235 seq_printf(p, ", %s", action->name);
236#else
237 for ( ;action; action = action->next) {
238 unsigned int k, avg, min, max;
239
240 min = max = action->cr16_hist[0];
241
242 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
243 int hist = action->cr16_hist[k];
244
245 if (hist) {
246 avg += hist;
247 } else
248 break;
249
250 if (hist > max) max = hist;
251 if (hist < min) min = hist;
252 }
253
254 avg /= k;
255 seq_printf(p, " %s[%d/%d/%d]", action->name,
256 min,avg,max);
257 }
258#endif
259
260 seq_putc(p, '\n');
261 skip:
262 raw_spin_unlock_irqrestore(&desc->lock, flags);
263 }
264
265 if (i == NR_IRQS)
266 arch_show_interrupts(p, 3);
267
268 return 0;
269}
270
271
272
273/*
274** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
275** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
276**
277** To use txn_XXX() interfaces, get a Virtual IRQ first.
278** Then use that to get the Transaction address and data.
279*/
280
281int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
282{
283 if (irq_has_action(irq))
284 return -EBUSY;
285 if (irq_get_chip(irq) != &cpu_interrupt_type)
286 return -EBUSY;
287
288 /* for iosapic interrupts */
289 if (type) {
290 irq_set_chip_and_handler(irq, type, handle_percpu_irq);
291 irq_set_chip_data(irq, data);
292 __cpu_unmask_irq(irq);
293 }
294 return 0;
295}
296
297int txn_claim_irq(int irq)
298{
299 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
300}
301
302/*
303 * The bits_wide parameter accommodates the limitations of the HW/SW which
304 * use these bits:
305 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
306 * V-class (EPIC): 6 bits
307 * N/L/A-class (iosapic): 8 bits
308 * PCI 2.2 MSI: 16 bits
309 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric)
310 *
311 * On the service provider side:
312 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register)
313 * o PA 2.0 wide mode 6-bits (per processor)
314 * o IA64 8-bits (0-256 total)
315 *
316 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
317 * by the processor...and the N/L-class I/O subsystem supports more bits than
318 * PA2.0 has. The first case is the problem.
319 */
320int txn_alloc_irq(unsigned int bits_wide)
321{
322 int irq;
323
324 /* never return irq 0 cause that's the interval timer */
325 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
326 if (cpu_claim_irq(irq, NULL, NULL) < 0)
327 continue;
328 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
329 continue;
330 return irq;
331 }
332
333 /* unlikely, but be prepared */
334 return -1;
335}
336
337
338unsigned long txn_affinity_addr(unsigned int irq, int cpu)
339{
340#ifdef CONFIG_SMP
341 struct irq_data *d = irq_get_irq_data(irq);
342 cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu));
343#endif
344
345 return per_cpu(cpu_data, cpu).txn_addr;
346}
347
348
349unsigned long txn_alloc_addr(unsigned int virt_irq)
350{
351 static int next_cpu = -1;
352
353 next_cpu++; /* assign to "next" CPU we want this bugger on */
354
355 /* validate entry */
356 while ((next_cpu < nr_cpu_ids) &&
357 (!per_cpu(cpu_data, next_cpu).txn_addr ||
358 !cpu_online(next_cpu)))
359 next_cpu++;
360
361 if (next_cpu >= nr_cpu_ids)
362 next_cpu = 0; /* nothing else, assign monarch */
363
364 return txn_affinity_addr(virt_irq, next_cpu);
365}
366
367
368unsigned int txn_alloc_data(unsigned int virt_irq)
369{
370 return virt_irq - CPU_IRQ_BASE;
371}
372
373static inline int eirr_to_irq(unsigned long eirr)
374{
375 int bit = fls_long(eirr);
376 return (BITS_PER_LONG - bit) + TIMER_IRQ;
377}
378
379#ifdef CONFIG_IRQSTACKS
380/*
381 * IRQ STACK - used for irq handler
382 */
383#define IRQ_STACK_SIZE (4096 << 2) /* 16k irq stack size */
384
385union irq_stack_union {
386 unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
387 volatile unsigned int slock[4];
388 volatile unsigned int lock[1];
389};
390
391DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
392 .slock = { 1,1,1,1 },
393 };
394#endif
395
396
397int sysctl_panic_on_stackoverflow = 1;
398
399static inline void stack_overflow_check(struct pt_regs *regs)
400{
401#ifdef CONFIG_DEBUG_STACKOVERFLOW
402 #define STACK_MARGIN (256*6)
403
404 /* Our stack starts directly behind the thread_info struct. */
405 unsigned long stack_start = (unsigned long) current_thread_info();
406 unsigned long sp = regs->gr[30];
407 unsigned long stack_usage;
408 unsigned int *last_usage;
409 int cpu = smp_processor_id();
410
411 /* if sr7 != 0, we interrupted a userspace process which we do not want
412 * to check for stack overflow. We will only check the kernel stack. */
413 if (regs->sr[7])
414 return;
415
416 /* calculate kernel stack usage */
417 stack_usage = sp - stack_start;
418#ifdef CONFIG_IRQSTACKS
419 if (likely(stack_usage <= THREAD_SIZE))
420 goto check_kernel_stack; /* found kernel stack */
421
422 /* check irq stack usage */
423 stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
424 stack_usage = sp - stack_start;
425
426 last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
427 if (unlikely(stack_usage > *last_usage))
428 *last_usage = stack_usage;
429
430 if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
431 return;
432
433 pr_emerg("stackcheck: %s will most likely overflow irq stack "
434 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
435 current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
436 goto panic_check;
437
438check_kernel_stack:
439#endif
440
441 /* check kernel stack usage */
442 last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
443
444 if (unlikely(stack_usage > *last_usage))
445 *last_usage = stack_usage;
446
447 if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
448 return;
449
450 pr_emerg("stackcheck: %s will most likely overflow kernel stack "
451 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
452 current->comm, sp, stack_start, stack_start + THREAD_SIZE);
453
454#ifdef CONFIG_IRQSTACKS
455panic_check:
456#endif
457 if (sysctl_panic_on_stackoverflow)
458 panic("low stack detected by irq handler - check messages\n");
459#endif
460}
461
462#ifdef CONFIG_IRQSTACKS
463/* in entry.S: */
464void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
465
466static void execute_on_irq_stack(void *func, unsigned long param1)
467{
468 union irq_stack_union *union_ptr;
469 unsigned long irq_stack;
470 volatile unsigned int *irq_stack_in_use;
471
472 union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
473 irq_stack = (unsigned long) &union_ptr->stack;
474 irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
475 64); /* align for stack frame usage */
476
477 /* We may be called recursive. If we are already using the irq stack,
478 * just continue to use it. Use spinlocks to serialize
479 * the irq stack usage.
480 */
481 irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
482 if (!__ldcw(irq_stack_in_use)) {
483 void (*direct_call)(unsigned long p1) = func;
484
485 /* We are using the IRQ stack already.
486 * Do direct call on current stack. */
487 direct_call(param1);
488 return;
489 }
490
491 /* This is where we switch to the IRQ stack. */
492 call_on_stack(param1, func, irq_stack);
493
494 /* free up irq stack usage. */
495 *irq_stack_in_use = 1;
496}
497
498void do_softirq_own_stack(void)
499{
500 execute_on_irq_stack(__do_softirq, 0);
501}
502#endif /* CONFIG_IRQSTACKS */
503
504/* ONLY called from entry.S:intr_extint() */
505void do_cpu_irq_mask(struct pt_regs *regs)
506{
507 struct pt_regs *old_regs;
508 unsigned long eirr_val;
509 int irq, cpu = smp_processor_id();
510 struct irq_data *irq_data;
511#ifdef CONFIG_SMP
512 cpumask_t dest;
513#endif
514
515 old_regs = set_irq_regs(regs);
516 local_irq_disable();
517 irq_enter();
518
519 eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
520 if (!eirr_val)
521 goto set_out;
522 irq = eirr_to_irq(eirr_val);
523
524 irq_data = irq_get_irq_data(irq);
525
526 /* Filter out spurious interrupts, mostly from serial port at bootup */
527 if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
528 goto set_out;
529
530#ifdef CONFIG_SMP
531 cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
532 if (irqd_is_per_cpu(irq_data) &&
533 !cpumask_test_cpu(smp_processor_id(), &dest)) {
534 int cpu = cpumask_first(&dest);
535
536 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
537 irq, smp_processor_id(), cpu);
538 gsc_writel(irq + CPU_IRQ_BASE,
539 per_cpu(cpu_data, cpu).hpa);
540 goto set_out;
541 }
542#endif
543 stack_overflow_check(regs);
544
545#ifdef CONFIG_IRQSTACKS
546 execute_on_irq_stack(&generic_handle_irq, irq);
547#else
548 generic_handle_irq(irq);
549#endif /* CONFIG_IRQSTACKS */
550
551 out:
552 irq_exit();
553 set_irq_regs(old_regs);
554 return;
555
556 set_out:
557 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
558 goto out;
559}
560
561static struct irqaction timer_action = {
562 .handler = timer_interrupt,
563 .name = "timer",
564 .flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL,
565};
566
567#ifdef CONFIG_SMP
568static struct irqaction ipi_action = {
569 .handler = ipi_interrupt,
570 .name = "IPI",
571 .flags = IRQF_PERCPU,
572};
573#endif
574
575static void claim_cpu_irqs(void)
576{
577 int i;
578 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
579 irq_set_chip_and_handler(i, &cpu_interrupt_type,
580 handle_percpu_irq);
581 }
582
583 irq_set_handler(TIMER_IRQ, handle_percpu_irq);
584 setup_irq(TIMER_IRQ, &timer_action);
585#ifdef CONFIG_SMP
586 irq_set_handler(IPI_IRQ, handle_percpu_irq);
587 setup_irq(IPI_IRQ, &ipi_action);
588#endif
589}
590
591void __init init_IRQ(void)
592{
593 local_irq_disable(); /* PARANOID - should already be disabled */
594 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */
595#ifdef CONFIG_SMP
596 if (!cpu_eiem) {
597 claim_cpu_irqs();
598 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
599 }
600#else
601 claim_cpu_irqs();
602 cpu_eiem = EIEM_MASK(TIMER_IRQ);
603#endif
604 set_eiem(cpu_eiem); /* EIEM : enable all external intr */
605}
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Code to handle x86 style IRQs plus some generic interrupt stuff.
4 *
5 * Copyright (C) 1992 Linus Torvalds
6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
8 * Copyright (C) 1999-2000 Grant Grundler
9 * Copyright (c) 2005 Matthew Wilcox
10 */
11#include <linux/bitops.h>
12#include <linux/errno.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/kernel_stat.h>
16#include <linux/seq_file.h>
17#include <linux/types.h>
18#include <linux/sched/task_stack.h>
19#include <asm/io.h>
20
21#include <asm/softirq_stack.h>
22#include <asm/smp.h>
23#include <asm/ldcw.h>
24
25#undef PARISC_IRQ_CR16_COUNTS
26
27#define EIEM_MASK(irq) (1UL<<(CPU_IRQ_MAX - irq))
28
29/* Bits in EIEM correlate with cpu_irq_action[].
30** Numbered *Big Endian*! (ie bit 0 is MSB)
31*/
32static volatile unsigned long cpu_eiem = 0;
33
34/*
35** local ACK bitmap ... habitually set to 1, but reset to zero
36** between ->ack() and ->end() of the interrupt to prevent
37** re-interruption of a processing interrupt.
38*/
39static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
40
41static void cpu_mask_irq(struct irq_data *d)
42{
43 unsigned long eirr_bit = EIEM_MASK(d->irq);
44
45 cpu_eiem &= ~eirr_bit;
46 /* Do nothing on the other CPUs. If they get this interrupt,
47 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
48 * handle it, and the set_eiem() at the bottom will ensure it
49 * then gets disabled */
50}
51
52static void __cpu_unmask_irq(unsigned int irq)
53{
54 unsigned long eirr_bit = EIEM_MASK(irq);
55
56 cpu_eiem |= eirr_bit;
57
58 /* This is just a simple NOP IPI. But what it does is cause
59 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
60 * of the interrupt handler */
61 smp_send_all_nop();
62}
63
64static void cpu_unmask_irq(struct irq_data *d)
65{
66 __cpu_unmask_irq(d->irq);
67}
68
69void cpu_ack_irq(struct irq_data *d)
70{
71 unsigned long mask = EIEM_MASK(d->irq);
72 int cpu = smp_processor_id();
73
74 /* Clear in EIEM so we can no longer process */
75 per_cpu(local_ack_eiem, cpu) &= ~mask;
76
77 /* disable the interrupt */
78 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
79
80 /* and now ack it */
81 mtctl(mask, 23);
82}
83
84void cpu_eoi_irq(struct irq_data *d)
85{
86 unsigned long mask = EIEM_MASK(d->irq);
87 int cpu = smp_processor_id();
88
89 /* set it in the eiems---it's no longer in process */
90 per_cpu(local_ack_eiem, cpu) |= mask;
91
92 /* enable the interrupt */
93 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
94}
95
96#ifdef CONFIG_SMP
97int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
98{
99 int cpu_dest;
100
101 /* timer and ipi have to always be received on all CPUs */
102 if (irqd_is_per_cpu(d))
103 return -EINVAL;
104
105 cpu_dest = cpumask_first_and(dest, cpu_online_mask);
106 if (cpu_dest >= nr_cpu_ids)
107 cpu_dest = cpumask_first(cpu_online_mask);
108
109 return cpu_dest;
110}
111#endif
112
113static struct irq_chip cpu_interrupt_type = {
114 .name = "CPU",
115 .irq_mask = cpu_mask_irq,
116 .irq_unmask = cpu_unmask_irq,
117 .irq_ack = cpu_ack_irq,
118 .irq_eoi = cpu_eoi_irq,
119 /* XXX: Needs to be written. We managed without it so far, but
120 * we really ought to write it.
121 */
122 .irq_retrigger = NULL,
123};
124
125DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
126#define irq_stats(x) (&per_cpu(irq_stat, x))
127
128/*
129 * /proc/interrupts printing for arch specific interrupts
130 */
131int arch_show_interrupts(struct seq_file *p, int prec)
132{
133 int j;
134
135#ifdef CONFIG_DEBUG_STACKOVERFLOW
136 seq_printf(p, "%*s: ", prec, "STK");
137 for_each_online_cpu(j)
138 seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
139 seq_puts(p, " Kernel stack usage\n");
140# ifdef CONFIG_IRQSTACKS
141 seq_printf(p, "%*s: ", prec, "IST");
142 for_each_online_cpu(j)
143 seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
144 seq_puts(p, " Interrupt stack usage\n");
145# endif
146#endif
147#ifdef CONFIG_SMP
148 if (num_online_cpus() > 1) {
149 seq_printf(p, "%*s: ", prec, "RES");
150 for_each_online_cpu(j)
151 seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
152 seq_puts(p, " Rescheduling interrupts\n");
153 seq_printf(p, "%*s: ", prec, "CAL");
154 for_each_online_cpu(j)
155 seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
156 seq_puts(p, " Function call interrupts\n");
157 }
158#endif
159 seq_printf(p, "%*s: ", prec, "UAH");
160 for_each_online_cpu(j)
161 seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
162 seq_puts(p, " Unaligned access handler traps\n");
163 seq_printf(p, "%*s: ", prec, "FPA");
164 for_each_online_cpu(j)
165 seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
166 seq_puts(p, " Floating point assist traps\n");
167 seq_printf(p, "%*s: ", prec, "TLB");
168 for_each_online_cpu(j)
169 seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
170 seq_puts(p, " TLB shootdowns\n");
171 return 0;
172}
173
174int show_interrupts(struct seq_file *p, void *v)
175{
176 int i = *(loff_t *) v, j;
177 unsigned long flags;
178
179 if (i == 0) {
180 seq_puts(p, " ");
181 for_each_online_cpu(j)
182 seq_printf(p, " CPU%d", j);
183
184#ifdef PARISC_IRQ_CR16_COUNTS
185 seq_printf(p, " [min/avg/max] (CPU cycle counts)");
186#endif
187 seq_putc(p, '\n');
188 }
189
190 if (i < NR_IRQS) {
191 struct irq_desc *desc = irq_to_desc(i);
192 struct irqaction *action;
193
194 raw_spin_lock_irqsave(&desc->lock, flags);
195 action = desc->action;
196 if (!action)
197 goto skip;
198 seq_printf(p, "%3d: ", i);
199
200 for_each_online_cpu(j)
201 seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
202
203 seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
204#ifndef PARISC_IRQ_CR16_COUNTS
205 seq_printf(p, " %s", action->name);
206
207 while ((action = action->next))
208 seq_printf(p, ", %s", action->name);
209#else
210 for ( ;action; action = action->next) {
211 unsigned int k, avg, min, max;
212
213 min = max = action->cr16_hist[0];
214
215 for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
216 int hist = action->cr16_hist[k];
217
218 if (hist) {
219 avg += hist;
220 } else
221 break;
222
223 if (hist > max) max = hist;
224 if (hist < min) min = hist;
225 }
226
227 avg /= k;
228 seq_printf(p, " %s[%d/%d/%d]", action->name,
229 min,avg,max);
230 }
231#endif
232
233 seq_putc(p, '\n');
234 skip:
235 raw_spin_unlock_irqrestore(&desc->lock, flags);
236 }
237
238 if (i == NR_IRQS)
239 arch_show_interrupts(p, 3);
240
241 return 0;
242}
243
244
245
246/*
247** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
248** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
249**
250** To use txn_XXX() interfaces, get a Virtual IRQ first.
251** Then use that to get the Transaction address and data.
252*/
253
254int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
255{
256 if (irq_has_action(irq))
257 return -EBUSY;
258 if (irq_get_chip(irq) != &cpu_interrupt_type)
259 return -EBUSY;
260
261 /* for iosapic interrupts */
262 if (type) {
263 irq_set_chip_and_handler(irq, type, handle_percpu_irq);
264 irq_set_chip_data(irq, data);
265 __cpu_unmask_irq(irq);
266 }
267 return 0;
268}
269
270int txn_claim_irq(int irq)
271{
272 return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
273}
274
275/*
276 * The bits_wide parameter accommodates the limitations of the HW/SW which
277 * use these bits:
278 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
279 * V-class (EPIC): 6 bits
280 * N/L/A-class (iosapic): 8 bits
281 * PCI 2.2 MSI: 16 bits
282 * Some PCI devices: 32 bits (Symbios SCSI/ATM/HyperFabric)
283 *
284 * On the service provider side:
285 * o PA 1.1 (and PA2.0 narrow mode) 5-bits (width of EIR register)
286 * o PA 2.0 wide mode 6-bits (per processor)
287 * o IA64 8-bits (0-256 total)
288 *
289 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
290 * by the processor...and the N/L-class I/O subsystem supports more bits than
291 * PA2.0 has. The first case is the problem.
292 */
293int txn_alloc_irq(unsigned int bits_wide)
294{
295 int irq;
296
297 /* never return irq 0 cause that's the interval timer */
298 for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
299 if (cpu_claim_irq(irq, NULL, NULL) < 0)
300 continue;
301 if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
302 continue;
303 return irq;
304 }
305
306 /* unlikely, but be prepared */
307 return -1;
308}
309
310
311unsigned long txn_affinity_addr(unsigned int irq, int cpu)
312{
313#ifdef CONFIG_SMP
314 struct irq_data *d = irq_get_irq_data(irq);
315 irq_data_update_affinity(d, cpumask_of(cpu));
316#endif
317
318 return per_cpu(cpu_data, cpu).txn_addr;
319}
320
321
322unsigned long txn_alloc_addr(unsigned int virt_irq)
323{
324 static int next_cpu = -1;
325
326 next_cpu++; /* assign to "next" CPU we want this bugger on */
327
328 /* validate entry */
329 while ((next_cpu < nr_cpu_ids) &&
330 (!per_cpu(cpu_data, next_cpu).txn_addr ||
331 !cpu_online(next_cpu)))
332 next_cpu++;
333
334 if (next_cpu >= nr_cpu_ids)
335 next_cpu = 0; /* nothing else, assign monarch */
336
337 return txn_affinity_addr(virt_irq, next_cpu);
338}
339
340
341unsigned int txn_alloc_data(unsigned int virt_irq)
342{
343 return virt_irq - CPU_IRQ_BASE;
344}
345
346static inline int eirr_to_irq(unsigned long eirr)
347{
348 int bit = fls_long(eirr);
349 return (BITS_PER_LONG - bit) + TIMER_IRQ;
350}
351
352#ifdef CONFIG_IRQSTACKS
353/*
354 * IRQ STACK - used for irq handler
355 */
356#ifdef CONFIG_64BIT
357#define IRQ_STACK_SIZE (4096 << 4) /* 64k irq stack size */
358#else
359#define IRQ_STACK_SIZE (4096 << 3) /* 32k irq stack size */
360#endif
361
362union irq_stack_union {
363 unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
364 volatile unsigned int slock[4];
365 volatile unsigned int lock[1];
366};
367
368static DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
369 .slock = { 1,1,1,1 },
370 };
371#endif
372
373
374int sysctl_panic_on_stackoverflow = 1;
375
376static inline void stack_overflow_check(struct pt_regs *regs)
377{
378#ifdef CONFIG_DEBUG_STACKOVERFLOW
379 #define STACK_MARGIN (256*6)
380
381 unsigned long stack_start = (unsigned long) task_stack_page(current);
382 unsigned long sp = regs->gr[30];
383 unsigned long stack_usage;
384 unsigned int *last_usage;
385 int cpu = smp_processor_id();
386
387 /* if sr7 != 0, we interrupted a userspace process which we do not want
388 * to check for stack overflow. We will only check the kernel stack. */
389 if (regs->sr[7])
390 return;
391
392 /* exit if already in panic */
393 if (sysctl_panic_on_stackoverflow < 0)
394 return;
395
396 /* calculate kernel stack usage */
397 stack_usage = sp - stack_start;
398#ifdef CONFIG_IRQSTACKS
399 if (likely(stack_usage <= THREAD_SIZE))
400 goto check_kernel_stack; /* found kernel stack */
401
402 /* check irq stack usage */
403 stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
404 stack_usage = sp - stack_start;
405
406 last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
407 if (unlikely(stack_usage > *last_usage))
408 *last_usage = stack_usage;
409
410 if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
411 return;
412
413 pr_emerg("stackcheck: %s will most likely overflow irq stack "
414 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
415 current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
416 goto panic_check;
417
418check_kernel_stack:
419#endif
420
421 /* check kernel stack usage */
422 last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
423
424 if (unlikely(stack_usage > *last_usage))
425 *last_usage = stack_usage;
426
427 if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
428 return;
429
430 pr_emerg("stackcheck: %s will most likely overflow kernel stack "
431 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
432 current->comm, sp, stack_start, stack_start + THREAD_SIZE);
433
434#ifdef CONFIG_IRQSTACKS
435panic_check:
436#endif
437 if (sysctl_panic_on_stackoverflow) {
438 sysctl_panic_on_stackoverflow = -1; /* disable further checks */
439 panic("low stack detected by irq handler - check messages\n");
440 }
441#endif
442}
443
444#ifdef CONFIG_IRQSTACKS
445/* in entry.S: */
446void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
447
448static void execute_on_irq_stack(void *func, unsigned long param1)
449{
450 union irq_stack_union *union_ptr;
451 unsigned long irq_stack;
452 volatile unsigned int *irq_stack_in_use;
453
454 union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
455 irq_stack = (unsigned long) &union_ptr->stack;
456 irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
457 FRAME_ALIGN); /* align for stack frame usage */
458
459 /* We may be called recursive. If we are already using the irq stack,
460 * just continue to use it. Use spinlocks to serialize
461 * the irq stack usage.
462 */
463 irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
464 if (!__ldcw(irq_stack_in_use)) {
465 void (*direct_call)(unsigned long p1) = func;
466
467 /* We are using the IRQ stack already.
468 * Do direct call on current stack. */
469 direct_call(param1);
470 return;
471 }
472
473 /* This is where we switch to the IRQ stack. */
474 call_on_stack(param1, func, irq_stack);
475
476 /* free up irq stack usage. */
477 *irq_stack_in_use = 1;
478}
479
480#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
481void do_softirq_own_stack(void)
482{
483 execute_on_irq_stack(__do_softirq, 0);
484}
485#endif
486#endif /* CONFIG_IRQSTACKS */
487
488/* ONLY called from entry.S:intr_extint() */
489asmlinkage void do_cpu_irq_mask(struct pt_regs *regs)
490{
491 struct pt_regs *old_regs;
492 unsigned long eirr_val;
493 int irq, cpu = smp_processor_id();
494 struct irq_data *irq_data;
495#ifdef CONFIG_SMP
496 cpumask_t dest;
497#endif
498
499 old_regs = set_irq_regs(regs);
500 local_irq_disable();
501 irq_enter_rcu();
502
503 eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
504 if (!eirr_val)
505 goto set_out;
506 irq = eirr_to_irq(eirr_val);
507
508 irq_data = irq_get_irq_data(irq);
509
510 /* Filter out spurious interrupts, mostly from serial port at bootup */
511 if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
512 goto set_out;
513
514#ifdef CONFIG_SMP
515 cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
516 if (irqd_is_per_cpu(irq_data) &&
517 !cpumask_test_cpu(smp_processor_id(), &dest)) {
518 int cpu = cpumask_first(&dest);
519
520 printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
521 irq, smp_processor_id(), cpu);
522 gsc_writel(irq + CPU_IRQ_BASE,
523 per_cpu(cpu_data, cpu).hpa);
524 goto set_out;
525 }
526#endif
527 stack_overflow_check(regs);
528
529#ifdef CONFIG_IRQSTACKS
530 execute_on_irq_stack(&generic_handle_irq, irq);
531#else
532 generic_handle_irq(irq);
533#endif /* CONFIG_IRQSTACKS */
534
535 out:
536 irq_exit_rcu();
537 set_irq_regs(old_regs);
538 return;
539
540 set_out:
541 set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
542 goto out;
543}
544
545static void claim_cpu_irqs(void)
546{
547 unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
548 int i;
549
550 for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
551 irq_set_chip_and_handler(i, &cpu_interrupt_type,
552 handle_percpu_irq);
553 }
554
555 irq_set_handler(TIMER_IRQ, handle_percpu_irq);
556 if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
557 pr_err("Failed to register timer interrupt\n");
558#ifdef CONFIG_SMP
559 irq_set_handler(IPI_IRQ, handle_percpu_irq);
560 if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
561 pr_err("Failed to register IPI interrupt\n");
562#endif
563}
564
565void init_IRQ(void)
566{
567 local_irq_disable(); /* PARANOID - should already be disabled */
568 mtctl(~0UL, 23); /* EIRR : clear all pending external intr */
569#ifdef CONFIG_SMP
570 if (!cpu_eiem) {
571 claim_cpu_irqs();
572 cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
573 }
574#else
575 claim_cpu_irqs();
576 cpu_eiem = EIEM_MASK(TIMER_IRQ);
577#endif
578 set_eiem(cpu_eiem); /* EIEM : enable all external intr */
579}