Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
 
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/processor.h>	/* for boot_cpu_data */
  71
 
 
 
 
 
 
  72static DEFINE_SPINLOCK(pdc_lock);
  73extern unsigned long pdc_result[NUM_PDC_RESULT];
  74extern unsigned long pdc_result2[NUM_PDC_RESULT];
 
 
  75
  76#ifdef CONFIG_64BIT
  77#define WIDE_FIRMWARE 0x1
  78#define NARROW_FIRMWARE 0x2
  79
  80/* Firmware needs to be initially set to narrow to determine the 
  81 * actual firmware width. */
  82int parisc_narrow_firmware __read_mostly = 1;
  83#endif
  84
  85/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  86 * and MEM_PDC calls are always the same width as the OS.
  87 * Some PAT boxes may have 64-bit IODC I/O.
  88 *
  89 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  90 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  91 * This allowed wide kernels to run on Cxxx boxes.
  92 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  93 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  94 */
  95
  96#ifdef CONFIG_64BIT
  97long real64_call(unsigned long function, ...);
  98#endif
  99long real32_call(unsigned long function, ...);
 100
 101#ifdef CONFIG_64BIT
 102#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 103#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 104#else
 105#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 106#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 107#endif
 108
 109
 110/**
 111 * f_extend - Convert PDC addresses to kernel addresses.
 112 * @address: Address returned from PDC.
 113 *
 114 * This function is used to convert PDC addresses into kernel addresses
 115 * when the PDC address size and kernel address size are different.
 116 */
 117static unsigned long f_extend(unsigned long address)
 118{
 119#ifdef CONFIG_64BIT
 120	if(unlikely(parisc_narrow_firmware)) {
 121		if((address & 0xff000000) == 0xf0000000)
 122			return 0xf0f0f0f000000000UL | (u32)address;
 123
 124		if((address & 0xf0000000) == 0xf0000000)
 125			return 0xffffffff00000000UL | (u32)address;
 126	}
 127#endif
 128	return address;
 129}
 130
 131/**
 132 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 133 * @address: The return buffer from PDC.
 134 *
 135 * This function is used to convert the return buffer addresses retrieved from PDC
 136 * into kernel addresses when the PDC address size and kernel address size are
 137 * different.
 138 */
 139static void convert_to_wide(unsigned long *addr)
 140{
 141#ifdef CONFIG_64BIT
 142	int i;
 143	unsigned int *p = (unsigned int *)addr;
 144
 145	if(unlikely(parisc_narrow_firmware)) {
 146		for(i = 31; i >= 0; --i)
 147			addr[i] = p[i];
 148	}
 149#endif
 150}
 151
 152#ifdef CONFIG_64BIT
 153void set_firmware_width_unlocked(void)
 154{
 155	int ret;
 156
 157	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 158		__pa(pdc_result), 0);
 
 
 159	convert_to_wide(pdc_result);
 160	if (pdc_result[0] != NARROW_FIRMWARE)
 161		parisc_narrow_firmware = 0;
 162}
 163	
 164/**
 165 * set_firmware_width - Determine if the firmware is wide or narrow.
 166 * 
 167 * This function must be called before any pdc_* function that uses the
 168 * convert_to_wide function.
 169 */
 170void set_firmware_width(void)
 171{
 172	unsigned long flags;
 
 
 
 
 
 173	spin_lock_irqsave(&pdc_lock, flags);
 174	set_firmware_width_unlocked();
 175	spin_unlock_irqrestore(&pdc_lock, flags);
 176}
 177#else
 178void set_firmware_width_unlocked(void)
 179{
 180	return;
 181}
 182
 183void set_firmware_width(void)
 184{
 185	return;
 186}
 187#endif /*CONFIG_64BIT*/
 188
 
 
 189/**
 190 * pdc_emergency_unlock - Unlock the linux pdc lock
 191 *
 192 * This call unlocks the linux pdc lock in case we need some PDC functions
 193 * (like pdc_add_valid) during kernel stack dump.
 194 */
 195void pdc_emergency_unlock(void)
 196{
 197 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 198        if (spin_is_locked(&pdc_lock))
 199		spin_unlock(&pdc_lock);
 200}
 201
 202
 203/**
 204 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 205 * @address: Address to be verified.
 206 *
 207 * This PDC call attempts to read from the specified address and verifies
 208 * if the address is valid.
 209 * 
 210 * The return value is PDC_OK (0) in case accessing this address is valid.
 211 */
 212int pdc_add_valid(unsigned long address)
 213{
 214        int retval;
 215	unsigned long flags;
 216
 217        spin_lock_irqsave(&pdc_lock, flags);
 218        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 219        spin_unlock_irqrestore(&pdc_lock, flags);
 220
 221        return retval;
 222}
 223EXPORT_SYMBOL(pdc_add_valid);
 224
 225/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226 * pdc_chassis_info - Return chassis information.
 227 * @result: The return buffer.
 228 * @chassis_info: The memory buffer address.
 
 229 * @len: The size of the memory buffer address.
 230 *
 231 * An HVERSION dependent call for returning the chassis information.
 232 */
 233int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 234{
 235        int retval;
 236	unsigned long flags;
 237
 238        spin_lock_irqsave(&pdc_lock, flags);
 239        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 240        memcpy(&pdc_result2, led_info, len);
 241        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 242                              __pa(pdc_result), __pa(pdc_result2), len);
 243        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 244        memcpy(led_info, pdc_result2, len);
 245        spin_unlock_irqrestore(&pdc_lock, flags);
 246
 247        return retval;
 248}
 249
 250/**
 251 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 252 * @retval: -1 on error, 0 on success. Other value are PDC errors
 
 253 * 
 254 * Must be correctly formatted or expect system crash
 255 */
 256#ifdef CONFIG_64BIT
 257int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 258{
 259	int retval = 0;
 260	unsigned long flags;
 261        
 262	if (!is_pdc_pat())
 263		return -1;
 264
 265	spin_lock_irqsave(&pdc_lock, flags);
 266	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 267	spin_unlock_irqrestore(&pdc_lock, flags);
 268
 269	return retval;
 270}
 271#endif
 272
 273/**
 274 * pdc_chassis_disp - Updates chassis code
 275 * @retval: -1 on error, 0 on success
 276 */
 277int pdc_chassis_disp(unsigned long disp)
 278{
 279	int retval = 0;
 280	unsigned long flags;
 281
 282	spin_lock_irqsave(&pdc_lock, flags);
 283	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 284	spin_unlock_irqrestore(&pdc_lock, flags);
 285
 286	return retval;
 287}
 288
 289/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290 * pdc_chassis_warn - Fetches chassis warnings
 291 * @retval: -1 on error, 0 on success
 292 */
 293int pdc_chassis_warn(unsigned long *warn)
 294{
 295	int retval = 0;
 296	unsigned long flags;
 297
 298	spin_lock_irqsave(&pdc_lock, flags);
 299	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 300	*warn = pdc_result[0];
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305
 306int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 307{
 308	int ret;
 309
 310	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 311	convert_to_wide(pdc_result);
 312	pdc_coproc_info->ccr_functional = pdc_result[0];
 313	pdc_coproc_info->ccr_present = pdc_result[1];
 314	pdc_coproc_info->revision = pdc_result[17];
 315	pdc_coproc_info->model = pdc_result[18];
 316
 317	return ret;
 318}
 319
 320/**
 321 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 322 * @pdc_coproc_info: Return buffer address.
 323 *
 324 * This PDC call returns the presence and status of all the coprocessors
 325 * attached to the processor.
 326 */
 327int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 328{
 329	int ret;
 330	unsigned long flags;
 331
 332	spin_lock_irqsave(&pdc_lock, flags);
 333	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 334	spin_unlock_irqrestore(&pdc_lock, flags);
 335
 336	return ret;
 337}
 338
 339/**
 340 * pdc_iodc_read - Read data from the modules IODC.
 341 * @actcnt: The actual number of bytes.
 342 * @hpa: The HPA of the module for the iodc read.
 343 * @index: The iodc entry point.
 344 * @iodc_data: A buffer memory for the iodc options.
 345 * @iodc_data_size: Size of the memory buffer.
 346 *
 347 * This PDC call reads from the IODC of the module specified by the hpa
 348 * argument.
 349 */
 350int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 351		  void *iodc_data, unsigned int iodc_data_size)
 352{
 353	int retval;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&pdc_lock, flags);
 357	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 358			      index, __pa(pdc_result2), iodc_data_size);
 359	convert_to_wide(pdc_result);
 360	*actcnt = pdc_result[0];
 361	memcpy(iodc_data, pdc_result2, iodc_data_size);
 362	spin_unlock_irqrestore(&pdc_lock, flags);
 363
 364	return retval;
 365}
 366EXPORT_SYMBOL(pdc_iodc_read);
 367
 368/**
 369 * pdc_system_map_find_mods - Locate unarchitected modules.
 370 * @pdc_mod_info: Return buffer address.
 371 * @mod_path: pointer to dev path structure.
 372 * @mod_index: fixed address module index.
 373 *
 374 * To locate and identify modules which reside at fixed I/O addresses, which
 375 * do not self-identify via architected bus walks.
 376 */
 377int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 378			     struct pdc_module_path *mod_path, long mod_index)
 379{
 380	int retval;
 381	unsigned long flags;
 382
 383	spin_lock_irqsave(&pdc_lock, flags);
 384	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 385			      __pa(pdc_result2), mod_index);
 386	convert_to_wide(pdc_result);
 387	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 388	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 389	spin_unlock_irqrestore(&pdc_lock, flags);
 390
 391	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 392	return retval;
 393}
 394
 395/**
 396 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 397 * @pdc_addr_info: Return buffer address.
 398 * @mod_index: Fixed address module index.
 399 * @addr_index: Address range index.
 400 * 
 401 * Retrieve additional information about subsequent address ranges for modules
 402 * with multiple address ranges.  
 403 */
 404int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 405			      long mod_index, long addr_index)
 406{
 407	int retval;
 408	unsigned long flags;
 409
 410	spin_lock_irqsave(&pdc_lock, flags);
 411	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 412			      mod_index, addr_index);
 413	convert_to_wide(pdc_result);
 414	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 415	spin_unlock_irqrestore(&pdc_lock, flags);
 416
 417	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 418	return retval;
 419}
 420
 421/**
 422 * pdc_model_info - Return model information about the processor.
 423 * @model: The return buffer.
 424 *
 425 * Returns the version numbers, identifiers, and capabilities from the processor module.
 426 */
 427int pdc_model_info(struct pdc_model *model) 
 428{
 429	int retval;
 430	unsigned long flags;
 431
 432	spin_lock_irqsave(&pdc_lock, flags);
 433	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 434	convert_to_wide(pdc_result);
 435	memcpy(model, pdc_result, sizeof(*model));
 436	spin_unlock_irqrestore(&pdc_lock, flags);
 437
 438	return retval;
 439}
 440
 441/**
 442 * pdc_model_sysmodel - Get the system model name.
 
 443 * @name: A char array of at least 81 characters.
 444 *
 445 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 446 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 447 * on HP/UX.
 448 */
 449int pdc_model_sysmodel(char *name)
 450{
 451        int retval;
 452	unsigned long flags;
 453
 454        spin_lock_irqsave(&pdc_lock, flags);
 455        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 456                              OS_ID_HPUX, __pa(name));
 457        convert_to_wide(pdc_result);
 458
 459        if (retval == PDC_OK) {
 460                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 461        } else {
 462                name[0] = 0;
 463        }
 464        spin_unlock_irqrestore(&pdc_lock, flags);
 465
 466        return retval;
 467}
 468
 469/**
 470 * pdc_model_versions - Identify the version number of each processor.
 471 * @cpu_id: The return buffer.
 472 * @id: The id of the processor to check.
 473 *
 474 * Returns the version number for each processor component.
 475 *
 476 * This comment was here before, but I do not know what it means :( -RB
 477 * id: 0 = cpu revision, 1 = boot-rom-version
 478 */
 479int pdc_model_versions(unsigned long *versions, int id)
 480{
 481        int retval;
 482	unsigned long flags;
 483
 484        spin_lock_irqsave(&pdc_lock, flags);
 485        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 486        convert_to_wide(pdc_result);
 487        *versions = pdc_result[0];
 488        spin_unlock_irqrestore(&pdc_lock, flags);
 489
 490        return retval;
 491}
 492
 493/**
 494 * pdc_model_cpuid - Returns the CPU_ID.
 495 * @cpu_id: The return buffer.
 496 *
 497 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 498 * the processor module.
 499 */
 500int pdc_model_cpuid(unsigned long *cpu_id)
 501{
 502        int retval;
 503	unsigned long flags;
 504
 505        spin_lock_irqsave(&pdc_lock, flags);
 506        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 507        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 508        convert_to_wide(pdc_result);
 509        *cpu_id = pdc_result[0];
 510        spin_unlock_irqrestore(&pdc_lock, flags);
 511
 512        return retval;
 513}
 514
 515/**
 516 * pdc_model_capabilities - Returns the platform capabilities.
 517 * @capabilities: The return buffer.
 518 *
 519 * Returns information about platform support for 32- and/or 64-bit
 520 * OSes, IO-PDIR coherency, and virtual aliasing.
 521 */
 522int pdc_model_capabilities(unsigned long *capabilities)
 523{
 524        int retval;
 525	unsigned long flags;
 526
 527        spin_lock_irqsave(&pdc_lock, flags);
 528        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 529        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 530        convert_to_wide(pdc_result);
 531        if (retval == PDC_OK) {
 532                *capabilities = pdc_result[0];
 533        } else {
 534                *capabilities = PDC_MODEL_OS32;
 535        }
 536        spin_unlock_irqrestore(&pdc_lock, flags);
 537
 538        return retval;
 539}
 540
 541/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542 * pdc_cache_info - Return cache and TLB information.
 543 * @cache_info: The return buffer.
 544 *
 545 * Returns information about the processor's cache and TLB.
 546 */
 547int pdc_cache_info(struct pdc_cache_info *cache_info)
 548{
 549        int retval;
 550	unsigned long flags;
 551
 552        spin_lock_irqsave(&pdc_lock, flags);
 553        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 554        convert_to_wide(pdc_result);
 555        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 556        spin_unlock_irqrestore(&pdc_lock, flags);
 557
 558        return retval;
 559}
 560
 561/**
 562 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 563 * @space_bits: Should be 0, if not, bad mojo!
 564 *
 565 * Returns information about Space ID hashing.
 566 */
 567int pdc_spaceid_bits(unsigned long *space_bits)
 568{
 569	int retval;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&pdc_lock, flags);
 573	pdc_result[0] = 0;
 574	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 575	convert_to_wide(pdc_result);
 576	*space_bits = pdc_result[0];
 577	spin_unlock_irqrestore(&pdc_lock, flags);
 578
 579	return retval;
 580}
 581
 582#ifndef CONFIG_PA20
 583/**
 584 * pdc_btlb_info - Return block TLB information.
 585 * @btlb: The return buffer.
 586 *
 587 * Returns information about the hardware Block TLB.
 588 */
 589int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 590{
 591        int retval;
 592	unsigned long flags;
 593
 594        spin_lock_irqsave(&pdc_lock, flags);
 595        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 596        memcpy(btlb, pdc_result, sizeof(*btlb));
 597        spin_unlock_irqrestore(&pdc_lock, flags);
 598
 599        if(retval < 0) {
 600                btlb->max_size = 0;
 601        }
 602        return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603}
 604
 605/**
 606 * pdc_mem_map_hpa - Find fixed module information.  
 607 * @address: The return buffer
 608 * @mod_path: pointer to dev path structure.
 609 *
 610 * This call was developed for S700 workstations to allow the kernel to find
 611 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 612 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 613 * call.
 614 *
 615 * This call is supported by all existing S700 workstations (up to  Gecko).
 616 */
 617int pdc_mem_map_hpa(struct pdc_memory_map *address,
 618		struct pdc_module_path *mod_path)
 619{
 620        int retval;
 621	unsigned long flags;
 622
 
 
 
 623        spin_lock_irqsave(&pdc_lock, flags);
 624        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 625        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 626				__pa(pdc_result2));
 627        memcpy(address, pdc_result, sizeof(*address));
 628        spin_unlock_irqrestore(&pdc_lock, flags);
 629
 630        return retval;
 631}
 632#endif	/* !CONFIG_PA20 */
 633
 634/**
 635 * pdc_lan_station_id - Get the LAN address.
 636 * @lan_addr: The return buffer.
 637 * @hpa: The network device HPA.
 638 *
 639 * Get the LAN station address when it is not directly available from the LAN hardware.
 640 */
 641int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 642{
 643	int retval;
 644	unsigned long flags;
 645
 646	spin_lock_irqsave(&pdc_lock, flags);
 647	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 648			__pa(pdc_result), hpa);
 649	if (retval < 0) {
 650		/* FIXME: else read MAC from NVRAM */
 651		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 652	} else {
 653		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 654	}
 655	spin_unlock_irqrestore(&pdc_lock, flags);
 656
 657	return retval;
 658}
 659EXPORT_SYMBOL(pdc_lan_station_id);
 660
 661/**
 662 * pdc_stable_read - Read data from Stable Storage.
 663 * @staddr: Stable Storage address to access.
 664 * @memaddr: The memory address where Stable Storage data shall be copied.
 665 * @count: number of bytes to transfer. count is multiple of 4.
 666 *
 667 * This PDC call reads from the Stable Storage address supplied in staddr
 668 * and copies count bytes to the memory address memaddr.
 669 * The call will fail if staddr+count > PDC_STABLE size.
 670 */
 671int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 672{
 673       int retval;
 674	unsigned long flags;
 675
 676       spin_lock_irqsave(&pdc_lock, flags);
 677       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 678               __pa(pdc_result), count);
 679       convert_to_wide(pdc_result);
 680       memcpy(memaddr, pdc_result, count);
 681       spin_unlock_irqrestore(&pdc_lock, flags);
 682
 683       return retval;
 684}
 685EXPORT_SYMBOL(pdc_stable_read);
 686
 687/**
 688 * pdc_stable_write - Write data to Stable Storage.
 689 * @staddr: Stable Storage address to access.
 690 * @memaddr: The memory address where Stable Storage data shall be read from.
 691 * @count: number of bytes to transfer. count is multiple of 4.
 692 *
 693 * This PDC call reads count bytes from the supplied memaddr address,
 694 * and copies count bytes to the Stable Storage address staddr.
 695 * The call will fail if staddr+count > PDC_STABLE size.
 696 */
 697int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 698{
 699       int retval;
 700	unsigned long flags;
 701
 702       spin_lock_irqsave(&pdc_lock, flags);
 703       memcpy(pdc_result, memaddr, count);
 704       convert_to_wide(pdc_result);
 705       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 706               __pa(pdc_result), count);
 707       spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709       return retval;
 710}
 711EXPORT_SYMBOL(pdc_stable_write);
 712
 713/**
 714 * pdc_stable_get_size - Get Stable Storage size in bytes.
 715 * @size: pointer where the size will be stored.
 716 *
 717 * This PDC call returns the number of bytes in the processor's Stable
 718 * Storage, which is the number of contiguous bytes implemented in Stable
 719 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 720 * which is a multiple of four.
 721 */
 722int pdc_stable_get_size(unsigned long *size)
 723{
 724       int retval;
 725	unsigned long flags;
 726
 727       spin_lock_irqsave(&pdc_lock, flags);
 728       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 729       *size = pdc_result[0];
 730       spin_unlock_irqrestore(&pdc_lock, flags);
 731
 732       return retval;
 733}
 734EXPORT_SYMBOL(pdc_stable_get_size);
 735
 736/**
 737 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 738 *
 739 * This PDC call is meant to be used to check the integrity of the current
 740 * contents of Stable Storage.
 741 */
 742int pdc_stable_verify_contents(void)
 743{
 744       int retval;
 745	unsigned long flags;
 746
 747       spin_lock_irqsave(&pdc_lock, flags);
 748       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 749       spin_unlock_irqrestore(&pdc_lock, flags);
 750
 751       return retval;
 752}
 753EXPORT_SYMBOL(pdc_stable_verify_contents);
 754
 755/**
 756 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 757 * the validity indicator.
 758 *
 759 * This PDC call will erase all contents of Stable Storage. Use with care!
 760 */
 761int pdc_stable_initialize(void)
 762{
 763       int retval;
 764	unsigned long flags;
 765
 766       spin_lock_irqsave(&pdc_lock, flags);
 767       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 768       spin_unlock_irqrestore(&pdc_lock, flags);
 769
 770       return retval;
 771}
 772EXPORT_SYMBOL(pdc_stable_initialize);
 773
 774/**
 775 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 776 * @hwpath: fully bc.mod style path to the device.
 777 * @initiator: the array to return the result into
 778 *
 779 * Get the SCSI operational parameters from PDC.
 780 * Needed since HPUX never used BIOS or symbios card NVRAM.
 781 * Most ncr/sym cards won't have an entry and just use whatever
 782 * capabilities of the card are (eg Ultra, LVD). But there are
 783 * several cases where it's useful:
 784 *    o set SCSI id for Multi-initiator clusters,
 785 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 786 *    o bus width exported is less than what the interface chip supports.
 787 */
 788int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 789{
 790	int retval;
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&pdc_lock, flags);
 794
 795/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 796#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 797	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 798
 799	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 800			      __pa(pdc_result), __pa(hwpath));
 801	if (retval < PDC_OK)
 802		goto out;
 803
 804	if (pdc_result[0] < 16) {
 805		initiator->host_id = pdc_result[0];
 806	} else {
 807		initiator->host_id = -1;
 808	}
 809
 810	/*
 811	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 812	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 813	 */
 814	switch (pdc_result[1]) {
 815		case  1: initiator->factor = 50; break;
 816		case  2: initiator->factor = 25; break;
 817		case  5: initiator->factor = 12; break;
 818		case 25: initiator->factor = 10; break;
 819		case 20: initiator->factor = 12; break;
 820		case 40: initiator->factor = 10; break;
 821		default: initiator->factor = -1; break;
 822	}
 823
 824	if (IS_SPROCKETS()) {
 825		initiator->width = pdc_result[4];
 826		initiator->mode = pdc_result[5];
 827	} else {
 828		initiator->width = -1;
 829		initiator->mode = -1;
 830	}
 831
 832 out:
 833	spin_unlock_irqrestore(&pdc_lock, flags);
 834
 835	return (retval >= PDC_OK);
 836}
 837EXPORT_SYMBOL(pdc_get_initiator);
 838
 839
 840/**
 841 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 842 * @num_entries: The return value.
 843 * @hpa: The HPA for the device.
 844 *
 845 * This PDC function returns the number of entries in the specified cell's
 846 * interrupt table.
 847 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 848 */ 
 849int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 850{
 851	int retval;
 852	unsigned long flags;
 853
 854	spin_lock_irqsave(&pdc_lock, flags);
 855	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 856			      __pa(pdc_result), hpa);
 857	convert_to_wide(pdc_result);
 858	*num_entries = pdc_result[0];
 859	spin_unlock_irqrestore(&pdc_lock, flags);
 860
 861	return retval;
 862}
 863
 864/** 
 865 * pdc_pci_irt - Get the PCI interrupt routing table.
 866 * @num_entries: The number of entries in the table.
 867 * @hpa: The Hard Physical Address of the device.
 868 * @tbl: 
 869 *
 870 * Get the PCI interrupt routing table for the device at the given HPA.
 871 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 872 */
 873int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 874{
 875	int retval;
 876	unsigned long flags;
 877
 878	BUG_ON((unsigned long)tbl & 0x7);
 879
 880	spin_lock_irqsave(&pdc_lock, flags);
 881	pdc_result[0] = num_entries;
 882	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 883			      __pa(pdc_result), hpa, __pa(tbl));
 884	spin_unlock_irqrestore(&pdc_lock, flags);
 885
 886	return retval;
 887}
 888
 889
 890#if 0	/* UNTEST CODE - left here in case someone needs it */
 891
 892/** 
 893 * pdc_pci_config_read - read PCI config space.
 894 * @hpa		token from PDC to indicate which PCI device
 895 * @pci_addr	configuration space address to read from
 896 *
 897 * Read PCI Configuration space *before* linux PCI subsystem is running.
 898 */
 899unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 900{
 901	int retval;
 902	unsigned long flags;
 903
 904	spin_lock_irqsave(&pdc_lock, flags);
 905	pdc_result[0] = 0;
 906	pdc_result[1] = 0;
 907	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 908			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 909	spin_unlock_irqrestore(&pdc_lock, flags);
 910
 911	return retval ? ~0 : (unsigned int) pdc_result[0];
 912}
 913
 914
 915/** 
 916 * pdc_pci_config_write - read PCI config space.
 917 * @hpa		token from PDC to indicate which PCI device
 918 * @pci_addr	configuration space address to write
 919 * @val		value we want in the 32-bit register
 920 *
 921 * Write PCI Configuration space *before* linux PCI subsystem is running.
 922 */
 923void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 924{
 925	int retval;
 926	unsigned long flags;
 927
 928	spin_lock_irqsave(&pdc_lock, flags);
 929	pdc_result[0] = 0;
 930	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 931			      __pa(pdc_result), hpa,
 932			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 933	spin_unlock_irqrestore(&pdc_lock, flags);
 934
 935	return retval;
 936}
 937#endif /* UNTESTED CODE */
 938
 939/**
 940 * pdc_tod_read - Read the Time-Of-Day clock.
 941 * @tod: The return buffer:
 942 *
 943 * Read the Time-Of-Day clock
 944 */
 945int pdc_tod_read(struct pdc_tod *tod)
 946{
 947        int retval;
 948	unsigned long flags;
 949
 950        spin_lock_irqsave(&pdc_lock, flags);
 951        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 952        convert_to_wide(pdc_result);
 953        memcpy(tod, pdc_result, sizeof(*tod));
 954        spin_unlock_irqrestore(&pdc_lock, flags);
 955
 956        return retval;
 957}
 958EXPORT_SYMBOL(pdc_tod_read);
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960/**
 961 * pdc_tod_set - Set the Time-Of-Day clock.
 962 * @sec: The number of seconds since epoch.
 963 * @usec: The number of micro seconds.
 964 *
 965 * Set the Time-Of-Day clock.
 966 */ 
 967int pdc_tod_set(unsigned long sec, unsigned long usec)
 968{
 969        int retval;
 970	unsigned long flags;
 971
 972        spin_lock_irqsave(&pdc_lock, flags);
 973        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 974        spin_unlock_irqrestore(&pdc_lock, flags);
 975
 976        return retval;
 977}
 978EXPORT_SYMBOL(pdc_tod_set);
 979
 980#ifdef CONFIG_64BIT
 981int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 982		struct pdc_memory_table *tbl, unsigned long entries)
 983{
 984	int retval;
 985	unsigned long flags;
 986
 987	spin_lock_irqsave(&pdc_lock, flags);
 988	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 989	convert_to_wide(pdc_result);
 990	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 991	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 992	spin_unlock_irqrestore(&pdc_lock, flags);
 993
 994	return retval;
 995}
 996#endif /* CONFIG_64BIT */
 997
 998/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 999 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1000 * it later. :)
1001 */
1002int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1003{
1004        int retval;
1005	unsigned long flags;
1006
1007        spin_lock_irqsave(&pdc_lock, flags);
1008        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1009                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1010        spin_unlock_irqrestore(&pdc_lock, flags);
1011
1012        return retval;
1013}
1014
1015/*
1016 * pdc_do_reset - Reset the system.
1017 *
1018 * Reset the system.
1019 */
1020int pdc_do_reset(void)
1021{
1022        int retval;
1023	unsigned long flags;
1024
1025        spin_lock_irqsave(&pdc_lock, flags);
1026        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1027        spin_unlock_irqrestore(&pdc_lock, flags);
1028
1029        return retval;
1030}
1031
1032/*
1033 * pdc_soft_power_info - Enable soft power switch.
1034 * @power_reg: address of soft power register
1035 *
1036 * Return the absolute address of the soft power switch register
1037 */
1038int __init pdc_soft_power_info(unsigned long *power_reg)
1039{
1040	int retval;
1041	unsigned long flags;
1042
1043	*power_reg = (unsigned long) (-1);
1044	
1045	spin_lock_irqsave(&pdc_lock, flags);
1046	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1047	if (retval == PDC_OK) {
1048                convert_to_wide(pdc_result);
1049                *power_reg = f_extend(pdc_result[0]);
1050	}
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval;
1054}
1055
1056/*
1057 * pdc_soft_power_button - Control the soft power button behaviour
1058 * @sw_control: 0 for hardware control, 1 for software control 
1059 *
1060 *
1061 * This PDC function places the soft power button under software or
1062 * hardware control.
1063 * Under software control the OS may control to when to allow to shut 
1064 * down the system. Under hardware control pressing the power button 
1065 * powers off the system immediately.
 
 
 
1066 */
1067int pdc_soft_power_button(int sw_control)
1068{
1069	int retval;
1070	unsigned long flags;
1071
1072	spin_lock_irqsave(&pdc_lock, flags);
1073	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1074	spin_unlock_irqrestore(&pdc_lock, flags);
1075
1076	return retval;
1077}
1078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1079/*
1080 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1081 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1082 * who knows what other platform firmware might do with this OS "hook".
1083 */
1084void pdc_io_reset(void)
1085{
1086	unsigned long flags;
1087
1088	spin_lock_irqsave(&pdc_lock, flags);
1089	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1090	spin_unlock_irqrestore(&pdc_lock, flags);
1091}
1092
1093/*
1094 * pdc_io_reset_devices - Hack to Stop USB controller
1095 *
1096 * If PDC used the usb controller, the usb controller
1097 * is still running and will crash the machines during iommu 
1098 * setup, because of still running DMA. This PDC call
1099 * stops the USB controller.
1100 * Normally called after calling pdc_io_reset().
1101 */
1102void pdc_io_reset_devices(void)
1103{
1104	unsigned long flags;
1105
1106	spin_lock_irqsave(&pdc_lock, flags);
1107	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1108	spin_unlock_irqrestore(&pdc_lock, flags);
1109}
1110
1111/* locked by pdc_console_lock */
1112static int __attribute__((aligned(8)))   iodc_retbuf[32];
1113static char __attribute__((aligned(64))) iodc_dbuf[4096];
 
1114
1115/**
1116 * pdc_iodc_print - Console print using IODC.
1117 * @str: the string to output.
1118 * @count: length of str
1119 *
1120 * Note that only these special chars are architected for console IODC io:
1121 * BEL, BS, CR, and LF. Others are passed through.
1122 * Since the HP console requires CR+LF to perform a 'newline', we translate
1123 * "\n" to "\r\n".
1124 */
1125int pdc_iodc_print(const unsigned char *str, unsigned count)
1126{
1127	unsigned int i;
1128	unsigned long flags;
1129
 
 
 
1130	for (i = 0; i < count;) {
1131		switch(str[i]) {
1132		case '\n':
1133			iodc_dbuf[i+0] = '\r';
1134			iodc_dbuf[i+1] = '\n';
1135			i += 2;
 
1136			goto print;
1137		default:
1138			iodc_dbuf[i] = str[i];
1139			i++;
1140			break;
1141		}
1142	}
1143
1144print:
1145        spin_lock_irqsave(&pdc_lock, flags);
1146        real32_call(PAGE0->mem_cons.iodc_io,
1147                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1148                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1149                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1150        spin_unlock_irqrestore(&pdc_lock, flags);
1151
1152	return i;
1153}
1154
 
1155/**
1156 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1157 *
1158 * Read a character (non-blocking) from the PDC console, returns -1 if
1159 * key is not present.
1160 */
1161int pdc_iodc_getc(void)
1162{
1163	int ch;
1164	int status;
1165	unsigned long flags;
1166
1167	/* Bail if no console input device. */
1168	if (!PAGE0->mem_kbd.iodc_io)
1169		return 0;
1170	
1171	/* wait for a keyboard (rs232)-input */
1172	spin_lock_irqsave(&pdc_lock, flags);
1173	real32_call(PAGE0->mem_kbd.iodc_io,
1174		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1175		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1176		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1177
1178	ch = *iodc_dbuf;
1179	status = *iodc_retbuf;
 
1180	spin_unlock_irqrestore(&pdc_lock, flags);
1181
1182	if (status == 0)
1183	    return -1;
1184	
1185	return ch;
1186}
1187
1188int pdc_sti_call(unsigned long func, unsigned long flags,
1189                 unsigned long inptr, unsigned long outputr,
1190                 unsigned long glob_cfg)
1191{
1192        int retval;
1193	unsigned long irqflags;
1194
1195        spin_lock_irqsave(&pdc_lock, irqflags);  
1196        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1197        spin_unlock_irqrestore(&pdc_lock, irqflags);
 
 
 
 
 
 
 
 
1198
1199        return retval;
1200}
1201EXPORT_SYMBOL(pdc_sti_call);
1202
1203#ifdef CONFIG_64BIT
1204/**
1205 * pdc_pat_cell_get_number - Returns the cell number.
1206 * @cell_info: The return buffer.
1207 *
1208 * This PDC call returns the cell number of the cell from which the call
1209 * is made.
1210 */
1211int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1212{
1213	int retval;
1214	unsigned long flags;
1215
1216	spin_lock_irqsave(&pdc_lock, flags);
1217	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1218	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1219	spin_unlock_irqrestore(&pdc_lock, flags);
1220
1221	return retval;
1222}
1223
1224/**
1225 * pdc_pat_cell_module - Retrieve the cell's module information.
1226 * @actcnt: The number of bytes written to mem_addr.
1227 * @ploc: The physical location.
1228 * @mod: The module index.
1229 * @view_type: The view of the address type.
1230 * @mem_addr: The return buffer.
1231 *
1232 * This PDC call returns information about each module attached to the cell
1233 * at the specified location.
1234 */
1235int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1236			unsigned long view_type, void *mem_addr)
1237{
1238	int retval;
1239	unsigned long flags;
1240	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1241
1242	spin_lock_irqsave(&pdc_lock, flags);
1243	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1244			      ploc, mod, view_type, __pa(&result));
1245	if(!retval) {
1246		*actcnt = pdc_result[0];
1247		memcpy(mem_addr, &result, *actcnt);
1248	}
1249	spin_unlock_irqrestore(&pdc_lock, flags);
1250
1251	return retval;
1252}
1253
1254/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1256 * @cpu_info: The return buffer.
1257 * @hpa: The Hard Physical Address of the CPU.
1258 *
1259 * Retrieve the cpu number for the cpu at the specified HPA.
1260 */
1261int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1262{
1263	int retval;
1264	unsigned long flags;
1265
1266	spin_lock_irqsave(&pdc_lock, flags);
1267	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1268			      __pa(&pdc_result), hpa);
1269	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1270	spin_unlock_irqrestore(&pdc_lock, flags);
1271
1272	return retval;
1273}
1274
1275/**
1276 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1277 * @num_entries: The return value.
1278 * @cell_num: The target cell.
1279 *
1280 * This PDC function returns the number of entries in the specified cell's
1281 * interrupt table.
1282 */
1283int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1284{
1285	int retval;
1286	unsigned long flags;
1287
1288	spin_lock_irqsave(&pdc_lock, flags);
1289	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1290			      __pa(pdc_result), cell_num);
1291	*num_entries = pdc_result[0];
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297/**
1298 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1299 * @r_addr: The return buffer.
1300 * @cell_num: The target cell.
1301 *
1302 * This PDC function returns the actual interrupt table for the specified cell.
1303 */
1304int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1305{
1306	int retval;
1307	unsigned long flags;
1308
1309	spin_lock_irqsave(&pdc_lock, flags);
1310	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1311			      __pa(r_addr), cell_num);
1312	spin_unlock_irqrestore(&pdc_lock, flags);
1313
1314	return retval;
1315}
1316
1317/**
1318 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1319 * @actlen: The return buffer.
1320 * @mem_addr: Pointer to the memory buffer.
1321 * @count: The number of bytes to read from the buffer.
1322 * @offset: The offset with respect to the beginning of the buffer.
1323 *
1324 */
1325int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1326			    unsigned long count, unsigned long offset)
1327{
1328	int retval;
1329	unsigned long flags;
1330
1331	spin_lock_irqsave(&pdc_lock, flags);
1332	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1333			      __pa(pdc_result2), count, offset);
1334	*actual_len = pdc_result[0];
1335	memcpy(mem_addr, pdc_result2, *actual_len);
1336	spin_unlock_irqrestore(&pdc_lock, flags);
1337
1338	return retval;
1339}
1340
1341/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1343 * @pci_addr: PCI configuration space address for which the read request is being made.
1344 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1345 * @mem_addr: Pointer to return memory buffer.
1346 *
1347 */
1348int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1349{
1350	int retval;
1351	unsigned long flags;
1352
1353	spin_lock_irqsave(&pdc_lock, flags);
1354	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1355					__pa(pdc_result), pci_addr, pci_size);
1356	switch(pci_size) {
1357		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1358		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1359		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1360	}
1361	spin_unlock_irqrestore(&pdc_lock, flags);
1362
1363	return retval;
1364}
1365
1366/**
1367 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1368 * @pci_addr: PCI configuration space address for which the write  request is being made.
1369 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1370 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1371 *         written to PCI Config space.
1372 *
1373 */
1374int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1375{
1376	int retval;
1377	unsigned long flags;
1378
1379	spin_lock_irqsave(&pdc_lock, flags);
1380	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1381				pci_addr, pci_size, val);
1382	spin_unlock_irqrestore(&pdc_lock, flags);
1383
1384	return retval;
1385}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1386#endif /* CONFIG_64BIT */
 
1387
1388
1389/***************** 32-bit real-mode calls ***********/
1390/* The struct below is used
1391 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1392 * real32_call_asm() then uses this stack in narrow real mode
1393 */
1394
1395struct narrow_stack {
1396	/* use int, not long which is 64 bits */
1397	unsigned int arg13;
1398	unsigned int arg12;
1399	unsigned int arg11;
1400	unsigned int arg10;
1401	unsigned int arg9;
1402	unsigned int arg8;
1403	unsigned int arg7;
1404	unsigned int arg6;
1405	unsigned int arg5;
1406	unsigned int arg4;
1407	unsigned int arg3;
1408	unsigned int arg2;
1409	unsigned int arg1;
1410	unsigned int arg0;
1411	unsigned int frame_marker[8];
1412	unsigned int sp;
1413	/* in reality, there's nearly 8k of stack after this */
1414};
1415
1416long real32_call(unsigned long fn, ...)
1417{
1418	va_list args;
1419	extern struct narrow_stack real_stack;
1420	extern unsigned long real32_call_asm(unsigned int *,
1421					     unsigned int *, 
1422					     unsigned int);
1423	
1424	va_start(args, fn);
1425	real_stack.arg0 = va_arg(args, unsigned int);
1426	real_stack.arg1 = va_arg(args, unsigned int);
1427	real_stack.arg2 = va_arg(args, unsigned int);
1428	real_stack.arg3 = va_arg(args, unsigned int);
1429	real_stack.arg4 = va_arg(args, unsigned int);
1430	real_stack.arg5 = va_arg(args, unsigned int);
1431	real_stack.arg6 = va_arg(args, unsigned int);
1432	real_stack.arg7 = va_arg(args, unsigned int);
1433	real_stack.arg8 = va_arg(args, unsigned int);
1434	real_stack.arg9 = va_arg(args, unsigned int);
1435	real_stack.arg10 = va_arg(args, unsigned int);
1436	real_stack.arg11 = va_arg(args, unsigned int);
1437	real_stack.arg12 = va_arg(args, unsigned int);
1438	real_stack.arg13 = va_arg(args, unsigned int);
1439	va_end(args);
1440	
1441	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1442}
1443
1444#ifdef CONFIG_64BIT
1445/***************** 64-bit real-mode calls ***********/
1446
1447struct wide_stack {
1448	unsigned long arg0;
1449	unsigned long arg1;
1450	unsigned long arg2;
1451	unsigned long arg3;
1452	unsigned long arg4;
1453	unsigned long arg5;
1454	unsigned long arg6;
1455	unsigned long arg7;
1456	unsigned long arg8;
1457	unsigned long arg9;
1458	unsigned long arg10;
1459	unsigned long arg11;
1460	unsigned long arg12;
1461	unsigned long arg13;
1462	unsigned long frame_marker[2];	/* rp, previous sp */
1463	unsigned long sp;
1464	/* in reality, there's nearly 8k of stack after this */
1465};
1466
1467long real64_call(unsigned long fn, ...)
1468{
1469	va_list args;
1470	extern struct wide_stack real64_stack;
1471	extern unsigned long real64_call_asm(unsigned long *,
1472					     unsigned long *, 
1473					     unsigned long);
1474    
1475	va_start(args, fn);
1476	real64_stack.arg0 = va_arg(args, unsigned long);
1477	real64_stack.arg1 = va_arg(args, unsigned long);
1478	real64_stack.arg2 = va_arg(args, unsigned long);
1479	real64_stack.arg3 = va_arg(args, unsigned long);
1480	real64_stack.arg4 = va_arg(args, unsigned long);
1481	real64_stack.arg5 = va_arg(args, unsigned long);
1482	real64_stack.arg6 = va_arg(args, unsigned long);
1483	real64_stack.arg7 = va_arg(args, unsigned long);
1484	real64_stack.arg8 = va_arg(args, unsigned long);
1485	real64_stack.arg9 = va_arg(args, unsigned long);
1486	real64_stack.arg10 = va_arg(args, unsigned long);
1487	real64_stack.arg11 = va_arg(args, unsigned long);
1488	real64_stack.arg12 = va_arg(args, unsigned long);
1489	real64_stack.arg13 = va_arg(args, unsigned long);
1490	va_end(args);
1491	
1492	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1493}
1494
1495#endif /* CONFIG_64BIT */
1496
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See PDC documentation at
   8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
   9 * for documentation describing the entry points and calling
  10 * conventions defined below.
  11 *
  12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
 
 
 
 
 
 
  17 */
  18
  19/*	I think it would be in everyone's best interest to follow this
  20 *	guidelines when writing PDC wrappers:
  21 *
  22 *	 - the name of the pdc wrapper should match one of the macros
  23 *	   used for the first two arguments
  24 *	 - don't use caps for random parts of the name
  25 *	 - use the static PDC result buffers and "copyout" to structs
  26 *	   supplied by the caller to encapsulate alignment restrictions
  27 *	 - hold pdc_lock while in PDC or using static result buffers
  28 *	 - use __pa() to convert virtual (kernel) pointers to physical
  29 *	   ones.
  30 *	 - the name of the struct used for pdc return values should equal
  31 *	   one of the macros used for the first two arguments to the
  32 *	   corresponding PDC call
  33 *	 - keep the order of arguments
  34 *	 - don't be smart (setting trailing NUL bytes for strings, return
  35 *	   something useful even if the call failed) unless you are sure
  36 *	   it's not going to affect functionality or performance
  37 *
  38 *	Example:
  39 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  40 *	{
  41 *		int retval;
  42 *
  43 *		spin_lock_irq(&pdc_lock);
  44 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  45 *		convert_to_wide(pdc_result);
  46 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  47 *		spin_unlock_irq(&pdc_lock);
  48 *
  49 *		return retval;
  50 *	}
  51 *					prumpf	991016	
  52 */
  53
  54#include <linux/stdarg.h>
  55
  56#include <linux/delay.h>
  57#include <linux/init.h>
  58#include <linux/kernel.h>
  59#include <linux/module.h>
  60#include <linux/string.h>
  61#include <linux/spinlock.h>
  62
  63#include <asm/page.h>
  64#include <asm/pdc.h>
  65#include <asm/pdcpat.h>
  66#include <asm/processor.h>	/* for boot_cpu_data */
  67
  68#if defined(BOOTLOADER)
  69# undef  spin_lock_irqsave
  70# define spin_lock_irqsave(a, b) { b = 1; }
  71# undef  spin_unlock_irqrestore
  72# define spin_unlock_irqrestore(a, b)
  73#else
  74static DEFINE_SPINLOCK(pdc_lock);
  75#endif
  76
  77static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
  78static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
  79
  80#ifdef CONFIG_64BIT
  81#define WIDE_FIRMWARE		PDC_MODEL_OS64
  82#define NARROW_FIRMWARE		PDC_MODEL_OS32
  83
  84/* Firmware needs to be initially set to narrow to determine the
  85 * actual firmware width. */
  86int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
  87#endif
  88
  89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  90 * and MEM_PDC calls are always the same width as the OS.
  91 * Some PAT boxes may have 64-bit IODC I/O.
  92 *
  93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  95 * This allowed wide kernels to run on Cxxx boxes.
  96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  98 */
  99
 100#ifdef CONFIG_64BIT
 101long real64_call(unsigned long function, ...);
 102#endif
 103long real32_call(unsigned long function, ...);
 104
 105#ifdef CONFIG_64BIT
 106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 108#else
 109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 111#endif
 112
 113
 114/**
 115 * f_extend - Convert PDC addresses to kernel addresses.
 116 * @address: Address returned from PDC.
 117 *
 118 * This function is used to convert PDC addresses into kernel addresses
 119 * when the PDC address size and kernel address size are different.
 120 */
 121static unsigned long f_extend(unsigned long address)
 122{
 123#ifdef CONFIG_64BIT
 124	if(unlikely(parisc_narrow_firmware)) {
 125		if((address & 0xff000000) == 0xf0000000)
 126			return (0xfffffff0UL << 32) | (u32)address;
 127
 128		if((address & 0xf0000000) == 0xf0000000)
 129			return (0xffffffffUL << 32) | (u32)address;
 130	}
 131#endif
 132	return address;
 133}
 134
 135/**
 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 137 * @addr: The return buffer from PDC.
 138 *
 139 * This function is used to convert the return buffer addresses retrieved from PDC
 140 * into kernel addresses when the PDC address size and kernel address size are
 141 * different.
 142 */
 143static void convert_to_wide(unsigned long *addr)
 144{
 145#ifdef CONFIG_64BIT
 146	int i;
 147	unsigned int *p = (unsigned int *)addr;
 148
 149	if (unlikely(parisc_narrow_firmware)) {
 150		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 151			addr[i] = p[i];
 152	}
 153#endif
 154}
 155
 156#ifdef CONFIG_64BIT
 157void set_firmware_width_unlocked(void)
 158{
 159	int ret;
 160
 161	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 162		__pa(pdc_result), 0);
 163	if (ret < 0)
 164		return;
 165	convert_to_wide(pdc_result);
 166	if (pdc_result[0] != NARROW_FIRMWARE)
 167		parisc_narrow_firmware = 0;
 168}
 169
 170/**
 171 * set_firmware_width - Determine if the firmware is wide or narrow.
 172 *
 173 * This function must be called before any pdc_* function that uses the
 174 * convert_to_wide function.
 175 */
 176void set_firmware_width(void)
 177{
 178	unsigned long flags;
 179
 180	/* already initialized? */
 181	if (parisc_narrow_firmware != NARROW_FIRMWARE)
 182		return;
 183
 184	spin_lock_irqsave(&pdc_lock, flags);
 185	set_firmware_width_unlocked();
 186	spin_unlock_irqrestore(&pdc_lock, flags);
 187}
 188#else
 189void set_firmware_width_unlocked(void)
 190{
 191	return;
 192}
 193
 194void set_firmware_width(void)
 195{
 196	return;
 197}
 198#endif /*CONFIG_64BIT*/
 199
 200
 201#if !defined(BOOTLOADER)
 202/**
 203 * pdc_emergency_unlock - Unlock the linux pdc lock
 204 *
 205 * This call unlocks the linux pdc lock in case we need some PDC functions
 206 * (like pdc_add_valid) during kernel stack dump.
 207 */
 208void pdc_emergency_unlock(void)
 209{
 210 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 211        if (spin_is_locked(&pdc_lock))
 212		spin_unlock(&pdc_lock);
 213}
 214
 215
 216/**
 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 218 * @address: Address to be verified.
 219 *
 220 * This PDC call attempts to read from the specified address and verifies
 221 * if the address is valid.
 222 * 
 223 * The return value is PDC_OK (0) in case accessing this address is valid.
 224 */
 225int pdc_add_valid(unsigned long address)
 226{
 227        int retval;
 228	unsigned long flags;
 229
 230        spin_lock_irqsave(&pdc_lock, flags);
 231        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 232        spin_unlock_irqrestore(&pdc_lock, flags);
 233
 234        return retval;
 235}
 236EXPORT_SYMBOL(pdc_add_valid);
 237
 238/**
 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 240 * @instr: Pointer to variable which will get instruction opcode.
 241 *
 242 * The return value is PDC_OK (0) in case call succeeded.
 243 */
 244int __init pdc_instr(unsigned int *instr)
 245{
 246	int retval;
 247	unsigned long flags;
 248
 249	spin_lock_irqsave(&pdc_lock, flags);
 250	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 251	convert_to_wide(pdc_result);
 252	*instr = pdc_result[0];
 253	spin_unlock_irqrestore(&pdc_lock, flags);
 254
 255	return retval;
 256}
 257
 258/**
 259 * pdc_chassis_info - Return chassis information.
 
 260 * @chassis_info: The memory buffer address.
 261 * @led_info: The size of the memory buffer address.
 262 * @len: The size of the memory buffer address.
 263 *
 264 * An HVERSION dependent call for returning the chassis information.
 265 */
 266int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 267{
 268        int retval;
 269	unsigned long flags;
 270
 271        spin_lock_irqsave(&pdc_lock, flags);
 272        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 273        memcpy(&pdc_result2, led_info, len);
 274        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 275                              __pa(pdc_result), __pa(pdc_result2), len);
 276        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 277        memcpy(led_info, pdc_result2, len);
 278        spin_unlock_irqrestore(&pdc_lock, flags);
 279
 280        return retval;
 281}
 282
 283/**
 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 285 * @state: state of the machine
 286 * @data: value for that state
 287 * 
 288 * Must be correctly formatted or expect system crash
 289 */
 290#ifdef CONFIG_64BIT
 291int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 292{
 293	int retval = 0;
 294	unsigned long flags;
 295        
 296	if (!is_pdc_pat())
 297		return -1;
 298
 299	spin_lock_irqsave(&pdc_lock, flags);
 300	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305#endif
 306
 307/**
 308 * pdc_chassis_disp - Updates chassis code
 309 * @disp: value to show on display
 310 */
 311int pdc_chassis_disp(unsigned long disp)
 312{
 313	int retval = 0;
 314	unsigned long flags;
 315
 316	spin_lock_irqsave(&pdc_lock, flags);
 317	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 318	spin_unlock_irqrestore(&pdc_lock, flags);
 319
 320	return retval;
 321}
 322
 323/**
 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
 325 */
 326int __pdc_cpu_rendezvous(void)
 327{
 328	if (is_pdc_pat())
 329		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 330	else
 331		return mem_pdc_call(PDC_PROC, 1, 0);
 332}
 333
 334/**
 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
 336 */
 337void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
 338{
 339	spin_lock(&pdc_lock);
 340}
 341
 342/**
 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
 344 */
 345void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
 346{
 347	spin_unlock(&pdc_lock);
 348}
 349
 350/**
 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
 352 * @pdc_entry: pointer to where the PDC entry point should be stored
 353 */
 354int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
 355{
 356	int retval = 0;
 357	unsigned long flags;
 358
 359	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
 360		*pdc_entry = MEM_PDC;
 361		return 0;
 362	}
 363
 364	spin_lock_irqsave(&pdc_lock, flags);
 365	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
 366			__pa(pdc_result));
 367	*pdc_entry = pdc_result[0];
 368	spin_unlock_irqrestore(&pdc_lock, flags);
 369
 370	return retval;
 371}
 372/**
 373 * pdc_chassis_warn - Fetches chassis warnings
 374 * @warn: The warning value to be shown
 375 */
 376int pdc_chassis_warn(unsigned long *warn)
 377{
 378	int retval = 0;
 379	unsigned long flags;
 380
 381	spin_lock_irqsave(&pdc_lock, flags);
 382	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 383	*warn = pdc_result[0];
 384	spin_unlock_irqrestore(&pdc_lock, flags);
 385
 386	return retval;
 387}
 388
 389int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 390{
 391	int ret;
 392
 393	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 394	convert_to_wide(pdc_result);
 395	pdc_coproc_info->ccr_functional = pdc_result[0];
 396	pdc_coproc_info->ccr_present = pdc_result[1];
 397	pdc_coproc_info->revision = pdc_result[17];
 398	pdc_coproc_info->model = pdc_result[18];
 399
 400	return ret;
 401}
 402
 403/**
 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 405 * @pdc_coproc_info: Return buffer address.
 406 *
 407 * This PDC call returns the presence and status of all the coprocessors
 408 * attached to the processor.
 409 */
 410int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 411{
 412	int ret;
 413	unsigned long flags;
 414
 415	spin_lock_irqsave(&pdc_lock, flags);
 416	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 417	spin_unlock_irqrestore(&pdc_lock, flags);
 418
 419	return ret;
 420}
 421
 422/**
 423 * pdc_iodc_read - Read data from the modules IODC.
 424 * @actcnt: The actual number of bytes.
 425 * @hpa: The HPA of the module for the iodc read.
 426 * @index: The iodc entry point.
 427 * @iodc_data: A buffer memory for the iodc options.
 428 * @iodc_data_size: Size of the memory buffer.
 429 *
 430 * This PDC call reads from the IODC of the module specified by the hpa
 431 * argument.
 432 */
 433int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 434		  void *iodc_data, unsigned int iodc_data_size)
 435{
 436	int retval;
 437	unsigned long flags;
 438
 439	spin_lock_irqsave(&pdc_lock, flags);
 440	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 441			      index, __pa(pdc_result2), iodc_data_size);
 442	convert_to_wide(pdc_result);
 443	*actcnt = pdc_result[0];
 444	memcpy(iodc_data, pdc_result2, iodc_data_size);
 445	spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447	return retval;
 448}
 449EXPORT_SYMBOL(pdc_iodc_read);
 450
 451/**
 452 * pdc_system_map_find_mods - Locate unarchitected modules.
 453 * @pdc_mod_info: Return buffer address.
 454 * @mod_path: pointer to dev path structure.
 455 * @mod_index: fixed address module index.
 456 *
 457 * To locate and identify modules which reside at fixed I/O addresses, which
 458 * do not self-identify via architected bus walks.
 459 */
 460int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 461			     struct pdc_module_path *mod_path, long mod_index)
 462{
 463	int retval;
 464	unsigned long flags;
 465
 466	spin_lock_irqsave(&pdc_lock, flags);
 467	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 468			      __pa(pdc_result2), mod_index);
 469	convert_to_wide(pdc_result);
 470	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 471	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 472	spin_unlock_irqrestore(&pdc_lock, flags);
 473
 474	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 475	return retval;
 476}
 477
 478/**
 479 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 480 * @pdc_addr_info: Return buffer address.
 481 * @mod_index: Fixed address module index.
 482 * @addr_index: Address range index.
 483 * 
 484 * Retrieve additional information about subsequent address ranges for modules
 485 * with multiple address ranges.  
 486 */
 487int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 488			      long mod_index, long addr_index)
 489{
 490	int retval;
 491	unsigned long flags;
 492
 493	spin_lock_irqsave(&pdc_lock, flags);
 494	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 495			      mod_index, addr_index);
 496	convert_to_wide(pdc_result);
 497	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 498	spin_unlock_irqrestore(&pdc_lock, flags);
 499
 500	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 501	return retval;
 502}
 503
 504/**
 505 * pdc_model_info - Return model information about the processor.
 506 * @model: The return buffer.
 507 *
 508 * Returns the version numbers, identifiers, and capabilities from the processor module.
 509 */
 510int pdc_model_info(struct pdc_model *model) 
 511{
 512	int retval;
 513	unsigned long flags;
 514
 515	spin_lock_irqsave(&pdc_lock, flags);
 516	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 517	convert_to_wide(pdc_result);
 518	memcpy(model, pdc_result, sizeof(*model));
 519	spin_unlock_irqrestore(&pdc_lock, flags);
 520
 521	return retval;
 522}
 523
 524/**
 525 * pdc_model_sysmodel - Get the system model name.
 526 * @os_id: The operating system ID asked for (an OS_ID_* value)
 527 * @name: A char array of at least 81 characters.
 528 *
 529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 531 * on HP/UX.
 532 */
 533int pdc_model_sysmodel(unsigned int os_id, char *name)
 534{
 535        int retval;
 536	unsigned long flags;
 537
 538        spin_lock_irqsave(&pdc_lock, flags);
 539        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 540                              os_id, __pa(name));
 541        convert_to_wide(pdc_result);
 542
 543        if (retval == PDC_OK) {
 544                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 545        } else {
 546                name[0] = 0;
 547        }
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_versions - Identify the version number of each processor.
 555 * @versions: The return buffer.
 556 * @id: The id of the processor to check.
 557 *
 558 * Returns the version number for each processor component.
 559 *
 560 * This comment was here before, but I do not know what it means :( -RB
 561 * id: 0 = cpu revision, 1 = boot-rom-version
 562 */
 563int pdc_model_versions(unsigned long *versions, int id)
 564{
 565        int retval;
 566	unsigned long flags;
 567
 568        spin_lock_irqsave(&pdc_lock, flags);
 569        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 570        convert_to_wide(pdc_result);
 571        *versions = pdc_result[0];
 572        spin_unlock_irqrestore(&pdc_lock, flags);
 573
 574        return retval;
 575}
 576
 577/**
 578 * pdc_model_cpuid - Returns the CPU_ID.
 579 * @cpu_id: The return buffer.
 580 *
 581 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 582 * the processor module.
 583 */
 584int pdc_model_cpuid(unsigned long *cpu_id)
 585{
 586        int retval;
 587	unsigned long flags;
 588
 589        spin_lock_irqsave(&pdc_lock, flags);
 590        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 591        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 592        convert_to_wide(pdc_result);
 593        *cpu_id = pdc_result[0];
 594        spin_unlock_irqrestore(&pdc_lock, flags);
 595
 596        return retval;
 597}
 598
 599/**
 600 * pdc_model_capabilities - Returns the platform capabilities.
 601 * @capabilities: The return buffer.
 602 *
 603 * Returns information about platform support for 32- and/or 64-bit
 604 * OSes, IO-PDIR coherency, and virtual aliasing.
 605 */
 606int pdc_model_capabilities(unsigned long *capabilities)
 607{
 608        int retval;
 609	unsigned long flags;
 610
 611        spin_lock_irqsave(&pdc_lock, flags);
 612        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 613        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 614        convert_to_wide(pdc_result);
 615        if (retval == PDC_OK) {
 616                *capabilities = pdc_result[0];
 617        } else {
 618                *capabilities = PDC_MODEL_OS32;
 619        }
 620        spin_unlock_irqrestore(&pdc_lock, flags);
 621
 622        return retval;
 623}
 624
 625/**
 626 * pdc_model_platform_info - Returns machine product and serial number.
 627 * @orig_prod_num: Return buffer for original product number.
 628 * @current_prod_num: Return buffer for current product number.
 629 * @serial_no: Return buffer for serial number.
 630 *
 631 * Returns strings containing the original and current product numbers and the
 632 * serial number of the system.
 633 */
 634int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 635		char *serial_no)
 636{
 637	int retval;
 638	unsigned long flags;
 639
 640	spin_lock_irqsave(&pdc_lock, flags);
 641	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 642		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 643	convert_to_wide(pdc_result);
 644	spin_unlock_irqrestore(&pdc_lock, flags);
 645
 646	return retval;
 647}
 648
 649/**
 650 * pdc_cache_info - Return cache and TLB information.
 651 * @cache_info: The return buffer.
 652 *
 653 * Returns information about the processor's cache and TLB.
 654 */
 655int pdc_cache_info(struct pdc_cache_info *cache_info)
 656{
 657        int retval;
 658	unsigned long flags;
 659
 660        spin_lock_irqsave(&pdc_lock, flags);
 661        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 662        convert_to_wide(pdc_result);
 663        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 664        spin_unlock_irqrestore(&pdc_lock, flags);
 665
 666        return retval;
 667}
 668
 669/**
 670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 671 * @space_bits: Should be 0, if not, bad mojo!
 672 *
 673 * Returns information about Space ID hashing.
 674 */
 675int pdc_spaceid_bits(unsigned long *space_bits)
 676{
 677	int retval;
 678	unsigned long flags;
 679
 680	spin_lock_irqsave(&pdc_lock, flags);
 681	pdc_result[0] = 0;
 682	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 683	convert_to_wide(pdc_result);
 684	*space_bits = pdc_result[0];
 685	spin_unlock_irqrestore(&pdc_lock, flags);
 686
 687	return retval;
 688}
 689
 
 690/**
 691 * pdc_btlb_info - Return block TLB information.
 692 * @btlb: The return buffer.
 693 *
 694 * Returns information about the hardware Block TLB.
 695 */
 696int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 697{
 698	int retval;
 699	unsigned long flags;
 700
 701	if (IS_ENABLED(CONFIG_PA20))
 702		return PDC_BAD_PROC;
 
 
 703
 704	spin_lock_irqsave(&pdc_lock, flags);
 705	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 706	memcpy(btlb, pdc_result, sizeof(*btlb));
 707	spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709	if(retval < 0) {
 710		btlb->max_size = 0;
 711	}
 712	return retval;
 713}
 714
 715int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
 716		    unsigned long entry_info, unsigned long slot)
 717{
 718	int retval;
 719	unsigned long flags;
 720
 721	if (IS_ENABLED(CONFIG_PA20))
 722		return PDC_BAD_PROC;
 723
 724	spin_lock_irqsave(&pdc_lock, flags);
 725	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
 726			      (unsigned long) vpage, physpage, len, entry_info, slot);
 727	spin_unlock_irqrestore(&pdc_lock, flags);
 728	return retval;
 729}
 730
 731int pdc_btlb_purge_all(void)
 732{
 733	int retval;
 734	unsigned long flags;
 735
 736	if (IS_ENABLED(CONFIG_PA20))
 737		return PDC_BAD_PROC;
 738
 739	spin_lock_irqsave(&pdc_lock, flags);
 740	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
 741	spin_unlock_irqrestore(&pdc_lock, flags);
 742	return retval;
 743}
 744
 745/**
 746 * pdc_mem_map_hpa - Find fixed module information.  
 747 * @address: The return buffer
 748 * @mod_path: pointer to dev path structure.
 749 *
 750 * This call was developed for S700 workstations to allow the kernel to find
 751 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 752 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 753 * call.
 754 *
 755 * This call is supported by all existing S700 workstations (up to  Gecko).
 756 */
 757int pdc_mem_map_hpa(struct pdc_memory_map *address,
 758		struct pdc_module_path *mod_path)
 759{
 760        int retval;
 761	unsigned long flags;
 762
 763	if (IS_ENABLED(CONFIG_PA20))
 764		return PDC_BAD_PROC;
 765
 766        spin_lock_irqsave(&pdc_lock, flags);
 767        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 768        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 769				__pa(pdc_result2));
 770        memcpy(address, pdc_result, sizeof(*address));
 771        spin_unlock_irqrestore(&pdc_lock, flags);
 772
 773        return retval;
 774}
 
 775
 776/**
 777 * pdc_lan_station_id - Get the LAN address.
 778 * @lan_addr: The return buffer.
 779 * @hpa: The network device HPA.
 780 *
 781 * Get the LAN station address when it is not directly available from the LAN hardware.
 782 */
 783int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 784{
 785	int retval;
 786	unsigned long flags;
 787
 788	spin_lock_irqsave(&pdc_lock, flags);
 789	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 790			__pa(pdc_result), hpa);
 791	if (retval < 0) {
 792		/* FIXME: else read MAC from NVRAM */
 793		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 794	} else {
 795		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 796	}
 797	spin_unlock_irqrestore(&pdc_lock, flags);
 798
 799	return retval;
 800}
 801EXPORT_SYMBOL(pdc_lan_station_id);
 802
 803/**
 804 * pdc_stable_read - Read data from Stable Storage.
 805 * @staddr: Stable Storage address to access.
 806 * @memaddr: The memory address where Stable Storage data shall be copied.
 807 * @count: number of bytes to transfer. count is multiple of 4.
 808 *
 809 * This PDC call reads from the Stable Storage address supplied in staddr
 810 * and copies count bytes to the memory address memaddr.
 811 * The call will fail if staddr+count > PDC_STABLE size.
 812 */
 813int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 814{
 815       int retval;
 816	unsigned long flags;
 817
 818       spin_lock_irqsave(&pdc_lock, flags);
 819       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 820               __pa(pdc_result), count);
 821       convert_to_wide(pdc_result);
 822       memcpy(memaddr, pdc_result, count);
 823       spin_unlock_irqrestore(&pdc_lock, flags);
 824
 825       return retval;
 826}
 827EXPORT_SYMBOL(pdc_stable_read);
 828
 829/**
 830 * pdc_stable_write - Write data to Stable Storage.
 831 * @staddr: Stable Storage address to access.
 832 * @memaddr: The memory address where Stable Storage data shall be read from.
 833 * @count: number of bytes to transfer. count is multiple of 4.
 834 *
 835 * This PDC call reads count bytes from the supplied memaddr address,
 836 * and copies count bytes to the Stable Storage address staddr.
 837 * The call will fail if staddr+count > PDC_STABLE size.
 838 */
 839int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 840{
 841       int retval;
 842	unsigned long flags;
 843
 844       spin_lock_irqsave(&pdc_lock, flags);
 845       memcpy(pdc_result, memaddr, count);
 846       convert_to_wide(pdc_result);
 847       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 848               __pa(pdc_result), count);
 849       spin_unlock_irqrestore(&pdc_lock, flags);
 850
 851       return retval;
 852}
 853EXPORT_SYMBOL(pdc_stable_write);
 854
 855/**
 856 * pdc_stable_get_size - Get Stable Storage size in bytes.
 857 * @size: pointer where the size will be stored.
 858 *
 859 * This PDC call returns the number of bytes in the processor's Stable
 860 * Storage, which is the number of contiguous bytes implemented in Stable
 861 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 862 * which is a multiple of four.
 863 */
 864int pdc_stable_get_size(unsigned long *size)
 865{
 866       int retval;
 867	unsigned long flags;
 868
 869       spin_lock_irqsave(&pdc_lock, flags);
 870       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 871       *size = pdc_result[0];
 872       spin_unlock_irqrestore(&pdc_lock, flags);
 873
 874       return retval;
 875}
 876EXPORT_SYMBOL(pdc_stable_get_size);
 877
 878/**
 879 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 880 *
 881 * This PDC call is meant to be used to check the integrity of the current
 882 * contents of Stable Storage.
 883 */
 884int pdc_stable_verify_contents(void)
 885{
 886       int retval;
 887	unsigned long flags;
 888
 889       spin_lock_irqsave(&pdc_lock, flags);
 890       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 891       spin_unlock_irqrestore(&pdc_lock, flags);
 892
 893       return retval;
 894}
 895EXPORT_SYMBOL(pdc_stable_verify_contents);
 896
 897/**
 898 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 899 * the validity indicator.
 900 *
 901 * This PDC call will erase all contents of Stable Storage. Use with care!
 902 */
 903int pdc_stable_initialize(void)
 904{
 905       int retval;
 906	unsigned long flags;
 907
 908       spin_lock_irqsave(&pdc_lock, flags);
 909       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 910       spin_unlock_irqrestore(&pdc_lock, flags);
 911
 912       return retval;
 913}
 914EXPORT_SYMBOL(pdc_stable_initialize);
 915
 916/**
 917 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 918 * @hwpath: fully bc.mod style path to the device.
 919 * @initiator: the array to return the result into
 920 *
 921 * Get the SCSI operational parameters from PDC.
 922 * Needed since HPUX never used BIOS or symbios card NVRAM.
 923 * Most ncr/sym cards won't have an entry and just use whatever
 924 * capabilities of the card are (eg Ultra, LVD). But there are
 925 * several cases where it's useful:
 926 *    o set SCSI id for Multi-initiator clusters,
 927 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 928 *    o bus width exported is less than what the interface chip supports.
 929 */
 930int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 931{
 932	int retval;
 933	unsigned long flags;
 934
 935	spin_lock_irqsave(&pdc_lock, flags);
 936
 937/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 938#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 939	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 940
 941	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 942			      __pa(pdc_result), __pa(hwpath));
 943	if (retval < PDC_OK)
 944		goto out;
 945
 946	if (pdc_result[0] < 16) {
 947		initiator->host_id = pdc_result[0];
 948	} else {
 949		initiator->host_id = -1;
 950	}
 951
 952	/*
 953	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 954	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 955	 */
 956	switch (pdc_result[1]) {
 957		case  1: initiator->factor = 50; break;
 958		case  2: initiator->factor = 25; break;
 959		case  5: initiator->factor = 12; break;
 960		case 25: initiator->factor = 10; break;
 961		case 20: initiator->factor = 12; break;
 962		case 40: initiator->factor = 10; break;
 963		default: initiator->factor = -1; break;
 964	}
 965
 966	if (IS_SPROCKETS()) {
 967		initiator->width = pdc_result[4];
 968		initiator->mode = pdc_result[5];
 969	} else {
 970		initiator->width = -1;
 971		initiator->mode = -1;
 972	}
 973
 974 out:
 975	spin_unlock_irqrestore(&pdc_lock, flags);
 976
 977	return (retval >= PDC_OK);
 978}
 979EXPORT_SYMBOL(pdc_get_initiator);
 980
 981
 982/**
 983 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 984 * @num_entries: The return value.
 985 * @hpa: The HPA for the device.
 986 *
 987 * This PDC function returns the number of entries in the specified cell's
 988 * interrupt table.
 989 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 990 */ 
 991int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 992{
 993	int retval;
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&pdc_lock, flags);
 997	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 998			      __pa(pdc_result), hpa);
 999	convert_to_wide(pdc_result);
1000	*num_entries = pdc_result[0];
1001	spin_unlock_irqrestore(&pdc_lock, flags);
1002
1003	return retval;
1004}
1005
1006/** 
1007 * pdc_pci_irt - Get the PCI interrupt routing table.
1008 * @num_entries: The number of entries in the table.
1009 * @hpa: The Hard Physical Address of the device.
1010 * @tbl: 
1011 *
1012 * Get the PCI interrupt routing table for the device at the given HPA.
1013 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014 */
1015int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016{
1017	int retval;
1018	unsigned long flags;
1019
1020	BUG_ON((unsigned long)tbl & 0x7);
1021
1022	spin_lock_irqsave(&pdc_lock, flags);
1023	pdc_result[0] = num_entries;
1024	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
1025			      __pa(pdc_result), hpa, __pa(tbl));
1026	spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028	return retval;
1029}
1030
1031
1032#if 0	/* UNTEST CODE - left here in case someone needs it */
1033
1034/** 
1035 * pdc_pci_config_read - read PCI config space.
1036 * @hpa: Token from PDC to indicate which PCI device
1037 * @cfg_addr: Configuration space address to read from
1038 *
1039 * Read PCI Configuration space *before* linux PCI subsystem is running.
1040 */
1041unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042{
1043	int retval;
1044	unsigned long flags;
1045
1046	spin_lock_irqsave(&pdc_lock, flags);
1047	pdc_result[0] = 0;
1048	pdc_result[1] = 0;
1049	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
1050			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval ? ~0 : (unsigned int) pdc_result[0];
1054}
1055
1056
1057/** 
1058 * pdc_pci_config_write - read PCI config space.
1059 * @hpa: Token from PDC to indicate which PCI device
1060 * @cfg_addr: Configuration space address to write
1061 * @val: Value we want in the 32-bit register
1062 *
1063 * Write PCI Configuration space *before* linux PCI subsystem is running.
1064 */
1065void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	pdc_result[0] = 0;
1072	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
1073			      __pa(pdc_result), hpa,
1074			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1075	spin_unlock_irqrestore(&pdc_lock, flags);
1076
1077	return retval;
1078}
1079#endif /* UNTESTED CODE */
1080
1081/**
1082 * pdc_tod_read - Read the Time-Of-Day clock.
1083 * @tod: The return buffer:
1084 *
1085 * Read the Time-Of-Day clock
1086 */
1087int pdc_tod_read(struct pdc_tod *tod)
1088{
1089        int retval;
1090	unsigned long flags;
1091
1092        spin_lock_irqsave(&pdc_lock, flags);
1093        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094        convert_to_wide(pdc_result);
1095        memcpy(tod, pdc_result, sizeof(*tod));
1096        spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098        return retval;
1099}
1100EXPORT_SYMBOL(pdc_tod_read);
1101
1102int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103{
1104	int retval;
1105	unsigned long flags;
1106
1107	spin_lock_irqsave(&pdc_lock, flags);
1108	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109	convert_to_wide(pdc_result);
1110	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111	spin_unlock_irqrestore(&pdc_lock, flags);
1112
1113	return retval;
1114}
1115
1116int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117		unsigned long *pdt_entries_ptr)
1118{
1119	int retval;
1120	unsigned long flags;
1121
1122	spin_lock_irqsave(&pdc_lock, flags);
1123	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124			__pa(pdt_entries_ptr));
1125	if (retval == PDC_OK) {
1126		convert_to_wide(pdc_result);
1127		memcpy(pret, pdc_result, sizeof(*pret));
1128	}
1129	spin_unlock_irqrestore(&pdc_lock, flags);
1130
1131#ifdef CONFIG_64BIT
1132	/*
1133	 * 64-bit kernels should not call this PDT function in narrow mode.
1134	 * The pdt_entries_ptr array above will now contain 32-bit values
1135	 */
1136	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137		return PDC_ERROR;
1138#endif
1139
1140	return retval;
1141}
1142
1143/**
1144 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145 * @ret: pointer to return buffer
1146 */
1147int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148{
1149	int retval;
1150	unsigned long flags;
1151
1152	spin_lock_irqsave(&pdc_lock, flags);
1153	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154			      __pa(ret), sizeof(*ret));
1155	spin_unlock_irqrestore(&pdc_lock, flags);
1156	return retval;
1157}
1158
1159/**
1160 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161 * @ret: pointer to return buffer
1162 */
1163int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164{
1165	int retval;
1166	unsigned long flags;
1167
1168	spin_lock_irqsave(&pdc_lock, flags);
1169	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170			      __pa(ret), sizeof(*ret));
1171	spin_unlock_irqrestore(&pdc_lock, flags);
1172	return retval;
1173}
1174
1175/**
1176 * pdc_tod_set - Set the Time-Of-Day clock.
1177 * @sec: The number of seconds since epoch.
1178 * @usec: The number of micro seconds.
1179 *
1180 * Set the Time-Of-Day clock.
1181 */ 
1182int pdc_tod_set(unsigned long sec, unsigned long usec)
1183{
1184        int retval;
1185	unsigned long flags;
1186
1187        spin_lock_irqsave(&pdc_lock, flags);
1188        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189        spin_unlock_irqrestore(&pdc_lock, flags);
1190
1191        return retval;
1192}
1193EXPORT_SYMBOL(pdc_tod_set);
1194
1195#ifdef CONFIG_64BIT
1196int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197		struct pdc_memory_table *tbl, unsigned long entries)
1198{
1199	int retval;
1200	unsigned long flags;
1201
1202	spin_lock_irqsave(&pdc_lock, flags);
1203	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204	convert_to_wide(pdc_result);
1205	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207	spin_unlock_irqrestore(&pdc_lock, flags);
1208
1209	return retval;
1210}
1211#endif /* CONFIG_64BIT */
1212
1213/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1214 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1215 * it later. :)
1216 */
1217int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218{
1219        int retval;
1220	unsigned long flags;
1221
1222        spin_lock_irqsave(&pdc_lock, flags);
1223        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225        spin_unlock_irqrestore(&pdc_lock, flags);
1226
1227        return retval;
1228}
1229
1230/*
1231 * pdc_do_reset - Reset the system.
1232 *
1233 * Reset the system.
1234 */
1235int pdc_do_reset(void)
1236{
1237        int retval;
1238	unsigned long flags;
1239
1240        spin_lock_irqsave(&pdc_lock, flags);
1241        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242        spin_unlock_irqrestore(&pdc_lock, flags);
1243
1244        return retval;
1245}
1246
1247/*
1248 * pdc_soft_power_info - Enable soft power switch.
1249 * @power_reg: address of soft power register
1250 *
1251 * Return the absolute address of the soft power switch register
1252 */
1253int __init pdc_soft_power_info(unsigned long *power_reg)
1254{
1255	int retval;
1256	unsigned long flags;
1257
1258	*power_reg = (unsigned long) (-1);
1259	
1260	spin_lock_irqsave(&pdc_lock, flags);
1261	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262	if (retval == PDC_OK) {
1263                convert_to_wide(pdc_result);
1264                *power_reg = f_extend(pdc_result[0]);
1265	}
1266	spin_unlock_irqrestore(&pdc_lock, flags);
1267
1268	return retval;
1269}
1270
1271/*
1272 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273 * @sw_control: 0 for hardware control, 1 for software control
1274 *
1275 *
1276 * This PDC function places the soft power button under software or
1277 * hardware control.
1278 * Under software control the OS may control to when to allow to shut
1279 * down the system. Under hardware control pressing the power button
1280 * powers off the system immediately.
1281 *
1282 * The _panic version relies on spin_trylock to prevent deadlock
1283 * on panic path.
1284 */
1285int pdc_soft_power_button(int sw_control)
1286{
1287	int retval;
1288	unsigned long flags;
1289
1290	spin_lock_irqsave(&pdc_lock, flags);
1291	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297int pdc_soft_power_button_panic(int sw_control)
1298{
1299	int retval;
1300	unsigned long flags;
1301
1302	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303		pr_emerg("Couldn't enable soft power button\n");
1304		return -EBUSY; /* ignored by the panic notifier */
1305	}
1306
1307	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308	spin_unlock_irqrestore(&pdc_lock, flags);
1309
1310	return retval;
1311}
1312
1313/*
1314 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316 * who knows what other platform firmware might do with this OS "hook".
1317 */
1318void pdc_io_reset(void)
1319{
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324	spin_unlock_irqrestore(&pdc_lock, flags);
1325}
1326
1327/*
1328 * pdc_io_reset_devices - Hack to Stop USB controller
1329 *
1330 * If PDC used the usb controller, the usb controller
1331 * is still running and will crash the machines during iommu 
1332 * setup, because of still running DMA. This PDC call
1333 * stops the USB controller.
1334 * Normally called after calling pdc_io_reset().
1335 */
1336void pdc_io_reset_devices(void)
1337{
1338	unsigned long flags;
1339
1340	spin_lock_irqsave(&pdc_lock, flags);
1341	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342	spin_unlock_irqrestore(&pdc_lock, flags);
1343}
1344
1345#endif /* defined(BOOTLOADER) */
1346
1347/* locked by pdc_lock */
1348static char iodc_dbuf[4096] __page_aligned_bss;
1349
1350/**
1351 * pdc_iodc_print - Console print using IODC.
1352 * @str: the string to output.
1353 * @count: length of str
1354 *
1355 * Note that only these special chars are architected for console IODC io:
1356 * BEL, BS, CR, and LF. Others are passed through.
1357 * Since the HP console requires CR+LF to perform a 'newline', we translate
1358 * "\n" to "\r\n".
1359 */
1360int pdc_iodc_print(const unsigned char *str, unsigned count)
1361{
1362	unsigned int i, found = 0;
1363	unsigned long flags;
1364
1365	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366
1367	spin_lock_irqsave(&pdc_lock, flags);
1368	for (i = 0; i < count;) {
1369		switch(str[i]) {
1370		case '\n':
1371			iodc_dbuf[i+0] = '\r';
1372			iodc_dbuf[i+1] = '\n';
1373			i += 2;
1374			found = 1;
1375			goto print;
1376		default:
1377			iodc_dbuf[i] = str[i];
1378			i++;
1379			break;
1380		}
1381	}
1382
1383print:
1384	real32_call(PAGE0->mem_cons.iodc_io,
1385		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388	spin_unlock_irqrestore(&pdc_lock, flags);
 
1389
1390	return i - found;
1391}
1392
1393#if !defined(BOOTLOADER)
1394/**
1395 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396 *
1397 * Read a character (non-blocking) from the PDC console, returns -1 if
1398 * key is not present.
1399 */
1400int pdc_iodc_getc(void)
1401{
1402	int ch;
1403	int status;
1404	unsigned long flags;
1405
1406	/* Bail if no console input device. */
1407	if (!PAGE0->mem_kbd.iodc_io)
1408		return 0;
1409	
1410	/* wait for a keyboard (rs232)-input */
1411	spin_lock_irqsave(&pdc_lock, flags);
1412	real32_call(PAGE0->mem_kbd.iodc_io,
1413		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1415		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416
1417	ch = *iodc_dbuf;
1418	/* like convert_to_wide() but for first return value only: */
1419	status = *(int *)&pdc_result;
1420	spin_unlock_irqrestore(&pdc_lock, flags);
1421
1422	if (status == 0)
1423	    return -1;
1424	
1425	return ch;
1426}
1427
1428int pdc_sti_call(unsigned long func, unsigned long flags,
1429		unsigned long inptr, unsigned long outputr,
1430		unsigned long glob_cfg, int do_call64)
1431{
1432	int retval = 0;
1433	unsigned long irqflags;
1434
1435	spin_lock_irqsave(&pdc_lock, irqflags);
1436	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437#ifdef CONFIG_64BIT
1438		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439#else
1440		WARN_ON(1);
1441#endif
1442	} else {
1443		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444	}
1445	spin_unlock_irqrestore(&pdc_lock, irqflags);
1446
1447	return retval;
1448}
1449EXPORT_SYMBOL(pdc_sti_call);
1450
1451#ifdef CONFIG_64BIT
1452/**
1453 * pdc_pat_cell_get_number - Returns the cell number.
1454 * @cell_info: The return buffer.
1455 *
1456 * This PDC call returns the cell number of the cell from which the call
1457 * is made.
1458 */
1459int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460{
1461	int retval;
1462	unsigned long flags;
1463
1464	spin_lock_irqsave(&pdc_lock, flags);
1465	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467	spin_unlock_irqrestore(&pdc_lock, flags);
1468
1469	return retval;
1470}
1471
1472/**
1473 * pdc_pat_cell_module - Retrieve the cell's module information.
1474 * @actcnt: The number of bytes written to mem_addr.
1475 * @ploc: The physical location.
1476 * @mod: The module index.
1477 * @view_type: The view of the address type.
1478 * @mem_addr: The return buffer.
1479 *
1480 * This PDC call returns information about each module attached to the cell
1481 * at the specified location.
1482 */
1483int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484			unsigned long view_type, void *mem_addr)
1485{
1486	int retval;
1487	unsigned long flags;
1488	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1492			      ploc, mod, view_type, __pa(&result));
1493	if(!retval) {
1494		*actcnt = pdc_result[0];
1495		memcpy(mem_addr, &result, *actcnt);
1496	}
1497	spin_unlock_irqrestore(&pdc_lock, flags);
1498
1499	return retval;
1500}
1501
1502/**
1503 * pdc_pat_cell_info - Retrieve the cell's information.
1504 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505 * @actcnt: The number of bytes which should be written to info.
1506 * @offset: offset of the structure.
1507 * @cell_number: The cell number which should be asked, or -1 for current cell.
1508 *
1509 * This PDC call returns information about the given cell (or all cells).
1510 */
1511int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512		unsigned long *actcnt, unsigned long offset,
1513		unsigned long cell_number)
1514{
1515	int retval;
1516	unsigned long flags;
1517	struct pdc_pat_cell_info_rtn_block result;
1518
1519	spin_lock_irqsave(&pdc_lock, flags);
1520	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521			__pa(pdc_result), __pa(&result), *actcnt,
1522			offset, cell_number);
1523	if (!retval) {
1524		*actcnt = pdc_result[0];
1525		memcpy(info, &result, *actcnt);
1526	}
1527	spin_unlock_irqrestore(&pdc_lock, flags);
1528
1529	return retval;
1530}
1531
1532/**
1533 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534 * @cpu_info: The return buffer.
1535 * @hpa: The Hard Physical Address of the CPU.
1536 *
1537 * Retrieve the cpu number for the cpu at the specified HPA.
1538 */
1539int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540{
1541	int retval;
1542	unsigned long flags;
1543
1544	spin_lock_irqsave(&pdc_lock, flags);
1545	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546			      __pa(&pdc_result), hpa);
1547	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548	spin_unlock_irqrestore(&pdc_lock, flags);
1549
1550	return retval;
1551}
1552
1553/**
1554 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555 * @num_entries: The return value.
1556 * @cell_num: The target cell.
1557 *
1558 * This PDC function returns the number of entries in the specified cell's
1559 * interrupt table.
1560 */
1561int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562{
1563	int retval;
1564	unsigned long flags;
1565
1566	spin_lock_irqsave(&pdc_lock, flags);
1567	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568			      __pa(pdc_result), cell_num);
1569	*num_entries = pdc_result[0];
1570	spin_unlock_irqrestore(&pdc_lock, flags);
1571
1572	return retval;
1573}
1574
1575/**
1576 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577 * @r_addr: The return buffer.
1578 * @cell_num: The target cell.
1579 *
1580 * This PDC function returns the actual interrupt table for the specified cell.
1581 */
1582int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583{
1584	int retval;
1585	unsigned long flags;
1586
1587	spin_lock_irqsave(&pdc_lock, flags);
1588	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589			      __pa(r_addr), cell_num);
1590	spin_unlock_irqrestore(&pdc_lock, flags);
1591
1592	return retval;
1593}
1594
1595/**
1596 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597 * @actual_len: The return buffer.
1598 * @mem_addr: Pointer to the memory buffer.
1599 * @count: The number of bytes to read from the buffer.
1600 * @offset: The offset with respect to the beginning of the buffer.
1601 *
1602 */
1603int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1604			    unsigned long count, unsigned long offset)
1605{
1606	int retval;
1607	unsigned long flags;
1608
1609	spin_lock_irqsave(&pdc_lock, flags);
1610	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1611			      __pa(pdc_result2), count, offset);
1612	*actual_len = pdc_result[0];
1613	memcpy(mem_addr, pdc_result2, *actual_len);
1614	spin_unlock_irqrestore(&pdc_lock, flags);
1615
1616	return retval;
1617}
1618
1619/**
1620 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621 * @legacy_rev: The legacy revision.
1622 * @pat_rev: The PAT revision.
1623 * @pdc_cap: The PDC capabilities.
1624 *
1625 */
1626int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627		unsigned long *pat_rev, unsigned long *pdc_cap)
1628{
1629	int retval;
1630	unsigned long flags;
1631
1632	spin_lock_irqsave(&pdc_lock, flags);
1633	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634				__pa(pdc_result));
1635	if (retval == PDC_OK) {
1636		*legacy_rev = pdc_result[0];
1637		*pat_rev = pdc_result[1];
1638		*pdc_cap = pdc_result[2];
1639	}
1640	spin_unlock_irqrestore(&pdc_lock, flags);
1641
1642	return retval;
1643}
1644
1645
1646/**
1647 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648 * @pci_addr: PCI configuration space address for which the read request is being made.
1649 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1650 * @mem_addr: Pointer to return memory buffer.
1651 *
1652 */
1653int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654{
1655	int retval;
1656	unsigned long flags;
1657
1658	spin_lock_irqsave(&pdc_lock, flags);
1659	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660					__pa(pdc_result), pci_addr, pci_size);
1661	switch(pci_size) {
1662		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1663		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1664		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1665	}
1666	spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668	return retval;
1669}
1670
1671/**
1672 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673 * @pci_addr: PCI configuration space address for which the write  request is being made.
1674 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1675 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676 *         written to PCI Config space.
1677 *
1678 */
1679int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680{
1681	int retval;
1682	unsigned long flags;
1683
1684	spin_lock_irqsave(&pdc_lock, flags);
1685	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686				pci_addr, pci_size, val);
1687	spin_unlock_irqrestore(&pdc_lock, flags);
1688
1689	return retval;
1690}
1691
1692/**
1693 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694 * @rinfo: memory pdt information
1695 *
1696 */
1697int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698{
1699	int retval;
1700	unsigned long flags;
1701
1702	spin_lock_irqsave(&pdc_lock, flags);
1703	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704			__pa(&pdc_result));
1705	if (retval == PDC_OK)
1706		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707	spin_unlock_irqrestore(&pdc_lock, flags);
1708
1709	return retval;
1710}
1711
1712/**
1713 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714 *				table of a cell
1715 * @rinfo: memory pdt information
1716 * @cell: cell number
1717 *
1718 */
1719int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720		unsigned long cell)
1721{
1722	int retval;
1723	unsigned long flags;
1724
1725	spin_lock_irqsave(&pdc_lock, flags);
1726	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727			__pa(&pdc_result), cell);
1728	if (retval == PDC_OK)
1729		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730	spin_unlock_irqrestore(&pdc_lock, flags);
1731
1732	return retval;
1733}
1734
1735/**
1736 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737 * @pret: array of PDT entries
1738 * @pdt_entries_ptr: ptr to hold number of PDT entries
1739 * @max_entries: maximum number of entries to be read
1740 *
1741 */
1742int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744{
1745	int retval;
1746	unsigned long flags, entries;
1747
1748	spin_lock_irqsave(&pdc_lock, flags);
1749	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751			__pa(&pdc_result), parisc_cell_num,
1752			__pa(pdt_entries_ptr));
1753
1754	if (retval == PDC_OK) {
1755		/* build up return value as for PDC_PAT_MEM_PD_READ */
1756		entries = min(pdc_result[0], max_entries);
1757		pret->pdt_entries = entries;
1758		pret->actual_count_bytes = entries * sizeof(unsigned long);
1759	}
1760
1761	spin_unlock_irqrestore(&pdc_lock, flags);
1762	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763
1764	return retval;
1765}
1766/**
1767 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768 * @pret: array of PDT entries
1769 * @pdt_entries_ptr: ptr to hold number of PDT entries
1770 * @count: number of bytes to read
1771 * @offset: offset to start (in bytes)
1772 *
1773 */
1774int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775		unsigned long *pdt_entries_ptr, unsigned long count,
1776		unsigned long offset)
1777{
1778	int retval;
1779	unsigned long flags, entries;
1780
1781	spin_lock_irqsave(&pdc_lock, flags);
1782	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783		__pa(&pdc_result), __pa(pdt_entries_ptr),
1784		count, offset);
1785
1786	if (retval == PDC_OK) {
1787		entries = min(pdc_result[0], count);
1788		pret->actual_count_bytes = entries;
1789		pret->pdt_entries = entries / sizeof(unsigned long);
1790	}
1791
1792	spin_unlock_irqrestore(&pdc_lock, flags);
1793
1794	return retval;
1795}
1796
1797/**
1798 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799 * @pret: ptr to hold returned information
1800 * @phys_addr: physical address to examine
1801 *
1802 */
1803int pdc_pat_mem_get_dimm_phys_location(
1804		struct pdc_pat_mem_phys_mem_location *pret,
1805		unsigned long phys_addr)
1806{
1807	int retval;
1808	unsigned long flags;
1809
1810	spin_lock_irqsave(&pdc_lock, flags);
1811	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812		__pa(&pdc_result), phys_addr);
1813
1814	if (retval == PDC_OK)
1815		memcpy(pret, &pdc_result, sizeof(*pret));
1816
1817	spin_unlock_irqrestore(&pdc_lock, flags);
1818
1819	return retval;
1820}
1821#endif /* CONFIG_64BIT */
1822#endif /* defined(BOOTLOADER) */
1823
1824
1825/***************** 32-bit real-mode calls ***********/
1826/* The struct below is used
1827 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828 * real32_call_asm() then uses this stack in narrow real mode
1829 */
1830
1831struct narrow_stack {
1832	/* use int, not long which is 64 bits */
1833	unsigned int arg13;
1834	unsigned int arg12;
1835	unsigned int arg11;
1836	unsigned int arg10;
1837	unsigned int arg9;
1838	unsigned int arg8;
1839	unsigned int arg7;
1840	unsigned int arg6;
1841	unsigned int arg5;
1842	unsigned int arg4;
1843	unsigned int arg3;
1844	unsigned int arg2;
1845	unsigned int arg1;
1846	unsigned int arg0;
1847	unsigned int frame_marker[8];
1848	unsigned int sp;
1849	/* in reality, there's nearly 8k of stack after this */
1850};
1851
1852long real32_call(unsigned long fn, ...)
1853{
1854	va_list args;
1855	extern struct narrow_stack real_stack;
1856	extern unsigned long real32_call_asm(unsigned int *,
1857					     unsigned int *, 
1858					     unsigned int);
1859	
1860	va_start(args, fn);
1861	real_stack.arg0 = va_arg(args, unsigned int);
1862	real_stack.arg1 = va_arg(args, unsigned int);
1863	real_stack.arg2 = va_arg(args, unsigned int);
1864	real_stack.arg3 = va_arg(args, unsigned int);
1865	real_stack.arg4 = va_arg(args, unsigned int);
1866	real_stack.arg5 = va_arg(args, unsigned int);
1867	real_stack.arg6 = va_arg(args, unsigned int);
1868	real_stack.arg7 = va_arg(args, unsigned int);
1869	real_stack.arg8 = va_arg(args, unsigned int);
1870	real_stack.arg9 = va_arg(args, unsigned int);
1871	real_stack.arg10 = va_arg(args, unsigned int);
1872	real_stack.arg11 = va_arg(args, unsigned int);
1873	real_stack.arg12 = va_arg(args, unsigned int);
1874	real_stack.arg13 = va_arg(args, unsigned int);
1875	va_end(args);
1876	
1877	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878}
1879
1880#ifdef CONFIG_64BIT
1881/***************** 64-bit real-mode calls ***********/
1882
1883struct wide_stack {
1884	unsigned long arg0;
1885	unsigned long arg1;
1886	unsigned long arg2;
1887	unsigned long arg3;
1888	unsigned long arg4;
1889	unsigned long arg5;
1890	unsigned long arg6;
1891	unsigned long arg7;
1892	unsigned long arg8;
1893	unsigned long arg9;
1894	unsigned long arg10;
1895	unsigned long arg11;
1896	unsigned long arg12;
1897	unsigned long arg13;
1898	unsigned long frame_marker[2];	/* rp, previous sp */
1899	unsigned long sp;
1900	/* in reality, there's nearly 8k of stack after this */
1901};
1902
1903long real64_call(unsigned long fn, ...)
1904{
1905	va_list args;
1906	extern struct wide_stack real64_stack;
1907	extern unsigned long real64_call_asm(unsigned long *,
1908					     unsigned long *, 
1909					     unsigned long);
1910    
1911	va_start(args, fn);
1912	real64_stack.arg0 = va_arg(args, unsigned long);
1913	real64_stack.arg1 = va_arg(args, unsigned long);
1914	real64_stack.arg2 = va_arg(args, unsigned long);
1915	real64_stack.arg3 = va_arg(args, unsigned long);
1916	real64_stack.arg4 = va_arg(args, unsigned long);
1917	real64_stack.arg5 = va_arg(args, unsigned long);
1918	real64_stack.arg6 = va_arg(args, unsigned long);
1919	real64_stack.arg7 = va_arg(args, unsigned long);
1920	real64_stack.arg8 = va_arg(args, unsigned long);
1921	real64_stack.arg9 = va_arg(args, unsigned long);
1922	real64_stack.arg10 = va_arg(args, unsigned long);
1923	real64_stack.arg11 = va_arg(args, unsigned long);
1924	real64_stack.arg12 = va_arg(args, unsigned long);
1925	real64_stack.arg13 = va_arg(args, unsigned long);
1926	va_end(args);
1927	
1928	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929}
1930
1931#endif /* CONFIG_64BIT */