Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * Copyright (C) 2014 Imagination Technologies
  3 * Author: Paul Burton <paul.burton@imgtec.com>
  4 *
  5 * This program is free software; you can redistribute it and/or modify it
  6 * under the terms of the GNU General Public License as published by the
  7 * Free Software Foundation;  either version 2 of the  License, or (at your
  8 * option) any later version.
  9 */
 10
 
 11#include <linux/elf.h>
 
 12#include <linux/sched.h>
 13
 
 14#include <asm/cpu-info.h>
 
 
 
 15
 16/* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
 17bool mips_use_nan_legacy;
 18bool mips_use_nan_2008;
 19
 20/* FPU modes */
 21enum {
 22	FP_FRE,
 23	FP_FR0,
 24	FP_FR1,
 25};
 26
 27/**
 28 * struct mode_req - ABI FPU mode requirements
 29 * @single:	The program being loaded needs an FPU but it will only issue
 30 *		single precision instructions meaning that it can execute in
 31 *		either FR0 or FR1.
 32 * @soft:	The soft(-float) requirement means that the program being
 33 *		loaded needs has no FPU dependency at all (i.e. it has no
 34 *		FPU instructions).
 35 * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
 36 * @frdefault:	The program being loaded depends on the default FPU mode.
 37 *		That is FR0 for O32 and FR1 for N32/N64.
 38 * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
 39 *		a bridge which uses FR=1 whilst still being able to maintain
 40 *		full compatibility with pre-existing code using the O32 FP32
 41 *		ABI.
 42 *
 43 * More information about the FP ABIs can be found here:
 44 *
 45 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
 46 *
 47 */
 48
 49struct mode_req {
 50	bool single;
 51	bool soft;
 52	bool fr1;
 53	bool frdefault;
 54	bool fre;
 55};
 56
 57static const struct mode_req fpu_reqs[] = {
 58	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
 59	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
 60	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
 61	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
 62	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
 63	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
 64	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
 65	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
 66};
 67
 68/*
 69 * Mode requirements when .MIPS.abiflags is not present in the ELF.
 70 * Not present means that everything is acceptable except FR1.
 71 */
 72static struct mode_req none_req = { true, true, false, true, true };
 73
 74int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
 75		     bool is_interp, struct arch_elf_state *state)
 76{
 77	union {
 78		struct elf32_hdr e32;
 79		struct elf64_hdr e64;
 80	} *ehdr = _ehdr;
 81	struct elf32_phdr *phdr32 = _phdr;
 82	struct elf64_phdr *phdr64 = _phdr;
 83	struct mips_elf_abiflags_v0 abiflags;
 84	bool elf32;
 85	u32 flags;
 86	int ret;
 
 87
 88	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 89	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
 90
 91	/* Lets see if this is an O32 ELF */
 92	if (elf32) {
 93		if (flags & EF_MIPS_FP64) {
 94			/*
 95			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
 96			 * later if needed
 97			 */
 98			if (is_interp)
 99				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
100			else
101				state->fp_abi = MIPS_ABI_FP_OLD_64;
102		}
103		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
104			return 0;
105
106		if (phdr32->p_filesz < sizeof(abiflags))
107			return -EINVAL;
108
109		ret = kernel_read(elf, phdr32->p_offset,
110				  (char *)&abiflags,
111				  sizeof(abiflags));
112	} else {
113		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
114			return 0;
115		if (phdr64->p_filesz < sizeof(abiflags))
116			return -EINVAL;
117
118		ret = kernel_read(elf, phdr64->p_offset,
119				  (char *)&abiflags,
120				  sizeof(abiflags));
121	}
122
 
123	if (ret < 0)
124		return ret;
125	if (ret != sizeof(abiflags))
126		return -EIO;
127
128	/* Record the required FP ABIs for use by mips_check_elf */
129	if (is_interp)
130		state->interp_fp_abi = abiflags.fp_abi;
131	else
132		state->fp_abi = abiflags.fp_abi;
133
134	return 0;
135}
136
137int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
138		   struct arch_elf_state *state)
139{
140	union {
141		struct elf32_hdr e32;
142		struct elf64_hdr e64;
143	} *ehdr = _ehdr;
144	union {
145		struct elf32_hdr e32;
146		struct elf64_hdr e64;
147	} *iehdr = _interp_ehdr;
148	struct mode_req prog_req, interp_req;
149	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
150	bool elf32;
151	u32 flags;
152
153	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
154	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
155
156	/*
157	 * Determine the NaN personality, reject the binary if not allowed.
158	 * Also ensure that any interpreter matches the executable.
159	 */
160	if (flags & EF_MIPS_NAN2008) {
161		if (mips_use_nan_2008)
162			state->nan_2008 = 1;
163		else
164			return -ENOEXEC;
165	} else {
166		if (mips_use_nan_legacy)
167			state->nan_2008 = 0;
168		else
169			return -ENOEXEC;
170	}
171	if (has_interpreter) {
172		bool ielf32;
173		u32 iflags;
174
175		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
176		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
177
178		if ((flags ^ iflags) & EF_MIPS_NAN2008)
179			return -ELIBBAD;
180	}
181
182	if (!config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
183		return 0;
184
185	fp_abi = state->fp_abi;
186
187	if (has_interpreter) {
188		interp_fp_abi = state->interp_fp_abi;
189
190		abi0 = min(fp_abi, interp_fp_abi);
191		abi1 = max(fp_abi, interp_fp_abi);
192	} else {
193		abi0 = abi1 = fp_abi;
194	}
195
196	if (elf32 && !(flags & EF_MIPS_ABI2)) {
197		/* Default to a mode capable of running code expecting FR=0 */
198		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
199
200		/* Allow all ABIs we know about */
201		max_abi = MIPS_ABI_FP_64A;
202	} else {
203		/* MIPS64 code always uses FR=1, thus the default is easy */
204		state->overall_fp_mode = FP_FR1;
205
206		/* Disallow access to the various FPXX & FP64 ABIs */
207		max_abi = MIPS_ABI_FP_SOFT;
208	}
209
210	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
211	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
212		return -ELIBBAD;
213
214	/* It's time to determine the FPU mode requirements */
215	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
216	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
217
218	/*
219	 * Check whether the program's and interp's ABIs have a matching FPU
220	 * mode requirement.
221	 */
222	prog_req.single = interp_req.single && prog_req.single;
223	prog_req.soft = interp_req.soft && prog_req.soft;
224	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
225	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
226	prog_req.fre = interp_req.fre && prog_req.fre;
227
228	/*
229	 * Determine the desired FPU mode
230	 *
231	 * Decision making:
232	 *
233	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
234	 *   means that we have a combination of program and interpreter
235	 *   that inherently require the hybrid FP mode.
236	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
237	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
238	 *   instructions so we don't care about the mode. We will simply use
239	 *   the one preferred by the hardware. In fpxx case, that ABI can
240	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
241	 *   preferred by the hardware. Next, if we only use single-precision
242	 *   FPU instructions, and the default ABI FPU mode is not good
243	 *   (ie single + any ABI combination), we set again the FPU mode to the
244	 *   one is preferred by the hardware. Next, if we know that the code
245	 *   will only use single-precision instructions, shown by single being
246	 *   true but frdefault being false, then we again set the FPU mode to
247	 *   the one that is preferred by the hardware.
248	 * - We want FP_FR1 if that's the only matching mode and the default one
249	 *   is not good.
250	 * - Return with -ELIBADD if we can't find a matching FPU mode.
251	 */
252	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
253		state->overall_fp_mode = FP_FRE;
254	else if ((prog_req.fr1 && prog_req.frdefault) ||
255		 (prog_req.single && !prog_req.frdefault))
256		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
257		state->overall_fp_mode = ((current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
258					  cpu_has_mips_r2_r6) ?
259					  FP_FR1 : FP_FR0;
260	else if (prog_req.fr1)
261		state->overall_fp_mode = FP_FR1;
262	else  if (!prog_req.fre && !prog_req.frdefault &&
263		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
264		return -ELIBBAD;
265
266	return 0;
267}
268
269static inline void set_thread_fp_mode(int hybrid, int regs32)
270{
271	if (hybrid)
272		set_thread_flag(TIF_HYBRID_FPREGS);
273	else
274		clear_thread_flag(TIF_HYBRID_FPREGS);
275	if (regs32)
276		set_thread_flag(TIF_32BIT_FPREGS);
277	else
278		clear_thread_flag(TIF_32BIT_FPREGS);
279}
280
281void mips_set_personality_fp(struct arch_elf_state *state)
282{
283	/*
284	 * This function is only ever called for O32 ELFs so we should
285	 * not be worried about N32/N64 binaries.
286	 */
287
288	if (!config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT))
289		return;
290
291	switch (state->overall_fp_mode) {
292	case FP_FRE:
293		set_thread_fp_mode(1, 0);
294		break;
295	case FP_FR0:
296		set_thread_fp_mode(0, 1);
297		break;
298	case FP_FR1:
299		set_thread_fp_mode(0, 0);
300		break;
301	default:
302		BUG();
303	}
304}
305
306/*
307 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
308 * in FCSR according to the ELF NaN personality.
309 */
310void mips_set_personality_nan(struct arch_elf_state *state)
311{
312	struct cpuinfo_mips *c = &boot_cpu_data;
313	struct task_struct *t = current;
314
 
 
 
 
 
315	t->thread.fpu.fcr31 = c->fpu_csr31;
316	switch (state->nan_2008) {
317	case 0:
 
 
 
 
318		break;
319	case 1:
320		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
321			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
322		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
323			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
324		break;
325	default:
326		BUG();
327	}
328}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Copyright (C) 2014 Imagination Technologies
  4 * Author: Paul Burton <paul.burton@mips.com>
 
 
 
 
 
  5 */
  6
  7#include <linux/binfmts.h>
  8#include <linux/elf.h>
  9#include <linux/export.h>
 10#include <linux/sched.h>
 11
 12#include <asm/cpu-features.h>
 13#include <asm/cpu-info.h>
 14#include <asm/fpu.h>
 15
 16#ifdef CONFIG_MIPS_FP_SUPPORT
 17
 18/* Whether to accept legacy-NaN and 2008-NaN user binaries.  */
 19bool mips_use_nan_legacy;
 20bool mips_use_nan_2008;
 21
 22/* FPU modes */
 23enum {
 24	FP_FRE,
 25	FP_FR0,
 26	FP_FR1,
 27};
 28
 29/**
 30 * struct mode_req - ABI FPU mode requirements
 31 * @single:	The program being loaded needs an FPU but it will only issue
 32 *		single precision instructions meaning that it can execute in
 33 *		either FR0 or FR1.
 34 * @soft:	The soft(-float) requirement means that the program being
 35 *		loaded needs has no FPU dependency at all (i.e. it has no
 36 *		FPU instructions).
 37 * @fr1:	The program being loaded depends on FPU being in FR=1 mode.
 38 * @frdefault:	The program being loaded depends on the default FPU mode.
 39 *		That is FR0 for O32 and FR1 for N32/N64.
 40 * @fre:	The program being loaded depends on FPU with FRE=1. This mode is
 41 *		a bridge which uses FR=1 whilst still being able to maintain
 42 *		full compatibility with pre-existing code using the O32 FP32
 43 *		ABI.
 44 *
 45 * More information about the FP ABIs can be found here:
 46 *
 47 * https://dmz-portal.mips.com/wiki/MIPS_O32_ABI_-_FR0_and_FR1_Interlinking#10.4.1._Basic_mode_set-up
 48 *
 49 */
 50
 51struct mode_req {
 52	bool single;
 53	bool soft;
 54	bool fr1;
 55	bool frdefault;
 56	bool fre;
 57};
 58
 59static const struct mode_req fpu_reqs[] = {
 60	[MIPS_ABI_FP_ANY]    = { true,  true,  true,  true,  true  },
 61	[MIPS_ABI_FP_DOUBLE] = { false, false, false, true,  true  },
 62	[MIPS_ABI_FP_SINGLE] = { true,  false, false, false, false },
 63	[MIPS_ABI_FP_SOFT]   = { false, true,  false, false, false },
 64	[MIPS_ABI_FP_OLD_64] = { false, false, false, false, false },
 65	[MIPS_ABI_FP_XX]     = { false, false, true,  true,  true  },
 66	[MIPS_ABI_FP_64]     = { false, false, true,  false, false },
 67	[MIPS_ABI_FP_64A]    = { false, false, true,  false, true  }
 68};
 69
 70/*
 71 * Mode requirements when .MIPS.abiflags is not present in the ELF.
 72 * Not present means that everything is acceptable except FR1.
 73 */
 74static struct mode_req none_req = { true, true, false, true, true };
 75
 76int arch_elf_pt_proc(void *_ehdr, void *_phdr, struct file *elf,
 77		     bool is_interp, struct arch_elf_state *state)
 78{
 79	union {
 80		struct elf32_hdr e32;
 81		struct elf64_hdr e64;
 82	} *ehdr = _ehdr;
 83	struct elf32_phdr *phdr32 = _phdr;
 84	struct elf64_phdr *phdr64 = _phdr;
 85	struct mips_elf_abiflags_v0 abiflags;
 86	bool elf32;
 87	u32 flags;
 88	int ret;
 89	loff_t pos;
 90
 91	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
 92	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
 93
 94	/* Let's see if this is an O32 ELF */
 95	if (elf32) {
 96		if (flags & EF_MIPS_FP64) {
 97			/*
 98			 * Set MIPS_ABI_FP_OLD_64 for EF_MIPS_FP64. We will override it
 99			 * later if needed
100			 */
101			if (is_interp)
102				state->interp_fp_abi = MIPS_ABI_FP_OLD_64;
103			else
104				state->fp_abi = MIPS_ABI_FP_OLD_64;
105		}
106		if (phdr32->p_type != PT_MIPS_ABIFLAGS)
107			return 0;
108
109		if (phdr32->p_filesz < sizeof(abiflags))
110			return -EINVAL;
111		pos = phdr32->p_offset;
 
 
 
112	} else {
113		if (phdr64->p_type != PT_MIPS_ABIFLAGS)
114			return 0;
115		if (phdr64->p_filesz < sizeof(abiflags))
116			return -EINVAL;
117		pos = phdr64->p_offset;
 
 
 
118	}
119
120	ret = kernel_read(elf, &abiflags, sizeof(abiflags), &pos);
121	if (ret < 0)
122		return ret;
123	if (ret != sizeof(abiflags))
124		return -EIO;
125
126	/* Record the required FP ABIs for use by mips_check_elf */
127	if (is_interp)
128		state->interp_fp_abi = abiflags.fp_abi;
129	else
130		state->fp_abi = abiflags.fp_abi;
131
132	return 0;
133}
134
135int arch_check_elf(void *_ehdr, bool has_interpreter, void *_interp_ehdr,
136		   struct arch_elf_state *state)
137{
138	union {
139		struct elf32_hdr e32;
140		struct elf64_hdr e64;
141	} *ehdr = _ehdr;
142	union {
143		struct elf32_hdr e32;
144		struct elf64_hdr e64;
145	} *iehdr = _interp_ehdr;
146	struct mode_req prog_req, interp_req;
147	int fp_abi, interp_fp_abi, abi0, abi1, max_abi;
148	bool elf32;
149	u32 flags;
150
151	elf32 = ehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
152	flags = elf32 ? ehdr->e32.e_flags : ehdr->e64.e_flags;
153
154	/*
155	 * Determine the NaN personality, reject the binary if not allowed.
156	 * Also ensure that any interpreter matches the executable.
157	 */
158	if (flags & EF_MIPS_NAN2008) {
159		if (mips_use_nan_2008)
160			state->nan_2008 = 1;
161		else
162			return -ENOEXEC;
163	} else {
164		if (mips_use_nan_legacy)
165			state->nan_2008 = 0;
166		else
167			return -ENOEXEC;
168	}
169	if (has_interpreter) {
170		bool ielf32;
171		u32 iflags;
172
173		ielf32 = iehdr->e32.e_ident[EI_CLASS] == ELFCLASS32;
174		iflags = ielf32 ? iehdr->e32.e_flags : iehdr->e64.e_flags;
175
176		if ((flags ^ iflags) & EF_MIPS_NAN2008)
177			return -ELIBBAD;
178	}
179
180	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
181		return 0;
182
183	fp_abi = state->fp_abi;
184
185	if (has_interpreter) {
186		interp_fp_abi = state->interp_fp_abi;
187
188		abi0 = min(fp_abi, interp_fp_abi);
189		abi1 = max(fp_abi, interp_fp_abi);
190	} else {
191		abi0 = abi1 = fp_abi;
192	}
193
194	if (elf32 && !(flags & EF_MIPS_ABI2)) {
195		/* Default to a mode capable of running code expecting FR=0 */
196		state->overall_fp_mode = cpu_has_mips_r6 ? FP_FRE : FP_FR0;
197
198		/* Allow all ABIs we know about */
199		max_abi = MIPS_ABI_FP_64A;
200	} else {
201		/* MIPS64 code always uses FR=1, thus the default is easy */
202		state->overall_fp_mode = FP_FR1;
203
204		/* Disallow access to the various FPXX & FP64 ABIs */
205		max_abi = MIPS_ABI_FP_SOFT;
206	}
207
208	if ((abi0 > max_abi && abi0 != MIPS_ABI_FP_UNKNOWN) ||
209	    (abi1 > max_abi && abi1 != MIPS_ABI_FP_UNKNOWN))
210		return -ELIBBAD;
211
212	/* It's time to determine the FPU mode requirements */
213	prog_req = (abi0 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi0];
214	interp_req = (abi1 == MIPS_ABI_FP_UNKNOWN) ? none_req : fpu_reqs[abi1];
215
216	/*
217	 * Check whether the program's and interp's ABIs have a matching FPU
218	 * mode requirement.
219	 */
220	prog_req.single = interp_req.single && prog_req.single;
221	prog_req.soft = interp_req.soft && prog_req.soft;
222	prog_req.fr1 = interp_req.fr1 && prog_req.fr1;
223	prog_req.frdefault = interp_req.frdefault && prog_req.frdefault;
224	prog_req.fre = interp_req.fre && prog_req.fre;
225
226	/*
227	 * Determine the desired FPU mode
228	 *
229	 * Decision making:
230	 *
231	 * - We want FR_FRE if FRE=1 and both FR=1 and FR=0 are false. This
232	 *   means that we have a combination of program and interpreter
233	 *   that inherently require the hybrid FP mode.
234	 * - If FR1 and FRDEFAULT is true, that means we hit the any-abi or
235	 *   fpxx case. This is because, in any-ABI (or no-ABI) we have no FPU
236	 *   instructions so we don't care about the mode. We will simply use
237	 *   the one preferred by the hardware. In fpxx case, that ABI can
238	 *   handle both FR=1 and FR=0, so, again, we simply choose the one
239	 *   preferred by the hardware. Next, if we only use single-precision
240	 *   FPU instructions, and the default ABI FPU mode is not good
241	 *   (ie single + any ABI combination), we set again the FPU mode to the
242	 *   one is preferred by the hardware. Next, if we know that the code
243	 *   will only use single-precision instructions, shown by single being
244	 *   true but frdefault being false, then we again set the FPU mode to
245	 *   the one that is preferred by the hardware.
246	 * - We want FP_FR1 if that's the only matching mode and the default one
247	 *   is not good.
248	 * - Return with -ELIBADD if we can't find a matching FPU mode.
249	 */
250	if (prog_req.fre && !prog_req.frdefault && !prog_req.fr1)
251		state->overall_fp_mode = FP_FRE;
252	else if ((prog_req.fr1 && prog_req.frdefault) ||
253		 (prog_req.single && !prog_req.frdefault))
254		/* Make sure 64-bit MIPS III/IV/64R1 will not pick FR1 */
255		state->overall_fp_mode = ((raw_current_cpu_data.fpu_id & MIPS_FPIR_F64) &&
256					  cpu_has_mips_r2_r6) ?
257					  FP_FR1 : FP_FR0;
258	else if (prog_req.fr1)
259		state->overall_fp_mode = FP_FR1;
260	else  if (!prog_req.fre && !prog_req.frdefault &&
261		  !prog_req.fr1 && !prog_req.single && !prog_req.soft)
262		return -ELIBBAD;
263
264	return 0;
265}
266
267static inline void set_thread_fp_mode(int hybrid, int regs32)
268{
269	if (hybrid)
270		set_thread_flag(TIF_HYBRID_FPREGS);
271	else
272		clear_thread_flag(TIF_HYBRID_FPREGS);
273	if (regs32)
274		set_thread_flag(TIF_32BIT_FPREGS);
275	else
276		clear_thread_flag(TIF_32BIT_FPREGS);
277}
278
279void mips_set_personality_fp(struct arch_elf_state *state)
280{
281	/*
282	 * This function is only ever called for O32 ELFs so we should
283	 * not be worried about N32/N64 binaries.
284	 */
285
286	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
287		return;
288
289	switch (state->overall_fp_mode) {
290	case FP_FRE:
291		set_thread_fp_mode(1, 0);
292		break;
293	case FP_FR0:
294		set_thread_fp_mode(0, 1);
295		break;
296	case FP_FR1:
297		set_thread_fp_mode(0, 0);
298		break;
299	default:
300		BUG();
301	}
302}
303
304/*
305 * Select the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
306 * in FCSR according to the ELF NaN personality.
307 */
308void mips_set_personality_nan(struct arch_elf_state *state)
309{
310	struct cpuinfo_mips *c = &boot_cpu_data;
311	struct task_struct *t = current;
312
313	/* Do this early so t->thread.fpu.fcr31 won't be clobbered in case
314	 * we are preempted before the lose_fpu(0) in start_thread.
315	 */
316	lose_fpu(0);
317
318	t->thread.fpu.fcr31 = c->fpu_csr31;
319	switch (state->nan_2008) {
320	case 0:
321		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
322			t->thread.fpu.fcr31 &= ~FPU_CSR_NAN2008;
323		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
324			t->thread.fpu.fcr31 &= ~FPU_CSR_ABS2008;
325		break;
326	case 1:
327		if (!(c->fpu_msk31 & FPU_CSR_NAN2008))
328			t->thread.fpu.fcr31 |= FPU_CSR_NAN2008;
329		if (!(c->fpu_msk31 & FPU_CSR_ABS2008))
330			t->thread.fpu.fcr31 |= FPU_CSR_ABS2008;
331		break;
332	default:
333		BUG();
334	}
335}
336
337#endif /* CONFIG_MIPS_FP_SUPPORT */
338
339int mips_elf_read_implies_exec(void *elf_ex, int exstack)
340{
341	/*
342	 * Set READ_IMPLIES_EXEC only on non-NX systems that
343	 * do not request a specific state via PT_GNU_STACK.
344	 */
345	return (!cpu_has_rixi && exstack == EXSTACK_DEFAULT);
346}
347EXPORT_SYMBOL(mips_elf_read_implies_exec);