Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/*
  2 * Copyright (C) 2005,2006,2007,2008,2009,2010,2011 Imagination Technologies
  3 *
  4 * This file contains the architecture-dependent parts of process handling.
  5 *
  6 */
  7
  8#include <linux/errno.h>
  9#include <linux/export.h>
 10#include <linux/sched.h>
 11#include <linux/kernel.h>
 12#include <linux/mm.h>
 13#include <linux/unistd.h>
 14#include <linux/ptrace.h>
 15#include <linux/user.h>
 16#include <linux/reboot.h>
 17#include <linux/elfcore.h>
 18#include <linux/fs.h>
 19#include <linux/tick.h>
 20#include <linux/slab.h>
 21#include <linux/mman.h>
 22#include <linux/pm.h>
 23#include <linux/syscalls.h>
 24#include <linux/uaccess.h>
 25#include <linux/smp.h>
 26#include <asm/core_reg.h>
 27#include <asm/user_gateway.h>
 28#include <asm/tcm.h>
 29#include <asm/traps.h>
 30#include <asm/switch_to.h>
 31
 32/*
 33 * Wait for the next interrupt and enable local interrupts
 34 */
 35void arch_cpu_idle(void)
 36{
 37	int tmp;
 38
 39	/*
 40	 * Quickly jump straight into the interrupt entry point without actually
 41	 * triggering an interrupt. When TXSTATI gets read the processor will
 42	 * block until an interrupt is triggered.
 43	 */
 44	asm volatile (/* Switch into ISTAT mode */
 45		      "RTH\n\t"
 46		      /* Enable local interrupts */
 47		      "MOV	TXMASKI, %1\n\t"
 48		      /*
 49		       * We can't directly "SWAP PC, PCX", so we swap via a
 50		       * temporary. Essentially we do:
 51		       *  PCX_new = 1f (the place to continue execution)
 52		       *  PC = PCX_old
 53		       */
 54		      "ADD	%0, CPC0, #(1f-.)\n\t"
 55		      "SWAP	PCX, %0\n\t"
 56		      "MOV	PC, %0\n"
 57		      /* Continue execution here with interrupts enabled */
 58		      "1:"
 59		      : "=a" (tmp)
 60		      : "r" (get_trigger_mask()));
 61}
 62
 63#ifdef CONFIG_HOTPLUG_CPU
 64void arch_cpu_idle_dead(void)
 65{
 66	cpu_die();
 67}
 68#endif
 69
 70void (*pm_power_off)(void);
 71EXPORT_SYMBOL(pm_power_off);
 72
 73void (*soc_restart)(char *cmd);
 74void (*soc_halt)(void);
 75
 76void machine_restart(char *cmd)
 77{
 78	if (soc_restart)
 79		soc_restart(cmd);
 80	hard_processor_halt(HALT_OK);
 81}
 82
 83void machine_halt(void)
 84{
 85	if (soc_halt)
 86		soc_halt();
 87	smp_send_stop();
 88	hard_processor_halt(HALT_OK);
 89}
 90
 91void machine_power_off(void)
 92{
 93	if (pm_power_off)
 94		pm_power_off();
 95	smp_send_stop();
 96	hard_processor_halt(HALT_OK);
 97}
 98
 99#define FLAG_Z 0x8
100#define FLAG_N 0x4
101#define FLAG_O 0x2
102#define FLAG_C 0x1
103
104void show_regs(struct pt_regs *regs)
105{
106	int i;
107	const char *AX0_names[] = {"A0StP", "A0FrP"};
108	const char *AX1_names[] = {"A1GbP", "A1LbP"};
109
110	const char *DX0_names[] = {
111		"D0Re0",
112		"D0Ar6",
113		"D0Ar4",
114		"D0Ar2",
115		"D0FrT",
116		"D0.5 ",
117		"D0.6 ",
118		"D0.7 "
119	};
120
121	const char *DX1_names[] = {
122		"D1Re0",
123		"D1Ar5",
124		"D1Ar3",
125		"D1Ar1",
126		"D1RtP",
127		"D1.5 ",
128		"D1.6 ",
129		"D1.7 "
130	};
131
132	show_regs_print_info(KERN_INFO);
133
134	pr_info(" pt_regs @ %p\n", regs);
135	pr_info(" SaveMask = 0x%04hx\n", regs->ctx.SaveMask);
136	pr_info(" Flags = 0x%04hx (%c%c%c%c)\n", regs->ctx.Flags,
137		regs->ctx.Flags & FLAG_Z ? 'Z' : 'z',
138		regs->ctx.Flags & FLAG_N ? 'N' : 'n',
139		regs->ctx.Flags & FLAG_O ? 'O' : 'o',
140		regs->ctx.Flags & FLAG_C ? 'C' : 'c');
141	pr_info(" TXRPT = 0x%08x\n", regs->ctx.CurrRPT);
142	pr_info(" PC = 0x%08x\n", regs->ctx.CurrPC);
143
144	/* AX regs */
145	for (i = 0; i < 2; i++) {
146		pr_info(" %s = 0x%08x    ",
147			AX0_names[i],
148			regs->ctx.AX[i].U0);
149		printk(" %s = 0x%08x\n",
150			AX1_names[i],
151			regs->ctx.AX[i].U1);
152	}
153
154	if (regs->ctx.SaveMask & TBICTX_XEXT_BIT)
155		pr_warn(" Extended state present - AX2.[01] will be WRONG\n");
156
157	/* Special place with AXx.2 */
158	pr_info(" A0.2  = 0x%08x    ",
159		regs->ctx.Ext.AX2.U0);
160	printk(" A1.2  = 0x%08x\n",
161		regs->ctx.Ext.AX2.U1);
162
163	/* 'extended' AX regs (nominally, just AXx.3) */
164	for (i = 0; i < (TBICTX_AX_REGS - 3); i++) {
165		pr_info(" A0.%d  = 0x%08x    ", i + 3, regs->ctx.AX3[i].U0);
166		printk(" A1.%d  = 0x%08x\n", i + 3, regs->ctx.AX3[i].U1);
167	}
168
169	for (i = 0; i < 8; i++) {
170		pr_info(" %s = 0x%08x    ", DX0_names[i], regs->ctx.DX[i].U0);
171		printk(" %s = 0x%08x\n", DX1_names[i], regs->ctx.DX[i].U1);
172	}
173
174	show_trace(NULL, (unsigned long *)regs->ctx.AX[0].U0, regs);
175}
176
177/*
178 * Copy architecture-specific thread state
179 */
180int copy_thread(unsigned long clone_flags, unsigned long usp,
181		unsigned long kthread_arg, struct task_struct *tsk)
182{
183	struct pt_regs *childregs = task_pt_regs(tsk);
184	void *kernel_context = ((void *) childregs +
185				sizeof(struct pt_regs));
186	unsigned long global_base;
187
188	BUG_ON(((unsigned long)childregs) & 0x7);
189	BUG_ON(((unsigned long)kernel_context) & 0x7);
190
191	memset(&tsk->thread.kernel_context, 0,
192			sizeof(tsk->thread.kernel_context));
193
194	tsk->thread.kernel_context = __TBISwitchInit(kernel_context,
195						     ret_from_fork,
196						     0, 0);
197
198	if (unlikely(tsk->flags & PF_KTHREAD)) {
199		/*
200		 * Make sure we don't leak any kernel data to child's regs
201		 * if kernel thread becomes a userspace thread in the future
202		 */
203		memset(childregs, 0 , sizeof(struct pt_regs));
204
205		global_base = __core_reg_get(A1GbP);
206		childregs->ctx.AX[0].U1 = (unsigned long) global_base;
207		childregs->ctx.AX[0].U0 = (unsigned long) kernel_context;
208		/* Set D1Ar1=kthread_arg and D1RtP=usp (fn) */
209		childregs->ctx.DX[4].U1 = usp;
210		childregs->ctx.DX[3].U1 = kthread_arg;
211		tsk->thread.int_depth = 2;
212		return 0;
213	}
214
215	/*
216	 * Get a pointer to where the new child's register block should have
217	 * been pushed.
218	 * The Meta's stack grows upwards, and the context is the the first
219	 * thing to be pushed by TBX (phew)
220	 */
221	*childregs = *current_pt_regs();
222	/* Set the correct stack for the clone mode */
223	if (usp)
224		childregs->ctx.AX[0].U0 = ALIGN(usp, 8);
225	tsk->thread.int_depth = 1;
226
227	/* set return value for child process */
228	childregs->ctx.DX[0].U0 = 0;
229
230	/* The TLS pointer is passed as an argument to sys_clone. */
231	if (clone_flags & CLONE_SETTLS)
232		tsk->thread.tls_ptr =
233				(__force void __user *)childregs->ctx.DX[1].U1;
234
235#ifdef CONFIG_METAG_FPU
236	if (tsk->thread.fpu_context) {
237		struct meta_fpu_context *ctx;
238
239		ctx = kmemdup(tsk->thread.fpu_context,
240			      sizeof(struct meta_fpu_context), GFP_ATOMIC);
241		tsk->thread.fpu_context = ctx;
242	}
243#endif
244
245#ifdef CONFIG_METAG_DSP
246	if (tsk->thread.dsp_context) {
247		struct meta_ext_context *ctx;
248		int i;
249
250		ctx = kmemdup(tsk->thread.dsp_context,
251			      sizeof(struct meta_ext_context), GFP_ATOMIC);
252		for (i = 0; i < 2; i++)
253			ctx->ram[i] = kmemdup(ctx->ram[i], ctx->ram_sz[i],
254					      GFP_ATOMIC);
255		tsk->thread.dsp_context = ctx;
256	}
257#endif
258
259	return 0;
260}
261
262#ifdef CONFIG_METAG_FPU
263static void alloc_fpu_context(struct thread_struct *thread)
264{
265	thread->fpu_context = kzalloc(sizeof(struct meta_fpu_context),
266				      GFP_ATOMIC);
267}
268
269static void clear_fpu(struct thread_struct *thread)
270{
271	thread->user_flags &= ~TBICTX_FPAC_BIT;
272	kfree(thread->fpu_context);
273	thread->fpu_context = NULL;
274}
275#else
276static void clear_fpu(struct thread_struct *thread)
277{
278}
279#endif
280
281#ifdef CONFIG_METAG_DSP
282static void clear_dsp(struct thread_struct *thread)
283{
284	if (thread->dsp_context) {
285		kfree(thread->dsp_context->ram[0]);
286		kfree(thread->dsp_context->ram[1]);
287
288		kfree(thread->dsp_context);
289
290		thread->dsp_context = NULL;
291	}
292
293	__core_reg_set(D0.8, 0);
294}
295#else
296static void clear_dsp(struct thread_struct *thread)
297{
298}
299#endif
300
301struct task_struct *__sched __switch_to(struct task_struct *prev,
302					struct task_struct *next)
303{
304	TBIRES to, from;
305
306	to.Switch.pCtx = next->thread.kernel_context;
307	to.Switch.pPara = prev;
308
309#ifdef CONFIG_METAG_FPU
310	if (prev->thread.user_flags & TBICTX_FPAC_BIT) {
311		struct pt_regs *regs = task_pt_regs(prev);
312		TBIRES state;
313
314		state.Sig.SaveMask = prev->thread.user_flags;
315		state.Sig.pCtx = &regs->ctx;
316
317		if (!prev->thread.fpu_context)
318			alloc_fpu_context(&prev->thread);
319		if (prev->thread.fpu_context)
320			__TBICtxFPUSave(state, prev->thread.fpu_context);
321	}
322	/*
323	 * Force a restore of the FPU context next time this process is
324	 * scheduled.
325	 */
326	if (prev->thread.fpu_context)
327		prev->thread.fpu_context->needs_restore = true;
328#endif
329
330
331	from = __TBISwitch(to, &prev->thread.kernel_context);
332
333	/* Restore TLS pointer for this process. */
334	set_gateway_tls(current->thread.tls_ptr);
335
336	return (struct task_struct *) from.Switch.pPara;
337}
338
339void flush_thread(void)
340{
341	clear_fpu(&current->thread);
342	clear_dsp(&current->thread);
343}
344
345/*
346 * Free current thread data structures etc.
347 */
348void exit_thread(void)
349{
350	clear_fpu(&current->thread);
351	clear_dsp(&current->thread);
352}
353
354/* TODO: figure out how to unwind the kernel stack here to figure out
355 * where we went to sleep. */
356unsigned long get_wchan(struct task_struct *p)
357{
358	return 0;
359}
360
361int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
362{
363	/* Returning 0 indicates that the FPU state was not stored (as it was
364	 * not in use) */
365	return 0;
366}
367
368#ifdef CONFIG_METAG_USER_TCM
369
370#define ELF_MIN_ALIGN	PAGE_SIZE
371
372#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
373#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
374#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
375
376#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
377
378unsigned long __metag_elf_map(struct file *filep, unsigned long addr,
379			      struct elf_phdr *eppnt, int prot, int type,
380			      unsigned long total_size)
381{
382	unsigned long map_addr, size;
383	unsigned long page_off = ELF_PAGEOFFSET(eppnt->p_vaddr);
384	unsigned long raw_size = eppnt->p_filesz + page_off;
385	unsigned long off = eppnt->p_offset - page_off;
386	unsigned int tcm_tag;
387	addr = ELF_PAGESTART(addr);
388	size = ELF_PAGEALIGN(raw_size);
389
390	/* mmap() will return -EINVAL if given a zero size, but a
391	 * segment with zero filesize is perfectly valid */
392	if (!size)
393		return addr;
394
395	tcm_tag = tcm_lookup_tag(addr);
396
397	if (tcm_tag != TCM_INVALID_TAG)
398		type &= ~MAP_FIXED;
399
400	/*
401	* total_size is the size of the ELF (interpreter) image.
402	* The _first_ mmap needs to know the full size, otherwise
403	* randomization might put this image into an overlapping
404	* position with the ELF binary image. (since size < total_size)
405	* So we first map the 'big' image - and unmap the remainder at
406	* the end. (which unmap is needed for ELF images with holes.)
407	*/
408	if (total_size) {
409		total_size = ELF_PAGEALIGN(total_size);
410		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
411		if (!BAD_ADDR(map_addr))
412			vm_munmap(map_addr+size, total_size-size);
413	} else
414		map_addr = vm_mmap(filep, addr, size, prot, type, off);
415
416	if (!BAD_ADDR(map_addr) && tcm_tag != TCM_INVALID_TAG) {
417		struct tcm_allocation *tcm;
418		unsigned long tcm_addr;
419
420		tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
421		if (!tcm)
422			return -ENOMEM;
423
424		tcm_addr = tcm_alloc(tcm_tag, raw_size);
425		if (tcm_addr != addr) {
426			kfree(tcm);
427			return -ENOMEM;
428		}
429
430		tcm->tag = tcm_tag;
431		tcm->addr = tcm_addr;
432		tcm->size = raw_size;
433
434		list_add(&tcm->list, &current->mm->context.tcm);
435
436		eppnt->p_vaddr = map_addr;
437		if (copy_from_user((void *) addr, (void __user *) map_addr,
438				   raw_size))
439			return -EFAULT;
440	}
441
442	return map_addr;
443}
444#endif