Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/mman.h>
  20#include <linux/kvm_host.h>
  21#include <linux/io.h>
  22#include <linux/hugetlb.h>
  23#include <trace/events/kvm.h>
  24#include <asm/pgalloc.h>
  25#include <asm/cacheflush.h>
  26#include <asm/kvm_arm.h>
  27#include <asm/kvm_mmu.h>
  28#include <asm/kvm_mmio.h>
  29#include <asm/kvm_asm.h>
  30#include <asm/kvm_emulate.h>
  31#include <asm/virt.h>
  32
  33#include "trace.h"
  34
  35extern char  __hyp_idmap_text_start[], __hyp_idmap_text_end[];
  36
  37static pgd_t *boot_hyp_pgd;
  38static pgd_t *hyp_pgd;
  39static pgd_t *merged_hyp_pgd;
  40static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
  41
  42static unsigned long hyp_idmap_start;
  43static unsigned long hyp_idmap_end;
  44static phys_addr_t hyp_idmap_vector;
  45
  46#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
  47
  48#define kvm_pmd_huge(_x)	(pmd_huge(_x) || pmd_trans_huge(_x))
  49#define kvm_pud_huge(_x)	pud_huge(_x)
  50
  51#define KVM_S2PTE_FLAG_IS_IOMAP		(1UL << 0)
  52#define KVM_S2_FLAG_LOGGING_ACTIVE	(1UL << 1)
  53
  54static bool memslot_is_logging(struct kvm_memory_slot *memslot)
  55{
  56	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
  57}
  58
  59/**
  60 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
  61 * @kvm:	pointer to kvm structure.
  62 *
  63 * Interface to HYP function to flush all VM TLB entries
  64 */
  65void kvm_flush_remote_tlbs(struct kvm *kvm)
  66{
  67	kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
  68}
  69
  70static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
  71{
  72	/*
  73	 * This function also gets called when dealing with HYP page
  74	 * tables. As HYP doesn't have an associated struct kvm (and
  75	 * the HYP page tables are fairly static), we don't do
  76	 * anything there.
  77	 */
  78	if (kvm)
  79		kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
  80}
  81
  82/*
  83 * D-Cache management functions. They take the page table entries by
  84 * value, as they are flushing the cache using the kernel mapping (or
  85 * kmap on 32bit).
  86 */
  87static void kvm_flush_dcache_pte(pte_t pte)
  88{
  89	__kvm_flush_dcache_pte(pte);
  90}
  91
  92static void kvm_flush_dcache_pmd(pmd_t pmd)
  93{
  94	__kvm_flush_dcache_pmd(pmd);
  95}
  96
  97static void kvm_flush_dcache_pud(pud_t pud)
  98{
  99	__kvm_flush_dcache_pud(pud);
 100}
 101
 102static bool kvm_is_device_pfn(unsigned long pfn)
 103{
 104	return !pfn_valid(pfn);
 105}
 106
 107/**
 108 * stage2_dissolve_pmd() - clear and flush huge PMD entry
 109 * @kvm:	pointer to kvm structure.
 110 * @addr:	IPA
 111 * @pmd:	pmd pointer for IPA
 112 *
 113 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
 114 * pages in the range dirty.
 115 */
 116static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
 117{
 118	if (!kvm_pmd_huge(*pmd))
 119		return;
 120
 121	pmd_clear(pmd);
 122	kvm_tlb_flush_vmid_ipa(kvm, addr);
 123	put_page(virt_to_page(pmd));
 124}
 125
 126static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 127				  int min, int max)
 128{
 129	void *page;
 130
 131	BUG_ON(max > KVM_NR_MEM_OBJS);
 132	if (cache->nobjs >= min)
 133		return 0;
 134	while (cache->nobjs < max) {
 135		page = (void *)__get_free_page(PGALLOC_GFP);
 136		if (!page)
 137			return -ENOMEM;
 138		cache->objects[cache->nobjs++] = page;
 139	}
 140	return 0;
 141}
 142
 143static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 144{
 145	while (mc->nobjs)
 146		free_page((unsigned long)mc->objects[--mc->nobjs]);
 147}
 148
 149static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
 150{
 151	void *p;
 152
 153	BUG_ON(!mc || !mc->nobjs);
 154	p = mc->objects[--mc->nobjs];
 155	return p;
 156}
 157
 158static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
 159{
 160	pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
 161	pgd_clear(pgd);
 162	kvm_tlb_flush_vmid_ipa(kvm, addr);
 163	pud_free(NULL, pud_table);
 164	put_page(virt_to_page(pgd));
 165}
 166
 167static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
 168{
 169	pmd_t *pmd_table = pmd_offset(pud, 0);
 170	VM_BUG_ON(pud_huge(*pud));
 171	pud_clear(pud);
 172	kvm_tlb_flush_vmid_ipa(kvm, addr);
 173	pmd_free(NULL, pmd_table);
 174	put_page(virt_to_page(pud));
 175}
 176
 177static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
 178{
 179	pte_t *pte_table = pte_offset_kernel(pmd, 0);
 180	VM_BUG_ON(kvm_pmd_huge(*pmd));
 181	pmd_clear(pmd);
 182	kvm_tlb_flush_vmid_ipa(kvm, addr);
 183	pte_free_kernel(NULL, pte_table);
 184	put_page(virt_to_page(pmd));
 185}
 186
 187/*
 188 * Unmapping vs dcache management:
 189 *
 190 * If a guest maps certain memory pages as uncached, all writes will
 191 * bypass the data cache and go directly to RAM.  However, the CPUs
 192 * can still speculate reads (not writes) and fill cache lines with
 193 * data.
 194 *
 195 * Those cache lines will be *clean* cache lines though, so a
 196 * clean+invalidate operation is equivalent to an invalidate
 197 * operation, because no cache lines are marked dirty.
 198 *
 199 * Those clean cache lines could be filled prior to an uncached write
 200 * by the guest, and the cache coherent IO subsystem would therefore
 201 * end up writing old data to disk.
 202 *
 203 * This is why right after unmapping a page/section and invalidating
 204 * the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
 205 * the IO subsystem will never hit in the cache.
 206 */
 207static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
 208		       phys_addr_t addr, phys_addr_t end)
 209{
 210	phys_addr_t start_addr = addr;
 211	pte_t *pte, *start_pte;
 212
 213	start_pte = pte = pte_offset_kernel(pmd, addr);
 214	do {
 215		if (!pte_none(*pte)) {
 216			pte_t old_pte = *pte;
 217
 218			kvm_set_pte(pte, __pte(0));
 219			kvm_tlb_flush_vmid_ipa(kvm, addr);
 220
 221			/* No need to invalidate the cache for device mappings */
 222			if (!kvm_is_device_pfn(pte_pfn(old_pte)))
 223				kvm_flush_dcache_pte(old_pte);
 224
 225			put_page(virt_to_page(pte));
 226		}
 227	} while (pte++, addr += PAGE_SIZE, addr != end);
 228
 229	if (kvm_pte_table_empty(kvm, start_pte))
 230		clear_pmd_entry(kvm, pmd, start_addr);
 231}
 232
 233static void unmap_pmds(struct kvm *kvm, pud_t *pud,
 234		       phys_addr_t addr, phys_addr_t end)
 235{
 236	phys_addr_t next, start_addr = addr;
 237	pmd_t *pmd, *start_pmd;
 238
 239	start_pmd = pmd = pmd_offset(pud, addr);
 240	do {
 241		next = kvm_pmd_addr_end(addr, end);
 242		if (!pmd_none(*pmd)) {
 243			if (kvm_pmd_huge(*pmd)) {
 244				pmd_t old_pmd = *pmd;
 245
 246				pmd_clear(pmd);
 247				kvm_tlb_flush_vmid_ipa(kvm, addr);
 248
 249				kvm_flush_dcache_pmd(old_pmd);
 250
 251				put_page(virt_to_page(pmd));
 252			} else {
 253				unmap_ptes(kvm, pmd, addr, next);
 254			}
 255		}
 256	} while (pmd++, addr = next, addr != end);
 257
 258	if (kvm_pmd_table_empty(kvm, start_pmd))
 259		clear_pud_entry(kvm, pud, start_addr);
 260}
 261
 262static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
 263		       phys_addr_t addr, phys_addr_t end)
 264{
 265	phys_addr_t next, start_addr = addr;
 266	pud_t *pud, *start_pud;
 267
 268	start_pud = pud = pud_offset(pgd, addr);
 269	do {
 270		next = kvm_pud_addr_end(addr, end);
 271		if (!pud_none(*pud)) {
 272			if (pud_huge(*pud)) {
 273				pud_t old_pud = *pud;
 274
 275				pud_clear(pud);
 276				kvm_tlb_flush_vmid_ipa(kvm, addr);
 277
 278				kvm_flush_dcache_pud(old_pud);
 279
 280				put_page(virt_to_page(pud));
 281			} else {
 282				unmap_pmds(kvm, pud, addr, next);
 283			}
 284		}
 285	} while (pud++, addr = next, addr != end);
 286
 287	if (kvm_pud_table_empty(kvm, start_pud))
 288		clear_pgd_entry(kvm, pgd, start_addr);
 289}
 290
 291
 292static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
 293			phys_addr_t start, u64 size)
 294{
 295	pgd_t *pgd;
 296	phys_addr_t addr = start, end = start + size;
 297	phys_addr_t next;
 298
 299	pgd = pgdp + kvm_pgd_index(addr);
 300	do {
 301		next = kvm_pgd_addr_end(addr, end);
 302		if (!pgd_none(*pgd))
 303			unmap_puds(kvm, pgd, addr, next);
 304	} while (pgd++, addr = next, addr != end);
 305}
 306
 307static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
 308			      phys_addr_t addr, phys_addr_t end)
 309{
 310	pte_t *pte;
 311
 312	pte = pte_offset_kernel(pmd, addr);
 313	do {
 314		if (!pte_none(*pte) && !kvm_is_device_pfn(pte_pfn(*pte)))
 315			kvm_flush_dcache_pte(*pte);
 316	} while (pte++, addr += PAGE_SIZE, addr != end);
 317}
 318
 319static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
 320			      phys_addr_t addr, phys_addr_t end)
 321{
 322	pmd_t *pmd;
 323	phys_addr_t next;
 324
 325	pmd = pmd_offset(pud, addr);
 326	do {
 327		next = kvm_pmd_addr_end(addr, end);
 328		if (!pmd_none(*pmd)) {
 329			if (kvm_pmd_huge(*pmd))
 330				kvm_flush_dcache_pmd(*pmd);
 331			else
 332				stage2_flush_ptes(kvm, pmd, addr, next);
 333		}
 334	} while (pmd++, addr = next, addr != end);
 335}
 336
 337static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
 338			      phys_addr_t addr, phys_addr_t end)
 339{
 340	pud_t *pud;
 341	phys_addr_t next;
 342
 343	pud = pud_offset(pgd, addr);
 344	do {
 345		next = kvm_pud_addr_end(addr, end);
 346		if (!pud_none(*pud)) {
 347			if (pud_huge(*pud))
 348				kvm_flush_dcache_pud(*pud);
 349			else
 350				stage2_flush_pmds(kvm, pud, addr, next);
 351		}
 352	} while (pud++, addr = next, addr != end);
 353}
 354
 355static void stage2_flush_memslot(struct kvm *kvm,
 356				 struct kvm_memory_slot *memslot)
 357{
 358	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 359	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
 360	phys_addr_t next;
 361	pgd_t *pgd;
 362
 363	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
 364	do {
 365		next = kvm_pgd_addr_end(addr, end);
 366		stage2_flush_puds(kvm, pgd, addr, next);
 367	} while (pgd++, addr = next, addr != end);
 368}
 369
 370/**
 371 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
 372 * @kvm: The struct kvm pointer
 373 *
 374 * Go through the stage 2 page tables and invalidate any cache lines
 375 * backing memory already mapped to the VM.
 376 */
 377static void stage2_flush_vm(struct kvm *kvm)
 378{
 379	struct kvm_memslots *slots;
 380	struct kvm_memory_slot *memslot;
 381	int idx;
 382
 383	idx = srcu_read_lock(&kvm->srcu);
 384	spin_lock(&kvm->mmu_lock);
 385
 386	slots = kvm_memslots(kvm);
 387	kvm_for_each_memslot(memslot, slots)
 388		stage2_flush_memslot(kvm, memslot);
 389
 390	spin_unlock(&kvm->mmu_lock);
 391	srcu_read_unlock(&kvm->srcu, idx);
 392}
 393
 394/**
 395 * free_boot_hyp_pgd - free HYP boot page tables
 396 *
 397 * Free the HYP boot page tables. The bounce page is also freed.
 398 */
 399void free_boot_hyp_pgd(void)
 400{
 401	mutex_lock(&kvm_hyp_pgd_mutex);
 402
 403	if (boot_hyp_pgd) {
 404		unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
 405		unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
 406		free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
 407		boot_hyp_pgd = NULL;
 408	}
 409
 410	if (hyp_pgd)
 411		unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
 412
 413	mutex_unlock(&kvm_hyp_pgd_mutex);
 414}
 415
 416/**
 417 * free_hyp_pgds - free Hyp-mode page tables
 418 *
 419 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
 420 * therefore contains either mappings in the kernel memory area (above
 421 * PAGE_OFFSET), or device mappings in the vmalloc range (from
 422 * VMALLOC_START to VMALLOC_END).
 423 *
 424 * boot_hyp_pgd should only map two pages for the init code.
 425 */
 426void free_hyp_pgds(void)
 427{
 428	unsigned long addr;
 429
 430	free_boot_hyp_pgd();
 431
 432	mutex_lock(&kvm_hyp_pgd_mutex);
 433
 434	if (hyp_pgd) {
 435		for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
 436			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
 437		for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
 438			unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
 439
 440		free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
 441		hyp_pgd = NULL;
 442	}
 443	if (merged_hyp_pgd) {
 444		clear_page(merged_hyp_pgd);
 445		free_page((unsigned long)merged_hyp_pgd);
 446		merged_hyp_pgd = NULL;
 447	}
 448
 449	mutex_unlock(&kvm_hyp_pgd_mutex);
 450}
 451
 452static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
 453				    unsigned long end, unsigned long pfn,
 454				    pgprot_t prot)
 455{
 456	pte_t *pte;
 457	unsigned long addr;
 458
 459	addr = start;
 460	do {
 461		pte = pte_offset_kernel(pmd, addr);
 462		kvm_set_pte(pte, pfn_pte(pfn, prot));
 463		get_page(virt_to_page(pte));
 464		kvm_flush_dcache_to_poc(pte, sizeof(*pte));
 465		pfn++;
 466	} while (addr += PAGE_SIZE, addr != end);
 467}
 468
 469static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
 470				   unsigned long end, unsigned long pfn,
 471				   pgprot_t prot)
 472{
 473	pmd_t *pmd;
 474	pte_t *pte;
 475	unsigned long addr, next;
 476
 477	addr = start;
 478	do {
 479		pmd = pmd_offset(pud, addr);
 480
 481		BUG_ON(pmd_sect(*pmd));
 482
 483		if (pmd_none(*pmd)) {
 484			pte = pte_alloc_one_kernel(NULL, addr);
 485			if (!pte) {
 486				kvm_err("Cannot allocate Hyp pte\n");
 487				return -ENOMEM;
 488			}
 489			pmd_populate_kernel(NULL, pmd, pte);
 490			get_page(virt_to_page(pmd));
 491			kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
 492		}
 493
 494		next = pmd_addr_end(addr, end);
 495
 496		create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
 497		pfn += (next - addr) >> PAGE_SHIFT;
 498	} while (addr = next, addr != end);
 499
 500	return 0;
 501}
 502
 503static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
 504				   unsigned long end, unsigned long pfn,
 505				   pgprot_t prot)
 506{
 507	pud_t *pud;
 508	pmd_t *pmd;
 509	unsigned long addr, next;
 510	int ret;
 511
 512	addr = start;
 513	do {
 514		pud = pud_offset(pgd, addr);
 515
 516		if (pud_none_or_clear_bad(pud)) {
 517			pmd = pmd_alloc_one(NULL, addr);
 518			if (!pmd) {
 519				kvm_err("Cannot allocate Hyp pmd\n");
 520				return -ENOMEM;
 521			}
 522			pud_populate(NULL, pud, pmd);
 523			get_page(virt_to_page(pud));
 524			kvm_flush_dcache_to_poc(pud, sizeof(*pud));
 525		}
 526
 527		next = pud_addr_end(addr, end);
 528		ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
 529		if (ret)
 530			return ret;
 531		pfn += (next - addr) >> PAGE_SHIFT;
 532	} while (addr = next, addr != end);
 533
 534	return 0;
 535}
 536
 537static int __create_hyp_mappings(pgd_t *pgdp,
 538				 unsigned long start, unsigned long end,
 539				 unsigned long pfn, pgprot_t prot)
 540{
 541	pgd_t *pgd;
 542	pud_t *pud;
 543	unsigned long addr, next;
 544	int err = 0;
 545
 546	mutex_lock(&kvm_hyp_pgd_mutex);
 547	addr = start & PAGE_MASK;
 548	end = PAGE_ALIGN(end);
 549	do {
 550		pgd = pgdp + pgd_index(addr);
 551
 552		if (pgd_none(*pgd)) {
 553			pud = pud_alloc_one(NULL, addr);
 554			if (!pud) {
 555				kvm_err("Cannot allocate Hyp pud\n");
 556				err = -ENOMEM;
 557				goto out;
 558			}
 559			pgd_populate(NULL, pgd, pud);
 560			get_page(virt_to_page(pgd));
 561			kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
 562		}
 563
 564		next = pgd_addr_end(addr, end);
 565		err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
 566		if (err)
 567			goto out;
 568		pfn += (next - addr) >> PAGE_SHIFT;
 569	} while (addr = next, addr != end);
 570out:
 571	mutex_unlock(&kvm_hyp_pgd_mutex);
 572	return err;
 573}
 574
 575static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
 576{
 577	if (!is_vmalloc_addr(kaddr)) {
 578		BUG_ON(!virt_addr_valid(kaddr));
 579		return __pa(kaddr);
 580	} else {
 581		return page_to_phys(vmalloc_to_page(kaddr)) +
 582		       offset_in_page(kaddr);
 583	}
 584}
 585
 586/**
 587 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
 588 * @from:	The virtual kernel start address of the range
 589 * @to:		The virtual kernel end address of the range (exclusive)
 590 *
 591 * The same virtual address as the kernel virtual address is also used
 592 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
 593 * physical pages.
 594 */
 595int create_hyp_mappings(void *from, void *to)
 596{
 597	phys_addr_t phys_addr;
 598	unsigned long virt_addr;
 599	unsigned long start = KERN_TO_HYP((unsigned long)from);
 600	unsigned long end = KERN_TO_HYP((unsigned long)to);
 601
 602	if (is_kernel_in_hyp_mode())
 603		return 0;
 604
 605	start = start & PAGE_MASK;
 606	end = PAGE_ALIGN(end);
 607
 608	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
 609		int err;
 610
 611		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
 612		err = __create_hyp_mappings(hyp_pgd, virt_addr,
 613					    virt_addr + PAGE_SIZE,
 614					    __phys_to_pfn(phys_addr),
 615					    PAGE_HYP);
 616		if (err)
 617			return err;
 618	}
 619
 620	return 0;
 621}
 622
 623/**
 624 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
 625 * @from:	The kernel start VA of the range
 626 * @to:		The kernel end VA of the range (exclusive)
 627 * @phys_addr:	The physical start address which gets mapped
 628 *
 629 * The resulting HYP VA is the same as the kernel VA, modulo
 630 * HYP_PAGE_OFFSET.
 631 */
 632int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
 633{
 634	unsigned long start = KERN_TO_HYP((unsigned long)from);
 635	unsigned long end = KERN_TO_HYP((unsigned long)to);
 636
 637	if (is_kernel_in_hyp_mode())
 638		return 0;
 639
 640	/* Check for a valid kernel IO mapping */
 641	if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
 642		return -EINVAL;
 643
 644	return __create_hyp_mappings(hyp_pgd, start, end,
 645				     __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
 646}
 647
 648/* Free the HW pgd, one page at a time */
 649static void kvm_free_hwpgd(void *hwpgd)
 650{
 651	free_pages_exact(hwpgd, kvm_get_hwpgd_size());
 652}
 653
 654/* Allocate the HW PGD, making sure that each page gets its own refcount */
 655static void *kvm_alloc_hwpgd(void)
 656{
 657	unsigned int size = kvm_get_hwpgd_size();
 658
 659	return alloc_pages_exact(size, GFP_KERNEL | __GFP_ZERO);
 660}
 661
 662/**
 663 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
 664 * @kvm:	The KVM struct pointer for the VM.
 665 *
 666 * Allocates only the stage-2 HW PGD level table(s) (can support either full
 667 * 40-bit input addresses or limited to 32-bit input addresses). Clears the
 668 * allocated pages.
 669 *
 670 * Note we don't need locking here as this is only called when the VM is
 671 * created, which can only be done once.
 672 */
 673int kvm_alloc_stage2_pgd(struct kvm *kvm)
 674{
 675	pgd_t *pgd;
 676	void *hwpgd;
 677
 678	if (kvm->arch.pgd != NULL) {
 679		kvm_err("kvm_arch already initialized?\n");
 680		return -EINVAL;
 681	}
 682
 683	hwpgd = kvm_alloc_hwpgd();
 684	if (!hwpgd)
 685		return -ENOMEM;
 686
 687	/* When the kernel uses more levels of page tables than the
 688	 * guest, we allocate a fake PGD and pre-populate it to point
 689	 * to the next-level page table, which will be the real
 690	 * initial page table pointed to by the VTTBR.
 691	 *
 692	 * When KVM_PREALLOC_LEVEL==2, we allocate a single page for
 693	 * the PMD and the kernel will use folded pud.
 694	 * When KVM_PREALLOC_LEVEL==1, we allocate 2 consecutive PUD
 695	 * pages.
 696	 */
 697	if (KVM_PREALLOC_LEVEL > 0) {
 698		int i;
 699
 700		/*
 701		 * Allocate fake pgd for the page table manipulation macros to
 702		 * work.  This is not used by the hardware and we have no
 703		 * alignment requirement for this allocation.
 704		 */
 705		pgd = kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
 706				GFP_KERNEL | __GFP_ZERO);
 707
 708		if (!pgd) {
 709			kvm_free_hwpgd(hwpgd);
 710			return -ENOMEM;
 711		}
 712
 713		/* Plug the HW PGD into the fake one. */
 714		for (i = 0; i < PTRS_PER_S2_PGD; i++) {
 715			if (KVM_PREALLOC_LEVEL == 1)
 716				pgd_populate(NULL, pgd + i,
 717					     (pud_t *)hwpgd + i * PTRS_PER_PUD);
 718			else if (KVM_PREALLOC_LEVEL == 2)
 719				pud_populate(NULL, pud_offset(pgd, 0) + i,
 720					     (pmd_t *)hwpgd + i * PTRS_PER_PMD);
 721		}
 722	} else {
 723		/*
 724		 * Allocate actual first-level Stage-2 page table used by the
 725		 * hardware for Stage-2 page table walks.
 726		 */
 727		pgd = (pgd_t *)hwpgd;
 728	}
 729
 730	kvm_clean_pgd(pgd);
 731	kvm->arch.pgd = pgd;
 732	return 0;
 733}
 734
 735/**
 736 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
 737 * @kvm:   The VM pointer
 738 * @start: The intermediate physical base address of the range to unmap
 739 * @size:  The size of the area to unmap
 740 *
 741 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
 742 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
 743 * destroying the VM), otherwise another faulting VCPU may come in and mess
 744 * with things behind our backs.
 745 */
 746static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
 747{
 748	unmap_range(kvm, kvm->arch.pgd, start, size);
 749}
 750
 751static void stage2_unmap_memslot(struct kvm *kvm,
 752				 struct kvm_memory_slot *memslot)
 753{
 754	hva_t hva = memslot->userspace_addr;
 755	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
 756	phys_addr_t size = PAGE_SIZE * memslot->npages;
 757	hva_t reg_end = hva + size;
 758
 759	/*
 760	 * A memory region could potentially cover multiple VMAs, and any holes
 761	 * between them, so iterate over all of them to find out if we should
 762	 * unmap any of them.
 763	 *
 764	 *     +--------------------------------------------+
 765	 * +---------------+----------------+   +----------------+
 766	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
 767	 * +---------------+----------------+   +----------------+
 768	 *     |               memory region                |
 769	 *     +--------------------------------------------+
 770	 */
 771	do {
 772		struct vm_area_struct *vma = find_vma(current->mm, hva);
 773		hva_t vm_start, vm_end;
 774
 775		if (!vma || vma->vm_start >= reg_end)
 776			break;
 777
 778		/*
 779		 * Take the intersection of this VMA with the memory region
 780		 */
 781		vm_start = max(hva, vma->vm_start);
 782		vm_end = min(reg_end, vma->vm_end);
 783
 784		if (!(vma->vm_flags & VM_PFNMAP)) {
 785			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
 786			unmap_stage2_range(kvm, gpa, vm_end - vm_start);
 787		}
 788		hva = vm_end;
 789	} while (hva < reg_end);
 790}
 791
 792/**
 793 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
 794 * @kvm: The struct kvm pointer
 795 *
 796 * Go through the memregions and unmap any reguler RAM
 797 * backing memory already mapped to the VM.
 798 */
 799void stage2_unmap_vm(struct kvm *kvm)
 800{
 801	struct kvm_memslots *slots;
 802	struct kvm_memory_slot *memslot;
 803	int idx;
 804
 805	idx = srcu_read_lock(&kvm->srcu);
 806	spin_lock(&kvm->mmu_lock);
 807
 808	slots = kvm_memslots(kvm);
 809	kvm_for_each_memslot(memslot, slots)
 810		stage2_unmap_memslot(kvm, memslot);
 811
 812	spin_unlock(&kvm->mmu_lock);
 813	srcu_read_unlock(&kvm->srcu, idx);
 814}
 815
 816/**
 817 * kvm_free_stage2_pgd - free all stage-2 tables
 818 * @kvm:	The KVM struct pointer for the VM.
 819 *
 820 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
 821 * underlying level-2 and level-3 tables before freeing the actual level-1 table
 822 * and setting the struct pointer to NULL.
 823 *
 824 * Note we don't need locking here as this is only called when the VM is
 825 * destroyed, which can only be done once.
 826 */
 827void kvm_free_stage2_pgd(struct kvm *kvm)
 828{
 829	if (kvm->arch.pgd == NULL)
 830		return;
 831
 832	unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
 833	kvm_free_hwpgd(kvm_get_hwpgd(kvm));
 834	if (KVM_PREALLOC_LEVEL > 0)
 835		kfree(kvm->arch.pgd);
 836
 837	kvm->arch.pgd = NULL;
 838}
 839
 840static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 841			     phys_addr_t addr)
 842{
 843	pgd_t *pgd;
 844	pud_t *pud;
 845
 846	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
 847	if (WARN_ON(pgd_none(*pgd))) {
 848		if (!cache)
 849			return NULL;
 850		pud = mmu_memory_cache_alloc(cache);
 851		pgd_populate(NULL, pgd, pud);
 852		get_page(virt_to_page(pgd));
 853	}
 854
 855	return pud_offset(pgd, addr);
 856}
 857
 858static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 859			     phys_addr_t addr)
 860{
 861	pud_t *pud;
 862	pmd_t *pmd;
 863
 864	pud = stage2_get_pud(kvm, cache, addr);
 865	if (pud_none(*pud)) {
 866		if (!cache)
 867			return NULL;
 868		pmd = mmu_memory_cache_alloc(cache);
 869		pud_populate(NULL, pud, pmd);
 870		get_page(virt_to_page(pud));
 871	}
 872
 873	return pmd_offset(pud, addr);
 874}
 875
 876static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
 877			       *cache, phys_addr_t addr, const pmd_t *new_pmd)
 878{
 879	pmd_t *pmd, old_pmd;
 880
 881	pmd = stage2_get_pmd(kvm, cache, addr);
 882	VM_BUG_ON(!pmd);
 883
 884	/*
 885	 * Mapping in huge pages should only happen through a fault.  If a
 886	 * page is merged into a transparent huge page, the individual
 887	 * subpages of that huge page should be unmapped through MMU
 888	 * notifiers before we get here.
 889	 *
 890	 * Merging of CompoundPages is not supported; they should become
 891	 * splitting first, unmapped, merged, and mapped back in on-demand.
 892	 */
 893	VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
 894
 895	old_pmd = *pmd;
 896	kvm_set_pmd(pmd, *new_pmd);
 897	if (pmd_present(old_pmd))
 898		kvm_tlb_flush_vmid_ipa(kvm, addr);
 899	else
 900		get_page(virt_to_page(pmd));
 901	return 0;
 902}
 903
 904static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
 905			  phys_addr_t addr, const pte_t *new_pte,
 906			  unsigned long flags)
 907{
 908	pmd_t *pmd;
 909	pte_t *pte, old_pte;
 910	bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
 911	bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
 912
 913	VM_BUG_ON(logging_active && !cache);
 914
 915	/* Create stage-2 page table mapping - Levels 0 and 1 */
 916	pmd = stage2_get_pmd(kvm, cache, addr);
 917	if (!pmd) {
 918		/*
 919		 * Ignore calls from kvm_set_spte_hva for unallocated
 920		 * address ranges.
 921		 */
 922		return 0;
 923	}
 924
 925	/*
 926	 * While dirty page logging - dissolve huge PMD, then continue on to
 927	 * allocate page.
 928	 */
 929	if (logging_active)
 930		stage2_dissolve_pmd(kvm, addr, pmd);
 931
 932	/* Create stage-2 page mappings - Level 2 */
 933	if (pmd_none(*pmd)) {
 934		if (!cache)
 935			return 0; /* ignore calls from kvm_set_spte_hva */
 936		pte = mmu_memory_cache_alloc(cache);
 937		kvm_clean_pte(pte);
 938		pmd_populate_kernel(NULL, pmd, pte);
 939		get_page(virt_to_page(pmd));
 940	}
 941
 942	pte = pte_offset_kernel(pmd, addr);
 943
 944	if (iomap && pte_present(*pte))
 945		return -EFAULT;
 946
 947	/* Create 2nd stage page table mapping - Level 3 */
 948	old_pte = *pte;
 949	kvm_set_pte(pte, *new_pte);
 950	if (pte_present(old_pte))
 951		kvm_tlb_flush_vmid_ipa(kvm, addr);
 952	else
 953		get_page(virt_to_page(pte));
 954
 955	return 0;
 956}
 957
 958/**
 959 * kvm_phys_addr_ioremap - map a device range to guest IPA
 960 *
 961 * @kvm:	The KVM pointer
 962 * @guest_ipa:	The IPA at which to insert the mapping
 963 * @pa:		The physical address of the device
 964 * @size:	The size of the mapping
 965 */
 966int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
 967			  phys_addr_t pa, unsigned long size, bool writable)
 968{
 969	phys_addr_t addr, end;
 970	int ret = 0;
 971	unsigned long pfn;
 972	struct kvm_mmu_memory_cache cache = { 0, };
 973
 974	end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
 975	pfn = __phys_to_pfn(pa);
 976
 977	for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
 978		pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
 979
 980		if (writable)
 981			kvm_set_s2pte_writable(&pte);
 982
 983		ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
 984						KVM_NR_MEM_OBJS);
 985		if (ret)
 986			goto out;
 987		spin_lock(&kvm->mmu_lock);
 988		ret = stage2_set_pte(kvm, &cache, addr, &pte,
 989						KVM_S2PTE_FLAG_IS_IOMAP);
 990		spin_unlock(&kvm->mmu_lock);
 991		if (ret)
 992			goto out;
 993
 994		pfn++;
 995	}
 996
 997out:
 998	mmu_free_memory_cache(&cache);
 999	return ret;
1000}
1001
1002static bool transparent_hugepage_adjust(kvm_pfn_t *pfnp, phys_addr_t *ipap)
1003{
1004	kvm_pfn_t pfn = *pfnp;
1005	gfn_t gfn = *ipap >> PAGE_SHIFT;
1006
1007	if (PageTransCompoundMap(pfn_to_page(pfn))) {
1008		unsigned long mask;
1009		/*
1010		 * The address we faulted on is backed by a transparent huge
1011		 * page.  However, because we map the compound huge page and
1012		 * not the individual tail page, we need to transfer the
1013		 * refcount to the head page.  We have to be careful that the
1014		 * THP doesn't start to split while we are adjusting the
1015		 * refcounts.
1016		 *
1017		 * We are sure this doesn't happen, because mmu_notifier_retry
1018		 * was successful and we are holding the mmu_lock, so if this
1019		 * THP is trying to split, it will be blocked in the mmu
1020		 * notifier before touching any of the pages, specifically
1021		 * before being able to call __split_huge_page_refcount().
1022		 *
1023		 * We can therefore safely transfer the refcount from PG_tail
1024		 * to PG_head and switch the pfn from a tail page to the head
1025		 * page accordingly.
1026		 */
1027		mask = PTRS_PER_PMD - 1;
1028		VM_BUG_ON((gfn & mask) != (pfn & mask));
1029		if (pfn & mask) {
1030			*ipap &= PMD_MASK;
1031			kvm_release_pfn_clean(pfn);
1032			pfn &= ~mask;
1033			kvm_get_pfn(pfn);
1034			*pfnp = pfn;
1035		}
1036
1037		return true;
1038	}
1039
1040	return false;
1041}
1042
1043static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
1044{
1045	if (kvm_vcpu_trap_is_iabt(vcpu))
1046		return false;
1047
1048	return kvm_vcpu_dabt_iswrite(vcpu);
1049}
1050
1051/**
1052 * stage2_wp_ptes - write protect PMD range
1053 * @pmd:	pointer to pmd entry
1054 * @addr:	range start address
1055 * @end:	range end address
1056 */
1057static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
1058{
1059	pte_t *pte;
1060
1061	pte = pte_offset_kernel(pmd, addr);
1062	do {
1063		if (!pte_none(*pte)) {
1064			if (!kvm_s2pte_readonly(pte))
1065				kvm_set_s2pte_readonly(pte);
1066		}
1067	} while (pte++, addr += PAGE_SIZE, addr != end);
1068}
1069
1070/**
1071 * stage2_wp_pmds - write protect PUD range
1072 * @pud:	pointer to pud entry
1073 * @addr:	range start address
1074 * @end:	range end address
1075 */
1076static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
1077{
1078	pmd_t *pmd;
1079	phys_addr_t next;
1080
1081	pmd = pmd_offset(pud, addr);
1082
1083	do {
1084		next = kvm_pmd_addr_end(addr, end);
1085		if (!pmd_none(*pmd)) {
1086			if (kvm_pmd_huge(*pmd)) {
1087				if (!kvm_s2pmd_readonly(pmd))
1088					kvm_set_s2pmd_readonly(pmd);
1089			} else {
1090				stage2_wp_ptes(pmd, addr, next);
1091			}
1092		}
1093	} while (pmd++, addr = next, addr != end);
1094}
1095
1096/**
1097  * stage2_wp_puds - write protect PGD range
1098  * @pgd:	pointer to pgd entry
1099  * @addr:	range start address
1100  * @end:	range end address
1101  *
1102  * Process PUD entries, for a huge PUD we cause a panic.
1103  */
1104static void  stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1105{
1106	pud_t *pud;
1107	phys_addr_t next;
1108
1109	pud = pud_offset(pgd, addr);
1110	do {
1111		next = kvm_pud_addr_end(addr, end);
1112		if (!pud_none(*pud)) {
1113			/* TODO:PUD not supported, revisit later if supported */
1114			BUG_ON(kvm_pud_huge(*pud));
1115			stage2_wp_pmds(pud, addr, next);
1116		}
1117	} while (pud++, addr = next, addr != end);
1118}
1119
1120/**
1121 * stage2_wp_range() - write protect stage2 memory region range
1122 * @kvm:	The KVM pointer
1123 * @addr:	Start address of range
1124 * @end:	End address of range
1125 */
1126static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1127{
1128	pgd_t *pgd;
1129	phys_addr_t next;
1130
1131	pgd = kvm->arch.pgd + kvm_pgd_index(addr);
1132	do {
1133		/*
1134		 * Release kvm_mmu_lock periodically if the memory region is
1135		 * large. Otherwise, we may see kernel panics with
1136		 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1137		 * CONFIG_LOCKDEP. Additionally, holding the lock too long
1138		 * will also starve other vCPUs.
1139		 */
1140		if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1141			cond_resched_lock(&kvm->mmu_lock);
1142
1143		next = kvm_pgd_addr_end(addr, end);
1144		if (pgd_present(*pgd))
1145			stage2_wp_puds(pgd, addr, next);
1146	} while (pgd++, addr = next, addr != end);
1147}
1148
1149/**
1150 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1151 * @kvm:	The KVM pointer
1152 * @slot:	The memory slot to write protect
1153 *
1154 * Called to start logging dirty pages after memory region
1155 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1156 * all present PMD and PTEs are write protected in the memory region.
1157 * Afterwards read of dirty page log can be called.
1158 *
1159 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1160 * serializing operations for VM memory regions.
1161 */
1162void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1163{
1164	struct kvm_memslots *slots = kvm_memslots(kvm);
1165	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
1166	phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1167	phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1168
1169	spin_lock(&kvm->mmu_lock);
1170	stage2_wp_range(kvm, start, end);
1171	spin_unlock(&kvm->mmu_lock);
1172	kvm_flush_remote_tlbs(kvm);
1173}
1174
1175/**
1176 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
1177 * @kvm:	The KVM pointer
1178 * @slot:	The memory slot associated with mask
1179 * @gfn_offset:	The gfn offset in memory slot
1180 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
1181 *		slot to be write protected
1182 *
1183 * Walks bits set in mask write protects the associated pte's. Caller must
1184 * acquire kvm_mmu_lock.
1185 */
1186static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1187		struct kvm_memory_slot *slot,
1188		gfn_t gfn_offset, unsigned long mask)
1189{
1190	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1191	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
1192	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1193
1194	stage2_wp_range(kvm, start, end);
1195}
1196
1197/*
1198 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1199 * dirty pages.
1200 *
1201 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1202 * enable dirty logging for them.
1203 */
1204void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1205		struct kvm_memory_slot *slot,
1206		gfn_t gfn_offset, unsigned long mask)
1207{
1208	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1209}
1210
1211static void coherent_cache_guest_page(struct kvm_vcpu *vcpu, kvm_pfn_t pfn,
1212				      unsigned long size, bool uncached)
1213{
1214	__coherent_cache_guest_page(vcpu, pfn, size, uncached);
1215}
1216
1217static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
1218			  struct kvm_memory_slot *memslot, unsigned long hva,
1219			  unsigned long fault_status)
1220{
1221	int ret;
1222	bool write_fault, writable, hugetlb = false, force_pte = false;
1223	unsigned long mmu_seq;
1224	gfn_t gfn = fault_ipa >> PAGE_SHIFT;
1225	struct kvm *kvm = vcpu->kvm;
1226	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
1227	struct vm_area_struct *vma;
1228	kvm_pfn_t pfn;
1229	pgprot_t mem_type = PAGE_S2;
1230	bool fault_ipa_uncached;
1231	bool logging_active = memslot_is_logging(memslot);
1232	unsigned long flags = 0;
1233
1234	write_fault = kvm_is_write_fault(vcpu);
1235	if (fault_status == FSC_PERM && !write_fault) {
1236		kvm_err("Unexpected L2 read permission error\n");
1237		return -EFAULT;
1238	}
1239
1240	/* Let's check if we will get back a huge page backed by hugetlbfs */
1241	down_read(&current->mm->mmap_sem);
1242	vma = find_vma_intersection(current->mm, hva, hva + 1);
1243	if (unlikely(!vma)) {
1244		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1245		up_read(&current->mm->mmap_sem);
1246		return -EFAULT;
1247	}
1248
1249	if (is_vm_hugetlb_page(vma) && !logging_active) {
1250		hugetlb = true;
1251		gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
1252	} else {
1253		/*
1254		 * Pages belonging to memslots that don't have the same
1255		 * alignment for userspace and IPA cannot be mapped using
1256		 * block descriptors even if the pages belong to a THP for
1257		 * the process, because the stage-2 block descriptor will
1258		 * cover more than a single THP and we loose atomicity for
1259		 * unmapping, updates, and splits of the THP or other pages
1260		 * in the stage-2 block range.
1261		 */
1262		if ((memslot->userspace_addr & ~PMD_MASK) !=
1263		    ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
1264			force_pte = true;
1265	}
1266	up_read(&current->mm->mmap_sem);
1267
1268	/* We need minimum second+third level pages */
1269	ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1270				     KVM_NR_MEM_OBJS);
1271	if (ret)
1272		return ret;
1273
1274	mmu_seq = vcpu->kvm->mmu_notifier_seq;
1275	/*
1276	 * Ensure the read of mmu_notifier_seq happens before we call
1277	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1278	 * the page we just got a reference to gets unmapped before we have a
1279	 * chance to grab the mmu_lock, which ensure that if the page gets
1280	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1281	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1282	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1283	 */
1284	smp_rmb();
1285
1286	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
1287	if (is_error_pfn(pfn))
1288		return -EFAULT;
1289
1290	if (kvm_is_device_pfn(pfn)) {
1291		mem_type = PAGE_S2_DEVICE;
1292		flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1293	} else if (logging_active) {
1294		/*
1295		 * Faults on pages in a memslot with logging enabled
1296		 * should not be mapped with huge pages (it introduces churn
1297		 * and performance degradation), so force a pte mapping.
1298		 */
1299		force_pte = true;
1300		flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1301
1302		/*
1303		 * Only actually map the page as writable if this was a write
1304		 * fault.
1305		 */
1306		if (!write_fault)
1307			writable = false;
1308	}
1309
1310	spin_lock(&kvm->mmu_lock);
1311	if (mmu_notifier_retry(kvm, mmu_seq))
1312		goto out_unlock;
1313
1314	if (!hugetlb && !force_pte)
1315		hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
1316
1317	fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
1318
1319	if (hugetlb) {
1320		pmd_t new_pmd = pfn_pmd(pfn, mem_type);
1321		new_pmd = pmd_mkhuge(new_pmd);
1322		if (writable) {
1323			kvm_set_s2pmd_writable(&new_pmd);
1324			kvm_set_pfn_dirty(pfn);
1325		}
1326		coherent_cache_guest_page(vcpu, pfn, PMD_SIZE, fault_ipa_uncached);
1327		ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1328	} else {
1329		pte_t new_pte = pfn_pte(pfn, mem_type);
1330
1331		if (writable) {
1332			kvm_set_s2pte_writable(&new_pte);
1333			kvm_set_pfn_dirty(pfn);
1334			mark_page_dirty(kvm, gfn);
1335		}
1336		coherent_cache_guest_page(vcpu, pfn, PAGE_SIZE, fault_ipa_uncached);
1337		ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
1338	}
1339
1340out_unlock:
1341	spin_unlock(&kvm->mmu_lock);
1342	kvm_set_pfn_accessed(pfn);
1343	kvm_release_pfn_clean(pfn);
1344	return ret;
1345}
1346
1347/*
1348 * Resolve the access fault by making the page young again.
1349 * Note that because the faulting entry is guaranteed not to be
1350 * cached in the TLB, we don't need to invalidate anything.
1351 */
1352static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1353{
1354	pmd_t *pmd;
1355	pte_t *pte;
1356	kvm_pfn_t pfn;
1357	bool pfn_valid = false;
1358
1359	trace_kvm_access_fault(fault_ipa);
1360
1361	spin_lock(&vcpu->kvm->mmu_lock);
1362
1363	pmd = stage2_get_pmd(vcpu->kvm, NULL, fault_ipa);
1364	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1365		goto out;
1366
1367	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
1368		*pmd = pmd_mkyoung(*pmd);
1369		pfn = pmd_pfn(*pmd);
1370		pfn_valid = true;
1371		goto out;
1372	}
1373
1374	pte = pte_offset_kernel(pmd, fault_ipa);
1375	if (pte_none(*pte))		/* Nothing there either */
1376		goto out;
1377
1378	*pte = pte_mkyoung(*pte);	/* Just a page... */
1379	pfn = pte_pfn(*pte);
1380	pfn_valid = true;
1381out:
1382	spin_unlock(&vcpu->kvm->mmu_lock);
1383	if (pfn_valid)
1384		kvm_set_pfn_accessed(pfn);
1385}
1386
1387/**
1388 * kvm_handle_guest_abort - handles all 2nd stage aborts
1389 * @vcpu:	the VCPU pointer
1390 * @run:	the kvm_run structure
1391 *
1392 * Any abort that gets to the host is almost guaranteed to be caused by a
1393 * missing second stage translation table entry, which can mean that either the
1394 * guest simply needs more memory and we must allocate an appropriate page or it
1395 * can mean that the guest tried to access I/O memory, which is emulated by user
1396 * space. The distinction is based on the IPA causing the fault and whether this
1397 * memory region has been registered as standard RAM by user space.
1398 */
1399int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1400{
1401	unsigned long fault_status;
1402	phys_addr_t fault_ipa;
1403	struct kvm_memory_slot *memslot;
1404	unsigned long hva;
1405	bool is_iabt, write_fault, writable;
1406	gfn_t gfn;
1407	int ret, idx;
1408
1409	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1410	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1411
1412	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1413			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
1414
1415	/* Check the stage-2 fault is trans. fault or write fault */
1416	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1417	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1418	    fault_status != FSC_ACCESS) {
1419		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1420			kvm_vcpu_trap_get_class(vcpu),
1421			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1422			(unsigned long)kvm_vcpu_get_hsr(vcpu));
1423		return -EFAULT;
1424	}
1425
1426	idx = srcu_read_lock(&vcpu->kvm->srcu);
1427
1428	gfn = fault_ipa >> PAGE_SHIFT;
1429	memslot = gfn_to_memslot(vcpu->kvm, gfn);
1430	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1431	write_fault = kvm_is_write_fault(vcpu);
1432	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1433		if (is_iabt) {
1434			/* Prefetch Abort on I/O address */
1435			kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1436			ret = 1;
1437			goto out_unlock;
1438		}
1439
1440		/*
1441		 * Check for a cache maintenance operation. Since we
1442		 * ended-up here, we know it is outside of any memory
1443		 * slot. But we can't find out if that is for a device,
1444		 * or if the guest is just being stupid. The only thing
1445		 * we know for sure is that this range cannot be cached.
1446		 *
1447		 * So let's assume that the guest is just being
1448		 * cautious, and skip the instruction.
1449		 */
1450		if (kvm_vcpu_dabt_is_cm(vcpu)) {
1451			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1452			ret = 1;
1453			goto out_unlock;
1454		}
1455
1456		/*
1457		 * The IPA is reported as [MAX:12], so we need to
1458		 * complement it with the bottom 12 bits from the
1459		 * faulting VA. This is always 12 bits, irrespective
1460		 * of the page size.
1461		 */
1462		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1463		ret = io_mem_abort(vcpu, run, fault_ipa);
1464		goto out_unlock;
1465	}
1466
1467	/* Userspace should not be able to register out-of-bounds IPAs */
1468	VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1469
1470	if (fault_status == FSC_ACCESS) {
1471		handle_access_fault(vcpu, fault_ipa);
1472		ret = 1;
1473		goto out_unlock;
1474	}
1475
1476	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1477	if (ret == 0)
1478		ret = 1;
1479out_unlock:
1480	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1481	return ret;
1482}
1483
1484static int handle_hva_to_gpa(struct kvm *kvm,
1485			     unsigned long start,
1486			     unsigned long end,
1487			     int (*handler)(struct kvm *kvm,
1488					    gpa_t gpa, void *data),
1489			     void *data)
1490{
1491	struct kvm_memslots *slots;
1492	struct kvm_memory_slot *memslot;
1493	int ret = 0;
1494
1495	slots = kvm_memslots(kvm);
1496
1497	/* we only care about the pages that the guest sees */
1498	kvm_for_each_memslot(memslot, slots) {
1499		unsigned long hva_start, hva_end;
1500		gfn_t gfn, gfn_end;
1501
1502		hva_start = max(start, memslot->userspace_addr);
1503		hva_end = min(end, memslot->userspace_addr +
1504					(memslot->npages << PAGE_SHIFT));
1505		if (hva_start >= hva_end)
1506			continue;
1507
1508		/*
1509		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1510		 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1511		 */
1512		gfn = hva_to_gfn_memslot(hva_start, memslot);
1513		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1514
1515		for (; gfn < gfn_end; ++gfn) {
1516			gpa_t gpa = gfn << PAGE_SHIFT;
1517			ret |= handler(kvm, gpa, data);
1518		}
1519	}
1520
1521	return ret;
1522}
1523
1524static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1525{
1526	unmap_stage2_range(kvm, gpa, PAGE_SIZE);
1527	return 0;
1528}
1529
1530int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1531{
1532	unsigned long end = hva + PAGE_SIZE;
1533
1534	if (!kvm->arch.pgd)
1535		return 0;
1536
1537	trace_kvm_unmap_hva(hva);
1538	handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1539	return 0;
1540}
1541
1542int kvm_unmap_hva_range(struct kvm *kvm,
1543			unsigned long start, unsigned long end)
1544{
1545	if (!kvm->arch.pgd)
1546		return 0;
1547
1548	trace_kvm_unmap_hva_range(start, end);
1549	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1550	return 0;
1551}
1552
1553static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1554{
1555	pte_t *pte = (pte_t *)data;
1556
1557	/*
1558	 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1559	 * flag clear because MMU notifiers will have unmapped a huge PMD before
1560	 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1561	 * therefore stage2_set_pte() never needs to clear out a huge PMD
1562	 * through this calling path.
1563	 */
1564	stage2_set_pte(kvm, NULL, gpa, pte, 0);
1565	return 0;
1566}
1567
1568
1569void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1570{
1571	unsigned long end = hva + PAGE_SIZE;
1572	pte_t stage2_pte;
1573
1574	if (!kvm->arch.pgd)
1575		return;
1576
1577	trace_kvm_set_spte_hva(hva);
1578	stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1579	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1580}
1581
1582static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1583{
1584	pmd_t *pmd;
1585	pte_t *pte;
1586
1587	pmd = stage2_get_pmd(kvm, NULL, gpa);
1588	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1589		return 0;
1590
1591	if (kvm_pmd_huge(*pmd)) {	/* THP, HugeTLB */
1592		if (pmd_young(*pmd)) {
1593			*pmd = pmd_mkold(*pmd);
1594			return 1;
1595		}
1596
1597		return 0;
1598	}
1599
1600	pte = pte_offset_kernel(pmd, gpa);
1601	if (pte_none(*pte))
1602		return 0;
1603
1604	if (pte_young(*pte)) {
1605		*pte = pte_mkold(*pte);	/* Just a page... */
1606		return 1;
1607	}
1608
1609	return 0;
1610}
1611
1612static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1613{
1614	pmd_t *pmd;
1615	pte_t *pte;
1616
1617	pmd = stage2_get_pmd(kvm, NULL, gpa);
1618	if (!pmd || pmd_none(*pmd))	/* Nothing there */
1619		return 0;
1620
1621	if (kvm_pmd_huge(*pmd))		/* THP, HugeTLB */
1622		return pmd_young(*pmd);
1623
1624	pte = pte_offset_kernel(pmd, gpa);
1625	if (!pte_none(*pte))		/* Just a page... */
1626		return pte_young(*pte);
1627
1628	return 0;
1629}
1630
1631int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1632{
1633	trace_kvm_age_hva(start, end);
1634	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1635}
1636
1637int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1638{
1639	trace_kvm_test_age_hva(hva);
1640	return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL);
1641}
1642
1643void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1644{
1645	mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1646}
1647
1648phys_addr_t kvm_mmu_get_httbr(void)
1649{
1650	if (__kvm_cpu_uses_extended_idmap())
1651		return virt_to_phys(merged_hyp_pgd);
1652	else
1653		return virt_to_phys(hyp_pgd);
1654}
1655
1656phys_addr_t kvm_mmu_get_boot_httbr(void)
1657{
1658	if (__kvm_cpu_uses_extended_idmap())
1659		return virt_to_phys(merged_hyp_pgd);
1660	else
1661		return virt_to_phys(boot_hyp_pgd);
1662}
1663
1664phys_addr_t kvm_get_idmap_vector(void)
1665{
1666	return hyp_idmap_vector;
1667}
1668
1669int kvm_mmu_init(void)
1670{
1671	int err;
1672
1673	hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1674	hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1675	hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
1676
1677	/*
1678	 * We rely on the linker script to ensure at build time that the HYP
1679	 * init code does not cross a page boundary.
1680	 */
1681	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1682
1683	hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1684	boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1685
1686	if (!hyp_pgd || !boot_hyp_pgd) {
1687		kvm_err("Hyp mode PGD not allocated\n");
1688		err = -ENOMEM;
1689		goto out;
1690	}
1691
1692	/* Create the idmap in the boot page tables */
1693	err = 	__create_hyp_mappings(boot_hyp_pgd,
1694				      hyp_idmap_start, hyp_idmap_end,
1695				      __phys_to_pfn(hyp_idmap_start),
1696				      PAGE_HYP);
1697
1698	if (err) {
1699		kvm_err("Failed to idmap %lx-%lx\n",
1700			hyp_idmap_start, hyp_idmap_end);
1701		goto out;
1702	}
1703
1704	if (__kvm_cpu_uses_extended_idmap()) {
1705		merged_hyp_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1706		if (!merged_hyp_pgd) {
1707			kvm_err("Failed to allocate extra HYP pgd\n");
1708			goto out;
1709		}
1710		__kvm_extend_hypmap(boot_hyp_pgd, hyp_pgd, merged_hyp_pgd,
1711				    hyp_idmap_start);
1712		return 0;
1713	}
1714
1715	/* Map the very same page at the trampoline VA */
1716	err = 	__create_hyp_mappings(boot_hyp_pgd,
1717				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1718				      __phys_to_pfn(hyp_idmap_start),
1719				      PAGE_HYP);
1720	if (err) {
1721		kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1722			TRAMPOLINE_VA);
1723		goto out;
1724	}
1725
1726	/* Map the same page again into the runtime page tables */
1727	err = 	__create_hyp_mappings(hyp_pgd,
1728				      TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1729				      __phys_to_pfn(hyp_idmap_start),
1730				      PAGE_HYP);
1731	if (err) {
1732		kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1733			TRAMPOLINE_VA);
1734		goto out;
1735	}
1736
1737	return 0;
1738out:
1739	free_hyp_pgds();
1740	return err;
1741}
1742
1743void kvm_arch_commit_memory_region(struct kvm *kvm,
1744				   const struct kvm_userspace_memory_region *mem,
1745				   const struct kvm_memory_slot *old,
1746				   const struct kvm_memory_slot *new,
1747				   enum kvm_mr_change change)
1748{
1749	/*
1750	 * At this point memslot has been committed and there is an
1751	 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1752	 * memory slot is write protected.
1753	 */
1754	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1755		kvm_mmu_wp_memory_region(kvm, mem->slot);
1756}
1757
1758int kvm_arch_prepare_memory_region(struct kvm *kvm,
1759				   struct kvm_memory_slot *memslot,
1760				   const struct kvm_userspace_memory_region *mem,
1761				   enum kvm_mr_change change)
1762{
1763	hva_t hva = mem->userspace_addr;
1764	hva_t reg_end = hva + mem->memory_size;
1765	bool writable = !(mem->flags & KVM_MEM_READONLY);
1766	int ret = 0;
1767
1768	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1769			change != KVM_MR_FLAGS_ONLY)
1770		return 0;
1771
1772	/*
1773	 * Prevent userspace from creating a memory region outside of the IPA
1774	 * space addressable by the KVM guest IPA space.
1775	 */
1776	if (memslot->base_gfn + memslot->npages >=
1777	    (KVM_PHYS_SIZE >> PAGE_SHIFT))
1778		return -EFAULT;
1779
1780	/*
1781	 * A memory region could potentially cover multiple VMAs, and any holes
1782	 * between them, so iterate over all of them to find out if we can map
1783	 * any of them right now.
1784	 *
1785	 *     +--------------------------------------------+
1786	 * +---------------+----------------+   +----------------+
1787	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1788	 * +---------------+----------------+   +----------------+
1789	 *     |               memory region                |
1790	 *     +--------------------------------------------+
1791	 */
1792	do {
1793		struct vm_area_struct *vma = find_vma(current->mm, hva);
1794		hva_t vm_start, vm_end;
1795
1796		if (!vma || vma->vm_start >= reg_end)
1797			break;
1798
1799		/*
1800		 * Mapping a read-only VMA is only allowed if the
1801		 * memory region is configured as read-only.
1802		 */
1803		if (writable && !(vma->vm_flags & VM_WRITE)) {
1804			ret = -EPERM;
1805			break;
1806		}
1807
1808		/*
1809		 * Take the intersection of this VMA with the memory region
1810		 */
1811		vm_start = max(hva, vma->vm_start);
1812		vm_end = min(reg_end, vma->vm_end);
1813
1814		if (vma->vm_flags & VM_PFNMAP) {
1815			gpa_t gpa = mem->guest_phys_addr +
1816				    (vm_start - mem->userspace_addr);
1817			phys_addr_t pa;
1818
1819			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1820			pa += vm_start - vma->vm_start;
1821
1822			/* IO region dirty page logging not allowed */
1823			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1824				return -EINVAL;
1825
1826			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1827						    vm_end - vm_start,
1828						    writable);
1829			if (ret)
1830				break;
1831		}
1832		hva = vm_end;
1833	} while (hva < reg_end);
1834
1835	if (change == KVM_MR_FLAGS_ONLY)
1836		return ret;
1837
1838	spin_lock(&kvm->mmu_lock);
1839	if (ret)
1840		unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
1841	else
1842		stage2_flush_memslot(kvm, memslot);
1843	spin_unlock(&kvm->mmu_lock);
1844	return ret;
1845}
1846
1847void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1848			   struct kvm_memory_slot *dont)
1849{
1850}
1851
1852int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1853			    unsigned long npages)
1854{
1855	/*
1856	 * Readonly memslots are not incoherent with the caches by definition,
1857	 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1858	 * that the guest may consider devices and hence map as uncached.
1859	 * To prevent incoherency issues in these cases, tag all readonly
1860	 * regions as incoherent.
1861	 */
1862	if (slot->flags & KVM_MEM_READONLY)
1863		slot->flags |= KVM_MEMSLOT_INCOHERENT;
1864	return 0;
1865}
1866
1867void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
1868{
1869}
1870
1871void kvm_arch_flush_shadow_all(struct kvm *kvm)
1872{
1873}
1874
1875void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1876				   struct kvm_memory_slot *slot)
1877{
1878	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1879	phys_addr_t size = slot->npages << PAGE_SHIFT;
1880
1881	spin_lock(&kvm->mmu_lock);
1882	unmap_stage2_range(kvm, gpa, size);
1883	spin_unlock(&kvm->mmu_lock);
1884}
1885
1886/*
1887 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1888 *
1889 * Main problems:
1890 * - S/W ops are local to a CPU (not broadcast)
1891 * - We have line migration behind our back (speculation)
1892 * - System caches don't support S/W at all (damn!)
1893 *
1894 * In the face of the above, the best we can do is to try and convert
1895 * S/W ops to VA ops. Because the guest is not allowed to infer the
1896 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1897 * which is a rather good thing for us.
1898 *
1899 * Also, it is only used when turning caches on/off ("The expected
1900 * usage of the cache maintenance instructions that operate by set/way
1901 * is associated with the cache maintenance instructions associated
1902 * with the powerdown and powerup of caches, if this is required by
1903 * the implementation.").
1904 *
1905 * We use the following policy:
1906 *
1907 * - If we trap a S/W operation, we enable VM trapping to detect
1908 *   caches being turned on/off, and do a full clean.
1909 *
1910 * - We flush the caches on both caches being turned on and off.
1911 *
1912 * - Once the caches are enabled, we stop trapping VM ops.
1913 */
1914void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1915{
1916	unsigned long hcr = vcpu_get_hcr(vcpu);
1917
1918	/*
1919	 * If this is the first time we do a S/W operation
1920	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1921	 * VM trapping.
1922	 *
1923	 * Otherwise, rely on the VM trapping to wait for the MMU +
1924	 * Caches to be turned off. At that point, we'll be able to
1925	 * clean the caches again.
1926	 */
1927	if (!(hcr & HCR_TVM)) {
1928		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1929					vcpu_has_cache_enabled(vcpu));
1930		stage2_flush_vm(vcpu->kvm);
1931		vcpu_set_hcr(vcpu, hcr | HCR_TVM);
1932	}
1933}
1934
1935void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1936{
1937	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1938
1939	/*
1940	 * If switching the MMU+caches on, need to invalidate the caches.
1941	 * If switching it off, need to clean the caches.
1942	 * Clean + invalidate does the trick always.
1943	 */
1944	if (now_enabled != was_enabled)
1945		stage2_flush_vm(vcpu->kvm);
1946
1947	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1948	if (now_enabled)
1949		vcpu_set_hcr(vcpu, vcpu_get_hcr(vcpu) & ~HCR_TVM);
1950
1951	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1952}