Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* Keyring handling
   2 *
   3 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   4 * Written by David Howells (dhowells@redhat.com)
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/sched.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/seq_file.h>
  18#include <linux/err.h>
 
 
  19#include <keys/keyring-type.h>
  20#include <keys/user-type.h>
  21#include <linux/assoc_array_priv.h>
  22#include <linux/uaccess.h>
 
  23#include "internal.h"
  24
  25/*
  26 * When plumbing the depths of the key tree, this sets a hard limit
  27 * set on how deep we're willing to go.
  28 */
  29#define KEYRING_SEARCH_MAX_DEPTH 6
  30
  31/*
  32 * We keep all named keyrings in a hash to speed looking them up.
  33 */
  34#define KEYRING_NAME_HASH_SIZE	(1 << 5)
  35
  36/*
  37 * We mark pointers we pass to the associative array with bit 1 set if
  38 * they're keyrings and clear otherwise.
  39 */
  40#define KEYRING_PTR_SUBTYPE	0x2UL
  41
  42static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  43{
  44	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  45}
  46static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  47{
  48	void *object = assoc_array_ptr_to_leaf(x);
  49	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  50}
  51static inline void *keyring_key_to_ptr(struct key *key)
  52{
  53	if (key->type == &key_type_keyring)
  54		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  55	return key;
  56}
  57
  58static struct list_head	keyring_name_hash[KEYRING_NAME_HASH_SIZE];
  59static DEFINE_RWLOCK(keyring_name_lock);
  60
  61static inline unsigned keyring_hash(const char *desc)
 
 
 
  62{
  63	unsigned bucket = 0;
  64
  65	for (; *desc; desc++)
  66		bucket += (unsigned char)*desc;
  67
  68	return bucket & (KEYRING_NAME_HASH_SIZE - 1);
 
 
  69}
  70
  71/*
  72 * The keyring key type definition.  Keyrings are simply keys of this type and
  73 * can be treated as ordinary keys in addition to having their own special
  74 * operations.
  75 */
  76static int keyring_preparse(struct key_preparsed_payload *prep);
  77static void keyring_free_preparse(struct key_preparsed_payload *prep);
  78static int keyring_instantiate(struct key *keyring,
  79			       struct key_preparsed_payload *prep);
  80static void keyring_revoke(struct key *keyring);
  81static void keyring_destroy(struct key *keyring);
  82static void keyring_describe(const struct key *keyring, struct seq_file *m);
  83static long keyring_read(const struct key *keyring,
  84			 char __user *buffer, size_t buflen);
  85
  86struct key_type key_type_keyring = {
  87	.name		= "keyring",
  88	.def_datalen	= 0,
  89	.preparse	= keyring_preparse,
  90	.free_preparse	= keyring_free_preparse,
  91	.instantiate	= keyring_instantiate,
  92	.revoke		= keyring_revoke,
  93	.destroy	= keyring_destroy,
  94	.describe	= keyring_describe,
  95	.read		= keyring_read,
  96};
  97EXPORT_SYMBOL(key_type_keyring);
  98
  99/*
 100 * Semaphore to serialise link/link calls to prevent two link calls in parallel
 101 * introducing a cycle.
 102 */
 103static DECLARE_RWSEM(keyring_serialise_link_sem);
 104
 105/*
 106 * Publish the name of a keyring so that it can be found by name (if it has
 107 * one).
 108 */
 109static void keyring_publish_name(struct key *keyring)
 110{
 111	int bucket;
 112
 113	if (keyring->description) {
 114		bucket = keyring_hash(keyring->description);
 115
 
 
 
 116		write_lock(&keyring_name_lock);
 117
 118		if (!keyring_name_hash[bucket].next)
 119			INIT_LIST_HEAD(&keyring_name_hash[bucket]);
 120
 121		list_add_tail(&keyring->name_link,
 122			      &keyring_name_hash[bucket]);
 123
 124		write_unlock(&keyring_name_lock);
 125	}
 126}
 127
 128/*
 129 * Preparse a keyring payload
 130 */
 131static int keyring_preparse(struct key_preparsed_payload *prep)
 132{
 133	return prep->datalen != 0 ? -EINVAL : 0;
 134}
 135
 136/*
 137 * Free a preparse of a user defined key payload
 138 */
 139static void keyring_free_preparse(struct key_preparsed_payload *prep)
 140{
 141}
 142
 143/*
 144 * Initialise a keyring.
 145 *
 146 * Returns 0 on success, -EINVAL if given any data.
 147 */
 148static int keyring_instantiate(struct key *keyring,
 149			       struct key_preparsed_payload *prep)
 150{
 151	assoc_array_init(&keyring->keys);
 152	/* make the keyring available by name if it has one */
 153	keyring_publish_name(keyring);
 154	return 0;
 155}
 156
 157/*
 158 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 159 * fold the carry back too, but that requires inline asm.
 160 */
 161static u64 mult_64x32_and_fold(u64 x, u32 y)
 162{
 163	u64 hi = (u64)(u32)(x >> 32) * y;
 164	u64 lo = (u64)(u32)(x) * y;
 165	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 166}
 167
 168/*
 169 * Hash a key type and description.
 170 */
 171static unsigned long hash_key_type_and_desc(const struct keyring_index_key *index_key)
 172{
 173	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 174	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 175	const char *description = index_key->description;
 176	unsigned long hash, type;
 177	u32 piece;
 178	u64 acc;
 179	int n, desc_len = index_key->desc_len;
 180
 181	type = (unsigned long)index_key->type;
 182
 183	acc = mult_64x32_and_fold(type, desc_len + 13);
 184	acc = mult_64x32_and_fold(acc, 9207);
 
 
 
 
 185	for (;;) {
 186		n = desc_len;
 187		if (n <= 0)
 188			break;
 189		if (n > 4)
 190			n = 4;
 191		piece = 0;
 192		memcpy(&piece, description, n);
 193		description += n;
 194		desc_len -= n;
 195		acc = mult_64x32_and_fold(acc, piece);
 196		acc = mult_64x32_and_fold(acc, 9207);
 197	}
 198
 199	/* Fold the hash down to 32 bits if need be. */
 200	hash = acc;
 201	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 202		hash ^= acc >> 32;
 203
 204	/* Squidge all the keyrings into a separate part of the tree to
 205	 * ordinary keys by making sure the lowest level segment in the hash is
 206	 * zero for keyrings and non-zero otherwise.
 207	 */
 208	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 209		return hash | (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 210	if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 211		return (hash + (hash << level_shift)) & ~fan_mask;
 212	return hash;
 213}
 214
 215/*
 216 * Build the next index key chunk.
 217 *
 218 * On 32-bit systems the index key is laid out as:
 219 *
 220 *	0	4	5	9...
 221 *	hash	desclen	typeptr	desc[]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 222 *
 223 * On 64-bit systems:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 224 *
 225 *	0	8	9	17...
 226 *	hash	desclen	typeptr	desc[]
 
 
 
 
 
 
 
 
 
 
 
 227 *
 228 * We return it one word-sized chunk at a time.
 229 */
 230static unsigned long keyring_get_key_chunk(const void *data, int level)
 231{
 232	const struct keyring_index_key *index_key = data;
 233	unsigned long chunk = 0;
 234	long offset = 0;
 235	int desc_len = index_key->desc_len, n = sizeof(chunk);
 236
 237	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 238	switch (level) {
 239	case 0:
 240		return hash_key_type_and_desc(index_key);
 241	case 1:
 242		return ((unsigned long)index_key->type << 8) | desc_len;
 243	case 2:
 244		if (desc_len == 0)
 245			return (u8)((unsigned long)index_key->type >>
 246				    (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 247		n--;
 248		offset = 1;
 249	default:
 250		offset += sizeof(chunk) - 1;
 251		offset += (level - 3) * sizeof(chunk);
 252		if (offset >= desc_len)
 253			return 0;
 254		desc_len -= offset;
 
 
 
 255		if (desc_len > n)
 256			desc_len = n;
 257		offset += desc_len;
 258		do {
 259			chunk <<= 8;
 260			chunk |= ((u8*)index_key->description)[--offset];
 261		} while (--desc_len > 0);
 262
 263		if (level == 2) {
 264			chunk <<= 8;
 265			chunk |= (u8)((unsigned long)index_key->type >>
 266				      (ASSOC_ARRAY_KEY_CHUNK_SIZE - 8));
 267		}
 268		return chunk;
 269	}
 270}
 271
 272static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 273{
 274	const struct key *key = keyring_ptr_to_key(object);
 275	return keyring_get_key_chunk(&key->index_key, level);
 276}
 277
 278static bool keyring_compare_object(const void *object, const void *data)
 279{
 280	const struct keyring_index_key *index_key = data;
 281	const struct key *key = keyring_ptr_to_key(object);
 282
 283	return key->index_key.type == index_key->type &&
 
 284		key->index_key.desc_len == index_key->desc_len &&
 285		memcmp(key->index_key.description, index_key->description,
 286		       index_key->desc_len) == 0;
 287}
 288
 289/*
 290 * Compare the index keys of a pair of objects and determine the bit position
 291 * at which they differ - if they differ.
 292 */
 293static int keyring_diff_objects(const void *object, const void *data)
 294{
 295	const struct key *key_a = keyring_ptr_to_key(object);
 296	const struct keyring_index_key *a = &key_a->index_key;
 297	const struct keyring_index_key *b = data;
 298	unsigned long seg_a, seg_b;
 299	int level, i;
 300
 301	level = 0;
 302	seg_a = hash_key_type_and_desc(a);
 303	seg_b = hash_key_type_and_desc(b);
 304	if ((seg_a ^ seg_b) != 0)
 305		goto differ;
 
 306
 307	/* The number of bits contributed by the hash is controlled by a
 308	 * constant in the assoc_array headers.  Everything else thereafter we
 309	 * can deal with as being machine word-size dependent.
 310	 */
 311	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 312	seg_a = a->desc_len;
 313	seg_b = b->desc_len;
 314	if ((seg_a ^ seg_b) != 0)
 315		goto differ;
 
 316
 317	/* The next bit may not work on big endian */
 318	level++;
 319	seg_a = (unsigned long)a->type;
 320	seg_b = (unsigned long)b->type;
 321	if ((seg_a ^ seg_b) != 0)
 322		goto differ;
 
 323
 
 
 
 
 324	level += sizeof(unsigned long);
 325	if (a->desc_len == 0)
 326		goto same;
 327
 328	i = 0;
 329	if (((unsigned long)a->description | (unsigned long)b->description) &
 330	    (sizeof(unsigned long) - 1)) {
 331		do {
 332			seg_a = *(unsigned long *)(a->description + i);
 333			seg_b = *(unsigned long *)(b->description + i);
 334			if ((seg_a ^ seg_b) != 0)
 335				goto differ_plus_i;
 336			i += sizeof(unsigned long);
 337		} while (i < (a->desc_len & (sizeof(unsigned long) - 1)));
 338	}
 339
 340	for (; i < a->desc_len; i++) {
 341		seg_a = *(unsigned char *)(a->description + i);
 342		seg_b = *(unsigned char *)(b->description + i);
 343		if ((seg_a ^ seg_b) != 0)
 344			goto differ_plus_i;
 345	}
 346
 347same:
 348	return -1;
 349
 350differ_plus_i:
 351	level += i;
 352differ:
 353	i = level * 8 + __ffs(seg_a ^ seg_b);
 354	return i;
 355}
 356
 357/*
 358 * Free an object after stripping the keyring flag off of the pointer.
 359 */
 360static void keyring_free_object(void *object)
 361{
 362	key_put(keyring_ptr_to_key(object));
 363}
 364
 365/*
 366 * Operations for keyring management by the index-tree routines.
 367 */
 368static const struct assoc_array_ops keyring_assoc_array_ops = {
 369	.get_key_chunk		= keyring_get_key_chunk,
 370	.get_object_key_chunk	= keyring_get_object_key_chunk,
 371	.compare_object		= keyring_compare_object,
 372	.diff_objects		= keyring_diff_objects,
 373	.free_object		= keyring_free_object,
 374};
 375
 376/*
 377 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 378 * and dispose of its data.
 379 *
 380 * The garbage collector detects the final key_put(), removes the keyring from
 381 * the serial number tree and then does RCU synchronisation before coming here,
 382 * so we shouldn't need to worry about code poking around here with the RCU
 383 * readlock held by this time.
 384 */
 385static void keyring_destroy(struct key *keyring)
 386{
 387	if (keyring->description) {
 388		write_lock(&keyring_name_lock);
 389
 390		if (keyring->name_link.next != NULL &&
 391		    !list_empty(&keyring->name_link))
 392			list_del(&keyring->name_link);
 393
 394		write_unlock(&keyring_name_lock);
 395	}
 396
 
 
 
 
 
 
 
 397	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 398}
 399
 400/*
 401 * Describe a keyring for /proc.
 402 */
 403static void keyring_describe(const struct key *keyring, struct seq_file *m)
 404{
 405	if (keyring->description)
 406		seq_puts(m, keyring->description);
 407	else
 408		seq_puts(m, "[anon]");
 409
 410	if (key_is_instantiated(keyring)) {
 411		if (keyring->keys.nr_leaves_on_tree != 0)
 412			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 413		else
 414			seq_puts(m, ": empty");
 415	}
 416}
 417
 418struct keyring_read_iterator_context {
 419	size_t			qty;
 420	size_t			count;
 421	key_serial_t __user	*buffer;
 422};
 423
 424static int keyring_read_iterator(const void *object, void *data)
 425{
 426	struct keyring_read_iterator_context *ctx = data;
 427	const struct key *key = keyring_ptr_to_key(object);
 428	int ret;
 429
 430	kenter("{%s,%d},,{%zu/%zu}",
 431	       key->type->name, key->serial, ctx->count, ctx->qty);
 432
 433	if (ctx->count >= ctx->qty)
 434		return 1;
 435
 436	ret = put_user(key->serial, ctx->buffer);
 437	if (ret < 0)
 438		return ret;
 439	ctx->buffer++;
 440	ctx->count += sizeof(key->serial);
 441	return 0;
 442}
 443
 444/*
 445 * Read a list of key IDs from the keyring's contents in binary form
 446 *
 447 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 448 * from modifying it under us - which could cause us to read key IDs multiple
 449 * times.
 450 */
 451static long keyring_read(const struct key *keyring,
 452			 char __user *buffer, size_t buflen)
 453{
 454	struct keyring_read_iterator_context ctx;
 455	unsigned long nr_keys;
 456	int ret;
 457
 458	kenter("{%d},,%zu", key_serial(keyring), buflen);
 459
 460	if (buflen & (sizeof(key_serial_t) - 1))
 461		return -EINVAL;
 462
 463	nr_keys = keyring->keys.nr_leaves_on_tree;
 464	if (nr_keys == 0)
 465		return 0;
 466
 467	/* Calculate how much data we could return */
 468	ctx.qty = nr_keys * sizeof(key_serial_t);
 469
 470	if (!buffer || !buflen)
 471		return ctx.qty;
 472
 473	if (buflen > ctx.qty)
 474		ctx.qty = buflen;
 475
 476	/* Copy the IDs of the subscribed keys into the buffer */
 477	ctx.buffer = (key_serial_t __user *)buffer;
 478	ctx.count = 0;
 479	ret = assoc_array_iterate(&keyring->keys, keyring_read_iterator, &ctx);
 480	if (ret < 0) {
 481		kleave(" = %d [iterate]", ret);
 482		return ret;
 483	}
 484
 485	kleave(" = %zu [ok]", ctx.count);
 486	return ctx.count;
 
 
 
 
 
 487}
 488
 489/*
 490 * Allocate a keyring and link into the destination keyring.
 491 */
 492struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 493			  const struct cred *cred, key_perm_t perm,
 494			  unsigned long flags, struct key *dest)
 
 
 495{
 496	struct key *keyring;
 497	int ret;
 498
 499	keyring = key_alloc(&key_type_keyring, description,
 500			    uid, gid, cred, perm, flags);
 501	if (!IS_ERR(keyring)) {
 502		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 503		if (ret < 0) {
 504			key_put(keyring);
 505			keyring = ERR_PTR(ret);
 506		}
 507	}
 508
 509	return keyring;
 510}
 511EXPORT_SYMBOL(keyring_alloc);
 512
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 513/*
 514 * By default, we keys found by getting an exact match on their descriptions.
 515 */
 516bool key_default_cmp(const struct key *key,
 517		     const struct key_match_data *match_data)
 518{
 519	return strcmp(key->description, match_data->raw_data) == 0;
 520}
 521
 522/*
 523 * Iteration function to consider each key found.
 524 */
 525static int keyring_search_iterator(const void *object, void *iterator_data)
 526{
 527	struct keyring_search_context *ctx = iterator_data;
 528	const struct key *key = keyring_ptr_to_key(object);
 529	unsigned long kflags = key->flags;
 
 530
 531	kenter("{%d}", key->serial);
 532
 533	/* ignore keys not of this type */
 534	if (key->type != ctx->index_key.type) {
 535		kleave(" = 0 [!type]");
 536		return 0;
 537	}
 538
 539	/* skip invalidated, revoked and expired keys */
 540	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 
 
 541		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 542			      (1 << KEY_FLAG_REVOKED))) {
 543			ctx->result = ERR_PTR(-EKEYREVOKED);
 544			kleave(" = %d [invrev]", ctx->skipped_ret);
 545			goto skipped;
 546		}
 547
 548		if (key->expiry && ctx->now.tv_sec >= key->expiry) {
 549			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 550				ctx->result = ERR_PTR(-EKEYEXPIRED);
 551			kleave(" = %d [expire]", ctx->skipped_ret);
 552			goto skipped;
 553		}
 554	}
 555
 556	/* keys that don't match */
 557	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 558		kleave(" = 0 [!match]");
 559		return 0;
 560	}
 561
 562	/* key must have search permissions */
 563	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 564	    key_task_permission(make_key_ref(key, ctx->possessed),
 565				ctx->cred, KEY_NEED_SEARCH) < 0) {
 566		ctx->result = ERR_PTR(-EACCES);
 567		kleave(" = %d [!perm]", ctx->skipped_ret);
 568		goto skipped;
 569	}
 570
 571	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 572		/* we set a different error code if we pass a negative key */
 573		if (kflags & (1 << KEY_FLAG_NEGATIVE)) {
 574			smp_rmb();
 575			ctx->result = ERR_PTR(key->reject_error);
 576			kleave(" = %d [neg]", ctx->skipped_ret);
 577			goto skipped;
 578		}
 579	}
 580
 581	/* Found */
 582	ctx->result = make_key_ref(key, ctx->possessed);
 583	kleave(" = 1 [found]");
 584	return 1;
 585
 586skipped:
 587	return ctx->skipped_ret;
 588}
 589
 590/*
 591 * Search inside a keyring for a key.  We can search by walking to it
 592 * directly based on its index-key or we can iterate over the entire
 593 * tree looking for it, based on the match function.
 594 */
 595static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 596{
 597	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 598		const void *object;
 599
 600		object = assoc_array_find(&keyring->keys,
 601					  &keyring_assoc_array_ops,
 602					  &ctx->index_key);
 603		return object ? ctx->iterator(object, ctx) : 0;
 604	}
 605	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 606}
 607
 608/*
 609 * Search a tree of keyrings that point to other keyrings up to the maximum
 610 * depth.
 611 */
 612static bool search_nested_keyrings(struct key *keyring,
 613				   struct keyring_search_context *ctx)
 614{
 615	struct {
 616		struct key *keyring;
 617		struct assoc_array_node *node;
 618		int slot;
 619	} stack[KEYRING_SEARCH_MAX_DEPTH];
 620
 621	struct assoc_array_shortcut *shortcut;
 622	struct assoc_array_node *node;
 623	struct assoc_array_ptr *ptr;
 624	struct key *key;
 625	int sp = 0, slot;
 626
 627	kenter("{%d},{%s,%s}",
 628	       keyring->serial,
 629	       ctx->index_key.type->name,
 630	       ctx->index_key.description);
 631
 632#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 633	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 634	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 635
 636	if (ctx->index_key.description)
 637		ctx->index_key.desc_len = strlen(ctx->index_key.description);
 638
 639	/* Check to see if this top-level keyring is what we are looking for
 640	 * and whether it is valid or not.
 641	 */
 642	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 643	    keyring_compare_object(keyring, &ctx->index_key)) {
 644		ctx->skipped_ret = 2;
 645		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 646		case 1:
 647			goto found;
 648		case 2:
 649			return false;
 650		default:
 651			break;
 652		}
 653	}
 654
 655	ctx->skipped_ret = 0;
 656
 657	/* Start processing a new keyring */
 658descend_to_keyring:
 659	kdebug("descend to %d", keyring->serial);
 660	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 661			      (1 << KEY_FLAG_REVOKED)))
 662		goto not_this_keyring;
 663
 664	/* Search through the keys in this keyring before its searching its
 665	 * subtrees.
 666	 */
 667	if (search_keyring(keyring, ctx))
 668		goto found;
 669
 670	/* Then manually iterate through the keyrings nested in this one.
 671	 *
 672	 * Start from the root node of the index tree.  Because of the way the
 673	 * hash function has been set up, keyrings cluster on the leftmost
 674	 * branch of the root node (root slot 0) or in the root node itself.
 675	 * Non-keyrings avoid the leftmost branch of the root entirely (root
 676	 * slots 1-15).
 677	 */
 678	ptr = ACCESS_ONCE(keyring->keys.root);
 
 
 
 679	if (!ptr)
 680		goto not_this_keyring;
 681
 682	if (assoc_array_ptr_is_shortcut(ptr)) {
 683		/* If the root is a shortcut, either the keyring only contains
 684		 * keyring pointers (everything clusters behind root slot 0) or
 685		 * doesn't contain any keyring pointers.
 686		 */
 687		shortcut = assoc_array_ptr_to_shortcut(ptr);
 688		smp_read_barrier_depends();
 689		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 690			goto not_this_keyring;
 691
 692		ptr = ACCESS_ONCE(shortcut->next_node);
 693		node = assoc_array_ptr_to_node(ptr);
 694		goto begin_node;
 695	}
 696
 697	node = assoc_array_ptr_to_node(ptr);
 698	smp_read_barrier_depends();
 699
 700	ptr = node->slots[0];
 701	if (!assoc_array_ptr_is_meta(ptr))
 702		goto begin_node;
 703
 704descend_to_node:
 705	/* Descend to a more distal node in this keyring's content tree and go
 706	 * through that.
 707	 */
 708	kdebug("descend");
 709	if (assoc_array_ptr_is_shortcut(ptr)) {
 710		shortcut = assoc_array_ptr_to_shortcut(ptr);
 711		smp_read_barrier_depends();
 712		ptr = ACCESS_ONCE(shortcut->next_node);
 713		BUG_ON(!assoc_array_ptr_is_node(ptr));
 714	}
 715	node = assoc_array_ptr_to_node(ptr);
 716
 717begin_node:
 718	kdebug("begin_node");
 719	smp_read_barrier_depends();
 720	slot = 0;
 721ascend_to_node:
 722	/* Go through the slots in a node */
 723	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 724		ptr = ACCESS_ONCE(node->slots[slot]);
 725
 726		if (assoc_array_ptr_is_meta(ptr) && node->back_pointer)
 727			goto descend_to_node;
 
 
 
 728
 729		if (!keyring_ptr_is_keyring(ptr))
 730			continue;
 731
 732		key = keyring_ptr_to_key(ptr);
 733
 734		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 735			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 736				ctx->result = ERR_PTR(-ELOOP);
 737				return false;
 738			}
 739			goto not_this_keyring;
 740		}
 741
 742		/* Search a nested keyring */
 743		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 744		    key_task_permission(make_key_ref(key, ctx->possessed),
 745					ctx->cred, KEY_NEED_SEARCH) < 0)
 746			continue;
 747
 748		/* stack the current position */
 749		stack[sp].keyring = keyring;
 750		stack[sp].node = node;
 751		stack[sp].slot = slot;
 752		sp++;
 753
 754		/* begin again with the new keyring */
 755		keyring = key;
 756		goto descend_to_keyring;
 757	}
 758
 759	/* We've dealt with all the slots in the current node, so now we need
 760	 * to ascend to the parent and continue processing there.
 761	 */
 762	ptr = ACCESS_ONCE(node->back_pointer);
 763	slot = node->parent_slot;
 764
 765	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 766		shortcut = assoc_array_ptr_to_shortcut(ptr);
 767		smp_read_barrier_depends();
 768		ptr = ACCESS_ONCE(shortcut->back_pointer);
 769		slot = shortcut->parent_slot;
 770	}
 771	if (!ptr)
 772		goto not_this_keyring;
 773	node = assoc_array_ptr_to_node(ptr);
 774	smp_read_barrier_depends();
 775	slot++;
 776
 777	/* If we've ascended to the root (zero backpointer), we must have just
 778	 * finished processing the leftmost branch rather than the root slots -
 779	 * so there can't be any more keyrings for us to find.
 780	 */
 781	if (node->back_pointer) {
 782		kdebug("ascend %d", slot);
 783		goto ascend_to_node;
 784	}
 785
 786	/* The keyring we're looking at was disqualified or didn't contain a
 787	 * matching key.
 788	 */
 789not_this_keyring:
 790	kdebug("not_this_keyring %d", sp);
 791	if (sp <= 0) {
 792		kleave(" = false");
 793		return false;
 794	}
 795
 796	/* Resume the processing of a keyring higher up in the tree */
 797	sp--;
 798	keyring = stack[sp].keyring;
 799	node = stack[sp].node;
 800	slot = stack[sp].slot + 1;
 801	kdebug("ascend to %d [%d]", keyring->serial, slot);
 802	goto ascend_to_node;
 803
 804	/* We found a viable match */
 805found:
 806	key = key_ref_to_ptr(ctx->result);
 807	key_check(key);
 808	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 809		key->last_used_at = ctx->now.tv_sec;
 810		keyring->last_used_at = ctx->now.tv_sec;
 811		while (sp > 0)
 812			stack[--sp].keyring->last_used_at = ctx->now.tv_sec;
 813	}
 814	kleave(" = true");
 815	return true;
 816}
 817
 818/**
 819 * keyring_search_aux - Search a keyring tree for a key matching some criteria
 820 * @keyring_ref: A pointer to the keyring with possession indicator.
 821 * @ctx: The keyring search context.
 822 *
 823 * Search the supplied keyring tree for a key that matches the criteria given.
 824 * The root keyring and any linked keyrings must grant Search permission to the
 825 * caller to be searchable and keys can only be found if they too grant Search
 826 * to the caller. The possession flag on the root keyring pointer controls use
 827 * of the possessor bits in permissions checking of the entire tree.  In
 828 * addition, the LSM gets to forbid keyring searches and key matches.
 829 *
 830 * The search is performed as a breadth-then-depth search up to the prescribed
 831 * limit (KEYRING_SEARCH_MAX_DEPTH).
 
 
 832 *
 833 * Keys are matched to the type provided and are then filtered by the match
 834 * function, which is given the description to use in any way it sees fit.  The
 835 * match function may use any attributes of a key that it wishes to to
 836 * determine the match.  Normally the match function from the key type would be
 837 * used.
 838 *
 839 * RCU can be used to prevent the keyring key lists from disappearing without
 840 * the need to take lots of locks.
 841 *
 842 * Returns a pointer to the found key and increments the key usage count if
 843 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 844 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 845 * specified keyring wasn't a keyring.
 846 *
 847 * In the case of a successful return, the possession attribute from
 848 * @keyring_ref is propagated to the returned key reference.
 849 */
 850key_ref_t keyring_search_aux(key_ref_t keyring_ref,
 851			     struct keyring_search_context *ctx)
 852{
 853	struct key *keyring;
 854	long err;
 855
 856	ctx->iterator = keyring_search_iterator;
 857	ctx->possessed = is_key_possessed(keyring_ref);
 858	ctx->result = ERR_PTR(-EAGAIN);
 859
 860	keyring = key_ref_to_ptr(keyring_ref);
 861	key_check(keyring);
 862
 863	if (keyring->type != &key_type_keyring)
 864		return ERR_PTR(-ENOTDIR);
 865
 866	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 867		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 868		if (err < 0)
 869			return ERR_PTR(err);
 870	}
 871
 872	rcu_read_lock();
 873	ctx->now = current_kernel_time();
 874	if (search_nested_keyrings(keyring, ctx))
 875		__key_get(key_ref_to_ptr(ctx->result));
 876	rcu_read_unlock();
 877	return ctx->result;
 878}
 879
 880/**
 881 * keyring_search - Search the supplied keyring tree for a matching key
 882 * @keyring: The root of the keyring tree to be searched.
 883 * @type: The type of keyring we want to find.
 884 * @description: The name of the keyring we want to find.
 
 885 *
 886 * As keyring_search_aux() above, but using the current task's credentials and
 887 * type's default matching function and preferred search method.
 888 */
 889key_ref_t keyring_search(key_ref_t keyring,
 890			 struct key_type *type,
 891			 const char *description)
 
 892{
 893	struct keyring_search_context ctx = {
 894		.index_key.type		= type,
 895		.index_key.description	= description,
 
 896		.cred			= current_cred(),
 897		.match_data.cmp		= key_default_cmp,
 898		.match_data.raw_data	= description,
 899		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
 900		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
 901	};
 902	key_ref_t key;
 903	int ret;
 904
 
 
 905	if (type->match_preparse) {
 906		ret = type->match_preparse(&ctx.match_data);
 907		if (ret < 0)
 908			return ERR_PTR(ret);
 909	}
 910
 911	key = keyring_search_aux(keyring, &ctx);
 
 
 912
 913	if (type->match_free)
 914		type->match_free(&ctx.match_data);
 915	return key;
 916}
 917EXPORT_SYMBOL(keyring_search);
 918
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919/*
 920 * Search the given keyring for a key that might be updated.
 921 *
 922 * The caller must guarantee that the keyring is a keyring and that the
 923 * permission is granted to modify the keyring as no check is made here.  The
 924 * caller must also hold a lock on the keyring semaphore.
 925 *
 926 * Returns a pointer to the found key with usage count incremented if
 927 * successful and returns NULL if not found.  Revoked and invalidated keys are
 928 * skipped over.
 929 *
 930 * If successful, the possession indicator is propagated from the keyring ref
 931 * to the returned key reference.
 932 */
 933key_ref_t find_key_to_update(key_ref_t keyring_ref,
 934			     const struct keyring_index_key *index_key)
 935{
 936	struct key *keyring, *key;
 937	const void *object;
 938
 939	keyring = key_ref_to_ptr(keyring_ref);
 940
 941	kenter("{%d},{%s,%s}",
 942	       keyring->serial, index_key->type->name, index_key->description);
 943
 944	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
 945				  index_key);
 946
 947	if (object)
 948		goto found;
 949
 950	kleave(" = NULL");
 951	return NULL;
 952
 953found:
 954	key = keyring_ptr_to_key(object);
 955	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
 956			  (1 << KEY_FLAG_REVOKED))) {
 957		kleave(" = NULL [x]");
 958		return NULL;
 959	}
 960	__key_get(key);
 961	kleave(" = {%d}", key->serial);
 962	return make_key_ref(key, is_key_possessed(keyring_ref));
 963}
 964
 965/*
 966 * Find a keyring with the specified name.
 967 *
 968 * All named keyrings in the current user namespace are searched, provided they
 969 * grant Search permission directly to the caller (unless this check is
 970 * skipped).  Keyrings whose usage points have reached zero or who have been
 971 * revoked are skipped.
 972 *
 973 * Returns a pointer to the keyring with the keyring's refcount having being
 974 * incremented on success.  -ENOKEY is returned if a key could not be found.
 975 */
 976struct key *find_keyring_by_name(const char *name, bool skip_perm_check)
 977{
 
 978	struct key *keyring;
 979	int bucket;
 980
 981	if (!name)
 982		return ERR_PTR(-EINVAL);
 983
 984	bucket = keyring_hash(name);
 985
 986	read_lock(&keyring_name_lock);
 987
 988	if (keyring_name_hash[bucket].next) {
 989		/* search this hash bucket for a keyring with a matching name
 990		 * that's readable and that hasn't been revoked */
 991		list_for_each_entry(keyring,
 992				    &keyring_name_hash[bucket],
 993				    name_link
 994				    ) {
 995			if (!kuid_has_mapping(current_user_ns(), keyring->user->uid))
 996				continue;
 997
 998			if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
 999				continue;
1000
1001			if (strcmp(keyring->description, name) != 0)
1002				continue;
1003
1004			if (!skip_perm_check &&
1005			    key_permission(make_key_ref(keyring, 0),
1006					   KEY_NEED_SEARCH) < 0)
1007				continue;
1008
1009			/* we've got a match but we might end up racing with
1010			 * key_cleanup() if the keyring is currently 'dead'
1011			 * (ie. it has a zero usage count) */
1012			if (!atomic_inc_not_zero(&keyring->usage))
1013				continue;
1014			keyring->last_used_at = current_kernel_time().tv_sec;
1015			goto out;
1016		}
 
 
 
 
 
 
 
 
1017	}
1018
1019	keyring = ERR_PTR(-ENOKEY);
1020out:
1021	read_unlock(&keyring_name_lock);
1022	return keyring;
1023}
1024
1025static int keyring_detect_cycle_iterator(const void *object,
1026					 void *iterator_data)
1027{
1028	struct keyring_search_context *ctx = iterator_data;
1029	const struct key *key = keyring_ptr_to_key(object);
1030
1031	kenter("{%d}", key->serial);
1032
1033	/* We might get a keyring with matching index-key that is nonetheless a
1034	 * different keyring. */
1035	if (key != ctx->match_data.raw_data)
1036		return 0;
1037
1038	ctx->result = ERR_PTR(-EDEADLK);
1039	return 1;
1040}
1041
1042/*
1043 * See if a cycle will will be created by inserting acyclic tree B in acyclic
1044 * tree A at the topmost level (ie: as a direct child of A).
1045 *
1046 * Since we are adding B to A at the top level, checking for cycles should just
1047 * be a matter of seeing if node A is somewhere in tree B.
1048 */
1049static int keyring_detect_cycle(struct key *A, struct key *B)
1050{
1051	struct keyring_search_context ctx = {
1052		.index_key		= A->index_key,
1053		.match_data.raw_data	= A,
1054		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1055		.iterator		= keyring_detect_cycle_iterator,
1056		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1057					   KEYRING_SEARCH_NO_UPDATE_TIME |
1058					   KEYRING_SEARCH_NO_CHECK_PERM |
1059					   KEYRING_SEARCH_DETECT_TOO_DEEP),
 
1060	};
1061
1062	rcu_read_lock();
1063	search_nested_keyrings(B, &ctx);
1064	rcu_read_unlock();
1065	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1066}
1067
1068/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1069 * Preallocate memory so that a key can be linked into to a keyring.
1070 */
1071int __key_link_begin(struct key *keyring,
1072		     const struct keyring_index_key *index_key,
1073		     struct assoc_array_edit **_edit)
1074	__acquires(&keyring->sem)
1075	__acquires(&keyring_serialise_link_sem)
1076{
1077	struct assoc_array_edit *edit;
1078	int ret;
1079
1080	kenter("%d,%s,%s,",
1081	       keyring->serial, index_key->type->name, index_key->description);
1082
1083	BUG_ON(index_key->desc_len == 0);
 
1084
1085	if (keyring->type != &key_type_keyring)
1086		return -ENOTDIR;
1087
1088	down_write(&keyring->sem);
1089
1090	ret = -EKEYREVOKED;
1091	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1092		goto error_krsem;
1093
1094	/* serialise link/link calls to prevent parallel calls causing a cycle
1095	 * when linking two keyring in opposite orders */
1096	if (index_key->type == &key_type_keyring)
1097		down_write(&keyring_serialise_link_sem);
1098
1099	/* Create an edit script that will insert/replace the key in the
1100	 * keyring tree.
1101	 */
1102	edit = assoc_array_insert(&keyring->keys,
1103				  &keyring_assoc_array_ops,
1104				  index_key,
1105				  NULL);
1106	if (IS_ERR(edit)) {
1107		ret = PTR_ERR(edit);
1108		goto error_sem;
1109	}
1110
1111	/* If we're not replacing a link in-place then we're going to need some
1112	 * extra quota.
1113	 */
1114	if (!edit->dead_leaf) {
1115		ret = key_payload_reserve(keyring,
1116					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1117		if (ret < 0)
1118			goto error_cancel;
1119	}
1120
1121	*_edit = edit;
1122	kleave(" = 0");
1123	return 0;
1124
1125error_cancel:
1126	assoc_array_cancel_edit(edit);
1127error_sem:
1128	if (index_key->type == &key_type_keyring)
1129		up_write(&keyring_serialise_link_sem);
1130error_krsem:
1131	up_write(&keyring->sem);
1132	kleave(" = %d", ret);
1133	return ret;
1134}
1135
1136/*
1137 * Check already instantiated keys aren't going to be a problem.
1138 *
1139 * The caller must have called __key_link_begin(). Don't need to call this for
1140 * keys that were created since __key_link_begin() was called.
1141 */
1142int __key_link_check_live_key(struct key *keyring, struct key *key)
1143{
1144	if (key->type == &key_type_keyring)
1145		/* check that we aren't going to create a cycle by linking one
1146		 * keyring to another */
1147		return keyring_detect_cycle(keyring, key);
1148	return 0;
1149}
1150
1151/*
1152 * Link a key into to a keyring.
1153 *
1154 * Must be called with __key_link_begin() having being called.  Discards any
1155 * already extant link to matching key if there is one, so that each keyring
1156 * holds at most one link to any given key of a particular type+description
1157 * combination.
1158 */
1159void __key_link(struct key *key, struct assoc_array_edit **_edit)
 
1160{
1161	__key_get(key);
1162	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1163	assoc_array_apply_edit(*_edit);
1164	*_edit = NULL;
 
1165}
1166
1167/*
1168 * Finish linking a key into to a keyring.
1169 *
1170 * Must be called with __key_link_begin() having being called.
1171 */
1172void __key_link_end(struct key *keyring,
1173		    const struct keyring_index_key *index_key,
1174		    struct assoc_array_edit *edit)
1175	__releases(&keyring->sem)
1176	__releases(&keyring_serialise_link_sem)
1177{
1178	BUG_ON(index_key->type == NULL);
1179	kenter("%d,%s,", keyring->serial, index_key->type->name);
1180
1181	if (index_key->type == &key_type_keyring)
1182		up_write(&keyring_serialise_link_sem);
1183
1184	if (edit) {
1185		if (!edit->dead_leaf) {
1186			key_payload_reserve(keyring,
1187				keyring->datalen - KEYQUOTA_LINK_BYTES);
1188		}
1189		assoc_array_cancel_edit(edit);
1190	}
1191	up_write(&keyring->sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192}
1193
1194/**
1195 * key_link - Link a key to a keyring
1196 * @keyring: The keyring to make the link in.
1197 * @key: The key to link to.
1198 *
1199 * Make a link in a keyring to a key, such that the keyring holds a reference
1200 * on that key and the key can potentially be found by searching that keyring.
1201 *
1202 * This function will write-lock the keyring's semaphore and will consume some
1203 * of the user's key data quota to hold the link.
1204 *
1205 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1206 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1207 * full, -EDQUOT if there is insufficient key data quota remaining to add
1208 * another link or -ENOMEM if there's insufficient memory.
1209 *
1210 * It is assumed that the caller has checked that it is permitted for a link to
1211 * be made (the keyring should have Write permission and the key Link
1212 * permission).
1213 */
1214int key_link(struct key *keyring, struct key *key)
1215{
1216	struct assoc_array_edit *edit;
1217	int ret;
1218
1219	kenter("{%d,%d}", keyring->serial, atomic_read(&keyring->usage));
1220
1221	key_check(keyring);
1222	key_check(key);
1223
1224	if (test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags) &&
1225	    !test_bit(KEY_FLAG_TRUSTED, &key->flags))
1226		return -EPERM;
1227
1228	ret = __key_link_begin(keyring, &key->index_key, &edit);
1229	if (ret == 0) {
1230		kdebug("begun {%d,%d}", keyring->serial, atomic_read(&keyring->usage));
 
 
 
 
1231		ret = __key_link_check_live_key(keyring, key);
1232		if (ret == 0)
1233			__key_link(key, &edit);
1234		__key_link_end(keyring, &key->index_key, edit);
1235	}
1236
1237	kleave(" = %d {%d,%d}", ret, keyring->serial, atomic_read(&keyring->usage));
 
 
 
1238	return ret;
1239}
1240EXPORT_SYMBOL(key_link);
1241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242/**
1243 * key_unlink - Unlink the first link to a key from a keyring.
1244 * @keyring: The keyring to remove the link from.
1245 * @key: The key the link is to.
1246 *
1247 * Remove a link from a keyring to a key.
1248 *
1249 * This function will write-lock the keyring's semaphore.
1250 *
1251 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1252 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1253 * memory.
1254 *
1255 * It is assumed that the caller has checked that it is permitted for a link to
1256 * be removed (the keyring should have Write permission; no permissions are
1257 * required on the key).
1258 */
1259int key_unlink(struct key *keyring, struct key *key)
1260{
1261	struct assoc_array_edit *edit;
1262	int ret;
1263
1264	key_check(keyring);
1265	key_check(key);
1266
1267	if (keyring->type != &key_type_keyring)
1268		return -ENOTDIR;
 
1269
1270	down_write(&keyring->sem);
 
 
 
 
 
 
1271
1272	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1273				  &key->index_key);
1274	if (IS_ERR(edit)) {
1275		ret = PTR_ERR(edit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276		goto error;
1277	}
1278	ret = -ENOENT;
1279	if (edit == NULL)
1280		goto error;
1281
1282	assoc_array_apply_edit(edit);
1283	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1284	ret = 0;
 
 
 
 
 
 
 
1285
 
 
1286error:
1287	up_write(&keyring->sem);
 
 
 
1288	return ret;
1289}
1290EXPORT_SYMBOL(key_unlink);
1291
1292/**
1293 * keyring_clear - Clear a keyring
1294 * @keyring: The keyring to clear.
1295 *
1296 * Clear the contents of the specified keyring.
1297 *
1298 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1299 */
1300int keyring_clear(struct key *keyring)
1301{
1302	struct assoc_array_edit *edit;
1303	int ret;
1304
1305	if (keyring->type != &key_type_keyring)
1306		return -ENOTDIR;
1307
1308	down_write(&keyring->sem);
1309
1310	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1311	if (IS_ERR(edit)) {
1312		ret = PTR_ERR(edit);
1313	} else {
1314		if (edit)
1315			assoc_array_apply_edit(edit);
 
1316		key_payload_reserve(keyring, 0);
1317		ret = 0;
1318	}
1319
1320	up_write(&keyring->sem);
1321	return ret;
1322}
1323EXPORT_SYMBOL(keyring_clear);
1324
1325/*
1326 * Dispose of the links from a revoked keyring.
1327 *
1328 * This is called with the key sem write-locked.
1329 */
1330static void keyring_revoke(struct key *keyring)
1331{
1332	struct assoc_array_edit *edit;
1333
1334	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1335	if (!IS_ERR(edit)) {
1336		if (edit)
1337			assoc_array_apply_edit(edit);
1338		key_payload_reserve(keyring, 0);
1339	}
1340}
1341
1342static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1343{
1344	struct key *key = keyring_ptr_to_key(object);
1345	time_t *limit = iterator_data;
1346
1347	if (key_is_dead(key, *limit))
1348		return false;
1349	key_get(key);
1350	return true;
1351}
1352
1353static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1354{
1355	const struct key *key = keyring_ptr_to_key(object);
1356	time_t *limit = iterator_data;
1357
1358	key_check(key);
1359	return key_is_dead(key, *limit);
1360}
1361
1362/*
1363 * Garbage collect pointers from a keyring.
1364 *
1365 * Not called with any locks held.  The keyring's key struct will not be
1366 * deallocated under us as only our caller may deallocate it.
1367 */
1368void keyring_gc(struct key *keyring, time_t limit)
1369{
1370	int result;
1371
1372	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1373
1374	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1375			      (1 << KEY_FLAG_REVOKED)))
1376		goto dont_gc;
1377
1378	/* scan the keyring looking for dead keys */
1379	rcu_read_lock();
1380	result = assoc_array_iterate(&keyring->keys,
1381				     keyring_gc_check_iterator, &limit);
1382	rcu_read_unlock();
1383	if (result == true)
1384		goto do_gc;
1385
1386dont_gc:
1387	kleave(" [no gc]");
1388	return;
1389
1390do_gc:
1391	down_write(&keyring->sem);
1392	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1393		       keyring_gc_select_iterator, &limit);
1394	up_write(&keyring->sem);
1395	kleave(" [gc]");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Keyring handling
   3 *
   4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
 
 
 
 
 
   6 */
   7
   8#include <linux/export.h>
   9#include <linux/init.h>
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/security.h>
  13#include <linux/seq_file.h>
  14#include <linux/err.h>
  15#include <linux/user_namespace.h>
  16#include <linux/nsproxy.h>
  17#include <keys/keyring-type.h>
  18#include <keys/user-type.h>
  19#include <linux/assoc_array_priv.h>
  20#include <linux/uaccess.h>
  21#include <net/net_namespace.h>
  22#include "internal.h"
  23
  24/*
  25 * When plumbing the depths of the key tree, this sets a hard limit
  26 * set on how deep we're willing to go.
  27 */
  28#define KEYRING_SEARCH_MAX_DEPTH 6
  29
  30/*
 
 
 
 
 
  31 * We mark pointers we pass to the associative array with bit 1 set if
  32 * they're keyrings and clear otherwise.
  33 */
  34#define KEYRING_PTR_SUBTYPE	0x2UL
  35
  36static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr *x)
  37{
  38	return (unsigned long)x & KEYRING_PTR_SUBTYPE;
  39}
  40static inline struct key *keyring_ptr_to_key(const struct assoc_array_ptr *x)
  41{
  42	void *object = assoc_array_ptr_to_leaf(x);
  43	return (struct key *)((unsigned long)object & ~KEYRING_PTR_SUBTYPE);
  44}
  45static inline void *keyring_key_to_ptr(struct key *key)
  46{
  47	if (key->type == &key_type_keyring)
  48		return (void *)((unsigned long)key | KEYRING_PTR_SUBTYPE);
  49	return key;
  50}
  51
 
  52static DEFINE_RWLOCK(keyring_name_lock);
  53
  54/*
  55 * Clean up the bits of user_namespace that belong to us.
  56 */
  57void key_free_user_ns(struct user_namespace *ns)
  58{
  59	write_lock(&keyring_name_lock);
  60	list_del_init(&ns->keyring_name_list);
  61	write_unlock(&keyring_name_lock);
  62
  63	key_put(ns->user_keyring_register);
  64#ifdef CONFIG_PERSISTENT_KEYRINGS
  65	key_put(ns->persistent_keyring_register);
  66#endif
  67}
  68
  69/*
  70 * The keyring key type definition.  Keyrings are simply keys of this type and
  71 * can be treated as ordinary keys in addition to having their own special
  72 * operations.
  73 */
  74static int keyring_preparse(struct key_preparsed_payload *prep);
  75static void keyring_free_preparse(struct key_preparsed_payload *prep);
  76static int keyring_instantiate(struct key *keyring,
  77			       struct key_preparsed_payload *prep);
  78static void keyring_revoke(struct key *keyring);
  79static void keyring_destroy(struct key *keyring);
  80static void keyring_describe(const struct key *keyring, struct seq_file *m);
  81static long keyring_read(const struct key *keyring,
  82			 char *buffer, size_t buflen);
  83
  84struct key_type key_type_keyring = {
  85	.name		= "keyring",
  86	.def_datalen	= 0,
  87	.preparse	= keyring_preparse,
  88	.free_preparse	= keyring_free_preparse,
  89	.instantiate	= keyring_instantiate,
  90	.revoke		= keyring_revoke,
  91	.destroy	= keyring_destroy,
  92	.describe	= keyring_describe,
  93	.read		= keyring_read,
  94};
  95EXPORT_SYMBOL(key_type_keyring);
  96
  97/*
  98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
  99 * introducing a cycle.
 100 */
 101static DEFINE_MUTEX(keyring_serialise_link_lock);
 102
 103/*
 104 * Publish the name of a keyring so that it can be found by name (if it has
 105 * one and it doesn't begin with a dot).
 106 */
 107static void keyring_publish_name(struct key *keyring)
 108{
 109	struct user_namespace *ns = current_user_ns();
 
 
 
 110
 111	if (keyring->description &&
 112	    keyring->description[0] &&
 113	    keyring->description[0] != '.') {
 114		write_lock(&keyring_name_lock);
 115		list_add_tail(&keyring->name_link, &ns->keyring_name_list);
 
 
 
 
 
 
 116		write_unlock(&keyring_name_lock);
 117	}
 118}
 119
 120/*
 121 * Preparse a keyring payload
 122 */
 123static int keyring_preparse(struct key_preparsed_payload *prep)
 124{
 125	return prep->datalen != 0 ? -EINVAL : 0;
 126}
 127
 128/*
 129 * Free a preparse of a user defined key payload
 130 */
 131static void keyring_free_preparse(struct key_preparsed_payload *prep)
 132{
 133}
 134
 135/*
 136 * Initialise a keyring.
 137 *
 138 * Returns 0 on success, -EINVAL if given any data.
 139 */
 140static int keyring_instantiate(struct key *keyring,
 141			       struct key_preparsed_payload *prep)
 142{
 143	assoc_array_init(&keyring->keys);
 144	/* make the keyring available by name if it has one */
 145	keyring_publish_name(keyring);
 146	return 0;
 147}
 148
 149/*
 150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit.  Ideally we'd
 151 * fold the carry back too, but that requires inline asm.
 152 */
 153static u64 mult_64x32_and_fold(u64 x, u32 y)
 154{
 155	u64 hi = (u64)(u32)(x >> 32) * y;
 156	u64 lo = (u64)(u32)(x) * y;
 157	return lo + ((u64)(u32)hi << 32) + (u32)(hi >> 32);
 158}
 159
 160/*
 161 * Hash a key type and description.
 162 */
 163static void hash_key_type_and_desc(struct keyring_index_key *index_key)
 164{
 165	const unsigned level_shift = ASSOC_ARRAY_LEVEL_STEP;
 166	const unsigned long fan_mask = ASSOC_ARRAY_FAN_MASK;
 167	const char *description = index_key->description;
 168	unsigned long hash, type;
 169	u32 piece;
 170	u64 acc;
 171	int n, desc_len = index_key->desc_len;
 172
 173	type = (unsigned long)index_key->type;
 
 174	acc = mult_64x32_and_fold(type, desc_len + 13);
 175	acc = mult_64x32_and_fold(acc, 9207);
 176	piece = (unsigned long)index_key->domain_tag;
 177	acc = mult_64x32_and_fold(acc, piece);
 178	acc = mult_64x32_and_fold(acc, 9207);
 179
 180	for (;;) {
 181		n = desc_len;
 182		if (n <= 0)
 183			break;
 184		if (n > 4)
 185			n = 4;
 186		piece = 0;
 187		memcpy(&piece, description, n);
 188		description += n;
 189		desc_len -= n;
 190		acc = mult_64x32_and_fold(acc, piece);
 191		acc = mult_64x32_and_fold(acc, 9207);
 192	}
 193
 194	/* Fold the hash down to 32 bits if need be. */
 195	hash = acc;
 196	if (ASSOC_ARRAY_KEY_CHUNK_SIZE == 32)
 197		hash ^= acc >> 32;
 198
 199	/* Squidge all the keyrings into a separate part of the tree to
 200	 * ordinary keys by making sure the lowest level segment in the hash is
 201	 * zero for keyrings and non-zero otherwise.
 202	 */
 203	if (index_key->type != &key_type_keyring && (hash & fan_mask) == 0)
 204		hash |= (hash >> (ASSOC_ARRAY_KEY_CHUNK_SIZE - level_shift)) | 1;
 205	else if (index_key->type == &key_type_keyring && (hash & fan_mask) != 0)
 206		hash = (hash + (hash << level_shift)) & ~fan_mask;
 207	index_key->hash = hash;
 208}
 209
 210/*
 211 * Finalise an index key to include a part of the description actually in the
 212 * index key, to set the domain tag and to calculate the hash.
 213 */
 214void key_set_index_key(struct keyring_index_key *index_key)
 215{
 216	static struct key_tag default_domain_tag = { .usage = REFCOUNT_INIT(1), };
 217	size_t n = min_t(size_t, index_key->desc_len, sizeof(index_key->desc));
 218
 219	memcpy(index_key->desc, index_key->description, n);
 220
 221	if (!index_key->domain_tag) {
 222		if (index_key->type->flags & KEY_TYPE_NET_DOMAIN)
 223			index_key->domain_tag = current->nsproxy->net_ns->key_domain;
 224		else
 225			index_key->domain_tag = &default_domain_tag;
 226	}
 227
 228	hash_key_type_and_desc(index_key);
 229}
 230
 231/**
 232 * key_put_tag - Release a ref on a tag.
 233 * @tag: The tag to release.
 234 *
 235 * This releases a reference the given tag and returns true if that ref was the
 236 * last one.
 237 */
 238bool key_put_tag(struct key_tag *tag)
 239{
 240	if (refcount_dec_and_test(&tag->usage)) {
 241		kfree_rcu(tag, rcu);
 242		return true;
 243	}
 244
 245	return false;
 246}
 247
 248/**
 249 * key_remove_domain - Kill off a key domain and gc its keys
 250 * @domain_tag: The domain tag to release.
 251 *
 252 * This marks a domain tag as being dead and releases a ref on it.  If that
 253 * wasn't the last reference, the garbage collector is poked to try and delete
 254 * all keys that were in the domain.
 255 */
 256void key_remove_domain(struct key_tag *domain_tag)
 257{
 258	domain_tag->removed = true;
 259	if (!key_put_tag(domain_tag))
 260		key_schedule_gc_links();
 261}
 262
 263/*
 264 * Build the next index key chunk.
 265 *
 266 * We return it one word-sized chunk at a time.
 267 */
 268static unsigned long keyring_get_key_chunk(const void *data, int level)
 269{
 270	const struct keyring_index_key *index_key = data;
 271	unsigned long chunk = 0;
 272	const u8 *d;
 273	int desc_len = index_key->desc_len, n = sizeof(chunk);
 274
 275	level /= ASSOC_ARRAY_KEY_CHUNK_SIZE;
 276	switch (level) {
 277	case 0:
 278		return index_key->hash;
 279	case 1:
 280		return index_key->x;
 281	case 2:
 282		return (unsigned long)index_key->type;
 283	case 3:
 284		return (unsigned long)index_key->domain_tag;
 
 
 285	default:
 286		level -= 4;
 287		if (desc_len <= sizeof(index_key->desc))
 
 288			return 0;
 289
 290		d = index_key->description + sizeof(index_key->desc);
 291		d += level * sizeof(long);
 292		desc_len -= sizeof(index_key->desc);
 293		if (desc_len > n)
 294			desc_len = n;
 
 295		do {
 296			chunk <<= 8;
 297			chunk |= *d++;
 298		} while (--desc_len > 0);
 
 
 
 
 
 
 299		return chunk;
 300	}
 301}
 302
 303static unsigned long keyring_get_object_key_chunk(const void *object, int level)
 304{
 305	const struct key *key = keyring_ptr_to_key(object);
 306	return keyring_get_key_chunk(&key->index_key, level);
 307}
 308
 309static bool keyring_compare_object(const void *object, const void *data)
 310{
 311	const struct keyring_index_key *index_key = data;
 312	const struct key *key = keyring_ptr_to_key(object);
 313
 314	return key->index_key.type == index_key->type &&
 315		key->index_key.domain_tag == index_key->domain_tag &&
 316		key->index_key.desc_len == index_key->desc_len &&
 317		memcmp(key->index_key.description, index_key->description,
 318		       index_key->desc_len) == 0;
 319}
 320
 321/*
 322 * Compare the index keys of a pair of objects and determine the bit position
 323 * at which they differ - if they differ.
 324 */
 325static int keyring_diff_objects(const void *object, const void *data)
 326{
 327	const struct key *key_a = keyring_ptr_to_key(object);
 328	const struct keyring_index_key *a = &key_a->index_key;
 329	const struct keyring_index_key *b = data;
 330	unsigned long seg_a, seg_b;
 331	int level, i;
 332
 333	level = 0;
 334	seg_a = a->hash;
 335	seg_b = b->hash;
 336	if ((seg_a ^ seg_b) != 0)
 337		goto differ;
 338	level += ASSOC_ARRAY_KEY_CHUNK_SIZE / 8;
 339
 340	/* The number of bits contributed by the hash is controlled by a
 341	 * constant in the assoc_array headers.  Everything else thereafter we
 342	 * can deal with as being machine word-size dependent.
 343	 */
 344	seg_a = a->x;
 345	seg_b = b->x;
 
 346	if ((seg_a ^ seg_b) != 0)
 347		goto differ;
 348	level += sizeof(unsigned long);
 349
 350	/* The next bit may not work on big endian */
 
 351	seg_a = (unsigned long)a->type;
 352	seg_b = (unsigned long)b->type;
 353	if ((seg_a ^ seg_b) != 0)
 354		goto differ;
 355	level += sizeof(unsigned long);
 356
 357	seg_a = (unsigned long)a->domain_tag;
 358	seg_b = (unsigned long)b->domain_tag;
 359	if ((seg_a ^ seg_b) != 0)
 360		goto differ;
 361	level += sizeof(unsigned long);
 
 
 362
 363	i = sizeof(a->desc);
 364	if (a->desc_len <= i)
 365		goto same;
 
 
 
 
 
 
 
 
 366
 367	for (; i < a->desc_len; i++) {
 368		seg_a = *(unsigned char *)(a->description + i);
 369		seg_b = *(unsigned char *)(b->description + i);
 370		if ((seg_a ^ seg_b) != 0)
 371			goto differ_plus_i;
 372	}
 373
 374same:
 375	return -1;
 376
 377differ_plus_i:
 378	level += i;
 379differ:
 380	i = level * 8 + __ffs(seg_a ^ seg_b);
 381	return i;
 382}
 383
 384/*
 385 * Free an object after stripping the keyring flag off of the pointer.
 386 */
 387static void keyring_free_object(void *object)
 388{
 389	key_put(keyring_ptr_to_key(object));
 390}
 391
 392/*
 393 * Operations for keyring management by the index-tree routines.
 394 */
 395static const struct assoc_array_ops keyring_assoc_array_ops = {
 396	.get_key_chunk		= keyring_get_key_chunk,
 397	.get_object_key_chunk	= keyring_get_object_key_chunk,
 398	.compare_object		= keyring_compare_object,
 399	.diff_objects		= keyring_diff_objects,
 400	.free_object		= keyring_free_object,
 401};
 402
 403/*
 404 * Clean up a keyring when it is destroyed.  Unpublish its name if it had one
 405 * and dispose of its data.
 406 *
 407 * The garbage collector detects the final key_put(), removes the keyring from
 408 * the serial number tree and then does RCU synchronisation before coming here,
 409 * so we shouldn't need to worry about code poking around here with the RCU
 410 * readlock held by this time.
 411 */
 412static void keyring_destroy(struct key *keyring)
 413{
 414	if (keyring->description) {
 415		write_lock(&keyring_name_lock);
 416
 417		if (keyring->name_link.next != NULL &&
 418		    !list_empty(&keyring->name_link))
 419			list_del(&keyring->name_link);
 420
 421		write_unlock(&keyring_name_lock);
 422	}
 423
 424	if (keyring->restrict_link) {
 425		struct key_restriction *keyres = keyring->restrict_link;
 426
 427		key_put(keyres->key);
 428		kfree(keyres);
 429	}
 430
 431	assoc_array_destroy(&keyring->keys, &keyring_assoc_array_ops);
 432}
 433
 434/*
 435 * Describe a keyring for /proc.
 436 */
 437static void keyring_describe(const struct key *keyring, struct seq_file *m)
 438{
 439	if (keyring->description)
 440		seq_puts(m, keyring->description);
 441	else
 442		seq_puts(m, "[anon]");
 443
 444	if (key_is_positive(keyring)) {
 445		if (keyring->keys.nr_leaves_on_tree != 0)
 446			seq_printf(m, ": %lu", keyring->keys.nr_leaves_on_tree);
 447		else
 448			seq_puts(m, ": empty");
 449	}
 450}
 451
 452struct keyring_read_iterator_context {
 453	size_t			buflen;
 454	size_t			count;
 455	key_serial_t		*buffer;
 456};
 457
 458static int keyring_read_iterator(const void *object, void *data)
 459{
 460	struct keyring_read_iterator_context *ctx = data;
 461	const struct key *key = keyring_ptr_to_key(object);
 
 462
 463	kenter("{%s,%d},,{%zu/%zu}",
 464	       key->type->name, key->serial, ctx->count, ctx->buflen);
 465
 466	if (ctx->count >= ctx->buflen)
 467		return 1;
 468
 469	*ctx->buffer++ = key->serial;
 
 
 
 470	ctx->count += sizeof(key->serial);
 471	return 0;
 472}
 473
 474/*
 475 * Read a list of key IDs from the keyring's contents in binary form
 476 *
 477 * The keyring's semaphore is read-locked by the caller.  This prevents someone
 478 * from modifying it under us - which could cause us to read key IDs multiple
 479 * times.
 480 */
 481static long keyring_read(const struct key *keyring,
 482			 char *buffer, size_t buflen)
 483{
 484	struct keyring_read_iterator_context ctx;
 485	long ret;
 
 486
 487	kenter("{%d},,%zu", key_serial(keyring), buflen);
 488
 489	if (buflen & (sizeof(key_serial_t) - 1))
 490		return -EINVAL;
 491
 492	/* Copy as many key IDs as fit into the buffer */
 493	if (buffer && buflen) {
 494		ctx.buffer = (key_serial_t *)buffer;
 495		ctx.buflen = buflen;
 496		ctx.count = 0;
 497		ret = assoc_array_iterate(&keyring->keys,
 498					  keyring_read_iterator, &ctx);
 499		if (ret < 0) {
 500			kleave(" = %ld [iterate]", ret);
 501			return ret;
 502		}
 
 
 
 
 
 
 
 
 
 503	}
 504
 505	/* Return the size of the buffer needed */
 506	ret = keyring->keys.nr_leaves_on_tree * sizeof(key_serial_t);
 507	if (ret <= buflen)
 508		kleave("= %ld [ok]", ret);
 509	else
 510		kleave("= %ld [buffer too small]", ret);
 511	return ret;
 512}
 513
 514/*
 515 * Allocate a keyring and link into the destination keyring.
 516 */
 517struct key *keyring_alloc(const char *description, kuid_t uid, kgid_t gid,
 518			  const struct cred *cred, key_perm_t perm,
 519			  unsigned long flags,
 520			  struct key_restriction *restrict_link,
 521			  struct key *dest)
 522{
 523	struct key *keyring;
 524	int ret;
 525
 526	keyring = key_alloc(&key_type_keyring, description,
 527			    uid, gid, cred, perm, flags, restrict_link);
 528	if (!IS_ERR(keyring)) {
 529		ret = key_instantiate_and_link(keyring, NULL, 0, dest, NULL);
 530		if (ret < 0) {
 531			key_put(keyring);
 532			keyring = ERR_PTR(ret);
 533		}
 534	}
 535
 536	return keyring;
 537}
 538EXPORT_SYMBOL(keyring_alloc);
 539
 540/**
 541 * restrict_link_reject - Give -EPERM to restrict link
 542 * @keyring: The keyring being added to.
 543 * @type: The type of key being added.
 544 * @payload: The payload of the key intended to be added.
 545 * @restriction_key: Keys providing additional data for evaluating restriction.
 546 *
 547 * Reject the addition of any links to a keyring.  It can be overridden by
 548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
 549 * adding a key to a keyring.
 550 *
 551 * This is meant to be stored in a key_restriction structure which is passed
 552 * in the restrict_link parameter to keyring_alloc().
 553 */
 554int restrict_link_reject(struct key *keyring,
 555			 const struct key_type *type,
 556			 const union key_payload *payload,
 557			 struct key *restriction_key)
 558{
 559	return -EPERM;
 560}
 561
 562/*
 563 * By default, we keys found by getting an exact match on their descriptions.
 564 */
 565bool key_default_cmp(const struct key *key,
 566		     const struct key_match_data *match_data)
 567{
 568	return strcmp(key->description, match_data->raw_data) == 0;
 569}
 570
 571/*
 572 * Iteration function to consider each key found.
 573 */
 574static int keyring_search_iterator(const void *object, void *iterator_data)
 575{
 576	struct keyring_search_context *ctx = iterator_data;
 577	const struct key *key = keyring_ptr_to_key(object);
 578	unsigned long kflags = READ_ONCE(key->flags);
 579	short state = READ_ONCE(key->state);
 580
 581	kenter("{%d}", key->serial);
 582
 583	/* ignore keys not of this type */
 584	if (key->type != ctx->index_key.type) {
 585		kleave(" = 0 [!type]");
 586		return 0;
 587	}
 588
 589	/* skip invalidated, revoked and expired keys */
 590	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 591		time64_t expiry = READ_ONCE(key->expiry);
 592
 593		if (kflags & ((1 << KEY_FLAG_INVALIDATED) |
 594			      (1 << KEY_FLAG_REVOKED))) {
 595			ctx->result = ERR_PTR(-EKEYREVOKED);
 596			kleave(" = %d [invrev]", ctx->skipped_ret);
 597			goto skipped;
 598		}
 599
 600		if (expiry && ctx->now >= expiry) {
 601			if (!(ctx->flags & KEYRING_SEARCH_SKIP_EXPIRED))
 602				ctx->result = ERR_PTR(-EKEYEXPIRED);
 603			kleave(" = %d [expire]", ctx->skipped_ret);
 604			goto skipped;
 605		}
 606	}
 607
 608	/* keys that don't match */
 609	if (!ctx->match_data.cmp(key, &ctx->match_data)) {
 610		kleave(" = 0 [!match]");
 611		return 0;
 612	}
 613
 614	/* key must have search permissions */
 615	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 616	    key_task_permission(make_key_ref(key, ctx->possessed),
 617				ctx->cred, KEY_NEED_SEARCH) < 0) {
 618		ctx->result = ERR_PTR(-EACCES);
 619		kleave(" = %d [!perm]", ctx->skipped_ret);
 620		goto skipped;
 621	}
 622
 623	if (ctx->flags & KEYRING_SEARCH_DO_STATE_CHECK) {
 624		/* we set a different error code if we pass a negative key */
 625		if (state < 0) {
 626			ctx->result = ERR_PTR(state);
 
 627			kleave(" = %d [neg]", ctx->skipped_ret);
 628			goto skipped;
 629		}
 630	}
 631
 632	/* Found */
 633	ctx->result = make_key_ref(key, ctx->possessed);
 634	kleave(" = 1 [found]");
 635	return 1;
 636
 637skipped:
 638	return ctx->skipped_ret;
 639}
 640
 641/*
 642 * Search inside a keyring for a key.  We can search by walking to it
 643 * directly based on its index-key or we can iterate over the entire
 644 * tree looking for it, based on the match function.
 645 */
 646static int search_keyring(struct key *keyring, struct keyring_search_context *ctx)
 647{
 648	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_DIRECT) {
 649		const void *object;
 650
 651		object = assoc_array_find(&keyring->keys,
 652					  &keyring_assoc_array_ops,
 653					  &ctx->index_key);
 654		return object ? ctx->iterator(object, ctx) : 0;
 655	}
 656	return assoc_array_iterate(&keyring->keys, ctx->iterator, ctx);
 657}
 658
 659/*
 660 * Search a tree of keyrings that point to other keyrings up to the maximum
 661 * depth.
 662 */
 663static bool search_nested_keyrings(struct key *keyring,
 664				   struct keyring_search_context *ctx)
 665{
 666	struct {
 667		struct key *keyring;
 668		struct assoc_array_node *node;
 669		int slot;
 670	} stack[KEYRING_SEARCH_MAX_DEPTH];
 671
 672	struct assoc_array_shortcut *shortcut;
 673	struct assoc_array_node *node;
 674	struct assoc_array_ptr *ptr;
 675	struct key *key;
 676	int sp = 0, slot;
 677
 678	kenter("{%d},{%s,%s}",
 679	       keyring->serial,
 680	       ctx->index_key.type->name,
 681	       ctx->index_key.description);
 682
 683#define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
 684	BUG_ON((ctx->flags & STATE_CHECKS) == 0 ||
 685	       (ctx->flags & STATE_CHECKS) == STATE_CHECKS);
 686
 687	if (ctx->index_key.description)
 688		key_set_index_key(&ctx->index_key);
 689
 690	/* Check to see if this top-level keyring is what we are looking for
 691	 * and whether it is valid or not.
 692	 */
 693	if (ctx->match_data.lookup_type == KEYRING_SEARCH_LOOKUP_ITERATE ||
 694	    keyring_compare_object(keyring, &ctx->index_key)) {
 695		ctx->skipped_ret = 2;
 696		switch (ctx->iterator(keyring_key_to_ptr(keyring), ctx)) {
 697		case 1:
 698			goto found;
 699		case 2:
 700			return false;
 701		default:
 702			break;
 703		}
 704	}
 705
 706	ctx->skipped_ret = 0;
 707
 708	/* Start processing a new keyring */
 709descend_to_keyring:
 710	kdebug("descend to %d", keyring->serial);
 711	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
 712			      (1 << KEY_FLAG_REVOKED)))
 713		goto not_this_keyring;
 714
 715	/* Search through the keys in this keyring before its searching its
 716	 * subtrees.
 717	 */
 718	if (search_keyring(keyring, ctx))
 719		goto found;
 720
 721	/* Then manually iterate through the keyrings nested in this one.
 722	 *
 723	 * Start from the root node of the index tree.  Because of the way the
 724	 * hash function has been set up, keyrings cluster on the leftmost
 725	 * branch of the root node (root slot 0) or in the root node itself.
 726	 * Non-keyrings avoid the leftmost branch of the root entirely (root
 727	 * slots 1-15).
 728	 */
 729	if (!(ctx->flags & KEYRING_SEARCH_RECURSE))
 730		goto not_this_keyring;
 731
 732	ptr = READ_ONCE(keyring->keys.root);
 733	if (!ptr)
 734		goto not_this_keyring;
 735
 736	if (assoc_array_ptr_is_shortcut(ptr)) {
 737		/* If the root is a shortcut, either the keyring only contains
 738		 * keyring pointers (everything clusters behind root slot 0) or
 739		 * doesn't contain any keyring pointers.
 740		 */
 741		shortcut = assoc_array_ptr_to_shortcut(ptr);
 
 742		if ((shortcut->index_key[0] & ASSOC_ARRAY_FAN_MASK) != 0)
 743			goto not_this_keyring;
 744
 745		ptr = READ_ONCE(shortcut->next_node);
 746		node = assoc_array_ptr_to_node(ptr);
 747		goto begin_node;
 748	}
 749
 750	node = assoc_array_ptr_to_node(ptr);
 
 
 751	ptr = node->slots[0];
 752	if (!assoc_array_ptr_is_meta(ptr))
 753		goto begin_node;
 754
 755descend_to_node:
 756	/* Descend to a more distal node in this keyring's content tree and go
 757	 * through that.
 758	 */
 759	kdebug("descend");
 760	if (assoc_array_ptr_is_shortcut(ptr)) {
 761		shortcut = assoc_array_ptr_to_shortcut(ptr);
 762		ptr = READ_ONCE(shortcut->next_node);
 
 763		BUG_ON(!assoc_array_ptr_is_node(ptr));
 764	}
 765	node = assoc_array_ptr_to_node(ptr);
 766
 767begin_node:
 768	kdebug("begin_node");
 
 769	slot = 0;
 770ascend_to_node:
 771	/* Go through the slots in a node */
 772	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
 773		ptr = READ_ONCE(node->slots[slot]);
 774
 775		if (assoc_array_ptr_is_meta(ptr)) {
 776			if (node->back_pointer ||
 777			    assoc_array_ptr_is_shortcut(ptr))
 778				goto descend_to_node;
 779		}
 780
 781		if (!keyring_ptr_is_keyring(ptr))
 782			continue;
 783
 784		key = keyring_ptr_to_key(ptr);
 785
 786		if (sp >= KEYRING_SEARCH_MAX_DEPTH) {
 787			if (ctx->flags & KEYRING_SEARCH_DETECT_TOO_DEEP) {
 788				ctx->result = ERR_PTR(-ELOOP);
 789				return false;
 790			}
 791			goto not_this_keyring;
 792		}
 793
 794		/* Search a nested keyring */
 795		if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM) &&
 796		    key_task_permission(make_key_ref(key, ctx->possessed),
 797					ctx->cred, KEY_NEED_SEARCH) < 0)
 798			continue;
 799
 800		/* stack the current position */
 801		stack[sp].keyring = keyring;
 802		stack[sp].node = node;
 803		stack[sp].slot = slot;
 804		sp++;
 805
 806		/* begin again with the new keyring */
 807		keyring = key;
 808		goto descend_to_keyring;
 809	}
 810
 811	/* We've dealt with all the slots in the current node, so now we need
 812	 * to ascend to the parent and continue processing there.
 813	 */
 814	ptr = READ_ONCE(node->back_pointer);
 815	slot = node->parent_slot;
 816
 817	if (ptr && assoc_array_ptr_is_shortcut(ptr)) {
 818		shortcut = assoc_array_ptr_to_shortcut(ptr);
 819		ptr = READ_ONCE(shortcut->back_pointer);
 
 820		slot = shortcut->parent_slot;
 821	}
 822	if (!ptr)
 823		goto not_this_keyring;
 824	node = assoc_array_ptr_to_node(ptr);
 
 825	slot++;
 826
 827	/* If we've ascended to the root (zero backpointer), we must have just
 828	 * finished processing the leftmost branch rather than the root slots -
 829	 * so there can't be any more keyrings for us to find.
 830	 */
 831	if (node->back_pointer) {
 832		kdebug("ascend %d", slot);
 833		goto ascend_to_node;
 834	}
 835
 836	/* The keyring we're looking at was disqualified or didn't contain a
 837	 * matching key.
 838	 */
 839not_this_keyring:
 840	kdebug("not_this_keyring %d", sp);
 841	if (sp <= 0) {
 842		kleave(" = false");
 843		return false;
 844	}
 845
 846	/* Resume the processing of a keyring higher up in the tree */
 847	sp--;
 848	keyring = stack[sp].keyring;
 849	node = stack[sp].node;
 850	slot = stack[sp].slot + 1;
 851	kdebug("ascend to %d [%d]", keyring->serial, slot);
 852	goto ascend_to_node;
 853
 854	/* We found a viable match */
 855found:
 856	key = key_ref_to_ptr(ctx->result);
 857	key_check(key);
 858	if (!(ctx->flags & KEYRING_SEARCH_NO_UPDATE_TIME)) {
 859		key->last_used_at = ctx->now;
 860		keyring->last_used_at = ctx->now;
 861		while (sp > 0)
 862			stack[--sp].keyring->last_used_at = ctx->now;
 863	}
 864	kleave(" = true");
 865	return true;
 866}
 867
 868/**
 869 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
 870 * @keyring_ref: A pointer to the keyring with possession indicator.
 871 * @ctx: The keyring search context.
 872 *
 873 * Search the supplied keyring tree for a key that matches the criteria given.
 874 * The root keyring and any linked keyrings must grant Search permission to the
 875 * caller to be searchable and keys can only be found if they too grant Search
 876 * to the caller. The possession flag on the root keyring pointer controls use
 877 * of the possessor bits in permissions checking of the entire tree.  In
 878 * addition, the LSM gets to forbid keyring searches and key matches.
 879 *
 880 * The search is performed as a breadth-then-depth search up to the prescribed
 881 * limit (KEYRING_SEARCH_MAX_DEPTH).  The caller must hold the RCU read lock to
 882 * prevent keyrings from being destroyed or rearranged whilst they are being
 883 * searched.
 884 *
 885 * Keys are matched to the type provided and are then filtered by the match
 886 * function, which is given the description to use in any way it sees fit.  The
 887 * match function may use any attributes of a key that it wishes to
 888 * determine the match.  Normally the match function from the key type would be
 889 * used.
 890 *
 891 * RCU can be used to prevent the keyring key lists from disappearing without
 892 * the need to take lots of locks.
 893 *
 894 * Returns a pointer to the found key and increments the key usage count if
 895 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
 896 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
 897 * specified keyring wasn't a keyring.
 898 *
 899 * In the case of a successful return, the possession attribute from
 900 * @keyring_ref is propagated to the returned key reference.
 901 */
 902key_ref_t keyring_search_rcu(key_ref_t keyring_ref,
 903			     struct keyring_search_context *ctx)
 904{
 905	struct key *keyring;
 906	long err;
 907
 908	ctx->iterator = keyring_search_iterator;
 909	ctx->possessed = is_key_possessed(keyring_ref);
 910	ctx->result = ERR_PTR(-EAGAIN);
 911
 912	keyring = key_ref_to_ptr(keyring_ref);
 913	key_check(keyring);
 914
 915	if (keyring->type != &key_type_keyring)
 916		return ERR_PTR(-ENOTDIR);
 917
 918	if (!(ctx->flags & KEYRING_SEARCH_NO_CHECK_PERM)) {
 919		err = key_task_permission(keyring_ref, ctx->cred, KEY_NEED_SEARCH);
 920		if (err < 0)
 921			return ERR_PTR(err);
 922	}
 923
 924	ctx->now = ktime_get_real_seconds();
 
 925	if (search_nested_keyrings(keyring, ctx))
 926		__key_get(key_ref_to_ptr(ctx->result));
 
 927	return ctx->result;
 928}
 929
 930/**
 931 * keyring_search - Search the supplied keyring tree for a matching key
 932 * @keyring: The root of the keyring tree to be searched.
 933 * @type: The type of keyring we want to find.
 934 * @description: The name of the keyring we want to find.
 935 * @recurse: True to search the children of @keyring also
 936 *
 937 * As keyring_search_rcu() above, but using the current task's credentials and
 938 * type's default matching function and preferred search method.
 939 */
 940key_ref_t keyring_search(key_ref_t keyring,
 941			 struct key_type *type,
 942			 const char *description,
 943			 bool recurse)
 944{
 945	struct keyring_search_context ctx = {
 946		.index_key.type		= type,
 947		.index_key.description	= description,
 948		.index_key.desc_len	= strlen(description),
 949		.cred			= current_cred(),
 950		.match_data.cmp		= key_default_cmp,
 951		.match_data.raw_data	= description,
 952		.match_data.lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
 953		.flags			= KEYRING_SEARCH_DO_STATE_CHECK,
 954	};
 955	key_ref_t key;
 956	int ret;
 957
 958	if (recurse)
 959		ctx.flags |= KEYRING_SEARCH_RECURSE;
 960	if (type->match_preparse) {
 961		ret = type->match_preparse(&ctx.match_data);
 962		if (ret < 0)
 963			return ERR_PTR(ret);
 964	}
 965
 966	rcu_read_lock();
 967	key = keyring_search_rcu(keyring, &ctx);
 968	rcu_read_unlock();
 969
 970	if (type->match_free)
 971		type->match_free(&ctx.match_data);
 972	return key;
 973}
 974EXPORT_SYMBOL(keyring_search);
 975
 976static struct key_restriction *keyring_restriction_alloc(
 977	key_restrict_link_func_t check)
 978{
 979	struct key_restriction *keyres =
 980		kzalloc(sizeof(struct key_restriction), GFP_KERNEL);
 981
 982	if (!keyres)
 983		return ERR_PTR(-ENOMEM);
 984
 985	keyres->check = check;
 986
 987	return keyres;
 988}
 989
 990/*
 991 * Semaphore to serialise restriction setup to prevent reference count
 992 * cycles through restriction key pointers.
 993 */
 994static DECLARE_RWSEM(keyring_serialise_restrict_sem);
 995
 996/*
 997 * Check for restriction cycles that would prevent keyring garbage collection.
 998 * keyring_serialise_restrict_sem must be held.
 999 */
1000static bool keyring_detect_restriction_cycle(const struct key *dest_keyring,
1001					     struct key_restriction *keyres)
1002{
1003	while (keyres && keyres->key &&
1004	       keyres->key->type == &key_type_keyring) {
1005		if (keyres->key == dest_keyring)
1006			return true;
1007
1008		keyres = keyres->key->restrict_link;
1009	}
1010
1011	return false;
1012}
1013
1014/**
1015 * keyring_restrict - Look up and apply a restriction to a keyring
1016 * @keyring_ref: The keyring to be restricted
1017 * @type: The key type that will provide the restriction checker.
1018 * @restriction: The restriction options to apply to the keyring
1019 *
1020 * Look up a keyring and apply a restriction to it.  The restriction is managed
1021 * by the specific key type, but can be configured by the options specified in
1022 * the restriction string.
1023 */
1024int keyring_restrict(key_ref_t keyring_ref, const char *type,
1025		     const char *restriction)
1026{
1027	struct key *keyring;
1028	struct key_type *restrict_type = NULL;
1029	struct key_restriction *restrict_link;
1030	int ret = 0;
1031
1032	keyring = key_ref_to_ptr(keyring_ref);
1033	key_check(keyring);
1034
1035	if (keyring->type != &key_type_keyring)
1036		return -ENOTDIR;
1037
1038	if (!type) {
1039		restrict_link = keyring_restriction_alloc(restrict_link_reject);
1040	} else {
1041		restrict_type = key_type_lookup(type);
1042
1043		if (IS_ERR(restrict_type))
1044			return PTR_ERR(restrict_type);
1045
1046		if (!restrict_type->lookup_restriction) {
1047			ret = -ENOENT;
1048			goto error;
1049		}
1050
1051		restrict_link = restrict_type->lookup_restriction(restriction);
1052	}
1053
1054	if (IS_ERR(restrict_link)) {
1055		ret = PTR_ERR(restrict_link);
1056		goto error;
1057	}
1058
1059	down_write(&keyring->sem);
1060	down_write(&keyring_serialise_restrict_sem);
1061
1062	if (keyring->restrict_link) {
1063		ret = -EEXIST;
1064	} else if (keyring_detect_restriction_cycle(keyring, restrict_link)) {
1065		ret = -EDEADLK;
1066	} else {
1067		keyring->restrict_link = restrict_link;
1068		notify_key(keyring, NOTIFY_KEY_SETATTR, 0);
1069	}
1070
1071	up_write(&keyring_serialise_restrict_sem);
1072	up_write(&keyring->sem);
1073
1074	if (ret < 0) {
1075		key_put(restrict_link->key);
1076		kfree(restrict_link);
1077	}
1078
1079error:
1080	if (restrict_type)
1081		key_type_put(restrict_type);
1082
1083	return ret;
1084}
1085EXPORT_SYMBOL(keyring_restrict);
1086
1087/*
1088 * Search the given keyring for a key that might be updated.
1089 *
1090 * The caller must guarantee that the keyring is a keyring and that the
1091 * permission is granted to modify the keyring as no check is made here.  The
1092 * caller must also hold a lock on the keyring semaphore.
1093 *
1094 * Returns a pointer to the found key with usage count incremented if
1095 * successful and returns NULL if not found.  Revoked and invalidated keys are
1096 * skipped over.
1097 *
1098 * If successful, the possession indicator is propagated from the keyring ref
1099 * to the returned key reference.
1100 */
1101key_ref_t find_key_to_update(key_ref_t keyring_ref,
1102			     const struct keyring_index_key *index_key)
1103{
1104	struct key *keyring, *key;
1105	const void *object;
1106
1107	keyring = key_ref_to_ptr(keyring_ref);
1108
1109	kenter("{%d},{%s,%s}",
1110	       keyring->serial, index_key->type->name, index_key->description);
1111
1112	object = assoc_array_find(&keyring->keys, &keyring_assoc_array_ops,
1113				  index_key);
1114
1115	if (object)
1116		goto found;
1117
1118	kleave(" = NULL");
1119	return NULL;
1120
1121found:
1122	key = keyring_ptr_to_key(object);
1123	if (key->flags & ((1 << KEY_FLAG_INVALIDATED) |
1124			  (1 << KEY_FLAG_REVOKED))) {
1125		kleave(" = NULL [x]");
1126		return NULL;
1127	}
1128	__key_get(key);
1129	kleave(" = {%d}", key->serial);
1130	return make_key_ref(key, is_key_possessed(keyring_ref));
1131}
1132
1133/*
1134 * Find a keyring with the specified name.
1135 *
1136 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1137 * user in the current user namespace are considered.  If @uid_keyring is %true,
1138 * the keyring additionally must have been allocated as a user or user session
1139 * keyring; otherwise, it must grant Search permission directly to the caller.
1140 *
1141 * Returns a pointer to the keyring with the keyring's refcount having being
1142 * incremented on success.  -ENOKEY is returned if a key could not be found.
1143 */
1144struct key *find_keyring_by_name(const char *name, bool uid_keyring)
1145{
1146	struct user_namespace *ns = current_user_ns();
1147	struct key *keyring;
 
1148
1149	if (!name)
1150		return ERR_PTR(-EINVAL);
1151
 
 
1152	read_lock(&keyring_name_lock);
1153
1154	/* Search this hash bucket for a keyring with a matching name that
1155	 * grants Search permission and that hasn't been revoked
1156	 */
1157	list_for_each_entry(keyring, &ns->keyring_name_list, name_link) {
1158		if (!kuid_has_mapping(ns, keyring->user->uid))
1159			continue;
 
 
 
1160
1161		if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1162			continue;
1163
1164		if (strcmp(keyring->description, name) != 0)
1165			continue;
1166
1167		if (uid_keyring) {
1168			if (!test_bit(KEY_FLAG_UID_KEYRING,
1169				      &keyring->flags))
1170				continue;
1171		} else {
1172			if (key_permission(make_key_ref(keyring, 0),
1173					   KEY_NEED_SEARCH) < 0)
 
 
1174				continue;
 
 
1175		}
1176
1177		/* we've got a match but we might end up racing with
1178		 * key_cleanup() if the keyring is currently 'dead'
1179		 * (ie. it has a zero usage count) */
1180		if (!refcount_inc_not_zero(&keyring->usage))
1181			continue;
1182		keyring->last_used_at = ktime_get_real_seconds();
1183		goto out;
1184	}
1185
1186	keyring = ERR_PTR(-ENOKEY);
1187out:
1188	read_unlock(&keyring_name_lock);
1189	return keyring;
1190}
1191
1192static int keyring_detect_cycle_iterator(const void *object,
1193					 void *iterator_data)
1194{
1195	struct keyring_search_context *ctx = iterator_data;
1196	const struct key *key = keyring_ptr_to_key(object);
1197
1198	kenter("{%d}", key->serial);
1199
1200	/* We might get a keyring with matching index-key that is nonetheless a
1201	 * different keyring. */
1202	if (key != ctx->match_data.raw_data)
1203		return 0;
1204
1205	ctx->result = ERR_PTR(-EDEADLK);
1206	return 1;
1207}
1208
1209/*
1210 * See if a cycle will be created by inserting acyclic tree B in acyclic
1211 * tree A at the topmost level (ie: as a direct child of A).
1212 *
1213 * Since we are adding B to A at the top level, checking for cycles should just
1214 * be a matter of seeing if node A is somewhere in tree B.
1215 */
1216static int keyring_detect_cycle(struct key *A, struct key *B)
1217{
1218	struct keyring_search_context ctx = {
1219		.index_key		= A->index_key,
1220		.match_data.raw_data	= A,
1221		.match_data.lookup_type = KEYRING_SEARCH_LOOKUP_DIRECT,
1222		.iterator		= keyring_detect_cycle_iterator,
1223		.flags			= (KEYRING_SEARCH_NO_STATE_CHECK |
1224					   KEYRING_SEARCH_NO_UPDATE_TIME |
1225					   KEYRING_SEARCH_NO_CHECK_PERM |
1226					   KEYRING_SEARCH_DETECT_TOO_DEEP |
1227					   KEYRING_SEARCH_RECURSE),
1228	};
1229
1230	rcu_read_lock();
1231	search_nested_keyrings(B, &ctx);
1232	rcu_read_unlock();
1233	return PTR_ERR(ctx.result) == -EAGAIN ? 0 : PTR_ERR(ctx.result);
1234}
1235
1236/*
1237 * Lock keyring for link.
1238 */
1239int __key_link_lock(struct key *keyring,
1240		    const struct keyring_index_key *index_key)
1241	__acquires(&keyring->sem)
1242	__acquires(&keyring_serialise_link_lock)
1243{
1244	if (keyring->type != &key_type_keyring)
1245		return -ENOTDIR;
1246
1247	down_write(&keyring->sem);
1248
1249	/* Serialise link/link calls to prevent parallel calls causing a cycle
1250	 * when linking two keyring in opposite orders.
1251	 */
1252	if (index_key->type == &key_type_keyring)
1253		mutex_lock(&keyring_serialise_link_lock);
1254
1255	return 0;
1256}
1257
1258/*
1259 * Lock keyrings for move (link/unlink combination).
1260 */
1261int __key_move_lock(struct key *l_keyring, struct key *u_keyring,
1262		    const struct keyring_index_key *index_key)
1263	__acquires(&l_keyring->sem)
1264	__acquires(&u_keyring->sem)
1265	__acquires(&keyring_serialise_link_lock)
1266{
1267	if (l_keyring->type != &key_type_keyring ||
1268	    u_keyring->type != &key_type_keyring)
1269		return -ENOTDIR;
1270
1271	/* We have to be very careful here to take the keyring locks in the
1272	 * right order, lest we open ourselves to deadlocking against another
1273	 * move operation.
1274	 */
1275	if (l_keyring < u_keyring) {
1276		down_write(&l_keyring->sem);
1277		down_write_nested(&u_keyring->sem, 1);
1278	} else {
1279		down_write(&u_keyring->sem);
1280		down_write_nested(&l_keyring->sem, 1);
1281	}
1282
1283	/* Serialise link/link calls to prevent parallel calls causing a cycle
1284	 * when linking two keyring in opposite orders.
1285	 */
1286	if (index_key->type == &key_type_keyring)
1287		mutex_lock(&keyring_serialise_link_lock);
1288
1289	return 0;
1290}
1291
1292/*
1293 * Preallocate memory so that a key can be linked into to a keyring.
1294 */
1295int __key_link_begin(struct key *keyring,
1296		     const struct keyring_index_key *index_key,
1297		     struct assoc_array_edit **_edit)
 
 
1298{
1299	struct assoc_array_edit *edit;
1300	int ret;
1301
1302	kenter("%d,%s,%s,",
1303	       keyring->serial, index_key->type->name, index_key->description);
1304
1305	BUG_ON(index_key->desc_len == 0);
1306	BUG_ON(*_edit != NULL);
1307
1308	*_edit = NULL;
 
 
 
1309
1310	ret = -EKEYREVOKED;
1311	if (test_bit(KEY_FLAG_REVOKED, &keyring->flags))
1312		goto error;
 
 
 
 
 
1313
1314	/* Create an edit script that will insert/replace the key in the
1315	 * keyring tree.
1316	 */
1317	edit = assoc_array_insert(&keyring->keys,
1318				  &keyring_assoc_array_ops,
1319				  index_key,
1320				  NULL);
1321	if (IS_ERR(edit)) {
1322		ret = PTR_ERR(edit);
1323		goto error;
1324	}
1325
1326	/* If we're not replacing a link in-place then we're going to need some
1327	 * extra quota.
1328	 */
1329	if (!edit->dead_leaf) {
1330		ret = key_payload_reserve(keyring,
1331					  keyring->datalen + KEYQUOTA_LINK_BYTES);
1332		if (ret < 0)
1333			goto error_cancel;
1334	}
1335
1336	*_edit = edit;
1337	kleave(" = 0");
1338	return 0;
1339
1340error_cancel:
1341	assoc_array_cancel_edit(edit);
1342error:
 
 
 
 
1343	kleave(" = %d", ret);
1344	return ret;
1345}
1346
1347/*
1348 * Check already instantiated keys aren't going to be a problem.
1349 *
1350 * The caller must have called __key_link_begin(). Don't need to call this for
1351 * keys that were created since __key_link_begin() was called.
1352 */
1353int __key_link_check_live_key(struct key *keyring, struct key *key)
1354{
1355	if (key->type == &key_type_keyring)
1356		/* check that we aren't going to create a cycle by linking one
1357		 * keyring to another */
1358		return keyring_detect_cycle(keyring, key);
1359	return 0;
1360}
1361
1362/*
1363 * Link a key into to a keyring.
1364 *
1365 * Must be called with __key_link_begin() having being called.  Discards any
1366 * already extant link to matching key if there is one, so that each keyring
1367 * holds at most one link to any given key of a particular type+description
1368 * combination.
1369 */
1370void __key_link(struct key *keyring, struct key *key,
1371		struct assoc_array_edit **_edit)
1372{
1373	__key_get(key);
1374	assoc_array_insert_set_object(*_edit, keyring_key_to_ptr(key));
1375	assoc_array_apply_edit(*_edit);
1376	*_edit = NULL;
1377	notify_key(keyring, NOTIFY_KEY_LINKED, key_serial(key));
1378}
1379
1380/*
1381 * Finish linking a key into to a keyring.
1382 *
1383 * Must be called with __key_link_begin() having being called.
1384 */
1385void __key_link_end(struct key *keyring,
1386		    const struct keyring_index_key *index_key,
1387		    struct assoc_array_edit *edit)
1388	__releases(&keyring->sem)
1389	__releases(&keyring_serialise_link_lock)
1390{
1391	BUG_ON(index_key->type == NULL);
1392	kenter("%d,%s,", keyring->serial, index_key->type->name);
1393
 
 
 
1394	if (edit) {
1395		if (!edit->dead_leaf) {
1396			key_payload_reserve(keyring,
1397				keyring->datalen - KEYQUOTA_LINK_BYTES);
1398		}
1399		assoc_array_cancel_edit(edit);
1400	}
1401	up_write(&keyring->sem);
1402
1403	if (index_key->type == &key_type_keyring)
1404		mutex_unlock(&keyring_serialise_link_lock);
1405}
1406
1407/*
1408 * Check addition of keys to restricted keyrings.
1409 */
1410static int __key_link_check_restriction(struct key *keyring, struct key *key)
1411{
1412	if (!keyring->restrict_link || !keyring->restrict_link->check)
1413		return 0;
1414	return keyring->restrict_link->check(keyring, key->type, &key->payload,
1415					     keyring->restrict_link->key);
1416}
1417
1418/**
1419 * key_link - Link a key to a keyring
1420 * @keyring: The keyring to make the link in.
1421 * @key: The key to link to.
1422 *
1423 * Make a link in a keyring to a key, such that the keyring holds a reference
1424 * on that key and the key can potentially be found by searching that keyring.
1425 *
1426 * This function will write-lock the keyring's semaphore and will consume some
1427 * of the user's key data quota to hold the link.
1428 *
1429 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1430 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1431 * full, -EDQUOT if there is insufficient key data quota remaining to add
1432 * another link or -ENOMEM if there's insufficient memory.
1433 *
1434 * It is assumed that the caller has checked that it is permitted for a link to
1435 * be made (the keyring should have Write permission and the key Link
1436 * permission).
1437 */
1438int key_link(struct key *keyring, struct key *key)
1439{
1440	struct assoc_array_edit *edit = NULL;
1441	int ret;
1442
1443	kenter("{%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1444
1445	key_check(keyring);
1446	key_check(key);
1447
1448	ret = __key_link_lock(keyring, &key->index_key);
1449	if (ret < 0)
1450		goto error;
1451
1452	ret = __key_link_begin(keyring, &key->index_key, &edit);
1453	if (ret < 0)
1454		goto error_end;
1455
1456	kdebug("begun {%d,%d}", keyring->serial, refcount_read(&keyring->usage));
1457	ret = __key_link_check_restriction(keyring, key);
1458	if (ret == 0)
1459		ret = __key_link_check_live_key(keyring, key);
1460	if (ret == 0)
1461		__key_link(keyring, key, &edit);
 
 
1462
1463error_end:
1464	__key_link_end(keyring, &key->index_key, edit);
1465error:
1466	kleave(" = %d {%d,%d}", ret, keyring->serial, refcount_read(&keyring->usage));
1467	return ret;
1468}
1469EXPORT_SYMBOL(key_link);
1470
1471/*
1472 * Lock a keyring for unlink.
1473 */
1474static int __key_unlink_lock(struct key *keyring)
1475	__acquires(&keyring->sem)
1476{
1477	if (keyring->type != &key_type_keyring)
1478		return -ENOTDIR;
1479
1480	down_write(&keyring->sem);
1481	return 0;
1482}
1483
1484/*
1485 * Begin the process of unlinking a key from a keyring.
1486 */
1487static int __key_unlink_begin(struct key *keyring, struct key *key,
1488			      struct assoc_array_edit **_edit)
1489{
1490	struct assoc_array_edit *edit;
1491
1492	BUG_ON(*_edit != NULL);
1493
1494	edit = assoc_array_delete(&keyring->keys, &keyring_assoc_array_ops,
1495				  &key->index_key);
1496	if (IS_ERR(edit))
1497		return PTR_ERR(edit);
1498
1499	if (!edit)
1500		return -ENOENT;
1501
1502	*_edit = edit;
1503	return 0;
1504}
1505
1506/*
1507 * Apply an unlink change.
1508 */
1509static void __key_unlink(struct key *keyring, struct key *key,
1510			 struct assoc_array_edit **_edit)
1511{
1512	assoc_array_apply_edit(*_edit);
1513	notify_key(keyring, NOTIFY_KEY_UNLINKED, key_serial(key));
1514	*_edit = NULL;
1515	key_payload_reserve(keyring, keyring->datalen - KEYQUOTA_LINK_BYTES);
1516}
1517
1518/*
1519 * Finish unlinking a key from to a keyring.
1520 */
1521static void __key_unlink_end(struct key *keyring,
1522			     struct key *key,
1523			     struct assoc_array_edit *edit)
1524	__releases(&keyring->sem)
1525{
1526	if (edit)
1527		assoc_array_cancel_edit(edit);
1528	up_write(&keyring->sem);
1529}
1530
1531/**
1532 * key_unlink - Unlink the first link to a key from a keyring.
1533 * @keyring: The keyring to remove the link from.
1534 * @key: The key the link is to.
1535 *
1536 * Remove a link from a keyring to a key.
1537 *
1538 * This function will write-lock the keyring's semaphore.
1539 *
1540 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1541 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1542 * memory.
1543 *
1544 * It is assumed that the caller has checked that it is permitted for a link to
1545 * be removed (the keyring should have Write permission; no permissions are
1546 * required on the key).
1547 */
1548int key_unlink(struct key *keyring, struct key *key)
1549{
1550	struct assoc_array_edit *edit = NULL;
1551	int ret;
1552
1553	key_check(keyring);
1554	key_check(key);
1555
1556	ret = __key_unlink_lock(keyring);
1557	if (ret < 0)
1558		return ret;
1559
1560	ret = __key_unlink_begin(keyring, key, &edit);
1561	if (ret == 0)
1562		__key_unlink(keyring, key, &edit);
1563	__key_unlink_end(keyring, key, edit);
1564	return ret;
1565}
1566EXPORT_SYMBOL(key_unlink);
1567
1568/**
1569 * key_move - Move a key from one keyring to another
1570 * @key: The key to move
1571 * @from_keyring: The keyring to remove the link from.
1572 * @to_keyring: The keyring to make the link in.
1573 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1574 *
1575 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1576 * on that key and the key can potentially be found by searching that keyring
1577 * whilst simultaneously removing a link to the key from @from_keyring.
1578 *
1579 * This function will write-lock both keyring's semaphores and will consume
1580 * some of the user's key data quota to hold the link on @to_keyring.
1581 *
1582 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1583 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1584 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1585 * to add another link or -ENOMEM if there's insufficient memory.  If
1586 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1587 * matching key in @to_keyring.
1588 *
1589 * It is assumed that the caller has checked that it is permitted for a link to
1590 * be made (the keyring should have Write permission and the key Link
1591 * permission).
1592 */
1593int key_move(struct key *key,
1594	     struct key *from_keyring,
1595	     struct key *to_keyring,
1596	     unsigned int flags)
1597{
1598	struct assoc_array_edit *from_edit = NULL, *to_edit = NULL;
1599	int ret;
1600
1601	kenter("%d,%d,%d", key->serial, from_keyring->serial, to_keyring->serial);
1602
1603	if (from_keyring == to_keyring)
1604		return 0;
1605
1606	key_check(key);
1607	key_check(from_keyring);
1608	key_check(to_keyring);
1609
1610	ret = __key_move_lock(from_keyring, to_keyring, &key->index_key);
1611	if (ret < 0)
1612		goto out;
1613	ret = __key_unlink_begin(from_keyring, key, &from_edit);
1614	if (ret < 0)
1615		goto error;
1616	ret = __key_link_begin(to_keyring, &key->index_key, &to_edit);
1617	if (ret < 0)
 
1618		goto error;
1619
1620	ret = -EEXIST;
1621	if (to_edit->dead_leaf && (flags & KEYCTL_MOVE_EXCL))
1622		goto error;
1623
1624	ret = __key_link_check_restriction(to_keyring, key);
1625	if (ret < 0)
1626		goto error;
1627	ret = __key_link_check_live_key(to_keyring, key);
1628	if (ret < 0)
1629		goto error;
1630
1631	__key_unlink(from_keyring, key, &from_edit);
1632	__key_link(to_keyring, key, &to_edit);
1633error:
1634	__key_link_end(to_keyring, &key->index_key, to_edit);
1635	__key_unlink_end(from_keyring, key, from_edit);
1636out:
1637	kleave(" = %d", ret);
1638	return ret;
1639}
1640EXPORT_SYMBOL(key_move);
1641
1642/**
1643 * keyring_clear - Clear a keyring
1644 * @keyring: The keyring to clear.
1645 *
1646 * Clear the contents of the specified keyring.
1647 *
1648 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1649 */
1650int keyring_clear(struct key *keyring)
1651{
1652	struct assoc_array_edit *edit;
1653	int ret;
1654
1655	if (keyring->type != &key_type_keyring)
1656		return -ENOTDIR;
1657
1658	down_write(&keyring->sem);
1659
1660	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1661	if (IS_ERR(edit)) {
1662		ret = PTR_ERR(edit);
1663	} else {
1664		if (edit)
1665			assoc_array_apply_edit(edit);
1666		notify_key(keyring, NOTIFY_KEY_CLEARED, 0);
1667		key_payload_reserve(keyring, 0);
1668		ret = 0;
1669	}
1670
1671	up_write(&keyring->sem);
1672	return ret;
1673}
1674EXPORT_SYMBOL(keyring_clear);
1675
1676/*
1677 * Dispose of the links from a revoked keyring.
1678 *
1679 * This is called with the key sem write-locked.
1680 */
1681static void keyring_revoke(struct key *keyring)
1682{
1683	struct assoc_array_edit *edit;
1684
1685	edit = assoc_array_clear(&keyring->keys, &keyring_assoc_array_ops);
1686	if (!IS_ERR(edit)) {
1687		if (edit)
1688			assoc_array_apply_edit(edit);
1689		key_payload_reserve(keyring, 0);
1690	}
1691}
1692
1693static bool keyring_gc_select_iterator(void *object, void *iterator_data)
1694{
1695	struct key *key = keyring_ptr_to_key(object);
1696	time64_t *limit = iterator_data;
1697
1698	if (key_is_dead(key, *limit))
1699		return false;
1700	key_get(key);
1701	return true;
1702}
1703
1704static int keyring_gc_check_iterator(const void *object, void *iterator_data)
1705{
1706	const struct key *key = keyring_ptr_to_key(object);
1707	time64_t *limit = iterator_data;
1708
1709	key_check(key);
1710	return key_is_dead(key, *limit);
1711}
1712
1713/*
1714 * Garbage collect pointers from a keyring.
1715 *
1716 * Not called with any locks held.  The keyring's key struct will not be
1717 * deallocated under us as only our caller may deallocate it.
1718 */
1719void keyring_gc(struct key *keyring, time64_t limit)
1720{
1721	int result;
1722
1723	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1724
1725	if (keyring->flags & ((1 << KEY_FLAG_INVALIDATED) |
1726			      (1 << KEY_FLAG_REVOKED)))
1727		goto dont_gc;
1728
1729	/* scan the keyring looking for dead keys */
1730	rcu_read_lock();
1731	result = assoc_array_iterate(&keyring->keys,
1732				     keyring_gc_check_iterator, &limit);
1733	rcu_read_unlock();
1734	if (result == true)
1735		goto do_gc;
1736
1737dont_gc:
1738	kleave(" [no gc]");
1739	return;
1740
1741do_gc:
1742	down_write(&keyring->sem);
1743	assoc_array_gc(&keyring->keys, &keyring_assoc_array_ops,
1744		       keyring_gc_select_iterator, &limit);
1745	up_write(&keyring->sem);
1746	kleave(" [gc]");
1747}
1748
1749/*
1750 * Garbage collect restriction pointers from a keyring.
1751 *
1752 * Keyring restrictions are associated with a key type, and must be cleaned
1753 * up if the key type is unregistered. The restriction is altered to always
1754 * reject additional keys so a keyring cannot be opened up by unregistering
1755 * a key type.
1756 *
1757 * Not called with any keyring locks held. The keyring's key struct will not
1758 * be deallocated under us as only our caller may deallocate it.
1759 *
1760 * The caller is required to hold key_types_sem and dead_type->sem. This is
1761 * fulfilled by key_gc_keytype() holding the locks on behalf of
1762 * key_garbage_collector(), which it invokes on a workqueue.
1763 */
1764void keyring_restriction_gc(struct key *keyring, struct key_type *dead_type)
1765{
1766	struct key_restriction *keyres;
1767
1768	kenter("%x{%s}", keyring->serial, keyring->description ?: "");
1769
1770	/*
1771	 * keyring->restrict_link is only assigned at key allocation time
1772	 * or with the key type locked, so the only values that could be
1773	 * concurrently assigned to keyring->restrict_link are for key
1774	 * types other than dead_type. Given this, it's ok to check
1775	 * the key type before acquiring keyring->sem.
1776	 */
1777	if (!dead_type || !keyring->restrict_link ||
1778	    keyring->restrict_link->keytype != dead_type) {
1779		kleave(" [no restriction gc]");
1780		return;
1781	}
1782
1783	/* Lock the keyring to ensure that a link is not in progress */
1784	down_write(&keyring->sem);
1785
1786	keyres = keyring->restrict_link;
1787
1788	keyres->check = restrict_link_reject;
1789
1790	key_put(keyres->key);
1791	keyres->key = NULL;
1792	keyres->keytype = NULL;
1793
1794	up_write(&keyring->sem);
1795
1796	kleave(" [restriction gc]");
1797}