Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/mm/oom_kill.c
  3 * 
  4 *  Copyright (C)  1998,2000  Rik van Riel
  5 *	Thanks go out to Claus Fischer for some serious inspiration and
  6 *	for goading me into coding this file...
  7 *  Copyright (C)  2010  Google, Inc.
  8 *	Rewritten by David Rientjes
  9 *
 10 *  The routines in this file are used to kill a process when
 11 *  we're seriously out of memory. This gets called from __alloc_pages()
 12 *  in mm/page_alloc.c when we really run out of memory.
 13 *
 14 *  Since we won't call these routines often (on a well-configured
 15 *  machine) this file will double as a 'coding guide' and a signpost
 16 *  for newbie kernel hackers. It features several pointers to major
 17 *  kernel subsystems and hints as to where to find out what things do.
 18 */
 19
 20#include <linux/oom.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/gfp.h>
 24#include <linux/sched.h>
 
 
 
 25#include <linux/swap.h>
 
 26#include <linux/timex.h>
 27#include <linux/jiffies.h>
 28#include <linux/cpuset.h>
 29#include <linux/export.h>
 30#include <linux/notifier.h>
 31#include <linux/memcontrol.h>
 32#include <linux/mempolicy.h>
 33#include <linux/security.h>
 34#include <linux/ptrace.h>
 35#include <linux/freezer.h>
 36#include <linux/ftrace.h>
 37#include <linux/ratelimit.h>
 38#include <linux/kthread.h>
 39#include <linux/init.h>
 
 
 
 40
 41#include <asm/tlb.h>
 42#include "internal.h"
 
 43
 44#define CREATE_TRACE_POINTS
 45#include <trace/events/oom.h>
 46
 47int sysctl_panic_on_oom;
 48int sysctl_oom_kill_allocating_task;
 49int sysctl_oom_dump_tasks = 1;
 50
 
 
 
 
 
 
 
 
 51DEFINE_MUTEX(oom_lock);
 
 
 
 
 
 
 
 52
 53#ifdef CONFIG_NUMA
 54/**
 55 * has_intersects_mems_allowed() - check task eligiblity for kill
 56 * @start: task struct of which task to consider
 57 * @mask: nodemask passed to page allocator for mempolicy ooms
 58 *
 59 * Task eligibility is determined by whether or not a candidate task, @tsk,
 60 * shares the same mempolicy nodes as current if it is bound by such a policy
 61 * and whether or not it has the same set of allowed cpuset nodes.
 
 
 
 62 */
 63static bool has_intersects_mems_allowed(struct task_struct *start,
 64					const nodemask_t *mask)
 65{
 66	struct task_struct *tsk;
 67	bool ret = false;
 
 68
 69	rcu_read_lock();
 70	for_each_thread(start, tsk) {
 71		if (mask) {
 72			/*
 73			 * If this is a mempolicy constrained oom, tsk's
 74			 * cpuset is irrelevant.  Only return true if its
 75			 * mempolicy intersects current, otherwise it may be
 76			 * needlessly killed.
 77			 */
 78			ret = mempolicy_nodemask_intersects(tsk, mask);
 79		} else {
 80			/*
 81			 * This is not a mempolicy constrained oom, so only
 82			 * check the mems of tsk's cpuset.
 83			 */
 84			ret = cpuset_mems_allowed_intersects(current, tsk);
 85		}
 86		if (ret)
 87			break;
 88	}
 89	rcu_read_unlock();
 90
 91	return ret;
 92}
 93#else
 94static bool has_intersects_mems_allowed(struct task_struct *tsk,
 95					const nodemask_t *mask)
 96{
 97	return true;
 98}
 99#endif /* CONFIG_NUMA */
100
101/*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107struct task_struct *find_lock_task_mm(struct task_struct *p)
108{
109	struct task_struct *t;
110
111	rcu_read_lock();
112
113	for_each_thread(p, t) {
114		task_lock(t);
115		if (likely(t->mm))
116			goto found;
117		task_unlock(t);
118	}
119	t = NULL;
120found:
121	rcu_read_unlock();
122
123	return t;
124}
125
126/*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130static inline bool is_sysrq_oom(struct oom_control *oc)
131{
132	return oc->order == -1;
133}
134
135/* return true if the task is not adequate as candidate victim task. */
136static bool oom_unkillable_task(struct task_struct *p,
137		struct mem_cgroup *memcg, const nodemask_t *nodemask)
138{
139	if (is_global_init(p))
140		return true;
141	if (p->flags & PF_KTHREAD)
142		return true;
 
 
143
144	/* When mem_cgroup_out_of_memory() and p is not member of the group */
145	if (memcg && !task_in_mem_cgroup(p, memcg))
146		return true;
147
148	/* p may not have freeable memory in nodemask */
149	if (!has_intersects_mems_allowed(p, nodemask))
150		return true;
 
 
 
 
 
 
 
 
 
 
151
152	return false;
153}
154
155/**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible.  The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165			  const nodemask_t *nodemask, unsigned long totalpages)
166{
167	long points;
168	long adj;
169
170	if (oom_unkillable_task(p, memcg, nodemask))
171		return 0;
172
173	p = find_lock_task_mm(p);
174	if (!p)
175		return 0;
176
 
 
 
 
 
177	adj = (long)p->signal->oom_score_adj;
178	if (adj == OOM_SCORE_ADJ_MIN) {
 
 
179		task_unlock(p);
180		return 0;
181	}
182
183	/*
184	 * The baseline for the badness score is the proportion of RAM that each
185	 * task's rss, pagetable and swap space use.
186	 */
187	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188		atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
189	task_unlock(p);
190
191	/*
192	 * Root processes get 3% bonus, just like the __vm_enough_memory()
193	 * implementation used by LSMs.
194	 */
195	if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196		points -= (points * 3) / 100;
197
198	/* Normalize to oom_score_adj units */
199	adj *= totalpages / 1000;
200	points += adj;
201
202	/*
203	 * Never return 0 for an eligible task regardless of the root bonus and
204	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
205	 */
206	return points > 0 ? points : 1;
207}
208
 
 
 
 
 
 
 
209/*
210 * Determine the type of allocation constraint.
211 */
212#ifdef CONFIG_NUMA
213static enum oom_constraint constrained_alloc(struct oom_control *oc,
214					     unsigned long *totalpages)
215{
216	struct zone *zone;
217	struct zoneref *z;
218	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219	bool cpuset_limited = false;
220	int nid;
221
 
 
 
 
 
222	/* Default to all available memory */
223	*totalpages = totalram_pages + total_swap_pages;
 
 
 
224
225	if (!oc->zonelist)
226		return CONSTRAINT_NONE;
227	/*
228	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229	 * to kill current.We have to random task kill in this case.
230	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
231	 */
232	if (oc->gfp_mask & __GFP_THISNODE)
233		return CONSTRAINT_NONE;
234
235	/*
236	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237	 * the page allocator means a mempolicy is in effect.  Cpuset policy
238	 * is enforced in get_page_from_freelist().
239	 */
240	if (oc->nodemask &&
241	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242		*totalpages = total_swap_pages;
243		for_each_node_mask(nid, *oc->nodemask)
244			*totalpages += node_spanned_pages(nid);
245		return CONSTRAINT_MEMORY_POLICY;
246	}
247
248	/* Check this allocation failure is caused by cpuset's wall function */
249	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250			high_zoneidx, oc->nodemask)
251		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252			cpuset_limited = true;
253
254	if (cpuset_limited) {
255		*totalpages = total_swap_pages;
256		for_each_node_mask(nid, cpuset_current_mems_allowed)
257			*totalpages += node_spanned_pages(nid);
258		return CONSTRAINT_CPUSET;
259	}
260	return CONSTRAINT_NONE;
261}
262#else
263static enum oom_constraint constrained_alloc(struct oom_control *oc,
264					     unsigned long *totalpages)
265{
266	*totalpages = totalram_pages + total_swap_pages;
267	return CONSTRAINT_NONE;
268}
269#endif
270
271enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272			struct task_struct *task, unsigned long totalpages)
273{
274	if (oom_unkillable_task(task, NULL, oc->nodemask))
275		return OOM_SCAN_CONTINUE;
 
 
 
 
 
 
 
276
277	/*
278	 * This task already has access to memory reserves and is being killed.
279	 * Don't allow any other task to have access to the reserves.
 
 
280	 */
281	if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282		if (!is_sysrq_oom(oc))
283			return OOM_SCAN_ABORT;
 
284	}
285	if (!task->mm)
286		return OOM_SCAN_CONTINUE;
287
288	/*
289	 * If task is allocating a lot of memory and has been marked to be
290	 * killed first if it triggers an oom, then select it.
291	 */
292	if (oom_task_origin(task))
293		return OOM_SCAN_SELECT;
294
295	return OOM_SCAN_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
298/*
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'.  Returns -1 on scan abort.
301 */
302static struct task_struct *select_bad_process(struct oom_control *oc,
303		unsigned int *ppoints, unsigned long totalpages)
304{
305	struct task_struct *g, *p;
306	struct task_struct *chosen = NULL;
307	unsigned long chosen_points = 0;
308
309	rcu_read_lock();
310	for_each_process_thread(g, p) {
311		unsigned int points;
 
312
313		switch (oom_scan_process_thread(oc, p, totalpages)) {
314		case OOM_SCAN_SELECT:
315			chosen = p;
316			chosen_points = ULONG_MAX;
317			/* fall through */
318		case OOM_SCAN_CONTINUE:
319			continue;
320		case OOM_SCAN_ABORT:
321			rcu_read_unlock();
322			return (struct task_struct *)(-1UL);
323		case OOM_SCAN_OK:
324			break;
325		};
326		points = oom_badness(p, NULL, oc->nodemask, totalpages);
327		if (!points || points < chosen_points)
328			continue;
329		/* Prefer thread group leaders for display purposes */
330		if (points == chosen_points && thread_group_leader(chosen))
331			continue;
332
333		chosen = p;
334		chosen_points = points;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
335	}
336	if (chosen)
337		get_task_struct(chosen);
338	rcu_read_unlock();
339
340	*ppoints = chosen_points * 1000 / totalpages;
341	return chosen;
 
 
 
 
 
 
 
 
342}
343
344/**
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
348 *
349 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
351 * are not shown.
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
354 */
355static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
356{
357	struct task_struct *p;
358	struct task_struct *task;
359
360	pr_info("[ pid ]   uid  tgid total_vm      rss nr_ptes nr_pmds swapents oom_score_adj name\n");
361	rcu_read_lock();
362	for_each_process(p) {
363		if (oom_unkillable_task(p, memcg, nodemask))
364			continue;
365
366		task = find_lock_task_mm(p);
367		if (!task) {
368			/*
369			 * This is a kthread or all of p's threads have already
370			 * detached their mm's.  There's no need to report
371			 * them; they can't be oom killed anyway.
372			 */
373			continue;
374		}
375
376		pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu         %5hd %s\n",
377			task->pid, from_kuid(&init_user_ns, task_uid(task)),
378			task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379			atomic_long_read(&task->mm->nr_ptes),
380			mm_nr_pmds(task->mm),
381			get_mm_counter(task->mm, MM_SWAPENTS),
382			task->signal->oom_score_adj, task->comm);
383		task_unlock(task);
384	}
385	rcu_read_unlock();
386}
387
388static void dump_header(struct oom_control *oc, struct task_struct *p,
389			struct mem_cgroup *memcg)
 
 
 
 
 
 
 
 
 
 
 
390{
391	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393		current->signal->oom_score_adj);
 
 
394
395	cpuset_print_current_mems_allowed();
396	dump_stack();
397	if (memcg)
398		mem_cgroup_print_oom_info(memcg, p);
399	else
400		show_mem(SHOW_MEM_FILTER_NODES);
 
 
 
401	if (sysctl_oom_dump_tasks)
402		dump_tasks(memcg, oc->nodemask);
403}
404
405/*
406 * Number of OOM victims in flight
407 */
408static atomic_t oom_victims = ATOMIC_INIT(0);
409static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
410
411bool oom_killer_disabled __read_mostly;
 
 
 
 
 
 
 
 
 
 
412
413#define K(x) ((x) << (PAGE_SHIFT-10))
 
 
 
 
 
 
414
415#ifdef CONFIG_MMU
416/*
417 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
418 * victim (if that is possible) to help the OOM killer to move on.
419 */
420static struct task_struct *oom_reaper_th;
421static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
422static struct task_struct *oom_reaper_list;
423static DEFINE_SPINLOCK(oom_reaper_lock);
424
425
426static bool __oom_reap_task(struct task_struct *tsk)
427{
428	struct mmu_gather tlb;
429	struct vm_area_struct *vma;
430	struct mm_struct *mm;
431	struct task_struct *p;
432	struct zap_details details = {.check_swap_entries = true,
433				      .ignore_dirty = true};
434	bool ret = true;
 
435
436	/*
437	 * Make sure we find the associated mm_struct even when the particular
438	 * thread has already terminated and cleared its mm.
439	 * We might have race with exit path so consider our work done if there
440	 * is no mm.
441	 */
442	p = find_lock_task_mm(tsk);
443	if (!p)
444		return true;
445
446	mm = p->mm;
447	if (!atomic_inc_not_zero(&mm->mm_users)) {
448		task_unlock(p);
449		return true;
450	}
451
452	task_unlock(p);
453
454	if (!down_read_trylock(&mm->mmap_sem)) {
455		ret = false;
456		goto out;
457	}
458
459	tlb_gather_mmu(&tlb, mm, 0, -1);
460	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
461		if (is_vm_hugetlb_page(vma))
462			continue;
463
464		/*
465		 * mlocked VMAs require explicit munlocking before unmap.
466		 * Let's keep it simple here and skip such VMAs.
467		 */
468		if (vma->vm_flags & VM_LOCKED)
469			continue;
470
471		/*
472		 * Only anonymous pages have a good chance to be dropped
473		 * without additional steps which we cannot afford as we
474		 * are OOM already.
475		 *
476		 * We do not even care about fs backed pages because all
477		 * which are reclaimable have already been reclaimed and
478		 * we do not want to block exit_mmap by keeping mm ref
479		 * count elevated without a good reason.
480		 */
481		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
482			unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
483					 &details);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484	}
485	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
486	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
487			task_pid_nr(tsk), tsk->comm,
488			K(get_mm_counter(mm, MM_ANONPAGES)),
489			K(get_mm_counter(mm, MM_FILEPAGES)),
490			K(get_mm_counter(mm, MM_SHMEMPAGES)));
491	up_read(&mm->mmap_sem);
 
 
 
492
493	/*
494	 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
495	 * reasonably reclaimable memory anymore. OOM killer can continue
496	 * by selecting other victim if unmapping hasn't led to any
497	 * improvements. This also means that selecting this task doesn't
498	 * make any sense.
499	 */
500	tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
501	exit_oom_victim(tsk);
502out:
503	mmput(mm);
504	return ret;
505}
506
507#define MAX_OOM_REAP_RETRIES 10
508static void oom_reap_task(struct task_struct *tsk)
509{
510	int attempts = 0;
 
511
512	/* Retry the down_read_trylock(mmap_sem) a few times */
513	while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
514		schedule_timeout_idle(HZ/10);
515
516	if (attempts > MAX_OOM_REAP_RETRIES) {
517		pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
518				task_pid_nr(tsk), tsk->comm);
519		debug_show_all_locks();
520	}
 
 
 
 
 
 
 
 
 
 
 
 
521
522	/* Drop a reference taken by wake_oom_reaper */
523	put_task_struct(tsk);
524}
525
526static int oom_reaper(void *unused)
527{
528	set_freezable();
529
530	while (true) {
531		struct task_struct *tsk = NULL;
532
533		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
534		spin_lock(&oom_reaper_lock);
535		if (oom_reaper_list != NULL) {
536			tsk = oom_reaper_list;
537			oom_reaper_list = tsk->oom_reaper_list;
538		}
539		spin_unlock(&oom_reaper_lock);
540
541		if (tsk)
542			oom_reap_task(tsk);
543	}
544
545	return 0;
546}
547
548static void wake_oom_reaper(struct task_struct *tsk)
549{
550	if (!oom_reaper_th)
551		return;
552
553	/* tsk is already queued? */
554	if (tsk == oom_reaper_list || tsk->oom_reaper_list)
 
 
 
555		return;
 
556
557	get_task_struct(tsk);
558
559	spin_lock(&oom_reaper_lock);
560	tsk->oom_reaper_list = oom_reaper_list;
561	oom_reaper_list = tsk;
562	spin_unlock(&oom_reaper_lock);
 
563	wake_up(&oom_reaper_wait);
564}
565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
566static int __init oom_init(void)
567{
568	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
569	if (IS_ERR(oom_reaper_th)) {
570		pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
571				PTR_ERR(oom_reaper_th));
572		oom_reaper_th = NULL;
573	}
574	return 0;
575}
576subsys_initcall(oom_init)
577#else
578static void wake_oom_reaper(struct task_struct *tsk)
579{
580}
581#endif
582
583/**
584 * mark_oom_victim - mark the given task as OOM victim
585 * @tsk: task to mark
586 *
587 * Has to be called with oom_lock held and never after
588 * oom has been disabled already.
 
 
 
589 */
590void mark_oom_victim(struct task_struct *tsk)
591{
 
 
 
592	WARN_ON(oom_killer_disabled);
593	/* OOM killer might race with memcg OOM */
594	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
595		return;
 
 
 
 
 
596	/*
597	 * Make sure that the task is woken up from uninterruptible sleep
598	 * if it is frozen because OOM killer wouldn't be able to free
599	 * any memory and livelock. freezing_slow_path will tell the freezer
600	 * that TIF_MEMDIE tasks should be ignored.
601	 */
602	__thaw_task(tsk);
603	atomic_inc(&oom_victims);
 
 
 
604}
605
606/**
607 * exit_oom_victim - note the exit of an OOM victim
608 */
609void exit_oom_victim(struct task_struct *tsk)
610{
611	if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
612		return;
613
614	if (!atomic_dec_return(&oom_victims))
615		wake_up_all(&oom_victims_wait);
616}
617
618/**
 
 
 
 
 
 
 
 
 
619 * oom_killer_disable - disable OOM killer
 
620 *
621 * Forces all page allocations to fail rather than trigger OOM killer.
622 * Will block and wait until all OOM victims are killed.
 
623 *
624 * The function cannot be called when there are runnable user tasks because
625 * the userspace would see unexpected allocation failures as a result. Any
626 * new usage of this function should be consulted with MM people.
627 *
628 * Returns true if successful and false if the OOM killer cannot be
629 * disabled.
630 */
631bool oom_killer_disable(void)
632{
 
 
633	/*
634	 * Make sure to not race with an ongoing OOM killer. Check that the
635	 * current is not killed (possibly due to sharing the victim's memory).
636	 */
637	if (mutex_lock_killable(&oom_lock))
638		return false;
639	oom_killer_disabled = true;
640	mutex_unlock(&oom_lock);
641
642	wait_event(oom_victims_wait, !atomic_read(&oom_victims));
 
 
 
 
 
 
643
644	return true;
645}
646
647/**
648 * oom_killer_enable - enable OOM killer
649 */
650void oom_killer_enable(void)
651{
652	oom_killer_disabled = false;
653}
654
655/*
656 * task->mm can be NULL if the task is the exited group leader.  So to
657 * determine whether the task is using a particular mm, we examine all the
658 * task's threads: if one of those is using this mm then this task was also
659 * using it.
660 */
661static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
662{
663	struct task_struct *t;
 
 
 
 
664
665	for_each_thread(p, t) {
666		struct mm_struct *t_mm = READ_ONCE(t->mm);
667		if (t_mm)
668			return t_mm == mm;
669	}
670	return false;
671}
672
673/*
674 * Must be called while holding a reference to p, which will be released upon
675 * returning.
 
 
 
676 */
677void oom_kill_process(struct oom_control *oc, struct task_struct *p,
678		      unsigned int points, unsigned long totalpages,
679		      struct mem_cgroup *memcg, const char *message)
680{
681	struct task_struct *victim = p;
682	struct task_struct *child;
683	struct task_struct *t;
684	struct mm_struct *mm;
685	unsigned int victim_points = 0;
686	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
687					      DEFAULT_RATELIMIT_BURST);
688	bool can_oom_reap = true;
689
690	/*
691	 * If the task is already exiting, don't alarm the sysadmin or kill
692	 * its children or threads, just set TIF_MEMDIE so it can die quickly
 
693	 */
694	task_lock(p);
695	if (p->mm && task_will_free_mem(p)) {
696		mark_oom_victim(p);
697		task_unlock(p);
698		put_task_struct(p);
699		return;
700	}
701	task_unlock(p);
702
703	if (__ratelimit(&oom_rs))
704		dump_header(oc, p, memcg);
705
706	pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
707		message, task_pid_nr(p), p->comm, points);
708
709	/*
710	 * If any of p's children has a different mm and is eligible for kill,
711	 * the one with the highest oom_badness() score is sacrificed for its
712	 * parent.  This attempts to lose the minimal amount of work done while
713	 * still freeing memory.
714	 */
715	read_lock(&tasklist_lock);
716	for_each_thread(p, t) {
717		list_for_each_entry(child, &t->children, sibling) {
718			unsigned int child_points;
719
720			if (process_shares_mm(child, p->mm))
721				continue;
722			/*
723			 * oom_badness() returns 0 if the thread is unkillable
724			 */
725			child_points = oom_badness(child, memcg, oc->nodemask,
726								totalpages);
727			if (child_points > victim_points) {
728				put_task_struct(victim);
729				victim = child;
730				victim_points = child_points;
731				get_task_struct(victim);
732			}
733		}
 
 
 
734	}
735	read_unlock(&tasklist_lock);
 
 
 
 
 
 
 
 
 
736
737	p = find_lock_task_mm(victim);
738	if (!p) {
 
 
739		put_task_struct(victim);
740		return;
741	} else if (victim != p) {
742		get_task_struct(p);
743		put_task_struct(victim);
744		victim = p;
745	}
746
747	/* Get a reference to safely compare mm after task_unlock(victim) */
748	mm = victim->mm;
749	atomic_inc(&mm->mm_count);
 
 
 
 
 
750	/*
751	 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
752	 * the OOM victim from depleting the memory reserves from the user
753	 * space under its control.
754	 */
755	do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
756	mark_oom_victim(victim);
757	pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
758		task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
759		K(get_mm_counter(victim->mm, MM_ANONPAGES)),
760		K(get_mm_counter(victim->mm, MM_FILEPAGES)),
761		K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
 
 
762	task_unlock(victim);
763
764	/*
765	 * Kill all user processes sharing victim->mm in other thread groups, if
766	 * any.  They don't get access to memory reserves, though, to avoid
767	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
768	 * oom killed thread cannot exit because it requires the semaphore and
769	 * its contended by another thread trying to allocate memory itself.
770	 * That thread will now get access to memory reserves since it has a
771	 * pending fatal signal.
772	 */
773	rcu_read_lock();
774	for_each_process(p) {
775		if (!process_shares_mm(p, mm))
776			continue;
777		if (same_thread_group(p, victim))
778			continue;
779		if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
780		    p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
781			/*
782			 * We cannot use oom_reaper for the mm shared by this
783			 * process because it wouldn't get killed and so the
784			 * memory might be still used.
785			 */
786			can_oom_reap = false;
 
 
 
 
787			continue;
788		}
789		do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
 
 
 
 
 
 
790	}
791	rcu_read_unlock();
792
793	if (can_oom_reap)
794		wake_oom_reaper(victim);
795
796	mmdrop(mm);
797	put_task_struct(victim);
798}
799#undef K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
800
801/*
802 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
803 */
804void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
805			struct mem_cgroup *memcg)
806{
807	if (likely(!sysctl_panic_on_oom))
808		return;
809	if (sysctl_panic_on_oom != 2) {
810		/*
811		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
812		 * does not panic for cpuset, mempolicy, or memcg allocation
813		 * failures.
814		 */
815		if (constraint != CONSTRAINT_NONE)
816			return;
817	}
818	/* Do not panic for oom kills triggered by sysrq */
819	if (is_sysrq_oom(oc))
820		return;
821	dump_header(oc, NULL, memcg);
822	panic("Out of memory: %s panic_on_oom is enabled\n",
823		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
824}
825
826static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
827
828int register_oom_notifier(struct notifier_block *nb)
829{
830	return blocking_notifier_chain_register(&oom_notify_list, nb);
831}
832EXPORT_SYMBOL_GPL(register_oom_notifier);
833
834int unregister_oom_notifier(struct notifier_block *nb)
835{
836	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
837}
838EXPORT_SYMBOL_GPL(unregister_oom_notifier);
839
840/**
841 * out_of_memory - kill the "best" process when we run out of memory
842 * @oc: pointer to struct oom_control
843 *
844 * If we run out of memory, we have the choice between either
845 * killing a random task (bad), letting the system crash (worse)
846 * OR try to be smart about which process to kill. Note that we
847 * don't have to be perfect here, we just have to be good.
848 */
849bool out_of_memory(struct oom_control *oc)
850{
851	struct task_struct *p;
852	unsigned long totalpages;
853	unsigned long freed = 0;
854	unsigned int uninitialized_var(points);
855	enum oom_constraint constraint = CONSTRAINT_NONE;
856
857	if (oom_killer_disabled)
858		return false;
859
860	blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
861	if (freed > 0)
862		/* Got some memory back in the last second. */
863		return true;
 
 
864
865	/*
866	 * If current has a pending SIGKILL or is exiting, then automatically
867	 * select it.  The goal is to allow it to allocate so that it may
868	 * quickly exit and free its memory.
869	 *
870	 * But don't select if current has already released its mm and cleared
871	 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
872	 */
873	if (current->mm &&
874	    (fatal_signal_pending(current) || task_will_free_mem(current))) {
875		mark_oom_victim(current);
 
876		return true;
877	}
878
879	/*
 
 
 
 
 
 
 
 
880	 * Check if there were limitations on the allocation (only relevant for
881	 * NUMA) that may require different handling.
882	 */
883	constraint = constrained_alloc(oc, &totalpages);
884	if (constraint != CONSTRAINT_MEMORY_POLICY)
885		oc->nodemask = NULL;
886	check_panic_on_oom(oc, constraint, NULL);
887
888	if (sysctl_oom_kill_allocating_task && current->mm &&
889	    !oom_unkillable_task(current, NULL, oc->nodemask) &&
 
890	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
891		get_task_struct(current);
892		oom_kill_process(oc, current, 0, totalpages, NULL,
893				 "Out of memory (oom_kill_allocating_task)");
894		return true;
895	}
896
897	p = select_bad_process(oc, &points, totalpages);
898	/* Found nothing?!?! Either we hang forever, or we panic. */
899	if (!p && !is_sysrq_oom(oc)) {
900		dump_header(oc, NULL, NULL);
901		panic("Out of memory and no killable processes...\n");
902	}
903	if (p && p != (void *)-1UL) {
904		oom_kill_process(oc, p, points, totalpages, NULL,
905				 "Out of memory");
906		/*
907		 * Give the killed process a good chance to exit before trying
908		 * to allocate memory again.
 
909		 */
910		schedule_timeout_killable(1);
 
911	}
912	return true;
 
 
 
913}
914
915/*
916 * The pagefault handler calls here because it is out of memory, so kill a
917 * memory-hogging task.  If any populated zone has ZONE_OOM_LOCKED set, a
918 * parallel oom killing is already in progress so do nothing.
 
919 */
920void pagefault_out_of_memory(void)
921{
922	struct oom_control oc = {
923		.zonelist = NULL,
924		.nodemask = NULL,
925		.gfp_mask = 0,
926		.order = 0,
927	};
928
929	if (mem_cgroup_oom_synchronize(true))
930		return;
931
932	if (!mutex_trylock(&oom_lock))
933		return;
934
935	if (!out_of_memory(&oc)) {
936		/*
937		 * There shouldn't be any user tasks runnable while the
938		 * OOM killer is disabled, so the current task has to
939		 * be a racing OOM victim for which oom_killer_disable()
940		 * is waiting for.
941		 */
942		WARN_ON(test_thread_flag(TIF_MEMDIE));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
943	}
944
945	mutex_unlock(&oom_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
946}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/oom_kill.c
   4 * 
   5 *  Copyright (C)  1998,2000  Rik van Riel
   6 *	Thanks go out to Claus Fischer for some serious inspiration and
   7 *	for goading me into coding this file...
   8 *  Copyright (C)  2010  Google, Inc.
   9 *	Rewritten by David Rientjes
  10 *
  11 *  The routines in this file are used to kill a process when
  12 *  we're seriously out of memory. This gets called from __alloc_pages()
  13 *  in mm/page_alloc.c when we really run out of memory.
  14 *
  15 *  Since we won't call these routines often (on a well-configured
  16 *  machine) this file will double as a 'coding guide' and a signpost
  17 *  for newbie kernel hackers. It features several pointers to major
  18 *  kernel subsystems and hints as to where to find out what things do.
  19 */
  20
  21#include <linux/oom.h>
  22#include <linux/mm.h>
  23#include <linux/err.h>
  24#include <linux/gfp.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
  28#include <linux/sched/debug.h>
  29#include <linux/swap.h>
  30#include <linux/syscalls.h>
  31#include <linux/timex.h>
  32#include <linux/jiffies.h>
  33#include <linux/cpuset.h>
  34#include <linux/export.h>
  35#include <linux/notifier.h>
  36#include <linux/memcontrol.h>
  37#include <linux/mempolicy.h>
  38#include <linux/security.h>
  39#include <linux/ptrace.h>
  40#include <linux/freezer.h>
  41#include <linux/ftrace.h>
  42#include <linux/ratelimit.h>
  43#include <linux/kthread.h>
  44#include <linux/init.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/cred.h>
  47#include <linux/nmi.h>
  48
  49#include <asm/tlb.h>
  50#include "internal.h"
  51#include "slab.h"
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/oom.h>
  55
  56static int sysctl_panic_on_oom;
  57static int sysctl_oom_kill_allocating_task;
  58static int sysctl_oom_dump_tasks = 1;
  59
  60/*
  61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
  62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
  63 * from different domains).
  64 *
  65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
  66 * and mark_oom_victim
  67 */
  68DEFINE_MUTEX(oom_lock);
  69/* Serializes oom_score_adj and oom_score_adj_min updates */
  70DEFINE_MUTEX(oom_adj_mutex);
  71
  72static inline bool is_memcg_oom(struct oom_control *oc)
  73{
  74	return oc->memcg != NULL;
  75}
  76
  77#ifdef CONFIG_NUMA
  78/**
  79 * oom_cpuset_eligible() - check task eligibility for kill
  80 * @start: task struct of which task to consider
  81 * @oc: pointer to struct oom_control
  82 *
  83 * Task eligibility is determined by whether or not a candidate task, @tsk,
  84 * shares the same mempolicy nodes as current if it is bound by such a policy
  85 * and whether or not it has the same set of allowed cpuset nodes.
  86 *
  87 * This function is assuming oom-killer context and 'current' has triggered
  88 * the oom-killer.
  89 */
  90static bool oom_cpuset_eligible(struct task_struct *start,
  91				struct oom_control *oc)
  92{
  93	struct task_struct *tsk;
  94	bool ret = false;
  95	const nodemask_t *mask = oc->nodemask;
  96
  97	rcu_read_lock();
  98	for_each_thread(start, tsk) {
  99		if (mask) {
 100			/*
 101			 * If this is a mempolicy constrained oom, tsk's
 102			 * cpuset is irrelevant.  Only return true if its
 103			 * mempolicy intersects current, otherwise it may be
 104			 * needlessly killed.
 105			 */
 106			ret = mempolicy_in_oom_domain(tsk, mask);
 107		} else {
 108			/*
 109			 * This is not a mempolicy constrained oom, so only
 110			 * check the mems of tsk's cpuset.
 111			 */
 112			ret = cpuset_mems_allowed_intersects(current, tsk);
 113		}
 114		if (ret)
 115			break;
 116	}
 117	rcu_read_unlock();
 118
 119	return ret;
 120}
 121#else
 122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
 
 123{
 124	return true;
 125}
 126#endif /* CONFIG_NUMA */
 127
 128/*
 129 * The process p may have detached its own ->mm while exiting or through
 130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
 131 * pointer.  Return p, or any of its subthreads with a valid ->mm, with
 132 * task_lock() held.
 133 */
 134struct task_struct *find_lock_task_mm(struct task_struct *p)
 135{
 136	struct task_struct *t;
 137
 138	rcu_read_lock();
 139
 140	for_each_thread(p, t) {
 141		task_lock(t);
 142		if (likely(t->mm))
 143			goto found;
 144		task_unlock(t);
 145	}
 146	t = NULL;
 147found:
 148	rcu_read_unlock();
 149
 150	return t;
 151}
 152
 153/*
 154 * order == -1 means the oom kill is required by sysrq, otherwise only
 155 * for display purposes.
 156 */
 157static inline bool is_sysrq_oom(struct oom_control *oc)
 158{
 159	return oc->order == -1;
 160}
 161
 162/* return true if the task is not adequate as candidate victim task. */
 163static bool oom_unkillable_task(struct task_struct *p)
 
 164{
 165	if (is_global_init(p))
 166		return true;
 167	if (p->flags & PF_KTHREAD)
 168		return true;
 169	return false;
 170}
 171
 172/*
 173 * Check whether unreclaimable slab amount is greater than
 174 * all user memory(LRU pages).
 175 * dump_unreclaimable_slab() could help in the case that
 176 * oom due to too much unreclaimable slab used by kernel.
 177*/
 178static bool should_dump_unreclaim_slab(void)
 179{
 180	unsigned long nr_lru;
 181
 182	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
 183		 global_node_page_state(NR_INACTIVE_ANON) +
 184		 global_node_page_state(NR_ACTIVE_FILE) +
 185		 global_node_page_state(NR_INACTIVE_FILE) +
 186		 global_node_page_state(NR_ISOLATED_ANON) +
 187		 global_node_page_state(NR_ISOLATED_FILE) +
 188		 global_node_page_state(NR_UNEVICTABLE);
 189
 190	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
 191}
 192
 193/**
 194 * oom_badness - heuristic function to determine which candidate task to kill
 195 * @p: task struct of which task we should calculate
 196 * @totalpages: total present RAM allowed for page allocation
 197 *
 198 * The heuristic for determining which task to kill is made to be as simple and
 199 * predictable as possible.  The goal is to return the highest value for the
 200 * task consuming the most memory to avoid subsequent oom failures.
 201 */
 202long oom_badness(struct task_struct *p, unsigned long totalpages)
 
 203{
 204	long points;
 205	long adj;
 206
 207	if (oom_unkillable_task(p))
 208		return LONG_MIN;
 209
 210	p = find_lock_task_mm(p);
 211	if (!p)
 212		return LONG_MIN;
 213
 214	/*
 215	 * Do not even consider tasks which are explicitly marked oom
 216	 * unkillable or have been already oom reaped or the are in
 217	 * the middle of vfork
 218	 */
 219	adj = (long)p->signal->oom_score_adj;
 220	if (adj == OOM_SCORE_ADJ_MIN ||
 221			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
 222			in_vfork(p)) {
 223		task_unlock(p);
 224		return LONG_MIN;
 225	}
 226
 227	/*
 228	 * The baseline for the badness score is the proportion of RAM that each
 229	 * task's rss, pagetable and swap space use.
 230	 */
 231	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
 232		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
 233	task_unlock(p);
 234
 
 
 
 
 
 
 
 235	/* Normalize to oom_score_adj units */
 236	adj *= totalpages / 1000;
 237	points += adj;
 238
 239	return points;
 
 
 
 
 240}
 241
 242static const char * const oom_constraint_text[] = {
 243	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
 244	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
 245	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
 246	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
 247};
 248
 249/*
 250 * Determine the type of allocation constraint.
 251 */
 252static enum oom_constraint constrained_alloc(struct oom_control *oc)
 
 
 253{
 254	struct zone *zone;
 255	struct zoneref *z;
 256	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
 257	bool cpuset_limited = false;
 258	int nid;
 259
 260	if (is_memcg_oom(oc)) {
 261		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
 262		return CONSTRAINT_MEMCG;
 263	}
 264
 265	/* Default to all available memory */
 266	oc->totalpages = totalram_pages() + total_swap_pages;
 267
 268	if (!IS_ENABLED(CONFIG_NUMA))
 269		return CONSTRAINT_NONE;
 270
 271	if (!oc->zonelist)
 272		return CONSTRAINT_NONE;
 273	/*
 274	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
 275	 * to kill current.We have to random task kill in this case.
 276	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
 277	 */
 278	if (oc->gfp_mask & __GFP_THISNODE)
 279		return CONSTRAINT_NONE;
 280
 281	/*
 282	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
 283	 * the page allocator means a mempolicy is in effect.  Cpuset policy
 284	 * is enforced in get_page_from_freelist().
 285	 */
 286	if (oc->nodemask &&
 287	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
 288		oc->totalpages = total_swap_pages;
 289		for_each_node_mask(nid, *oc->nodemask)
 290			oc->totalpages += node_present_pages(nid);
 291		return CONSTRAINT_MEMORY_POLICY;
 292	}
 293
 294	/* Check this allocation failure is caused by cpuset's wall function */
 295	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
 296			highest_zoneidx, oc->nodemask)
 297		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
 298			cpuset_limited = true;
 299
 300	if (cpuset_limited) {
 301		oc->totalpages = total_swap_pages;
 302		for_each_node_mask(nid, cpuset_current_mems_allowed)
 303			oc->totalpages += node_present_pages(nid);
 304		return CONSTRAINT_CPUSET;
 305	}
 306	return CONSTRAINT_NONE;
 307}
 
 
 
 
 
 
 
 
 308
 309static int oom_evaluate_task(struct task_struct *task, void *arg)
 
 310{
 311	struct oom_control *oc = arg;
 312	long points;
 313
 314	if (oom_unkillable_task(task))
 315		goto next;
 316
 317	/* p may not have freeable memory in nodemask */
 318	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
 319		goto next;
 320
 321	/*
 322	 * This task already has access to memory reserves and is being killed.
 323	 * Don't allow any other task to have access to the reserves unless
 324	 * the task has MMF_OOM_SKIP because chances that it would release
 325	 * any memory is quite low.
 326	 */
 327	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
 328		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
 329			goto next;
 330		goto abort;
 331	}
 
 
 332
 333	/*
 334	 * If task is allocating a lot of memory and has been marked to be
 335	 * killed first if it triggers an oom, then select it.
 336	 */
 337	if (oom_task_origin(task)) {
 338		points = LONG_MAX;
 339		goto select;
 340	}
 341
 342	points = oom_badness(task, oc->totalpages);
 343	if (points == LONG_MIN || points < oc->chosen_points)
 344		goto next;
 345
 346select:
 347	if (oc->chosen)
 348		put_task_struct(oc->chosen);
 349	get_task_struct(task);
 350	oc->chosen = task;
 351	oc->chosen_points = points;
 352next:
 353	return 0;
 354abort:
 355	if (oc->chosen)
 356		put_task_struct(oc->chosen);
 357	oc->chosen = (void *)-1UL;
 358	return 1;
 359}
 360
 361/*
 362 * Simple selection loop. We choose the process with the highest number of
 363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
 364 */
 365static void select_bad_process(struct oom_control *oc)
 
 366{
 367	oc->chosen_points = LONG_MIN;
 
 
 368
 369	if (is_memcg_oom(oc))
 370		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
 371	else {
 372		struct task_struct *p;
 373
 374		rcu_read_lock();
 375		for_each_process(p)
 376			if (oom_evaluate_task(p, oc))
 377				break;
 378		rcu_read_unlock();
 379	}
 380}
 
 
 
 
 
 
 
 
 
 
 
 
 381
 382static int dump_task(struct task_struct *p, void *arg)
 383{
 384	struct oom_control *oc = arg;
 385	struct task_struct *task;
 386
 387	if (oom_unkillable_task(p))
 388		return 0;
 389
 390	/* p may not have freeable memory in nodemask */
 391	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
 392		return 0;
 393
 394	task = find_lock_task_mm(p);
 395	if (!task) {
 396		/*
 397		 * All of p's threads have already detached their mm's. There's
 398		 * no need to report them; they can't be oom killed anyway.
 399		 */
 400		return 0;
 401	}
 
 
 
 402
 403	pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu         %5hd %s\n",
 404		task->pid, from_kuid(&init_user_ns, task_uid(task)),
 405		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
 406		get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
 407		get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
 408		get_mm_counter(task->mm, MM_SWAPENTS),
 409		task->signal->oom_score_adj, task->comm);
 410	task_unlock(task);
 411
 412	return 0;
 413}
 414
 415/**
 416 * dump_tasks - dump current memory state of all system tasks
 417 * @oc: pointer to struct oom_control
 
 418 *
 419 * Dumps the current memory state of all eligible tasks.  Tasks not in the same
 420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
 421 * are not shown.
 422 * State information includes task's pid, uid, tgid, vm size, rss,
 423 * pgtables_bytes, swapents, oom_score_adj value, and name.
 424 */
 425static void dump_tasks(struct oom_control *oc)
 426{
 427	pr_info("Tasks state (memory values in pages):\n");
 428	pr_info("[  pid  ]   uid  tgid total_vm      rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
 429
 430	if (is_memcg_oom(oc))
 431		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
 432	else {
 433		struct task_struct *p;
 434		int i = 0;
 435
 436		rcu_read_lock();
 437		for_each_process(p) {
 438			/* Avoid potential softlockup warning */
 439			if ((++i & 1023) == 0)
 440				touch_softlockup_watchdog();
 441			dump_task(p, oc);
 
 
 442		}
 443		rcu_read_unlock();
 
 
 
 
 
 
 
 
 444	}
 
 445}
 446
 447static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
 448{
 449	/* one line summary of the oom killer context. */
 450	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
 451			oom_constraint_text[oc->constraint],
 452			nodemask_pr_args(oc->nodemask));
 453	cpuset_print_current_mems_allowed();
 454	mem_cgroup_print_oom_context(oc->memcg, victim);
 455	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
 456		from_kuid(&init_user_ns, task_uid(victim)));
 457}
 458
 459static void dump_header(struct oom_control *oc)
 460{
 461	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
 462		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
 463			current->signal->oom_score_adj);
 464	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
 465		pr_warn("COMPACTION is disabled!!!\n");
 466
 
 467	dump_stack();
 468	if (is_memcg_oom(oc))
 469		mem_cgroup_print_oom_meminfo(oc->memcg);
 470	else {
 471		__show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
 472		if (should_dump_unreclaim_slab())
 473			dump_unreclaimable_slab();
 474	}
 475	if (sysctl_oom_dump_tasks)
 476		dump_tasks(oc);
 477}
 478
 479/*
 480 * Number of OOM victims in flight
 481 */
 482static atomic_t oom_victims = ATOMIC_INIT(0);
 483static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
 484
 485static bool oom_killer_disabled __read_mostly;
 486
 487/*
 488 * task->mm can be NULL if the task is the exited group leader.  So to
 489 * determine whether the task is using a particular mm, we examine all the
 490 * task's threads: if one of those is using this mm then this task was also
 491 * using it.
 492 */
 493bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
 494{
 495	struct task_struct *t;
 496
 497	for_each_thread(p, t) {
 498		struct mm_struct *t_mm = READ_ONCE(t->mm);
 499		if (t_mm)
 500			return t_mm == mm;
 501	}
 502	return false;
 503}
 504
 505#ifdef CONFIG_MMU
 506/*
 507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
 508 * victim (if that is possible) to help the OOM killer to move on.
 509 */
 510static struct task_struct *oom_reaper_th;
 511static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
 512static struct task_struct *oom_reaper_list;
 513static DEFINE_SPINLOCK(oom_reaper_lock);
 514
 515static bool __oom_reap_task_mm(struct mm_struct *mm)
 
 516{
 
 517	struct vm_area_struct *vma;
 
 
 
 
 518	bool ret = true;
 519	VMA_ITERATOR(vmi, mm, 0);
 520
 521	/*
 522	 * Tell all users of get_user/copy_from_user etc... that the content
 523	 * is no longer stable. No barriers really needed because unmapping
 524	 * should imply barriers already and the reader would hit a page fault
 525	 * if it stumbled over a reaped memory.
 526	 */
 527	set_bit(MMF_UNSTABLE, &mm->flags);
 
 
 
 
 
 
 
 
 528
 529	for_each_vma(vmi, vma) {
 530		if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531			continue;
 532
 533		/*
 534		 * Only anonymous pages have a good chance to be dropped
 535		 * without additional steps which we cannot afford as we
 536		 * are OOM already.
 537		 *
 538		 * We do not even care about fs backed pages because all
 539		 * which are reclaimable have already been reclaimed and
 540		 * we do not want to block exit_mmap by keeping mm ref
 541		 * count elevated without a good reason.
 542		 */
 543		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
 544			struct mmu_notifier_range range;
 545			struct mmu_gather tlb;
 546
 547			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
 548						mm, vma->vm_start,
 549						vma->vm_end);
 550			tlb_gather_mmu(&tlb, mm);
 551			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
 552				tlb_finish_mmu(&tlb);
 553				ret = false;
 554				continue;
 555			}
 556			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
 557			mmu_notifier_invalidate_range_end(&range);
 558			tlb_finish_mmu(&tlb);
 559		}
 560	}
 561
 562	return ret;
 563}
 564
 565/*
 566 * Reaps the address space of the give task.
 567 *
 568 * Returns true on success and false if none or part of the address space
 569 * has been reclaimed and the caller should retry later.
 570 */
 571static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
 572{
 573	bool ret = true;
 574
 575	if (!mmap_read_trylock(mm)) {
 576		trace_skip_task_reaping(tsk->pid);
 577		return false;
 578	}
 579
 580	/*
 581	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
 582	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
 583	 * under mmap_lock for reading because it serializes against the
 584	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
 585	 */
 586	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 587		trace_skip_task_reaping(tsk->pid);
 588		goto out_unlock;
 589	}
 590
 591	trace_start_task_reaping(tsk->pid);
 592
 593	/* failed to reap part of the address space. Try again later */
 594	ret = __oom_reap_task_mm(mm);
 595	if (!ret)
 596		goto out_finish;
 597
 598	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
 599			task_pid_nr(tsk), tsk->comm,
 600			K(get_mm_counter(mm, MM_ANONPAGES)),
 601			K(get_mm_counter(mm, MM_FILEPAGES)),
 602			K(get_mm_counter(mm, MM_SHMEMPAGES)));
 603out_finish:
 604	trace_finish_task_reaping(tsk->pid);
 605out_unlock:
 606	mmap_read_unlock(mm);
 607
 
 
 
 
 
 
 
 
 
 
 
 608	return ret;
 609}
 610
 611#define MAX_OOM_REAP_RETRIES 10
 612static void oom_reap_task(struct task_struct *tsk)
 613{
 614	int attempts = 0;
 615	struct mm_struct *mm = tsk->signal->oom_mm;
 616
 617	/* Retry the mmap_read_trylock(mm) a few times */
 618	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
 619		schedule_timeout_idle(HZ/10);
 620
 621	if (attempts <= MAX_OOM_REAP_RETRIES ||
 622	    test_bit(MMF_OOM_SKIP, &mm->flags))
 623		goto done;
 624
 625	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
 626		task_pid_nr(tsk), tsk->comm);
 627	sched_show_task(tsk);
 628	debug_show_all_locks();
 629
 630done:
 631	tsk->oom_reaper_list = NULL;
 632
 633	/*
 634	 * Hide this mm from OOM killer because it has been either reaped or
 635	 * somebody can't call mmap_write_unlock(mm).
 636	 */
 637	set_bit(MMF_OOM_SKIP, &mm->flags);
 638
 639	/* Drop a reference taken by queue_oom_reaper */
 640	put_task_struct(tsk);
 641}
 642
 643static int oom_reaper(void *unused)
 644{
 645	set_freezable();
 646
 647	while (true) {
 648		struct task_struct *tsk = NULL;
 649
 650		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
 651		spin_lock_irq(&oom_reaper_lock);
 652		if (oom_reaper_list != NULL) {
 653			tsk = oom_reaper_list;
 654			oom_reaper_list = tsk->oom_reaper_list;
 655		}
 656		spin_unlock_irq(&oom_reaper_lock);
 657
 658		if (tsk)
 659			oom_reap_task(tsk);
 660	}
 661
 662	return 0;
 663}
 664
 665static void wake_oom_reaper(struct timer_list *timer)
 666{
 667	struct task_struct *tsk = container_of(timer, struct task_struct,
 668			oom_reaper_timer);
 669	struct mm_struct *mm = tsk->signal->oom_mm;
 670	unsigned long flags;
 671
 672	/* The victim managed to terminate on its own - see exit_mmap */
 673	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
 674		put_task_struct(tsk);
 675		return;
 676	}
 677
 678	spin_lock_irqsave(&oom_reaper_lock, flags);
 
 
 679	tsk->oom_reaper_list = oom_reaper_list;
 680	oom_reaper_list = tsk;
 681	spin_unlock_irqrestore(&oom_reaper_lock, flags);
 682	trace_wake_reaper(tsk->pid);
 683	wake_up(&oom_reaper_wait);
 684}
 685
 686/*
 687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
 688 * The timers timeout is arbitrary... the longer it is, the longer the worst
 689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
 690 * get in the way and release resources needed by the process exit path.
 691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
 692 * before the exit path is able to wake the futex waiters.
 693 */
 694#define OOM_REAPER_DELAY (2*HZ)
 695static void queue_oom_reaper(struct task_struct *tsk)
 696{
 697	/* mm is already queued? */
 698	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
 699		return;
 700
 701	get_task_struct(tsk);
 702	timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
 703	tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
 704	add_timer(&tsk->oom_reaper_timer);
 705}
 706
 707#ifdef CONFIG_SYSCTL
 708static struct ctl_table vm_oom_kill_table[] = {
 709	{
 710		.procname	= "panic_on_oom",
 711		.data		= &sysctl_panic_on_oom,
 712		.maxlen		= sizeof(sysctl_panic_on_oom),
 713		.mode		= 0644,
 714		.proc_handler	= proc_dointvec_minmax,
 715		.extra1		= SYSCTL_ZERO,
 716		.extra2		= SYSCTL_TWO,
 717	},
 718	{
 719		.procname	= "oom_kill_allocating_task",
 720		.data		= &sysctl_oom_kill_allocating_task,
 721		.maxlen		= sizeof(sysctl_oom_kill_allocating_task),
 722		.mode		= 0644,
 723		.proc_handler	= proc_dointvec,
 724	},
 725	{
 726		.procname	= "oom_dump_tasks",
 727		.data		= &sysctl_oom_dump_tasks,
 728		.maxlen		= sizeof(sysctl_oom_dump_tasks),
 729		.mode		= 0644,
 730		.proc_handler	= proc_dointvec,
 731	},
 732};
 733#endif
 734
 735static int __init oom_init(void)
 736{
 737	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
 738#ifdef CONFIG_SYSCTL
 739	register_sysctl_init("vm", vm_oom_kill_table);
 740#endif
 
 
 741	return 0;
 742}
 743subsys_initcall(oom_init)
 744#else
 745static inline void queue_oom_reaper(struct task_struct *tsk)
 746{
 747}
 748#endif /* CONFIG_MMU */
 749
 750/**
 751 * mark_oom_victim - mark the given task as OOM victim
 752 * @tsk: task to mark
 753 *
 754 * Has to be called with oom_lock held and never after
 755 * oom has been disabled already.
 756 *
 757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
 758 * under task_lock or operate on the current).
 759 */
 760static void mark_oom_victim(struct task_struct *tsk)
 761{
 762	const struct cred *cred;
 763	struct mm_struct *mm = tsk->mm;
 764
 765	WARN_ON(oom_killer_disabled);
 766	/* OOM killer might race with memcg OOM */
 767	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
 768		return;
 769
 770	/* oom_mm is bound to the signal struct life time. */
 771	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
 772		mmgrab(tsk->signal->oom_mm);
 773
 774	/*
 775	 * Make sure that the task is woken up from uninterruptible sleep
 776	 * if it is frozen because OOM killer wouldn't be able to free
 777	 * any memory and livelock. freezing_slow_path will tell the freezer
 778	 * that TIF_MEMDIE tasks should be ignored.
 779	 */
 780	__thaw_task(tsk);
 781	atomic_inc(&oom_victims);
 782	cred = get_task_cred(tsk);
 783	trace_mark_victim(tsk, cred->uid.val);
 784	put_cred(cred);
 785}
 786
 787/**
 788 * exit_oom_victim - note the exit of an OOM victim
 789 */
 790void exit_oom_victim(void)
 791{
 792	clear_thread_flag(TIF_MEMDIE);
 
 793
 794	if (!atomic_dec_return(&oom_victims))
 795		wake_up_all(&oom_victims_wait);
 796}
 797
 798/**
 799 * oom_killer_enable - enable OOM killer
 800 */
 801void oom_killer_enable(void)
 802{
 803	oom_killer_disabled = false;
 804	pr_info("OOM killer enabled.\n");
 805}
 806
 807/**
 808 * oom_killer_disable - disable OOM killer
 809 * @timeout: maximum timeout to wait for oom victims in jiffies
 810 *
 811 * Forces all page allocations to fail rather than trigger OOM killer.
 812 * Will block and wait until all OOM victims are killed or the given
 813 * timeout expires.
 814 *
 815 * The function cannot be called when there are runnable user tasks because
 816 * the userspace would see unexpected allocation failures as a result. Any
 817 * new usage of this function should be consulted with MM people.
 818 *
 819 * Returns true if successful and false if the OOM killer cannot be
 820 * disabled.
 821 */
 822bool oom_killer_disable(signed long timeout)
 823{
 824	signed long ret;
 825
 826	/*
 827	 * Make sure to not race with an ongoing OOM killer. Check that the
 828	 * current is not killed (possibly due to sharing the victim's memory).
 829	 */
 830	if (mutex_lock_killable(&oom_lock))
 831		return false;
 832	oom_killer_disabled = true;
 833	mutex_unlock(&oom_lock);
 834
 835	ret = wait_event_interruptible_timeout(oom_victims_wait,
 836			!atomic_read(&oom_victims), timeout);
 837	if (ret <= 0) {
 838		oom_killer_enable();
 839		return false;
 840	}
 841	pr_info("OOM killer disabled.\n");
 842
 843	return true;
 844}
 845
 846static inline bool __task_will_free_mem(struct task_struct *task)
 
 
 
 847{
 848	struct signal_struct *sig = task->signal;
 
 849
 850	/*
 851	 * A coredumping process may sleep for an extended period in
 852	 * coredump_task_exit(), so the oom killer cannot assume that
 853	 * the process will promptly exit and release memory.
 854	 */
 855	if (sig->core_state)
 856		return false;
 857
 858	if (sig->flags & SIGNAL_GROUP_EXIT)
 859		return true;
 860
 861	if (thread_group_empty(task) && (task->flags & PF_EXITING))
 862		return true;
 863
 
 
 
 
 
 864	return false;
 865}
 866
 867/*
 868 * Checks whether the given task is dying or exiting and likely to
 869 * release its address space. This means that all threads and processes
 870 * sharing the same mm have to be killed or exiting.
 871 * Caller has to make sure that task->mm is stable (hold task_lock or
 872 * it operates on the current).
 873 */
 874static bool task_will_free_mem(struct task_struct *task)
 
 
 875{
 876	struct mm_struct *mm = task->mm;
 877	struct task_struct *p;
 878	bool ret = true;
 
 
 
 
 
 879
 880	/*
 881	 * Skip tasks without mm because it might have passed its exit_mm and
 882	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
 883	 * on that for now. We can consider find_lock_task_mm in future.
 884	 */
 885	if (!mm)
 886		return false;
 
 
 
 
 
 
 
 
 
 887
 888	if (!__task_will_free_mem(task))
 889		return false;
 890
 891	/*
 892	 * This task has already been drained by the oom reaper so there are
 893	 * only small chances it will free some more
 
 
 894	 */
 895	if (test_bit(MMF_OOM_SKIP, &mm->flags))
 896		return false;
 
 
 897
 898	if (atomic_read(&mm->mm_users) <= 1)
 899		return true;
 900
 901	/*
 902	 * Make sure that all tasks which share the mm with the given tasks
 903	 * are dying as well to make sure that a) nobody pins its mm and
 904	 * b) the task is also reapable by the oom reaper.
 905	 */
 906	rcu_read_lock();
 907	for_each_process(p) {
 908		if (!process_shares_mm(p, mm))
 909			continue;
 910		if (same_thread_group(task, p))
 911			continue;
 912		ret = __task_will_free_mem(p);
 913		if (!ret)
 914			break;
 915	}
 916	rcu_read_unlock();
 917
 918	return ret;
 919}
 920
 921static void __oom_kill_process(struct task_struct *victim, const char *message)
 922{
 923	struct task_struct *p;
 924	struct mm_struct *mm;
 925	bool can_oom_reap = true;
 926
 927	p = find_lock_task_mm(victim);
 928	if (!p) {
 929		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
 930			message, task_pid_nr(victim), victim->comm);
 931		put_task_struct(victim);
 932		return;
 933	} else if (victim != p) {
 934		get_task_struct(p);
 935		put_task_struct(victim);
 936		victim = p;
 937	}
 938
 939	/* Get a reference to safely compare mm after task_unlock(victim) */
 940	mm = victim->mm;
 941	mmgrab(mm);
 942
 943	/* Raise event before sending signal: task reaper must see this */
 944	count_vm_event(OOM_KILL);
 945	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
 946
 947	/*
 948	 * We should send SIGKILL before granting access to memory reserves
 949	 * in order to prevent the OOM victim from depleting the memory
 950	 * reserves from the user space under its control.
 951	 */
 952	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
 953	mark_oom_victim(victim);
 954	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
 955		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
 956		K(get_mm_counter(mm, MM_ANONPAGES)),
 957		K(get_mm_counter(mm, MM_FILEPAGES)),
 958		K(get_mm_counter(mm, MM_SHMEMPAGES)),
 959		from_kuid(&init_user_ns, task_uid(victim)),
 960		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
 961	task_unlock(victim);
 962
 963	/*
 964	 * Kill all user processes sharing victim->mm in other thread groups, if
 965	 * any.  They don't get access to memory reserves, though, to avoid
 966	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
 967	 * oom killed thread cannot exit because it requires the semaphore and
 968	 * its contended by another thread trying to allocate memory itself.
 969	 * That thread will now get access to memory reserves since it has a
 970	 * pending fatal signal.
 971	 */
 972	rcu_read_lock();
 973	for_each_process(p) {
 974		if (!process_shares_mm(p, mm))
 975			continue;
 976		if (same_thread_group(p, victim))
 977			continue;
 978		if (is_global_init(p)) {
 
 
 
 
 
 
 979			can_oom_reap = false;
 980			set_bit(MMF_OOM_SKIP, &mm->flags);
 981			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
 982					task_pid_nr(victim), victim->comm,
 983					task_pid_nr(p), p->comm);
 984			continue;
 985		}
 986		/*
 987		 * No kthread_use_mm() user needs to read from the userspace so
 988		 * we are ok to reap it.
 989		 */
 990		if (unlikely(p->flags & PF_KTHREAD))
 991			continue;
 992		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
 993	}
 994	rcu_read_unlock();
 995
 996	if (can_oom_reap)
 997		queue_oom_reaper(victim);
 998
 999	mmdrop(mm);
1000	put_task_struct(victim);
1001}
1002
1003/*
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1006 */
1007static int oom_kill_memcg_member(struct task_struct *task, void *message)
1008{
1009	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1010	    !is_global_init(task)) {
1011		get_task_struct(task);
1012		__oom_kill_process(task, message);
1013	}
1014	return 0;
1015}
1016
1017static void oom_kill_process(struct oom_control *oc, const char *message)
1018{
1019	struct task_struct *victim = oc->chosen;
1020	struct mem_cgroup *oom_group;
1021	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1022					      DEFAULT_RATELIMIT_BURST);
1023
1024	/*
1025	 * If the task is already exiting, don't alarm the sysadmin or kill
1026	 * its children or threads, just give it access to memory reserves
1027	 * so it can die quickly
1028	 */
1029	task_lock(victim);
1030	if (task_will_free_mem(victim)) {
1031		mark_oom_victim(victim);
1032		queue_oom_reaper(victim);
1033		task_unlock(victim);
1034		put_task_struct(victim);
1035		return;
1036	}
1037	task_unlock(victim);
1038
1039	if (__ratelimit(&oom_rs)) {
1040		dump_header(oc);
1041		dump_oom_victim(oc, victim);
1042	}
1043
1044	/*
1045	 * Do we need to kill the entire memory cgroup?
1046	 * Or even one of the ancestor memory cgroups?
1047	 * Check this out before killing the victim task.
1048	 */
1049	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1050
1051	__oom_kill_process(victim, message);
1052
1053	/*
1054	 * If necessary, kill all tasks in the selected memory cgroup.
1055	 */
1056	if (oom_group) {
1057		memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1058		mem_cgroup_print_oom_group(oom_group);
1059		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1060				      (void *)message);
1061		mem_cgroup_put(oom_group);
1062	}
1063}
1064
1065/*
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1067 */
1068static void check_panic_on_oom(struct oom_control *oc)
 
1069{
1070	if (likely(!sysctl_panic_on_oom))
1071		return;
1072	if (sysctl_panic_on_oom != 2) {
1073		/*
1074		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075		 * does not panic for cpuset, mempolicy, or memcg allocation
1076		 * failures.
1077		 */
1078		if (oc->constraint != CONSTRAINT_NONE)
1079			return;
1080	}
1081	/* Do not panic for oom kills triggered by sysrq */
1082	if (is_sysrq_oom(oc))
1083		return;
1084	dump_header(oc);
1085	panic("Out of memory: %s panic_on_oom is enabled\n",
1086		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1087}
1088
1089static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1090
1091int register_oom_notifier(struct notifier_block *nb)
1092{
1093	return blocking_notifier_chain_register(&oom_notify_list, nb);
1094}
1095EXPORT_SYMBOL_GPL(register_oom_notifier);
1096
1097int unregister_oom_notifier(struct notifier_block *nb)
1098{
1099	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1100}
1101EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1102
1103/**
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1106 *
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1111 */
1112bool out_of_memory(struct oom_control *oc)
1113{
 
 
1114	unsigned long freed = 0;
 
 
1115
1116	if (oom_killer_disabled)
1117		return false;
1118
1119	if (!is_memcg_oom(oc)) {
1120		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1121		if (freed > 0 && !is_sysrq_oom(oc))
1122			/* Got some memory back in the last second. */
1123			return true;
1124	}
1125
1126	/*
1127	 * If current has a pending SIGKILL or is exiting, then automatically
1128	 * select it.  The goal is to allow it to allocate so that it may
1129	 * quickly exit and free its memory.
 
 
 
1130	 */
1131	if (task_will_free_mem(current)) {
 
1132		mark_oom_victim(current);
1133		queue_oom_reaper(current);
1134		return true;
1135	}
1136
1137	/*
1138	 * The OOM killer does not compensate for IO-less reclaim.
1139	 * But mem_cgroup_oom() has to invoke the OOM killer even
1140	 * if it is a GFP_NOFS allocation.
1141	 */
1142	if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1143		return true;
1144
1145	/*
1146	 * Check if there were limitations on the allocation (only relevant for
1147	 * NUMA and memcg) that may require different handling.
1148	 */
1149	oc->constraint = constrained_alloc(oc);
1150	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1151		oc->nodemask = NULL;
1152	check_panic_on_oom(oc);
1153
1154	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1155	    current->mm && !oom_unkillable_task(current) &&
1156	    oom_cpuset_eligible(current, oc) &&
1157	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1158		get_task_struct(current);
1159		oc->chosen = current;
1160		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1161		return true;
1162	}
1163
1164	select_bad_process(oc);
1165	/* Found nothing?!?! */
1166	if (!oc->chosen) {
1167		dump_header(oc);
1168		pr_warn("Out of memory and no killable processes...\n");
 
 
 
 
1169		/*
1170		 * If we got here due to an actual allocation at the
1171		 * system level, we cannot survive this and will enter
1172		 * an endless loop in the allocator. Bail out now.
1173		 */
1174		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1175			panic("System is deadlocked on memory\n");
1176	}
1177	if (oc->chosen && oc->chosen != (void *)-1UL)
1178		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1179				 "Memory cgroup out of memory");
1180	return !!oc->chosen;
1181}
1182
1183/*
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1188 */
1189void pagefault_out_of_memory(void)
1190{
1191	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1192				      DEFAULT_RATELIMIT_BURST);
 
 
 
 
1193
1194	if (mem_cgroup_oom_synchronize(true))
1195		return;
1196
1197	if (fatal_signal_pending(current))
1198		return;
1199
1200	if (__ratelimit(&pfoom_rs))
1201		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1202}
1203
1204SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1205{
1206#ifdef CONFIG_MMU
1207	struct mm_struct *mm = NULL;
1208	struct task_struct *task;
1209	struct task_struct *p;
1210	unsigned int f_flags;
1211	bool reap = false;
1212	long ret = 0;
1213
1214	if (flags)
1215		return -EINVAL;
1216
1217	task = pidfd_get_task(pidfd, &f_flags);
1218	if (IS_ERR(task))
1219		return PTR_ERR(task);
1220
1221	/*
1222	 * Make sure to choose a thread which still has a reference to mm
1223	 * during the group exit
1224	 */
1225	p = find_lock_task_mm(task);
1226	if (!p) {
1227		ret = -ESRCH;
1228		goto put_task;
1229	}
1230
1231	mm = p->mm;
1232	mmgrab(mm);
1233
1234	if (task_will_free_mem(p))
1235		reap = true;
1236	else {
1237		/* Error only if the work has not been done already */
1238		if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1239			ret = -EINVAL;
1240	}
1241	task_unlock(p);
1242
1243	if (!reap)
1244		goto drop_mm;
1245
1246	if (mmap_read_lock_killable(mm)) {
1247		ret = -EINTR;
1248		goto drop_mm;
1249	}
1250	/*
1251	 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252	 * possible change in exit_mmap is seen
1253	 */
1254	if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1255		ret = -EAGAIN;
1256	mmap_read_unlock(mm);
1257
1258drop_mm:
1259	mmdrop(mm);
1260put_task:
1261	put_task_struct(task);
1262	return ret;
1263#else
1264	return -ENOSYS;
1265#endif /* CONFIG_MMU */
1266}