Loading...
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20#include <linux/oom.h>
21#include <linux/mm.h>
22#include <linux/err.h>
23#include <linux/gfp.h>
24#include <linux/sched.h>
25#include <linux/swap.h>
26#include <linux/timex.h>
27#include <linux/jiffies.h>
28#include <linux/cpuset.h>
29#include <linux/export.h>
30#include <linux/notifier.h>
31#include <linux/memcontrol.h>
32#include <linux/mempolicy.h>
33#include <linux/security.h>
34#include <linux/ptrace.h>
35#include <linux/freezer.h>
36#include <linux/ftrace.h>
37#include <linux/ratelimit.h>
38#include <linux/kthread.h>
39#include <linux/init.h>
40
41#include <asm/tlb.h>
42#include "internal.h"
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/oom.h>
46
47int sysctl_panic_on_oom;
48int sysctl_oom_kill_allocating_task;
49int sysctl_oom_dump_tasks = 1;
50
51DEFINE_MUTEX(oom_lock);
52
53#ifdef CONFIG_NUMA
54/**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65{
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92}
93#else
94static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96{
97 return true;
98}
99#endif /* CONFIG_NUMA */
100
101/*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107struct task_struct *find_lock_task_mm(struct task_struct *p)
108{
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120found:
121 rcu_read_unlock();
122
123 return t;
124}
125
126/*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130static inline bool is_sysrq_oom(struct oom_control *oc)
131{
132 return oc->order == -1;
133}
134
135/* return true if the task is not adequate as candidate victim task. */
136static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138{
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153}
154
155/**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166{
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 adj = (long)p->signal->oom_score_adj;
178 if (adj == OOM_SCORE_ADJ_MIN) {
179 task_unlock(p);
180 return 0;
181 }
182
183 /*
184 * The baseline for the badness score is the proportion of RAM that each
185 * task's rss, pagetable and swap space use.
186 */
187 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
189 task_unlock(p);
190
191 /*
192 * Root processes get 3% bonus, just like the __vm_enough_memory()
193 * implementation used by LSMs.
194 */
195 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196 points -= (points * 3) / 100;
197
198 /* Normalize to oom_score_adj units */
199 adj *= totalpages / 1000;
200 points += adj;
201
202 /*
203 * Never return 0 for an eligible task regardless of the root bonus and
204 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
205 */
206 return points > 0 ? points : 1;
207}
208
209/*
210 * Determine the type of allocation constraint.
211 */
212#ifdef CONFIG_NUMA
213static enum oom_constraint constrained_alloc(struct oom_control *oc,
214 unsigned long *totalpages)
215{
216 struct zone *zone;
217 struct zoneref *z;
218 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219 bool cpuset_limited = false;
220 int nid;
221
222 /* Default to all available memory */
223 *totalpages = totalram_pages + total_swap_pages;
224
225 if (!oc->zonelist)
226 return CONSTRAINT_NONE;
227 /*
228 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229 * to kill current.We have to random task kill in this case.
230 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
231 */
232 if (oc->gfp_mask & __GFP_THISNODE)
233 return CONSTRAINT_NONE;
234
235 /*
236 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237 * the page allocator means a mempolicy is in effect. Cpuset policy
238 * is enforced in get_page_from_freelist().
239 */
240 if (oc->nodemask &&
241 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242 *totalpages = total_swap_pages;
243 for_each_node_mask(nid, *oc->nodemask)
244 *totalpages += node_spanned_pages(nid);
245 return CONSTRAINT_MEMORY_POLICY;
246 }
247
248 /* Check this allocation failure is caused by cpuset's wall function */
249 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250 high_zoneidx, oc->nodemask)
251 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252 cpuset_limited = true;
253
254 if (cpuset_limited) {
255 *totalpages = total_swap_pages;
256 for_each_node_mask(nid, cpuset_current_mems_allowed)
257 *totalpages += node_spanned_pages(nid);
258 return CONSTRAINT_CPUSET;
259 }
260 return CONSTRAINT_NONE;
261}
262#else
263static enum oom_constraint constrained_alloc(struct oom_control *oc,
264 unsigned long *totalpages)
265{
266 *totalpages = totalram_pages + total_swap_pages;
267 return CONSTRAINT_NONE;
268}
269#endif
270
271enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272 struct task_struct *task, unsigned long totalpages)
273{
274 if (oom_unkillable_task(task, NULL, oc->nodemask))
275 return OOM_SCAN_CONTINUE;
276
277 /*
278 * This task already has access to memory reserves and is being killed.
279 * Don't allow any other task to have access to the reserves.
280 */
281 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282 if (!is_sysrq_oom(oc))
283 return OOM_SCAN_ABORT;
284 }
285 if (!task->mm)
286 return OOM_SCAN_CONTINUE;
287
288 /*
289 * If task is allocating a lot of memory and has been marked to be
290 * killed first if it triggers an oom, then select it.
291 */
292 if (oom_task_origin(task))
293 return OOM_SCAN_SELECT;
294
295 return OOM_SCAN_OK;
296}
297
298/*
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'. Returns -1 on scan abort.
301 */
302static struct task_struct *select_bad_process(struct oom_control *oc,
303 unsigned int *ppoints, unsigned long totalpages)
304{
305 struct task_struct *g, *p;
306 struct task_struct *chosen = NULL;
307 unsigned long chosen_points = 0;
308
309 rcu_read_lock();
310 for_each_process_thread(g, p) {
311 unsigned int points;
312
313 switch (oom_scan_process_thread(oc, p, totalpages)) {
314 case OOM_SCAN_SELECT:
315 chosen = p;
316 chosen_points = ULONG_MAX;
317 /* fall through */
318 case OOM_SCAN_CONTINUE:
319 continue;
320 case OOM_SCAN_ABORT:
321 rcu_read_unlock();
322 return (struct task_struct *)(-1UL);
323 case OOM_SCAN_OK:
324 break;
325 };
326 points = oom_badness(p, NULL, oc->nodemask, totalpages);
327 if (!points || points < chosen_points)
328 continue;
329 /* Prefer thread group leaders for display purposes */
330 if (points == chosen_points && thread_group_leader(chosen))
331 continue;
332
333 chosen = p;
334 chosen_points = points;
335 }
336 if (chosen)
337 get_task_struct(chosen);
338 rcu_read_unlock();
339
340 *ppoints = chosen_points * 1000 / totalpages;
341 return chosen;
342}
343
344/**
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
348 *
349 * Dumps the current memory state of all eligible tasks. Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
351 * are not shown.
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
354 */
355static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
356{
357 struct task_struct *p;
358 struct task_struct *task;
359
360 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
361 rcu_read_lock();
362 for_each_process(p) {
363 if (oom_unkillable_task(p, memcg, nodemask))
364 continue;
365
366 task = find_lock_task_mm(p);
367 if (!task) {
368 /*
369 * This is a kthread or all of p's threads have already
370 * detached their mm's. There's no need to report
371 * them; they can't be oom killed anyway.
372 */
373 continue;
374 }
375
376 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
377 task->pid, from_kuid(&init_user_ns, task_uid(task)),
378 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379 atomic_long_read(&task->mm->nr_ptes),
380 mm_nr_pmds(task->mm),
381 get_mm_counter(task->mm, MM_SWAPENTS),
382 task->signal->oom_score_adj, task->comm);
383 task_unlock(task);
384 }
385 rcu_read_unlock();
386}
387
388static void dump_header(struct oom_control *oc, struct task_struct *p,
389 struct mem_cgroup *memcg)
390{
391 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393 current->signal->oom_score_adj);
394
395 cpuset_print_current_mems_allowed();
396 dump_stack();
397 if (memcg)
398 mem_cgroup_print_oom_info(memcg, p);
399 else
400 show_mem(SHOW_MEM_FILTER_NODES);
401 if (sysctl_oom_dump_tasks)
402 dump_tasks(memcg, oc->nodemask);
403}
404
405/*
406 * Number of OOM victims in flight
407 */
408static atomic_t oom_victims = ATOMIC_INIT(0);
409static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
410
411bool oom_killer_disabled __read_mostly;
412
413#define K(x) ((x) << (PAGE_SHIFT-10))
414
415#ifdef CONFIG_MMU
416/*
417 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
418 * victim (if that is possible) to help the OOM killer to move on.
419 */
420static struct task_struct *oom_reaper_th;
421static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
422static struct task_struct *oom_reaper_list;
423static DEFINE_SPINLOCK(oom_reaper_lock);
424
425
426static bool __oom_reap_task(struct task_struct *tsk)
427{
428 struct mmu_gather tlb;
429 struct vm_area_struct *vma;
430 struct mm_struct *mm;
431 struct task_struct *p;
432 struct zap_details details = {.check_swap_entries = true,
433 .ignore_dirty = true};
434 bool ret = true;
435
436 /*
437 * Make sure we find the associated mm_struct even when the particular
438 * thread has already terminated and cleared its mm.
439 * We might have race with exit path so consider our work done if there
440 * is no mm.
441 */
442 p = find_lock_task_mm(tsk);
443 if (!p)
444 return true;
445
446 mm = p->mm;
447 if (!atomic_inc_not_zero(&mm->mm_users)) {
448 task_unlock(p);
449 return true;
450 }
451
452 task_unlock(p);
453
454 if (!down_read_trylock(&mm->mmap_sem)) {
455 ret = false;
456 goto out;
457 }
458
459 tlb_gather_mmu(&tlb, mm, 0, -1);
460 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
461 if (is_vm_hugetlb_page(vma))
462 continue;
463
464 /*
465 * mlocked VMAs require explicit munlocking before unmap.
466 * Let's keep it simple here and skip such VMAs.
467 */
468 if (vma->vm_flags & VM_LOCKED)
469 continue;
470
471 /*
472 * Only anonymous pages have a good chance to be dropped
473 * without additional steps which we cannot afford as we
474 * are OOM already.
475 *
476 * We do not even care about fs backed pages because all
477 * which are reclaimable have already been reclaimed and
478 * we do not want to block exit_mmap by keeping mm ref
479 * count elevated without a good reason.
480 */
481 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
482 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
483 &details);
484 }
485 tlb_finish_mmu(&tlb, 0, -1);
486 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
487 task_pid_nr(tsk), tsk->comm,
488 K(get_mm_counter(mm, MM_ANONPAGES)),
489 K(get_mm_counter(mm, MM_FILEPAGES)),
490 K(get_mm_counter(mm, MM_SHMEMPAGES)));
491 up_read(&mm->mmap_sem);
492
493 /*
494 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
495 * reasonably reclaimable memory anymore. OOM killer can continue
496 * by selecting other victim if unmapping hasn't led to any
497 * improvements. This also means that selecting this task doesn't
498 * make any sense.
499 */
500 tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
501 exit_oom_victim(tsk);
502out:
503 mmput(mm);
504 return ret;
505}
506
507#define MAX_OOM_REAP_RETRIES 10
508static void oom_reap_task(struct task_struct *tsk)
509{
510 int attempts = 0;
511
512 /* Retry the down_read_trylock(mmap_sem) a few times */
513 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
514 schedule_timeout_idle(HZ/10);
515
516 if (attempts > MAX_OOM_REAP_RETRIES) {
517 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
518 task_pid_nr(tsk), tsk->comm);
519 debug_show_all_locks();
520 }
521
522 /* Drop a reference taken by wake_oom_reaper */
523 put_task_struct(tsk);
524}
525
526static int oom_reaper(void *unused)
527{
528 set_freezable();
529
530 while (true) {
531 struct task_struct *tsk = NULL;
532
533 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
534 spin_lock(&oom_reaper_lock);
535 if (oom_reaper_list != NULL) {
536 tsk = oom_reaper_list;
537 oom_reaper_list = tsk->oom_reaper_list;
538 }
539 spin_unlock(&oom_reaper_lock);
540
541 if (tsk)
542 oom_reap_task(tsk);
543 }
544
545 return 0;
546}
547
548static void wake_oom_reaper(struct task_struct *tsk)
549{
550 if (!oom_reaper_th)
551 return;
552
553 /* tsk is already queued? */
554 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
555 return;
556
557 get_task_struct(tsk);
558
559 spin_lock(&oom_reaper_lock);
560 tsk->oom_reaper_list = oom_reaper_list;
561 oom_reaper_list = tsk;
562 spin_unlock(&oom_reaper_lock);
563 wake_up(&oom_reaper_wait);
564}
565
566static int __init oom_init(void)
567{
568 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
569 if (IS_ERR(oom_reaper_th)) {
570 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
571 PTR_ERR(oom_reaper_th));
572 oom_reaper_th = NULL;
573 }
574 return 0;
575}
576subsys_initcall(oom_init)
577#else
578static void wake_oom_reaper(struct task_struct *tsk)
579{
580}
581#endif
582
583/**
584 * mark_oom_victim - mark the given task as OOM victim
585 * @tsk: task to mark
586 *
587 * Has to be called with oom_lock held and never after
588 * oom has been disabled already.
589 */
590void mark_oom_victim(struct task_struct *tsk)
591{
592 WARN_ON(oom_killer_disabled);
593 /* OOM killer might race with memcg OOM */
594 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
595 return;
596 /*
597 * Make sure that the task is woken up from uninterruptible sleep
598 * if it is frozen because OOM killer wouldn't be able to free
599 * any memory and livelock. freezing_slow_path will tell the freezer
600 * that TIF_MEMDIE tasks should be ignored.
601 */
602 __thaw_task(tsk);
603 atomic_inc(&oom_victims);
604}
605
606/**
607 * exit_oom_victim - note the exit of an OOM victim
608 */
609void exit_oom_victim(struct task_struct *tsk)
610{
611 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
612 return;
613
614 if (!atomic_dec_return(&oom_victims))
615 wake_up_all(&oom_victims_wait);
616}
617
618/**
619 * oom_killer_disable - disable OOM killer
620 *
621 * Forces all page allocations to fail rather than trigger OOM killer.
622 * Will block and wait until all OOM victims are killed.
623 *
624 * The function cannot be called when there are runnable user tasks because
625 * the userspace would see unexpected allocation failures as a result. Any
626 * new usage of this function should be consulted with MM people.
627 *
628 * Returns true if successful and false if the OOM killer cannot be
629 * disabled.
630 */
631bool oom_killer_disable(void)
632{
633 /*
634 * Make sure to not race with an ongoing OOM killer. Check that the
635 * current is not killed (possibly due to sharing the victim's memory).
636 */
637 if (mutex_lock_killable(&oom_lock))
638 return false;
639 oom_killer_disabled = true;
640 mutex_unlock(&oom_lock);
641
642 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
643
644 return true;
645}
646
647/**
648 * oom_killer_enable - enable OOM killer
649 */
650void oom_killer_enable(void)
651{
652 oom_killer_disabled = false;
653}
654
655/*
656 * task->mm can be NULL if the task is the exited group leader. So to
657 * determine whether the task is using a particular mm, we examine all the
658 * task's threads: if one of those is using this mm then this task was also
659 * using it.
660 */
661static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
662{
663 struct task_struct *t;
664
665 for_each_thread(p, t) {
666 struct mm_struct *t_mm = READ_ONCE(t->mm);
667 if (t_mm)
668 return t_mm == mm;
669 }
670 return false;
671}
672
673/*
674 * Must be called while holding a reference to p, which will be released upon
675 * returning.
676 */
677void oom_kill_process(struct oom_control *oc, struct task_struct *p,
678 unsigned int points, unsigned long totalpages,
679 struct mem_cgroup *memcg, const char *message)
680{
681 struct task_struct *victim = p;
682 struct task_struct *child;
683 struct task_struct *t;
684 struct mm_struct *mm;
685 unsigned int victim_points = 0;
686 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
687 DEFAULT_RATELIMIT_BURST);
688 bool can_oom_reap = true;
689
690 /*
691 * If the task is already exiting, don't alarm the sysadmin or kill
692 * its children or threads, just set TIF_MEMDIE so it can die quickly
693 */
694 task_lock(p);
695 if (p->mm && task_will_free_mem(p)) {
696 mark_oom_victim(p);
697 task_unlock(p);
698 put_task_struct(p);
699 return;
700 }
701 task_unlock(p);
702
703 if (__ratelimit(&oom_rs))
704 dump_header(oc, p, memcg);
705
706 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
707 message, task_pid_nr(p), p->comm, points);
708
709 /*
710 * If any of p's children has a different mm and is eligible for kill,
711 * the one with the highest oom_badness() score is sacrificed for its
712 * parent. This attempts to lose the minimal amount of work done while
713 * still freeing memory.
714 */
715 read_lock(&tasklist_lock);
716 for_each_thread(p, t) {
717 list_for_each_entry(child, &t->children, sibling) {
718 unsigned int child_points;
719
720 if (process_shares_mm(child, p->mm))
721 continue;
722 /*
723 * oom_badness() returns 0 if the thread is unkillable
724 */
725 child_points = oom_badness(child, memcg, oc->nodemask,
726 totalpages);
727 if (child_points > victim_points) {
728 put_task_struct(victim);
729 victim = child;
730 victim_points = child_points;
731 get_task_struct(victim);
732 }
733 }
734 }
735 read_unlock(&tasklist_lock);
736
737 p = find_lock_task_mm(victim);
738 if (!p) {
739 put_task_struct(victim);
740 return;
741 } else if (victim != p) {
742 get_task_struct(p);
743 put_task_struct(victim);
744 victim = p;
745 }
746
747 /* Get a reference to safely compare mm after task_unlock(victim) */
748 mm = victim->mm;
749 atomic_inc(&mm->mm_count);
750 /*
751 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
752 * the OOM victim from depleting the memory reserves from the user
753 * space under its control.
754 */
755 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
756 mark_oom_victim(victim);
757 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
758 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
759 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
760 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
761 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
762 task_unlock(victim);
763
764 /*
765 * Kill all user processes sharing victim->mm in other thread groups, if
766 * any. They don't get access to memory reserves, though, to avoid
767 * depletion of all memory. This prevents mm->mmap_sem livelock when an
768 * oom killed thread cannot exit because it requires the semaphore and
769 * its contended by another thread trying to allocate memory itself.
770 * That thread will now get access to memory reserves since it has a
771 * pending fatal signal.
772 */
773 rcu_read_lock();
774 for_each_process(p) {
775 if (!process_shares_mm(p, mm))
776 continue;
777 if (same_thread_group(p, victim))
778 continue;
779 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
780 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
781 /*
782 * We cannot use oom_reaper for the mm shared by this
783 * process because it wouldn't get killed and so the
784 * memory might be still used.
785 */
786 can_oom_reap = false;
787 continue;
788 }
789 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
790 }
791 rcu_read_unlock();
792
793 if (can_oom_reap)
794 wake_oom_reaper(victim);
795
796 mmdrop(mm);
797 put_task_struct(victim);
798}
799#undef K
800
801/*
802 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
803 */
804void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
805 struct mem_cgroup *memcg)
806{
807 if (likely(!sysctl_panic_on_oom))
808 return;
809 if (sysctl_panic_on_oom != 2) {
810 /*
811 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
812 * does not panic for cpuset, mempolicy, or memcg allocation
813 * failures.
814 */
815 if (constraint != CONSTRAINT_NONE)
816 return;
817 }
818 /* Do not panic for oom kills triggered by sysrq */
819 if (is_sysrq_oom(oc))
820 return;
821 dump_header(oc, NULL, memcg);
822 panic("Out of memory: %s panic_on_oom is enabled\n",
823 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
824}
825
826static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
827
828int register_oom_notifier(struct notifier_block *nb)
829{
830 return blocking_notifier_chain_register(&oom_notify_list, nb);
831}
832EXPORT_SYMBOL_GPL(register_oom_notifier);
833
834int unregister_oom_notifier(struct notifier_block *nb)
835{
836 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
837}
838EXPORT_SYMBOL_GPL(unregister_oom_notifier);
839
840/**
841 * out_of_memory - kill the "best" process when we run out of memory
842 * @oc: pointer to struct oom_control
843 *
844 * If we run out of memory, we have the choice between either
845 * killing a random task (bad), letting the system crash (worse)
846 * OR try to be smart about which process to kill. Note that we
847 * don't have to be perfect here, we just have to be good.
848 */
849bool out_of_memory(struct oom_control *oc)
850{
851 struct task_struct *p;
852 unsigned long totalpages;
853 unsigned long freed = 0;
854 unsigned int uninitialized_var(points);
855 enum oom_constraint constraint = CONSTRAINT_NONE;
856
857 if (oom_killer_disabled)
858 return false;
859
860 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
861 if (freed > 0)
862 /* Got some memory back in the last second. */
863 return true;
864
865 /*
866 * If current has a pending SIGKILL or is exiting, then automatically
867 * select it. The goal is to allow it to allocate so that it may
868 * quickly exit and free its memory.
869 *
870 * But don't select if current has already released its mm and cleared
871 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
872 */
873 if (current->mm &&
874 (fatal_signal_pending(current) || task_will_free_mem(current))) {
875 mark_oom_victim(current);
876 return true;
877 }
878
879 /*
880 * Check if there were limitations on the allocation (only relevant for
881 * NUMA) that may require different handling.
882 */
883 constraint = constrained_alloc(oc, &totalpages);
884 if (constraint != CONSTRAINT_MEMORY_POLICY)
885 oc->nodemask = NULL;
886 check_panic_on_oom(oc, constraint, NULL);
887
888 if (sysctl_oom_kill_allocating_task && current->mm &&
889 !oom_unkillable_task(current, NULL, oc->nodemask) &&
890 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
891 get_task_struct(current);
892 oom_kill_process(oc, current, 0, totalpages, NULL,
893 "Out of memory (oom_kill_allocating_task)");
894 return true;
895 }
896
897 p = select_bad_process(oc, &points, totalpages);
898 /* Found nothing?!?! Either we hang forever, or we panic. */
899 if (!p && !is_sysrq_oom(oc)) {
900 dump_header(oc, NULL, NULL);
901 panic("Out of memory and no killable processes...\n");
902 }
903 if (p && p != (void *)-1UL) {
904 oom_kill_process(oc, p, points, totalpages, NULL,
905 "Out of memory");
906 /*
907 * Give the killed process a good chance to exit before trying
908 * to allocate memory again.
909 */
910 schedule_timeout_killable(1);
911 }
912 return true;
913}
914
915/*
916 * The pagefault handler calls here because it is out of memory, so kill a
917 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
918 * parallel oom killing is already in progress so do nothing.
919 */
920void pagefault_out_of_memory(void)
921{
922 struct oom_control oc = {
923 .zonelist = NULL,
924 .nodemask = NULL,
925 .gfp_mask = 0,
926 .order = 0,
927 };
928
929 if (mem_cgroup_oom_synchronize(true))
930 return;
931
932 if (!mutex_trylock(&oom_lock))
933 return;
934
935 if (!out_of_memory(&oc)) {
936 /*
937 * There shouldn't be any user tasks runnable while the
938 * OOM killer is disabled, so the current task has to
939 * be a racing OOM victim for which oom_killer_disable()
940 * is waiting for.
941 */
942 WARN_ON(test_thread_flag(TIF_MEMDIE));
943 }
944
945 mutex_unlock(&oom_lock);
946}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21#include <linux/oom.h>
22#include <linux/mm.h>
23#include <linux/err.h>
24#include <linux/gfp.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/task.h>
28#include <linux/sched/debug.h>
29#include <linux/swap.h>
30#include <linux/syscalls.h>
31#include <linux/timex.h>
32#include <linux/jiffies.h>
33#include <linux/cpuset.h>
34#include <linux/export.h>
35#include <linux/notifier.h>
36#include <linux/memcontrol.h>
37#include <linux/mempolicy.h>
38#include <linux/security.h>
39#include <linux/ptrace.h>
40#include <linux/freezer.h>
41#include <linux/ftrace.h>
42#include <linux/ratelimit.h>
43#include <linux/kthread.h>
44#include <linux/init.h>
45#include <linux/mmu_notifier.h>
46#include <linux/cred.h>
47#include <linux/nmi.h>
48
49#include <asm/tlb.h>
50#include "internal.h"
51#include "slab.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/oom.h>
55
56static int sysctl_panic_on_oom;
57static int sysctl_oom_kill_allocating_task;
58static int sysctl_oom_dump_tasks = 1;
59
60/*
61 * Serializes oom killer invocations (out_of_memory()) from all contexts to
62 * prevent from over eager oom killing (e.g. when the oom killer is invoked
63 * from different domains).
64 *
65 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
66 * and mark_oom_victim
67 */
68DEFINE_MUTEX(oom_lock);
69/* Serializes oom_score_adj and oom_score_adj_min updates */
70DEFINE_MUTEX(oom_adj_mutex);
71
72static inline bool is_memcg_oom(struct oom_control *oc)
73{
74 return oc->memcg != NULL;
75}
76
77#ifdef CONFIG_NUMA
78/**
79 * oom_cpuset_eligible() - check task eligibility for kill
80 * @start: task struct of which task to consider
81 * @oc: pointer to struct oom_control
82 *
83 * Task eligibility is determined by whether or not a candidate task, @tsk,
84 * shares the same mempolicy nodes as current if it is bound by such a policy
85 * and whether or not it has the same set of allowed cpuset nodes.
86 *
87 * This function is assuming oom-killer context and 'current' has triggered
88 * the oom-killer.
89 */
90static bool oom_cpuset_eligible(struct task_struct *start,
91 struct oom_control *oc)
92{
93 struct task_struct *tsk;
94 bool ret = false;
95 const nodemask_t *mask = oc->nodemask;
96
97 rcu_read_lock();
98 for_each_thread(start, tsk) {
99 if (mask) {
100 /*
101 * If this is a mempolicy constrained oom, tsk's
102 * cpuset is irrelevant. Only return true if its
103 * mempolicy intersects current, otherwise it may be
104 * needlessly killed.
105 */
106 ret = mempolicy_in_oom_domain(tsk, mask);
107 } else {
108 /*
109 * This is not a mempolicy constrained oom, so only
110 * check the mems of tsk's cpuset.
111 */
112 ret = cpuset_mems_allowed_intersects(current, tsk);
113 }
114 if (ret)
115 break;
116 }
117 rcu_read_unlock();
118
119 return ret;
120}
121#else
122static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123{
124 return true;
125}
126#endif /* CONFIG_NUMA */
127
128/*
129 * The process p may have detached its own ->mm while exiting or through
130 * kthread_use_mm(), but one or more of its subthreads may still have a valid
131 * pointer. Return p, or any of its subthreads with a valid ->mm, with
132 * task_lock() held.
133 */
134struct task_struct *find_lock_task_mm(struct task_struct *p)
135{
136 struct task_struct *t;
137
138 rcu_read_lock();
139
140 for_each_thread(p, t) {
141 task_lock(t);
142 if (likely(t->mm))
143 goto found;
144 task_unlock(t);
145 }
146 t = NULL;
147found:
148 rcu_read_unlock();
149
150 return t;
151}
152
153/*
154 * order == -1 means the oom kill is required by sysrq, otherwise only
155 * for display purposes.
156 */
157static inline bool is_sysrq_oom(struct oom_control *oc)
158{
159 return oc->order == -1;
160}
161
162/* return true if the task is not adequate as candidate victim task. */
163static bool oom_unkillable_task(struct task_struct *p)
164{
165 if (is_global_init(p))
166 return true;
167 if (p->flags & PF_KTHREAD)
168 return true;
169 return false;
170}
171
172/*
173 * Check whether unreclaimable slab amount is greater than
174 * all user memory(LRU pages).
175 * dump_unreclaimable_slab() could help in the case that
176 * oom due to too much unreclaimable slab used by kernel.
177*/
178static bool should_dump_unreclaim_slab(void)
179{
180 unsigned long nr_lru;
181
182 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
183 global_node_page_state(NR_INACTIVE_ANON) +
184 global_node_page_state(NR_ACTIVE_FILE) +
185 global_node_page_state(NR_INACTIVE_FILE) +
186 global_node_page_state(NR_ISOLATED_ANON) +
187 global_node_page_state(NR_ISOLATED_FILE) +
188 global_node_page_state(NR_UNEVICTABLE);
189
190 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
191}
192
193/**
194 * oom_badness - heuristic function to determine which candidate task to kill
195 * @p: task struct of which task we should calculate
196 * @totalpages: total present RAM allowed for page allocation
197 *
198 * The heuristic for determining which task to kill is made to be as simple and
199 * predictable as possible. The goal is to return the highest value for the
200 * task consuming the most memory to avoid subsequent oom failures.
201 */
202long oom_badness(struct task_struct *p, unsigned long totalpages)
203{
204 long points;
205 long adj;
206
207 if (oom_unkillable_task(p))
208 return LONG_MIN;
209
210 p = find_lock_task_mm(p);
211 if (!p)
212 return LONG_MIN;
213
214 /*
215 * Do not even consider tasks which are explicitly marked oom
216 * unkillable or have been already oom reaped or the are in
217 * the middle of vfork
218 */
219 adj = (long)p->signal->oom_score_adj;
220 if (adj == OOM_SCORE_ADJ_MIN ||
221 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
222 in_vfork(p)) {
223 task_unlock(p);
224 return LONG_MIN;
225 }
226
227 /*
228 * The baseline for the badness score is the proportion of RAM that each
229 * task's rss, pagetable and swap space use.
230 */
231 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
232 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
233 task_unlock(p);
234
235 /* Normalize to oom_score_adj units */
236 adj *= totalpages / 1000;
237 points += adj;
238
239 return points;
240}
241
242static const char * const oom_constraint_text[] = {
243 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247};
248
249/*
250 * Determine the type of allocation constraint.
251 */
252static enum oom_constraint constrained_alloc(struct oom_control *oc)
253{
254 struct zone *zone;
255 struct zoneref *z;
256 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
257 bool cpuset_limited = false;
258 int nid;
259
260 if (is_memcg_oom(oc)) {
261 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 return CONSTRAINT_MEMCG;
263 }
264
265 /* Default to all available memory */
266 oc->totalpages = totalram_pages() + total_swap_pages;
267
268 if (!IS_ENABLED(CONFIG_NUMA))
269 return CONSTRAINT_NONE;
270
271 if (!oc->zonelist)
272 return CONSTRAINT_NONE;
273 /*
274 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 * to kill current.We have to random task kill in this case.
276 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 */
278 if (oc->gfp_mask & __GFP_THISNODE)
279 return CONSTRAINT_NONE;
280
281 /*
282 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 * the page allocator means a mempolicy is in effect. Cpuset policy
284 * is enforced in get_page_from_freelist().
285 */
286 if (oc->nodemask &&
287 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 oc->totalpages = total_swap_pages;
289 for_each_node_mask(nid, *oc->nodemask)
290 oc->totalpages += node_present_pages(nid);
291 return CONSTRAINT_MEMORY_POLICY;
292 }
293
294 /* Check this allocation failure is caused by cpuset's wall function */
295 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 highest_zoneidx, oc->nodemask)
297 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 cpuset_limited = true;
299
300 if (cpuset_limited) {
301 oc->totalpages = total_swap_pages;
302 for_each_node_mask(nid, cpuset_current_mems_allowed)
303 oc->totalpages += node_present_pages(nid);
304 return CONSTRAINT_CPUSET;
305 }
306 return CONSTRAINT_NONE;
307}
308
309static int oom_evaluate_task(struct task_struct *task, void *arg)
310{
311 struct oom_control *oc = arg;
312 long points;
313
314 if (oom_unkillable_task(task))
315 goto next;
316
317 /* p may not have freeable memory in nodemask */
318 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 goto next;
320
321 /*
322 * This task already has access to memory reserves and is being killed.
323 * Don't allow any other task to have access to the reserves unless
324 * the task has MMF_OOM_SKIP because chances that it would release
325 * any memory is quite low.
326 */
327 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 goto next;
330 goto abort;
331 }
332
333 /*
334 * If task is allocating a lot of memory and has been marked to be
335 * killed first if it triggers an oom, then select it.
336 */
337 if (oom_task_origin(task)) {
338 points = LONG_MAX;
339 goto select;
340 }
341
342 points = oom_badness(task, oc->totalpages);
343 if (points == LONG_MIN || points < oc->chosen_points)
344 goto next;
345
346select:
347 if (oc->chosen)
348 put_task_struct(oc->chosen);
349 get_task_struct(task);
350 oc->chosen = task;
351 oc->chosen_points = points;
352next:
353 return 0;
354abort:
355 if (oc->chosen)
356 put_task_struct(oc->chosen);
357 oc->chosen = (void *)-1UL;
358 return 1;
359}
360
361/*
362 * Simple selection loop. We choose the process with the highest number of
363 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 */
365static void select_bad_process(struct oom_control *oc)
366{
367 oc->chosen_points = LONG_MIN;
368
369 if (is_memcg_oom(oc))
370 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
371 else {
372 struct task_struct *p;
373
374 rcu_read_lock();
375 for_each_process(p)
376 if (oom_evaluate_task(p, oc))
377 break;
378 rcu_read_unlock();
379 }
380}
381
382static int dump_task(struct task_struct *p, void *arg)
383{
384 struct oom_control *oc = arg;
385 struct task_struct *task;
386
387 if (oom_unkillable_task(p))
388 return 0;
389
390 /* p may not have freeable memory in nodemask */
391 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
392 return 0;
393
394 task = find_lock_task_mm(p);
395 if (!task) {
396 /*
397 * All of p's threads have already detached their mm's. There's
398 * no need to report them; they can't be oom killed anyway.
399 */
400 return 0;
401 }
402
403 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
404 task->pid, from_kuid(&init_user_ns, task_uid(task)),
405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
406 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
407 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
408 get_mm_counter(task->mm, MM_SWAPENTS),
409 task->signal->oom_score_adj, task->comm);
410 task_unlock(task);
411
412 return 0;
413}
414
415/**
416 * dump_tasks - dump current memory state of all system tasks
417 * @oc: pointer to struct oom_control
418 *
419 * Dumps the current memory state of all eligible tasks. Tasks not in the same
420 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
421 * are not shown.
422 * State information includes task's pid, uid, tgid, vm size, rss,
423 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 */
425static void dump_tasks(struct oom_control *oc)
426{
427 pr_info("Tasks state (memory values in pages):\n");
428 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429
430 if (is_memcg_oom(oc))
431 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
432 else {
433 struct task_struct *p;
434 int i = 0;
435
436 rcu_read_lock();
437 for_each_process(p) {
438 /* Avoid potential softlockup warning */
439 if ((++i & 1023) == 0)
440 touch_softlockup_watchdog();
441 dump_task(p, oc);
442 }
443 rcu_read_unlock();
444 }
445}
446
447static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
448{
449 /* one line summary of the oom killer context. */
450 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
451 oom_constraint_text[oc->constraint],
452 nodemask_pr_args(oc->nodemask));
453 cpuset_print_current_mems_allowed();
454 mem_cgroup_print_oom_context(oc->memcg, victim);
455 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
456 from_kuid(&init_user_ns, task_uid(victim)));
457}
458
459static void dump_header(struct oom_control *oc)
460{
461 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
462 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
463 current->signal->oom_score_adj);
464 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
465 pr_warn("COMPACTION is disabled!!!\n");
466
467 dump_stack();
468 if (is_memcg_oom(oc))
469 mem_cgroup_print_oom_meminfo(oc->memcg);
470 else {
471 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
472 if (should_dump_unreclaim_slab())
473 dump_unreclaimable_slab();
474 }
475 if (sysctl_oom_dump_tasks)
476 dump_tasks(oc);
477}
478
479/*
480 * Number of OOM victims in flight
481 */
482static atomic_t oom_victims = ATOMIC_INIT(0);
483static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
484
485static bool oom_killer_disabled __read_mostly;
486
487/*
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
492 */
493bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494{
495 struct task_struct *t;
496
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
501 }
502 return false;
503}
504
505#ifdef CONFIG_MMU
506/*
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
509 */
510static struct task_struct *oom_reaper_th;
511static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512static struct task_struct *oom_reaper_list;
513static DEFINE_SPINLOCK(oom_reaper_lock);
514
515static bool __oom_reap_task_mm(struct mm_struct *mm)
516{
517 struct vm_area_struct *vma;
518 bool ret = true;
519 VMA_ITERATOR(vmi, mm, 0);
520
521 /*
522 * Tell all users of get_user/copy_from_user etc... that the content
523 * is no longer stable. No barriers really needed because unmapping
524 * should imply barriers already and the reader would hit a page fault
525 * if it stumbled over a reaped memory.
526 */
527 set_bit(MMF_UNSTABLE, &mm->flags);
528
529 for_each_vma(vmi, vma) {
530 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
531 continue;
532
533 /*
534 * Only anonymous pages have a good chance to be dropped
535 * without additional steps which we cannot afford as we
536 * are OOM already.
537 *
538 * We do not even care about fs backed pages because all
539 * which are reclaimable have already been reclaimed and
540 * we do not want to block exit_mmap by keeping mm ref
541 * count elevated without a good reason.
542 */
543 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
544 struct mmu_notifier_range range;
545 struct mmu_gather tlb;
546
547 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
548 mm, vma->vm_start,
549 vma->vm_end);
550 tlb_gather_mmu(&tlb, mm);
551 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
552 tlb_finish_mmu(&tlb);
553 ret = false;
554 continue;
555 }
556 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
557 mmu_notifier_invalidate_range_end(&range);
558 tlb_finish_mmu(&tlb);
559 }
560 }
561
562 return ret;
563}
564
565/*
566 * Reaps the address space of the give task.
567 *
568 * Returns true on success and false if none or part of the address space
569 * has been reclaimed and the caller should retry later.
570 */
571static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
572{
573 bool ret = true;
574
575 if (!mmap_read_trylock(mm)) {
576 trace_skip_task_reaping(tsk->pid);
577 return false;
578 }
579
580 /*
581 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
582 * work on the mm anymore. The check for MMF_OOM_SKIP must run
583 * under mmap_lock for reading because it serializes against the
584 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
585 */
586 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
587 trace_skip_task_reaping(tsk->pid);
588 goto out_unlock;
589 }
590
591 trace_start_task_reaping(tsk->pid);
592
593 /* failed to reap part of the address space. Try again later */
594 ret = __oom_reap_task_mm(mm);
595 if (!ret)
596 goto out_finish;
597
598 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
599 task_pid_nr(tsk), tsk->comm,
600 K(get_mm_counter(mm, MM_ANONPAGES)),
601 K(get_mm_counter(mm, MM_FILEPAGES)),
602 K(get_mm_counter(mm, MM_SHMEMPAGES)));
603out_finish:
604 trace_finish_task_reaping(tsk->pid);
605out_unlock:
606 mmap_read_unlock(mm);
607
608 return ret;
609}
610
611#define MAX_OOM_REAP_RETRIES 10
612static void oom_reap_task(struct task_struct *tsk)
613{
614 int attempts = 0;
615 struct mm_struct *mm = tsk->signal->oom_mm;
616
617 /* Retry the mmap_read_trylock(mm) a few times */
618 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
619 schedule_timeout_idle(HZ/10);
620
621 if (attempts <= MAX_OOM_REAP_RETRIES ||
622 test_bit(MMF_OOM_SKIP, &mm->flags))
623 goto done;
624
625 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
626 task_pid_nr(tsk), tsk->comm);
627 sched_show_task(tsk);
628 debug_show_all_locks();
629
630done:
631 tsk->oom_reaper_list = NULL;
632
633 /*
634 * Hide this mm from OOM killer because it has been either reaped or
635 * somebody can't call mmap_write_unlock(mm).
636 */
637 set_bit(MMF_OOM_SKIP, &mm->flags);
638
639 /* Drop a reference taken by queue_oom_reaper */
640 put_task_struct(tsk);
641}
642
643static int oom_reaper(void *unused)
644{
645 set_freezable();
646
647 while (true) {
648 struct task_struct *tsk = NULL;
649
650 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
651 spin_lock_irq(&oom_reaper_lock);
652 if (oom_reaper_list != NULL) {
653 tsk = oom_reaper_list;
654 oom_reaper_list = tsk->oom_reaper_list;
655 }
656 spin_unlock_irq(&oom_reaper_lock);
657
658 if (tsk)
659 oom_reap_task(tsk);
660 }
661
662 return 0;
663}
664
665static void wake_oom_reaper(struct timer_list *timer)
666{
667 struct task_struct *tsk = container_of(timer, struct task_struct,
668 oom_reaper_timer);
669 struct mm_struct *mm = tsk->signal->oom_mm;
670 unsigned long flags;
671
672 /* The victim managed to terminate on its own - see exit_mmap */
673 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
674 put_task_struct(tsk);
675 return;
676 }
677
678 spin_lock_irqsave(&oom_reaper_lock, flags);
679 tsk->oom_reaper_list = oom_reaper_list;
680 oom_reaper_list = tsk;
681 spin_unlock_irqrestore(&oom_reaper_lock, flags);
682 trace_wake_reaper(tsk->pid);
683 wake_up(&oom_reaper_wait);
684}
685
686/*
687 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
688 * The timers timeout is arbitrary... the longer it is, the longer the worst
689 * case scenario for the OOM can take. If it is too small, the oom_reaper can
690 * get in the way and release resources needed by the process exit path.
691 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
692 * before the exit path is able to wake the futex waiters.
693 */
694#define OOM_REAPER_DELAY (2*HZ)
695static void queue_oom_reaper(struct task_struct *tsk)
696{
697 /* mm is already queued? */
698 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
699 return;
700
701 get_task_struct(tsk);
702 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
703 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
704 add_timer(&tsk->oom_reaper_timer);
705}
706
707#ifdef CONFIG_SYSCTL
708static struct ctl_table vm_oom_kill_table[] = {
709 {
710 .procname = "panic_on_oom",
711 .data = &sysctl_panic_on_oom,
712 .maxlen = sizeof(sysctl_panic_on_oom),
713 .mode = 0644,
714 .proc_handler = proc_dointvec_minmax,
715 .extra1 = SYSCTL_ZERO,
716 .extra2 = SYSCTL_TWO,
717 },
718 {
719 .procname = "oom_kill_allocating_task",
720 .data = &sysctl_oom_kill_allocating_task,
721 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
722 .mode = 0644,
723 .proc_handler = proc_dointvec,
724 },
725 {
726 .procname = "oom_dump_tasks",
727 .data = &sysctl_oom_dump_tasks,
728 .maxlen = sizeof(sysctl_oom_dump_tasks),
729 .mode = 0644,
730 .proc_handler = proc_dointvec,
731 },
732};
733#endif
734
735static int __init oom_init(void)
736{
737 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
738#ifdef CONFIG_SYSCTL
739 register_sysctl_init("vm", vm_oom_kill_table);
740#endif
741 return 0;
742}
743subsys_initcall(oom_init)
744#else
745static inline void queue_oom_reaper(struct task_struct *tsk)
746{
747}
748#endif /* CONFIG_MMU */
749
750/**
751 * mark_oom_victim - mark the given task as OOM victim
752 * @tsk: task to mark
753 *
754 * Has to be called with oom_lock held and never after
755 * oom has been disabled already.
756 *
757 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
758 * under task_lock or operate on the current).
759 */
760static void mark_oom_victim(struct task_struct *tsk)
761{
762 const struct cred *cred;
763 struct mm_struct *mm = tsk->mm;
764
765 WARN_ON(oom_killer_disabled);
766 /* OOM killer might race with memcg OOM */
767 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
768 return;
769
770 /* oom_mm is bound to the signal struct life time. */
771 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
772 mmgrab(tsk->signal->oom_mm);
773
774 /*
775 * Make sure that the task is woken up from uninterruptible sleep
776 * if it is frozen because OOM killer wouldn't be able to free
777 * any memory and livelock. freezing_slow_path will tell the freezer
778 * that TIF_MEMDIE tasks should be ignored.
779 */
780 __thaw_task(tsk);
781 atomic_inc(&oom_victims);
782 cred = get_task_cred(tsk);
783 trace_mark_victim(tsk, cred->uid.val);
784 put_cred(cred);
785}
786
787/**
788 * exit_oom_victim - note the exit of an OOM victim
789 */
790void exit_oom_victim(void)
791{
792 clear_thread_flag(TIF_MEMDIE);
793
794 if (!atomic_dec_return(&oom_victims))
795 wake_up_all(&oom_victims_wait);
796}
797
798/**
799 * oom_killer_enable - enable OOM killer
800 */
801void oom_killer_enable(void)
802{
803 oom_killer_disabled = false;
804 pr_info("OOM killer enabled.\n");
805}
806
807/**
808 * oom_killer_disable - disable OOM killer
809 * @timeout: maximum timeout to wait for oom victims in jiffies
810 *
811 * Forces all page allocations to fail rather than trigger OOM killer.
812 * Will block and wait until all OOM victims are killed or the given
813 * timeout expires.
814 *
815 * The function cannot be called when there are runnable user tasks because
816 * the userspace would see unexpected allocation failures as a result. Any
817 * new usage of this function should be consulted with MM people.
818 *
819 * Returns true if successful and false if the OOM killer cannot be
820 * disabled.
821 */
822bool oom_killer_disable(signed long timeout)
823{
824 signed long ret;
825
826 /*
827 * Make sure to not race with an ongoing OOM killer. Check that the
828 * current is not killed (possibly due to sharing the victim's memory).
829 */
830 if (mutex_lock_killable(&oom_lock))
831 return false;
832 oom_killer_disabled = true;
833 mutex_unlock(&oom_lock);
834
835 ret = wait_event_interruptible_timeout(oom_victims_wait,
836 !atomic_read(&oom_victims), timeout);
837 if (ret <= 0) {
838 oom_killer_enable();
839 return false;
840 }
841 pr_info("OOM killer disabled.\n");
842
843 return true;
844}
845
846static inline bool __task_will_free_mem(struct task_struct *task)
847{
848 struct signal_struct *sig = task->signal;
849
850 /*
851 * A coredumping process may sleep for an extended period in
852 * coredump_task_exit(), so the oom killer cannot assume that
853 * the process will promptly exit and release memory.
854 */
855 if (sig->core_state)
856 return false;
857
858 if (sig->flags & SIGNAL_GROUP_EXIT)
859 return true;
860
861 if (thread_group_empty(task) && (task->flags & PF_EXITING))
862 return true;
863
864 return false;
865}
866
867/*
868 * Checks whether the given task is dying or exiting and likely to
869 * release its address space. This means that all threads and processes
870 * sharing the same mm have to be killed or exiting.
871 * Caller has to make sure that task->mm is stable (hold task_lock or
872 * it operates on the current).
873 */
874static bool task_will_free_mem(struct task_struct *task)
875{
876 struct mm_struct *mm = task->mm;
877 struct task_struct *p;
878 bool ret = true;
879
880 /*
881 * Skip tasks without mm because it might have passed its exit_mm and
882 * exit_oom_victim. oom_reaper could have rescued that but do not rely
883 * on that for now. We can consider find_lock_task_mm in future.
884 */
885 if (!mm)
886 return false;
887
888 if (!__task_will_free_mem(task))
889 return false;
890
891 /*
892 * This task has already been drained by the oom reaper so there are
893 * only small chances it will free some more
894 */
895 if (test_bit(MMF_OOM_SKIP, &mm->flags))
896 return false;
897
898 if (atomic_read(&mm->mm_users) <= 1)
899 return true;
900
901 /*
902 * Make sure that all tasks which share the mm with the given tasks
903 * are dying as well to make sure that a) nobody pins its mm and
904 * b) the task is also reapable by the oom reaper.
905 */
906 rcu_read_lock();
907 for_each_process(p) {
908 if (!process_shares_mm(p, mm))
909 continue;
910 if (same_thread_group(task, p))
911 continue;
912 ret = __task_will_free_mem(p);
913 if (!ret)
914 break;
915 }
916 rcu_read_unlock();
917
918 return ret;
919}
920
921static void __oom_kill_process(struct task_struct *victim, const char *message)
922{
923 struct task_struct *p;
924 struct mm_struct *mm;
925 bool can_oom_reap = true;
926
927 p = find_lock_task_mm(victim);
928 if (!p) {
929 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
930 message, task_pid_nr(victim), victim->comm);
931 put_task_struct(victim);
932 return;
933 } else if (victim != p) {
934 get_task_struct(p);
935 put_task_struct(victim);
936 victim = p;
937 }
938
939 /* Get a reference to safely compare mm after task_unlock(victim) */
940 mm = victim->mm;
941 mmgrab(mm);
942
943 /* Raise event before sending signal: task reaper must see this */
944 count_vm_event(OOM_KILL);
945 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
946
947 /*
948 * We should send SIGKILL before granting access to memory reserves
949 * in order to prevent the OOM victim from depleting the memory
950 * reserves from the user space under its control.
951 */
952 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
953 mark_oom_victim(victim);
954 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
955 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
956 K(get_mm_counter(mm, MM_ANONPAGES)),
957 K(get_mm_counter(mm, MM_FILEPAGES)),
958 K(get_mm_counter(mm, MM_SHMEMPAGES)),
959 from_kuid(&init_user_ns, task_uid(victim)),
960 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
961 task_unlock(victim);
962
963 /*
964 * Kill all user processes sharing victim->mm in other thread groups, if
965 * any. They don't get access to memory reserves, though, to avoid
966 * depletion of all memory. This prevents mm->mmap_lock livelock when an
967 * oom killed thread cannot exit because it requires the semaphore and
968 * its contended by another thread trying to allocate memory itself.
969 * That thread will now get access to memory reserves since it has a
970 * pending fatal signal.
971 */
972 rcu_read_lock();
973 for_each_process(p) {
974 if (!process_shares_mm(p, mm))
975 continue;
976 if (same_thread_group(p, victim))
977 continue;
978 if (is_global_init(p)) {
979 can_oom_reap = false;
980 set_bit(MMF_OOM_SKIP, &mm->flags);
981 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
982 task_pid_nr(victim), victim->comm,
983 task_pid_nr(p), p->comm);
984 continue;
985 }
986 /*
987 * No kthread_use_mm() user needs to read from the userspace so
988 * we are ok to reap it.
989 */
990 if (unlikely(p->flags & PF_KTHREAD))
991 continue;
992 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
993 }
994 rcu_read_unlock();
995
996 if (can_oom_reap)
997 queue_oom_reaper(victim);
998
999 mmdrop(mm);
1000 put_task_struct(victim);
1001}
1002
1003/*
1004 * Kill provided task unless it's secured by setting
1005 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1006 */
1007static int oom_kill_memcg_member(struct task_struct *task, void *message)
1008{
1009 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1010 !is_global_init(task)) {
1011 get_task_struct(task);
1012 __oom_kill_process(task, message);
1013 }
1014 return 0;
1015}
1016
1017static void oom_kill_process(struct oom_control *oc, const char *message)
1018{
1019 struct task_struct *victim = oc->chosen;
1020 struct mem_cgroup *oom_group;
1021 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1022 DEFAULT_RATELIMIT_BURST);
1023
1024 /*
1025 * If the task is already exiting, don't alarm the sysadmin or kill
1026 * its children or threads, just give it access to memory reserves
1027 * so it can die quickly
1028 */
1029 task_lock(victim);
1030 if (task_will_free_mem(victim)) {
1031 mark_oom_victim(victim);
1032 queue_oom_reaper(victim);
1033 task_unlock(victim);
1034 put_task_struct(victim);
1035 return;
1036 }
1037 task_unlock(victim);
1038
1039 if (__ratelimit(&oom_rs)) {
1040 dump_header(oc);
1041 dump_oom_victim(oc, victim);
1042 }
1043
1044 /*
1045 * Do we need to kill the entire memory cgroup?
1046 * Or even one of the ancestor memory cgroups?
1047 * Check this out before killing the victim task.
1048 */
1049 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1050
1051 __oom_kill_process(victim, message);
1052
1053 /*
1054 * If necessary, kill all tasks in the selected memory cgroup.
1055 */
1056 if (oom_group) {
1057 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1058 mem_cgroup_print_oom_group(oom_group);
1059 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1060 (void *)message);
1061 mem_cgroup_put(oom_group);
1062 }
1063}
1064
1065/*
1066 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1067 */
1068static void check_panic_on_oom(struct oom_control *oc)
1069{
1070 if (likely(!sysctl_panic_on_oom))
1071 return;
1072 if (sysctl_panic_on_oom != 2) {
1073 /*
1074 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1075 * does not panic for cpuset, mempolicy, or memcg allocation
1076 * failures.
1077 */
1078 if (oc->constraint != CONSTRAINT_NONE)
1079 return;
1080 }
1081 /* Do not panic for oom kills triggered by sysrq */
1082 if (is_sysrq_oom(oc))
1083 return;
1084 dump_header(oc);
1085 panic("Out of memory: %s panic_on_oom is enabled\n",
1086 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1087}
1088
1089static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1090
1091int register_oom_notifier(struct notifier_block *nb)
1092{
1093 return blocking_notifier_chain_register(&oom_notify_list, nb);
1094}
1095EXPORT_SYMBOL_GPL(register_oom_notifier);
1096
1097int unregister_oom_notifier(struct notifier_block *nb)
1098{
1099 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1100}
1101EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1102
1103/**
1104 * out_of_memory - kill the "best" process when we run out of memory
1105 * @oc: pointer to struct oom_control
1106 *
1107 * If we run out of memory, we have the choice between either
1108 * killing a random task (bad), letting the system crash (worse)
1109 * OR try to be smart about which process to kill. Note that we
1110 * don't have to be perfect here, we just have to be good.
1111 */
1112bool out_of_memory(struct oom_control *oc)
1113{
1114 unsigned long freed = 0;
1115
1116 if (oom_killer_disabled)
1117 return false;
1118
1119 if (!is_memcg_oom(oc)) {
1120 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1121 if (freed > 0 && !is_sysrq_oom(oc))
1122 /* Got some memory back in the last second. */
1123 return true;
1124 }
1125
1126 /*
1127 * If current has a pending SIGKILL or is exiting, then automatically
1128 * select it. The goal is to allow it to allocate so that it may
1129 * quickly exit and free its memory.
1130 */
1131 if (task_will_free_mem(current)) {
1132 mark_oom_victim(current);
1133 queue_oom_reaper(current);
1134 return true;
1135 }
1136
1137 /*
1138 * The OOM killer does not compensate for IO-less reclaim.
1139 * But mem_cgroup_oom() has to invoke the OOM killer even
1140 * if it is a GFP_NOFS allocation.
1141 */
1142 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1143 return true;
1144
1145 /*
1146 * Check if there were limitations on the allocation (only relevant for
1147 * NUMA and memcg) that may require different handling.
1148 */
1149 oc->constraint = constrained_alloc(oc);
1150 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1151 oc->nodemask = NULL;
1152 check_panic_on_oom(oc);
1153
1154 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1155 current->mm && !oom_unkillable_task(current) &&
1156 oom_cpuset_eligible(current, oc) &&
1157 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1158 get_task_struct(current);
1159 oc->chosen = current;
1160 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1161 return true;
1162 }
1163
1164 select_bad_process(oc);
1165 /* Found nothing?!?! */
1166 if (!oc->chosen) {
1167 dump_header(oc);
1168 pr_warn("Out of memory and no killable processes...\n");
1169 /*
1170 * If we got here due to an actual allocation at the
1171 * system level, we cannot survive this and will enter
1172 * an endless loop in the allocator. Bail out now.
1173 */
1174 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1175 panic("System is deadlocked on memory\n");
1176 }
1177 if (oc->chosen && oc->chosen != (void *)-1UL)
1178 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1179 "Memory cgroup out of memory");
1180 return !!oc->chosen;
1181}
1182
1183/*
1184 * The pagefault handler calls here because some allocation has failed. We have
1185 * to take care of the memcg OOM here because this is the only safe context without
1186 * any locks held but let the oom killer triggered from the allocation context care
1187 * about the global OOM.
1188 */
1189void pagefault_out_of_memory(void)
1190{
1191 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1192 DEFAULT_RATELIMIT_BURST);
1193
1194 if (mem_cgroup_oom_synchronize(true))
1195 return;
1196
1197 if (fatal_signal_pending(current))
1198 return;
1199
1200 if (__ratelimit(&pfoom_rs))
1201 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1202}
1203
1204SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1205{
1206#ifdef CONFIG_MMU
1207 struct mm_struct *mm = NULL;
1208 struct task_struct *task;
1209 struct task_struct *p;
1210 unsigned int f_flags;
1211 bool reap = false;
1212 long ret = 0;
1213
1214 if (flags)
1215 return -EINVAL;
1216
1217 task = pidfd_get_task(pidfd, &f_flags);
1218 if (IS_ERR(task))
1219 return PTR_ERR(task);
1220
1221 /*
1222 * Make sure to choose a thread which still has a reference to mm
1223 * during the group exit
1224 */
1225 p = find_lock_task_mm(task);
1226 if (!p) {
1227 ret = -ESRCH;
1228 goto put_task;
1229 }
1230
1231 mm = p->mm;
1232 mmgrab(mm);
1233
1234 if (task_will_free_mem(p))
1235 reap = true;
1236 else {
1237 /* Error only if the work has not been done already */
1238 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1239 ret = -EINVAL;
1240 }
1241 task_unlock(p);
1242
1243 if (!reap)
1244 goto drop_mm;
1245
1246 if (mmap_read_lock_killable(mm)) {
1247 ret = -EINTR;
1248 goto drop_mm;
1249 }
1250 /*
1251 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1252 * possible change in exit_mmap is seen
1253 */
1254 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1255 ret = -EAGAIN;
1256 mmap_read_unlock(mm);
1257
1258drop_mm:
1259 mmdrop(mm);
1260put_task:
1261 put_task_struct(task);
1262 return ret;
1263#else
1264 return -ENOSYS;
1265#endif /* CONFIG_MMU */
1266}