Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.	The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
 
 
 
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched.h>
 
  44#include <linux/ksm.h>
  45#include <linux/rmap.h>
  46#include <linux/export.h>
  47#include <linux/pagemap.h>
  48#include <linux/swap.h>
  49#include <linux/backing-dev.h>
  50#include <linux/migrate.h>
  51#include <linux/page-isolation.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
 
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
 
 
 
 
  60#include "internal.h"
  61#include "ras/ras_event.h"
  62
  63int sysctl_memory_failure_early_kill __read_mostly = 0;
 
 
  64
  65int sysctl_memory_failure_recovery __read_mostly = 1;
  66
  67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  68
  69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71u32 hwpoison_filter_enable = 0;
  72u32 hwpoison_filter_dev_major = ~0U;
  73u32 hwpoison_filter_dev_minor = ~0U;
  74u64 hwpoison_filter_flags_mask;
  75u64 hwpoison_filter_flags_value;
  76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  81
  82static int hwpoison_filter_dev(struct page *p)
  83{
 
  84	struct address_space *mapping;
  85	dev_t dev;
  86
  87	if (hwpoison_filter_dev_major == ~0U &&
  88	    hwpoison_filter_dev_minor == ~0U)
  89		return 0;
  90
  91	/*
  92	 * page_mapping() does not accept slab pages.
  93	 */
  94	if (PageSlab(p))
  95		return -EINVAL;
  96
  97	mapping = page_mapping(p);
  98	if (mapping == NULL || mapping->host == NULL)
  99		return -EINVAL;
 100
 101	dev = mapping->host->i_sb->s_dev;
 102	if (hwpoison_filter_dev_major != ~0U &&
 103	    hwpoison_filter_dev_major != MAJOR(dev))
 104		return -EINVAL;
 105	if (hwpoison_filter_dev_minor != ~0U &&
 106	    hwpoison_filter_dev_minor != MINOR(dev))
 107		return -EINVAL;
 108
 109	return 0;
 110}
 111
 112static int hwpoison_filter_flags(struct page *p)
 113{
 114	if (!hwpoison_filter_flags_mask)
 115		return 0;
 116
 117	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 118				    hwpoison_filter_flags_value)
 119		return 0;
 120	else
 121		return -EINVAL;
 122}
 123
 124/*
 125 * This allows stress tests to limit test scope to a collection of tasks
 126 * by putting them under some memcg. This prevents killing unrelated/important
 127 * processes such as /sbin/init. Note that the target task may share clean
 128 * pages with init (eg. libc text), which is harmless. If the target task
 129 * share _dirty_ pages with another task B, the test scheme must make sure B
 130 * is also included in the memcg. At last, due to race conditions this filter
 131 * can only guarantee that the page either belongs to the memcg tasks, or is
 132 * a freed page.
 133 */
 134#ifdef CONFIG_MEMCG
 135u64 hwpoison_filter_memcg;
 136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 137static int hwpoison_filter_task(struct page *p)
 138{
 139	if (!hwpoison_filter_memcg)
 140		return 0;
 141
 142	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 143		return -EINVAL;
 144
 145	return 0;
 146}
 147#else
 148static int hwpoison_filter_task(struct page *p) { return 0; }
 149#endif
 150
 151int hwpoison_filter(struct page *p)
 152{
 153	if (!hwpoison_filter_enable)
 154		return 0;
 155
 156	if (hwpoison_filter_dev(p))
 157		return -EINVAL;
 158
 159	if (hwpoison_filter_flags(p))
 160		return -EINVAL;
 161
 162	if (hwpoison_filter_task(p))
 163		return -EINVAL;
 164
 165	return 0;
 166}
 
 167#else
 168int hwpoison_filter(struct page *p)
 169{
 170	return 0;
 171}
 172#endif
 173
 174EXPORT_SYMBOL_GPL(hwpoison_filter);
 175
 176/*
 177 * Send all the processes who have the page mapped a signal.
 178 * ``action optional'' if they are not immediately affected by the error
 179 * ``action required'' if error happened in current execution context
 180 */
 181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
 182			unsigned long pfn, struct page *page, int flags)
 183{
 184	struct siginfo si;
 185	int ret;
 186
 187	pr_err("MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
 188	       pfn, t->comm, t->pid);
 189	si.si_signo = SIGBUS;
 190	si.si_errno = 0;
 191	si.si_addr = (void *)addr;
 192#ifdef __ARCH_SI_TRAPNO
 193	si.si_trapno = trapno;
 194#endif
 195	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
 196
 197	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 198		si.si_code = BUS_MCEERR_AR;
 199		ret = force_sig_info(SIGBUS, &si, current);
 200	} else {
 201		/*
 202		 * Don't use force here, it's convenient if the signal
 203		 * can be temporarily blocked.
 204		 * This could cause a loop when the user sets SIGBUS
 205		 * to SIG_IGN, but hopefully no one will do that?
 206		 */
 207		si.si_code = BUS_MCEERR_AO;
 208		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
 209	}
 210	if (ret < 0)
 211		pr_info("MCE: Error sending signal to %s:%d: %d\n",
 212			t->comm, t->pid, ret);
 213	return ret;
 214}
 215
 216/*
 217 * When a unknown page type is encountered drain as many buffers as possible
 218 * in the hope to turn the page into a LRU or free page, which we can handle.
 219 */
 220void shake_page(struct page *p, int access)
 221{
 222	if (!PageSlab(p)) {
 223		lru_add_drain_all();
 224		if (PageLRU(p))
 225			return;
 226		drain_all_pages(page_zone(p));
 227		if (PageLRU(p) || is_free_buddy_page(p))
 228			return;
 229	}
 230
 231	/*
 232	 * Only call shrink_node_slabs here (which would also shrink
 233	 * other caches) if access is not potentially fatal.
 234	 */
 235	if (access)
 236		drop_slab_node(page_to_nid(p));
 237}
 238EXPORT_SYMBOL_GPL(shake_page);
 239
 240/*
 241 * Kill all processes that have a poisoned page mapped and then isolate
 242 * the page.
 243 *
 244 * General strategy:
 245 * Find all processes having the page mapped and kill them.
 246 * But we keep a page reference around so that the page is not
 247 * actually freed yet.
 248 * Then stash the page away
 249 *
 250 * There's no convenient way to get back to mapped processes
 251 * from the VMAs. So do a brute-force search over all
 252 * running processes.
 253 *
 254 * Remember that machine checks are not common (or rather
 255 * if they are common you have other problems), so this shouldn't
 256 * be a performance issue.
 257 *
 258 * Also there are some races possible while we get from the
 259 * error detection to actually handle it.
 260 */
 261
 262struct to_kill {
 263	struct list_head nd;
 264	struct task_struct *tsk;
 265	unsigned long addr;
 266	char addr_valid;
 267};
 268
 269/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270 * Failure handling: if we can't find or can't kill a process there's
 271 * not much we can do.	We just print a message and ignore otherwise.
 272 */
 273
 274/*
 275 * Schedule a process for later kill.
 276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 277 * TBD would GFP_NOIO be enough?
 278 */
 279static void add_to_kill(struct task_struct *tsk, struct page *p,
 280		       struct vm_area_struct *vma,
 281		       struct list_head *to_kill,
 282		       struct to_kill **tkc)
 283{
 284	struct to_kill *tk;
 285
 286	if (*tkc) {
 287		tk = *tkc;
 288		*tkc = NULL;
 289	} else {
 290		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 291		if (!tk) {
 292			pr_err("MCE: Out of memory while machine check handling\n");
 293			return;
 294		}
 295	}
 296	tk->addr = page_address_in_vma(p, vma);
 297	tk->addr_valid = 1;
 
 
 
 
 298
 299	/*
 300	 * In theory we don't have to kill when the page was
 301	 * munmaped. But it could be also a mremap. Since that's
 302	 * likely very rare kill anyways just out of paranoia, but use
 303	 * a SIGKILL because the error is not contained anymore.
 
 
 
 
 304	 */
 305	if (tk->addr == -EFAULT) {
 306		pr_info("MCE: Unable to find user space address %lx in %s\n",
 307			page_to_pfn(p), tsk->comm);
 308		tk->addr_valid = 0;
 
 
 309	}
 
 310	get_task_struct(tsk);
 311	tk->tsk = tsk;
 312	list_add_tail(&tk->nd, to_kill);
 313}
 314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 315/*
 316 * Kill the processes that have been collected earlier.
 317 *
 318 * Only do anything when DOIT is set, otherwise just free the list
 319 * (this is used for clean pages which do not need killing)
 320 * Also when FAIL is set do a force kill because something went
 321 * wrong earlier.
 322 */
 323static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
 324			  int fail, struct page *page, unsigned long pfn,
 325			  int flags)
 326{
 327	struct to_kill *tk, *next;
 328
 329	list_for_each_entry_safe (tk, next, to_kill, nd) {
 330		if (forcekill) {
 331			/*
 332			 * In case something went wrong with munmapping
 333			 * make sure the process doesn't catch the
 334			 * signal and then access the memory. Just kill it.
 335			 */
 336			if (fail || tk->addr_valid == 0) {
 337				pr_err("MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 338				       pfn, tk->tsk->comm, tk->tsk->pid);
 339				force_sig(SIGKILL, tk->tsk);
 340			}
 341
 342			/*
 343			 * In theory the process could have mapped
 344			 * something else on the address in-between. We could
 345			 * check for that, but we need to tell the
 346			 * process anyways.
 347			 */
 348			else if (kill_proc(tk->tsk, tk->addr, trapno,
 349					      pfn, page, flags) < 0)
 350				pr_err("MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
 351				       pfn, tk->tsk->comm, tk->tsk->pid);
 352		}
 
 353		put_task_struct(tk->tsk);
 354		kfree(tk);
 355	}
 356}
 357
 358/*
 359 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 360 * on behalf of the thread group. Return task_struct of the (first found)
 361 * dedicated thread if found, and return NULL otherwise.
 362 *
 363 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 364 * have to call rcu_read_lock/unlock() in this function.
 365 */
 366static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 367{
 368	struct task_struct *t;
 369
 370	for_each_thread(tsk, t)
 371		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 372			return t;
 
 
 
 
 
 
 373	return NULL;
 374}
 375
 376/*
 377 * Determine whether a given process is "early kill" process which expects
 378 * to be signaled when some page under the process is hwpoisoned.
 379 * Return task_struct of the dedicated thread (main thread unless explicitly
 380 * specified) if the process is "early kill," and otherwise returns NULL.
 
 
 
 
 
 
 381 */
 382static struct task_struct *task_early_kill(struct task_struct *tsk,
 383					   int force_early)
 384{
 385	struct task_struct *t;
 386	if (!tsk->mm)
 387		return NULL;
 388	if (force_early)
 389		return tsk;
 390	t = find_early_kill_thread(tsk);
 391	if (t)
 392		return t;
 393	if (sysctl_memory_failure_early_kill)
 394		return tsk;
 395	return NULL;
 396}
 397
 398/*
 399 * Collect processes when the error hit an anonymous page.
 400 */
 401static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 402			      struct to_kill **tkc, int force_early)
 
 403{
 404	struct vm_area_struct *vma;
 405	struct task_struct *tsk;
 406	struct anon_vma *av;
 407	pgoff_t pgoff;
 408
 409	av = page_lock_anon_vma_read(page);
 410	if (av == NULL)	/* Not actually mapped anymore */
 411		return;
 412
 413	pgoff = page_to_pgoff(page);
 414	read_lock(&tasklist_lock);
 415	for_each_process (tsk) {
 
 416		struct anon_vma_chain *vmac;
 417		struct task_struct *t = task_early_kill(tsk, force_early);
 
 418
 419		if (!t)
 420			continue;
 421		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 422					       pgoff, pgoff) {
 423			vma = vmac->vma;
 424			if (!page_mapped_in_vma(page, vma))
 425				continue;
 426			if (vma->vm_mm == t->mm)
 427				add_to_kill(t, page, vma, to_kill, tkc);
 428		}
 429	}
 430	read_unlock(&tasklist_lock);
 431	page_unlock_anon_vma_read(av);
 432}
 433
 434/*
 435 * Collect processes when the error hit a file mapped page.
 436 */
 437static void collect_procs_file(struct page *page, struct list_head *to_kill,
 438			      struct to_kill **tkc, int force_early)
 
 439{
 440	struct vm_area_struct *vma;
 441	struct task_struct *tsk;
 442	struct address_space *mapping = page->mapping;
 
 443
 444	i_mmap_lock_read(mapping);
 445	read_lock(&tasklist_lock);
 
 446	for_each_process(tsk) {
 447		pgoff_t pgoff = page_to_pgoff(page);
 448		struct task_struct *t = task_early_kill(tsk, force_early);
 
 449
 450		if (!t)
 451			continue;
 452		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 453				      pgoff) {
 454			/*
 455			 * Send early kill signal to tasks where a vma covers
 456			 * the page but the corrupted page is not necessarily
 457			 * mapped it in its pte.
 458			 * Assume applications who requested early kill want
 459			 * to be informed of all such data corruptions.
 460			 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461			if (vma->vm_mm == t->mm)
 462				add_to_kill(t, page, vma, to_kill, tkc);
 463		}
 464	}
 465	read_unlock(&tasklist_lock);
 466	i_mmap_unlock_read(mapping);
 467}
 
 468
 469/*
 470 * Collect the processes who have the corrupted page mapped to kill.
 471 * This is done in two steps for locking reasons.
 472 * First preallocate one tokill structure outside the spin locks,
 473 * so that we can kill at least one process reasonably reliable.
 474 */
 475static void collect_procs(struct page *page, struct list_head *tokill,
 476				int force_early)
 477{
 478	struct to_kill *tk;
 479
 480	if (!page->mapping)
 481		return;
 
 
 
 
 
 
 
 482
 483	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 484	if (!tk)
 485		return;
 486	if (PageAnon(page))
 487		collect_procs_anon(page, tokill, &tk, force_early);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488	else
 489		collect_procs_file(page, tokill, &tk, force_early);
 490	kfree(tk);
 
 491}
 492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493static const char *action_name[] = {
 494	[MF_IGNORED] = "Ignored",
 495	[MF_FAILED] = "Failed",
 496	[MF_DELAYED] = "Delayed",
 497	[MF_RECOVERED] = "Recovered",
 498};
 499
 500static const char * const action_page_types[] = {
 501	[MF_MSG_KERNEL]			= "reserved kernel page",
 502	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 503	[MF_MSG_SLAB]			= "kernel slab page",
 504	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
 505	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
 506	[MF_MSG_HUGE]			= "huge page",
 507	[MF_MSG_FREE_HUGE]		= "free huge page",
 
 508	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 509	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 510	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 511	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 512	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 513	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 514	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 515	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 516	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 517	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 518	[MF_MSG_BUDDY]			= "free buddy page",
 519	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
 
 
 520	[MF_MSG_UNKNOWN]		= "unknown page",
 521};
 522
 523/*
 524 * XXX: It is possible that a page is isolated from LRU cache,
 525 * and then kept in swap cache or failed to remove from page cache.
 526 * The page count will stop it from being freed by unpoison.
 527 * Stress tests should be aware of this memory leak problem.
 528 */
 529static int delete_from_lru_cache(struct page *p)
 530{
 531	if (!isolate_lru_page(p)) {
 532		/*
 533		 * Clear sensible page flags, so that the buddy system won't
 534		 * complain when the page is unpoison-and-freed.
 535		 */
 536		ClearPageActive(p);
 537		ClearPageUnevictable(p);
 
 538		/*
 539		 * drop the page count elevated by isolate_lru_page()
 
 540		 */
 541		put_page(p);
 
 
 
 
 
 542		return 0;
 543	}
 544	return -EIO;
 545}
 546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547/*
 548 * Error hit kernel page.
 549 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 550 * could be more sophisticated.
 551 */
 552static int me_kernel(struct page *p, unsigned long pfn)
 553{
 
 554	return MF_IGNORED;
 555}
 556
 557/*
 558 * Page in unknown state. Do nothing.
 
 559 */
 560static int me_unknown(struct page *p, unsigned long pfn)
 561{
 562	pr_err("MCE %#lx: Unknown page state\n", pfn);
 563	return MF_FAILED;
 
 564}
 565
 566/*
 567 * Clean (or cleaned) page cache page.
 568 */
 569static int me_pagecache_clean(struct page *p, unsigned long pfn)
 570{
 571	int err;
 572	int ret = MF_FAILED;
 573	struct address_space *mapping;
 
 574
 575	delete_from_lru_cache(p);
 576
 577	/*
 578	 * For anonymous pages we're done the only reference left
 579	 * should be the one m_f() holds.
 580	 */
 581	if (PageAnon(p))
 582		return MF_RECOVERED;
 
 
 583
 584	/*
 585	 * Now truncate the page in the page cache. This is really
 586	 * more like a "temporary hole punch"
 587	 * Don't do this for block devices when someone else
 588	 * has a reference, because it could be file system metadata
 589	 * and that's not safe to truncate.
 590	 */
 591	mapping = page_mapping(p);
 592	if (!mapping) {
 593		/*
 594		 * Page has been teared down in the meanwhile
 595		 */
 596		return MF_FAILED;
 597	}
 598
 599	/*
 
 
 
 
 
 
 600	 * Truncation is a bit tricky. Enable it per file system for now.
 601	 *
 602	 * Open: to take i_mutex or not for this? Right now we don't.
 603	 */
 604	if (mapping->a_ops->error_remove_page) {
 605		err = mapping->a_ops->error_remove_page(mapping, p);
 606		if (err != 0) {
 607			pr_info("MCE %#lx: Failed to punch page: %d\n",
 608				pfn, err);
 609		} else if (page_has_private(p) &&
 610				!try_to_release_page(p, GFP_NOIO)) {
 611			pr_info("MCE %#lx: failed to release buffers\n", pfn);
 612		} else {
 613			ret = MF_RECOVERED;
 614		}
 615	} else {
 616		/*
 617		 * If the file system doesn't support it just invalidate
 618		 * This fails on dirty or anything with private pages
 619		 */
 620		if (invalidate_inode_page(p))
 621			ret = MF_RECOVERED;
 622		else
 623			pr_info("MCE %#lx: Failed to invalidate\n", pfn);
 624	}
 625	return ret;
 626}
 627
 628/*
 629 * Dirty pagecache page
 630 * Issues: when the error hit a hole page the error is not properly
 631 * propagated.
 632 */
 633static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 634{
 635	struct address_space *mapping = page_mapping(p);
 
 636
 637	SetPageError(p);
 638	/* TBD: print more information about the file. */
 639	if (mapping) {
 640		/*
 641		 * IO error will be reported by write(), fsync(), etc.
 642		 * who check the mapping.
 643		 * This way the application knows that something went
 644		 * wrong with its dirty file data.
 645		 *
 646		 * There's one open issue:
 647		 *
 648		 * The EIO will be only reported on the next IO
 649		 * operation and then cleared through the IO map.
 650		 * Normally Linux has two mechanisms to pass IO error
 651		 * first through the AS_EIO flag in the address space
 652		 * and then through the PageError flag in the page.
 653		 * Since we drop pages on memory failure handling the
 654		 * only mechanism open to use is through AS_AIO.
 655		 *
 656		 * This has the disadvantage that it gets cleared on
 657		 * the first operation that returns an error, while
 658		 * the PageError bit is more sticky and only cleared
 659		 * when the page is reread or dropped.  If an
 660		 * application assumes it will always get error on
 661		 * fsync, but does other operations on the fd before
 662		 * and the page is dropped between then the error
 663		 * will not be properly reported.
 664		 *
 665		 * This can already happen even without hwpoisoned
 666		 * pages: first on metadata IO errors (which only
 667		 * report through AS_EIO) or when the page is dropped
 668		 * at the wrong time.
 669		 *
 670		 * So right now we assume that the application DTRT on
 671		 * the first EIO, but we're not worse than other parts
 672		 * of the kernel.
 673		 */
 674		mapping_set_error(mapping, EIO);
 675	}
 676
 677	return me_pagecache_clean(p, pfn);
 678}
 679
 680/*
 681 * Clean and dirty swap cache.
 682 *
 683 * Dirty swap cache page is tricky to handle. The page could live both in page
 684 * cache and swap cache(ie. page is freshly swapped in). So it could be
 685 * referenced concurrently by 2 types of PTEs:
 686 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 687 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 688 * and then
 689 *      - clear dirty bit to prevent IO
 690 *      - remove from LRU
 691 *      - but keep in the swap cache, so that when we return to it on
 692 *        a later page fault, we know the application is accessing
 693 *        corrupted data and shall be killed (we installed simple
 694 *        interception code in do_swap_page to catch it).
 695 *
 696 * Clean swap cache pages can be directly isolated. A later page fault will
 697 * bring in the known good data from disk.
 698 */
 699static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 700{
 701	ClearPageDirty(p);
 
 
 
 
 702	/* Trigger EIO in shmem: */
 703	ClearPageUptodate(p);
 704
 705	if (!delete_from_lru_cache(p))
 706		return MF_DELAYED;
 707	else
 708		return MF_FAILED;
 
 
 
 
 
 
 709}
 710
 711static int me_swapcache_clean(struct page *p, unsigned long pfn)
 712{
 713	delete_from_swap_cache(p);
 
 714
 715	if (!delete_from_lru_cache(p))
 716		return MF_RECOVERED;
 717	else
 718		return MF_FAILED;
 
 
 
 
 
 719}
 720
 721/*
 722 * Huge pages. Needs work.
 723 * Issues:
 724 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 725 *   To narrow down kill region to one page, we need to break up pmd.
 726 */
 727static int me_huge_page(struct page *p, unsigned long pfn)
 728{
 729	int res = 0;
 730	struct page *hpage = compound_head(p);
 731
 732	if (!PageHuge(hpage))
 733		return MF_DELAYED;
 734
 735	/*
 736	 * We can safely recover from error on free or reserved (i.e.
 737	 * not in-use) hugepage by dequeuing it from freelist.
 738	 * To check whether a hugepage is in-use or not, we can't use
 739	 * page->lru because it can be used in other hugepage operations,
 740	 * such as __unmap_hugepage_range() and gather_surplus_pages().
 741	 * So instead we use page_mapping() and PageAnon().
 742	 * We assume that this function is called with page lock held,
 743	 * so there is no race between isolation and mapping/unmapping.
 744	 */
 745	if (!(page_mapping(hpage) || PageAnon(hpage))) {
 746		res = dequeue_hwpoisoned_huge_page(hpage);
 747		if (!res)
 748			return MF_RECOVERED;
 
 
 
 
 
 
 749	}
 750	return MF_DELAYED;
 
 
 
 
 751}
 752
 753/*
 754 * Various page states we can handle.
 755 *
 756 * A page state is defined by its current page->flags bits.
 757 * The table matches them in order and calls the right handler.
 758 *
 759 * This is quite tricky because we can access page at any time
 760 * in its live cycle, so all accesses have to be extremely careful.
 761 *
 762 * This is not complete. More states could be added.
 763 * For any missing state don't attempt recovery.
 764 */
 765
 766#define dirty		(1UL << PG_dirty)
 767#define sc		(1UL << PG_swapcache)
 768#define unevict		(1UL << PG_unevictable)
 769#define mlock		(1UL << PG_mlocked)
 770#define writeback	(1UL << PG_writeback)
 771#define lru		(1UL << PG_lru)
 772#define swapbacked	(1UL << PG_swapbacked)
 773#define head		(1UL << PG_head)
 774#define slab		(1UL << PG_slab)
 775#define reserved	(1UL << PG_reserved)
 776
 777static struct page_state {
 778	unsigned long mask;
 779	unsigned long res;
 780	enum mf_action_page_type type;
 781	int (*action)(struct page *p, unsigned long pfn);
 782} error_states[] = {
 783	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
 784	/*
 785	 * free pages are specially detected outside this table:
 786	 * PG_buddy pages only make a small fraction of all free pages.
 787	 */
 788
 789	/*
 790	 * Could in theory check if slab page is free or if we can drop
 791	 * currently unused objects without touching them. But just
 792	 * treat it as standard kernel for now.
 793	 */
 794	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
 795
 796	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
 797
 798	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
 799	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
 800
 801	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
 802	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
 803
 804	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
 805	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
 806
 807	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
 808	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
 809
 810	/*
 811	 * Catchall entry: must be at end.
 812	 */
 813	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
 814};
 815
 816#undef dirty
 817#undef sc
 818#undef unevict
 819#undef mlock
 820#undef writeback
 821#undef lru
 822#undef swapbacked
 823#undef head
 824#undef slab
 825#undef reserved
 826
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827/*
 828 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 829 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 830 */
 831static void action_result(unsigned long pfn, enum mf_action_page_type type,
 832			  enum mf_result result)
 833{
 834	trace_memory_failure_event(pfn, type, result);
 835
 836	pr_err("MCE %#lx: recovery action for %s: %s\n",
 
 
 
 
 837		pfn, action_page_types[type], action_name[result]);
 
 
 838}
 839
 840static int page_action(struct page_state *ps, struct page *p,
 841			unsigned long pfn)
 842{
 843	int result;
 844	int count;
 845
 846	result = ps->action(p, pfn);
 847
 848	count = page_count(p) - 1;
 849	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 850		count--;
 851	if (count != 0) {
 852		pr_err("MCE %#lx: %s still referenced by %d users\n",
 853		       pfn, action_page_types[ps->type], count);
 854		result = MF_FAILED;
 855	}
 856	action_result(pfn, ps->type, result);
 857
 858	/* Could do more checks here if page looks ok */
 859	/*
 860	 * Could adjust zone counters here to correct for the missing page.
 861	 */
 862
 863	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 864}
 865
 866/**
 867 * get_hwpoison_page() - Get refcount for memory error handling:
 868 * @page:	raw error page (hit by memory error)
 869 *
 870 * Return: return 0 if failed to grab the refcount, otherwise true (some
 871 * non-zero value.)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 872 */
 873int get_hwpoison_page(struct page *page)
 874{
 875	struct page *head = compound_head(page);
 
 876
 877	if (!PageHuge(head) && PageTransHuge(head)) {
 878		/*
 879		 * Non anonymous thp exists only in allocation/free time. We
 880		 * can't handle such a case correctly, so let's give it up.
 881		 * This should be better than triggering BUG_ON when kernel
 882		 * tries to touch the "partially handled" page.
 883		 */
 884		if (!PageAnon(head)) {
 885			pr_err("MCE: %#lx: non anonymous thp\n",
 886				page_to_pfn(page));
 887			return 0;
 
 
 
 
 
 
 
 
 
 
 888		}
 889	}
 890
 891	if (get_page_unless_zero(head)) {
 892		if (head == compound_head(page))
 
 
 
 
 
 
 
 
 893			return 1;
 894
 895		pr_info("MCE: %#lx cannot catch tail\n", page_to_pfn(page));
 896		put_page(head);
 897	}
 898
 899	return 0;
 900}
 901EXPORT_SYMBOL_GPL(get_hwpoison_page);
 902
 903/*
 904 * Do all that is necessary to remove user space mappings. Unmap
 905 * the pages and send SIGBUS to the processes if the data was dirty.
 906 */
 907static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
 908				  int trapno, int flags, struct page **hpagep)
 909{
 910	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 911	struct address_space *mapping;
 912	LIST_HEAD(tokill);
 913	int ret;
 914	int kill = 1, forcekill;
 915	struct page *hpage = *hpagep;
 916
 917	/*
 918	 * Here we are interested only in user-mapped pages, so skip any
 919	 * other types of pages.
 920	 */
 921	if (PageReserved(p) || PageSlab(p))
 922		return SWAP_SUCCESS;
 923	if (!(PageLRU(hpage) || PageHuge(p)))
 924		return SWAP_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 925
 926	/*
 927	 * This check implies we don't kill processes if their pages
 928	 * are in the swap cache early. Those are always late kills.
 
 929	 */
 930	if (!page_mapped(hpage))
 931		return SWAP_SUCCESS;
 932
 933	if (PageKsm(p)) {
 934		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
 935		return SWAP_FAIL;
 936	}
 937
 938	if (PageSwapCache(p)) {
 939		pr_err("MCE %#lx: keeping poisoned page in swap cache\n", pfn);
 940		ttu |= TTU_IGNORE_HWPOISON;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941	}
 942
 943	/*
 944	 * Propagate the dirty bit from PTEs to struct page first, because we
 945	 * need this to decide if we should kill or just drop the page.
 946	 * XXX: the dirty test could be racy: set_page_dirty() may not always
 947	 * be called inside page lock (it's recommended but not enforced).
 948	 */
 949	mapping = page_mapping(hpage);
 950	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
 951	    mapping_cap_writeback_dirty(mapping)) {
 952		if (page_mkclean(hpage)) {
 953			SetPageDirty(hpage);
 954		} else {
 955			kill = 0;
 956			ttu |= TTU_IGNORE_HWPOISON;
 957			pr_info("MCE %#lx: corrupted page was clean: dropped without side effects\n",
 958				pfn);
 959		}
 960	}
 961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962	/*
 963	 * First collect all the processes that have the page
 964	 * mapped in dirty form.  This has to be done before try_to_unmap,
 965	 * because ttu takes the rmap data structures down.
 966	 *
 967	 * Error handling: We ignore errors here because
 968	 * there's nothing that can be done.
 969	 */
 970	if (kill)
 971		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
 972
 973	ret = try_to_unmap(hpage, ttu);
 974	if (ret != SWAP_SUCCESS)
 975		pr_err("MCE %#lx: failed to unmap page (mapcount=%d)\n",
 976		       pfn, page_mapcount(hpage));
 
 
 
 
 
 
 
 977
 978	/*
 979	 * Now that the dirty bit has been propagated to the
 980	 * struct page and all unmaps done we can decide if
 981	 * killing is needed or not.  Only kill when the page
 982	 * was dirty or the process is not restartable,
 983	 * otherwise the tokill list is merely
 984	 * freed.  When there was a problem unmapping earlier
 985	 * use a more force-full uncatchable kill to prevent
 986	 * any accesses to the poisoned memory.
 987	 */
 988	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
 989	kill_procs(&tokill, forcekill, trapno,
 990		      ret != SWAP_SUCCESS, p, pfn, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991
 992	return ret;
 993}
 994
 995static void set_page_hwpoison_huge_page(struct page *hpage)
 
 996{
 997	int i;
 998	int nr_pages = 1 << compound_order(hpage);
 999	for (i = 0; i < nr_pages; i++)
1000		SetPageHWPoison(hpage + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001}
1002
1003static void clear_page_hwpoison_huge_page(struct page *hpage)
 
 
 
 
 
 
 
 
 
 
1004{
1005	int i;
1006	int nr_pages = 1 << compound_order(hpage);
1007	for (i = 0; i < nr_pages; i++)
1008		ClearPageHWPoison(hpage + i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1009}
1010
1011/**
1012 * memory_failure - Handle memory failure of a page.
1013 * @pfn: Page Number of the corrupted page
1014 * @trapno: Trap number reported in the signal to user space.
1015 * @flags: fine tune action taken
1016 *
1017 * This function is called by the low level machine check code
1018 * of an architecture when it detects hardware memory corruption
1019 * of a page. It tries its best to recover, which includes
1020 * dropping pages, killing processes etc.
1021 *
1022 * The function is primarily of use for corruptions that
1023 * happen outside the current execution context (e.g. when
1024 * detected by a background scrubber)
1025 *
1026 * Must run in process context (e.g. a work queue) with interrupts
1027 * enabled and no spinlocks hold.
 
 
 
 
1028 */
1029int memory_failure(unsigned long pfn, int trapno, int flags)
1030{
1031	struct page_state *ps;
1032	struct page *p;
1033	struct page *hpage;
1034	struct page *orig_head;
1035	int res;
1036	unsigned int nr_pages;
1037	unsigned long page_flags;
 
 
1038
1039	if (!sysctl_memory_failure_recovery)
1040		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041
1042	if (!pfn_valid(pfn)) {
1043		pr_err("MCE %#lx: memory outside kernel control\n", pfn);
1044		return -ENXIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1045	}
1046
1047	p = pfn_to_page(pfn);
1048	orig_head = hpage = compound_head(p);
 
 
 
1049	if (TestSetPageHWPoison(p)) {
1050		pr_err("MCE %#lx: already hardware poisoned\n", pfn);
1051		return 0;
 
 
 
 
 
 
1052	}
1053
1054	/*
1055	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1056	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1057	 * transparent hugepages, they are supposed to be split and error
1058	 * measurement is done in normal page units.  So nr_pages should be one
1059	 * in this case.
1060	 */
1061	if (PageHuge(p))
1062		nr_pages = 1 << compound_order(hpage);
1063	else /* normal page or thp */
1064		nr_pages = 1;
1065	num_poisoned_pages_add(nr_pages);
1066
1067	/*
1068	 * We need/can do nothing about count=0 pages.
1069	 * 1) it's a free page, and therefore in safe hand:
1070	 *    prep_new_page() will be the gate keeper.
1071	 * 2) it's a free hugepage, which is also safe:
1072	 *    an affected hugepage will be dequeued from hugepage freelist,
1073	 *    so there's no concern about reusing it ever after.
1074	 * 3) it's part of a non-compound high order page.
1075	 *    Implies some kernel user: cannot stop them from
1076	 *    R/W the page; let's pray that the page has been
1077	 *    used and will be freed some time later.
1078	 * In fact it's dangerous to directly bump up page count from 0,
1079	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1080	 */
1081	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1082		if (is_free_buddy_page(p)) {
1083			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1084			return 0;
1085		} else if (PageHuge(hpage)) {
1086			/*
1087			 * Check "filter hit" and "race with other subpage."
1088			 */
1089			lock_page(hpage);
1090			if (PageHWPoison(hpage)) {
1091				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1092				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1093					num_poisoned_pages_sub(nr_pages);
1094					unlock_page(hpage);
1095					return 0;
1096				}
 
 
 
1097			}
1098			set_page_hwpoison_huge_page(hpage);
1099			res = dequeue_hwpoisoned_huge_page(hpage);
1100			action_result(pfn, MF_MSG_FREE_HUGE,
1101				      res ? MF_IGNORED : MF_DELAYED);
1102			unlock_page(hpage);
1103			return res;
1104		} else {
1105			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1106			return -EBUSY;
1107		}
1108	}
1109
1110	if (!PageHuge(p) && PageTransHuge(hpage)) {
1111		lock_page(hpage);
1112		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1113			unlock_page(hpage);
1114			if (!PageAnon(hpage))
1115				pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1116			else
1117				pr_err("MCE: %#lx: thp split failed\n", pfn);
1118			if (TestClearPageHWPoison(p))
1119				num_poisoned_pages_sub(nr_pages);
1120			put_hwpoison_page(p);
1121			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122		}
1123		unlock_page(hpage);
1124		get_hwpoison_page(p);
1125		put_hwpoison_page(hpage);
1126		VM_BUG_ON_PAGE(!page_count(p), p);
1127		hpage = compound_head(p);
1128	}
1129
1130	/*
1131	 * We ignore non-LRU pages for good reasons.
1132	 * - PG_locked is only well defined for LRU pages and a few others
1133	 * - to avoid races with __SetPageLocked()
1134	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1135	 * The check (unnecessarily) ignores LRU pages being isolated and
1136	 * walked by the page reclaim code, however that's not a big loss.
1137	 */
1138	if (!PageHuge(p)) {
1139		if (!PageLRU(p))
1140			shake_page(p, 0);
1141		if (!PageLRU(p)) {
1142			/*
1143			 * shake_page could have turned it free.
1144			 */
1145			if (is_free_buddy_page(p)) {
1146				if (flags & MF_COUNT_INCREASED)
1147					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1148				else
1149					action_result(pfn, MF_MSG_BUDDY_2ND,
1150						      MF_DELAYED);
1151				return 0;
1152			}
1153		}
1154	}
1155
1156	lock_page(hpage);
1157
1158	/*
1159	 * The page could have changed compound pages during the locking.
1160	 * If this happens just bail out.
 
1161	 */
1162	if (PageCompound(p) && compound_head(p) != orig_head) {
1163		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1164		res = -EBUSY;
1165		goto out;
1166	}
1167
1168	/*
1169	 * We use page flags to determine what action should be taken, but
1170	 * the flags can be modified by the error containment action.  One
1171	 * example is an mlocked page, where PG_mlocked is cleared by
1172	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1173	 * correctly, we save a copy of the page flags at this time.
1174	 */
1175	page_flags = p->flags;
1176
1177	/*
1178	 * unpoison always clear PG_hwpoison inside page lock
 
 
1179	 */
1180	if (!PageHWPoison(p)) {
1181		pr_err("MCE %#lx: just unpoisoned\n", pfn);
1182		num_poisoned_pages_sub(nr_pages);
1183		unlock_page(hpage);
1184		put_hwpoison_page(hpage);
1185		return 0;
1186	}
1187	if (hwpoison_filter(p)) {
1188		if (TestClearPageHWPoison(p))
1189			num_poisoned_pages_sub(nr_pages);
1190		unlock_page(hpage);
1191		put_hwpoison_page(hpage);
1192		return 0;
1193	}
1194
1195	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1196		goto identify_page_state;
1197
1198	/*
1199	 * For error on the tail page, we should set PG_hwpoison
1200	 * on the head page to show that the hugepage is hwpoisoned
1201	 */
1202	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1203		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1204		unlock_page(hpage);
1205		put_hwpoison_page(hpage);
1206		return 0;
1207	}
1208	/*
1209	 * Set PG_hwpoison on all pages in an error hugepage,
1210	 * because containment is done in hugepage unit for now.
1211	 * Since we have done TestSetPageHWPoison() for the head page with
1212	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1213	 */
1214	if (PageHuge(p))
1215		set_page_hwpoison_huge_page(hpage);
1216
1217	/*
1218	 * It's very difficult to mess with pages currently under IO
1219	 * and in many cases impossible, so we just avoid it here.
1220	 */
1221	wait_on_page_writeback(p);
1222
1223	/*
1224	 * Now take care of user space mappings.
1225	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1226	 *
1227	 * When the raw error page is thp tail page, hpage points to the raw
1228	 * page after thp split.
1229	 */
1230	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1231	    != SWAP_SUCCESS) {
1232		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1233		res = -EBUSY;
1234		goto out;
1235	}
1236
1237	/*
1238	 * Torn down by someone else?
1239	 */
1240	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1241		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1242		res = -EBUSY;
1243		goto out;
1244	}
1245
1246identify_page_state:
1247	res = -EBUSY;
1248	/*
1249	 * The first check uses the current page flags which may not have any
1250	 * relevant information. The second check with the saved page flagss is
1251	 * carried out only if the first check can't determine the page status.
1252	 */
1253	for (ps = error_states;; ps++)
1254		if ((p->flags & ps->mask) == ps->res)
1255			break;
1256
1257	page_flags |= (p->flags & (1UL << PG_dirty));
1258
1259	if (!ps->mask)
1260		for (ps = error_states;; ps++)
1261			if ((page_flags & ps->mask) == ps->res)
1262				break;
1263	res = page_action(ps, p, pfn);
1264out:
1265	unlock_page(hpage);
1266	return res;
1267}
1268EXPORT_SYMBOL_GPL(memory_failure);
1269
1270#define MEMORY_FAILURE_FIFO_ORDER	4
1271#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1272
1273struct memory_failure_entry {
1274	unsigned long pfn;
1275	int trapno;
1276	int flags;
1277};
1278
1279struct memory_failure_cpu {
1280	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1281		      MEMORY_FAILURE_FIFO_SIZE);
1282	spinlock_t lock;
1283	struct work_struct work;
1284};
1285
1286static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1287
1288/**
1289 * memory_failure_queue - Schedule handling memory failure of a page.
1290 * @pfn: Page Number of the corrupted page
1291 * @trapno: Trap number reported in the signal to user space.
1292 * @flags: Flags for memory failure handling
1293 *
1294 * This function is called by the low level hardware error handler
1295 * when it detects hardware memory corruption of a page. It schedules
1296 * the recovering of error page, including dropping pages, killing
1297 * processes etc.
1298 *
1299 * The function is primarily of use for corruptions that
1300 * happen outside the current execution context (e.g. when
1301 * detected by a background scrubber)
1302 *
1303 * Can run in IRQ context.
1304 */
1305void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1306{
1307	struct memory_failure_cpu *mf_cpu;
1308	unsigned long proc_flags;
 
1309	struct memory_failure_entry entry = {
1310		.pfn =		pfn,
1311		.trapno =	trapno,
1312		.flags =	flags,
1313	};
1314
1315	mf_cpu = &get_cpu_var(memory_failure_cpu);
1316	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1317	if (kfifo_put(&mf_cpu->fifo, entry))
 
1318		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1319	else
1320		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1321		       pfn);
1322	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1323	put_cpu_var(memory_failure_cpu);
 
 
 
1324}
1325EXPORT_SYMBOL_GPL(memory_failure_queue);
1326
1327static void memory_failure_work_func(struct work_struct *work)
1328{
1329	struct memory_failure_cpu *mf_cpu;
1330	struct memory_failure_entry entry = { 0, };
1331	unsigned long proc_flags;
1332	int gotten;
1333
1334	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1335	for (;;) {
1336		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1337		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1338		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1339		if (!gotten)
1340			break;
1341		if (entry.flags & MF_SOFT_OFFLINE)
1342			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1343		else
1344			memory_failure(entry.pfn, entry.trapno, entry.flags);
1345	}
1346}
1347
 
 
 
 
 
 
 
 
 
 
 
 
 
1348static int __init memory_failure_init(void)
1349{
1350	struct memory_failure_cpu *mf_cpu;
1351	int cpu;
1352
1353	for_each_possible_cpu(cpu) {
1354		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1355		spin_lock_init(&mf_cpu->lock);
1356		INIT_KFIFO(mf_cpu->fifo);
1357		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1358	}
1359
 
 
1360	return 0;
1361}
1362core_initcall(memory_failure_init);
1363
 
 
1364#define unpoison_pr_info(fmt, pfn, rs)			\
1365({							\
1366	if (__ratelimit(rs))				\
1367		pr_info(fmt, pfn);			\
1368})
1369
1370/**
1371 * unpoison_memory - Unpoison a previously poisoned page
1372 * @pfn: Page number of the to be unpoisoned page
1373 *
1374 * Software-unpoison a page that has been poisoned by
1375 * memory_failure() earlier.
1376 *
1377 * This is only done on the software-level, so it only works
1378 * for linux injected failures, not real hardware failures
1379 *
1380 * Returns 0 for success, otherwise -errno.
1381 */
1382int unpoison_memory(unsigned long pfn)
1383{
1384	struct page *page;
1385	struct page *p;
1386	int freeit = 0;
1387	unsigned int nr_pages;
 
1388	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1389					DEFAULT_RATELIMIT_BURST);
1390
1391	if (!pfn_valid(pfn))
1392		return -ENXIO;
1393
1394	p = pfn_to_page(pfn);
1395	page = compound_head(p);
1396
1397	if (!PageHWPoison(p)) {
1398		unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n",
1399				 pfn, &unpoison_rs);
1400		return 0;
1401	}
1402
1403	if (page_count(page) > 1) {
1404		unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n",
1405				 pfn, &unpoison_rs);
1406		return 0;
 
1407	}
1408
1409	if (page_mapped(page)) {
1410		unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n",
1411				 pfn, &unpoison_rs);
1412		return 0;
 
1413	}
1414
1415	if (page_mapping(page)) {
1416		unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1417				 pfn, &unpoison_rs);
1418		return 0;
1419	}
1420
1421	/*
1422	 * unpoison_memory() can encounter thp only when the thp is being
1423	 * worked by memory_failure() and the page lock is not held yet.
1424	 * In such case, we yield to memory_failure() and make unpoison fail.
1425	 */
1426	if (!PageHuge(page) && PageTransHuge(page)) {
1427		unpoison_pr_info("MCE: Memory failure is now running on %#lx\n",
1428				 pfn, &unpoison_rs);
1429		return 0;
1430	}
1431
1432	nr_pages = 1 << compound_order(page);
 
 
1433
1434	if (!get_hwpoison_page(p)) {
1435		/*
1436		 * Since HWPoisoned hugepage should have non-zero refcount,
1437		 * race between memory failure and unpoison seems to happen.
1438		 * In such case unpoison fails and memory failure runs
1439		 * to the end.
1440		 */
1441		if (PageHuge(page)) {
1442			unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n",
1443					 pfn, &unpoison_rs);
1444			return 0;
1445		}
1446		if (TestClearPageHWPoison(p))
1447			num_poisoned_pages_dec();
1448		unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n",
1449				 pfn, &unpoison_rs);
1450		return 0;
1451	}
1452
1453	lock_page(page);
1454	/*
1455	 * This test is racy because PG_hwpoison is set outside of page lock.
1456	 * That's acceptable because that won't trigger kernel panic. Instead,
1457	 * the PG_hwpoison page will be caught and isolated on the entrance to
1458	 * the free buddy page pool.
1459	 */
1460	if (TestClearPageHWPoison(page)) {
1461		unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n",
1462				 pfn, &unpoison_rs);
1463		num_poisoned_pages_sub(nr_pages);
1464		freeit = 1;
1465		if (PageHuge(page))
1466			clear_page_hwpoison_huge_page(page);
1467	}
1468	unlock_page(page);
1469
1470	put_hwpoison_page(page);
1471	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1472		put_hwpoison_page(page);
1473
1474	return 0;
1475}
1476EXPORT_SYMBOL(unpoison_memory);
1477
1478static struct page *new_page(struct page *p, unsigned long private, int **x)
1479{
1480	int nid = page_to_nid(p);
1481	if (PageHuge(p))
1482		return alloc_huge_page_node(page_hstate(compound_head(p)),
1483						   nid);
1484	else
1485		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1486}
1487
1488/*
1489 * Safely get reference count of an arbitrary page.
1490 * Returns 0 for a free page, -EIO for a zero refcount page
1491 * that is not free, and 1 for any other page type.
1492 * For 1 the page is returned with increased page count, otherwise not.
1493 */
1494static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1495{
1496	int ret;
1497
1498	if (flags & MF_COUNT_INCREASED)
1499		return 1;
1500
1501	/*
1502	 * When the target page is a free hugepage, just remove it
1503	 * from free hugepage list.
1504	 */
1505	if (!get_hwpoison_page(p)) {
1506		if (PageHuge(p)) {
1507			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1508			ret = 0;
1509		} else if (is_free_buddy_page(p)) {
1510			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1511			ret = 0;
1512		} else {
1513			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1514				__func__, pfn, p->flags);
1515			ret = -EIO;
1516		}
1517	} else {
1518		/* Not a free page */
1519		ret = 1;
1520	}
1521	return ret;
1522}
1523
1524static int get_any_page(struct page *page, unsigned long pfn, int flags)
1525{
1526	int ret = __get_any_page(page, pfn, flags);
1527
1528	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1529		/*
1530		 * Try to free it.
1531		 */
1532		put_hwpoison_page(page);
1533		shake_page(page, 1);
1534
1535		/*
1536		 * Did it turn free?
1537		 */
1538		ret = __get_any_page(page, pfn, 0);
1539		if (ret == 1 && !PageLRU(page)) {
1540			/* Drop page reference which is from __get_any_page() */
1541			put_hwpoison_page(page);
1542			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1543				pfn, page->flags);
1544			return -EIO;
1545		}
1546	}
 
 
 
 
 
 
 
 
 
1547	return ret;
1548}
 
1549
1550static int soft_offline_huge_page(struct page *page, int flags)
 
 
 
 
 
 
 
 
1551{
1552	int ret;
1553	unsigned long pfn = page_to_pfn(page);
1554	struct page *hpage = compound_head(page);
 
 
 
1555	LIST_HEAD(pagelist);
 
 
 
 
 
1556
1557	/*
1558	 * This double-check of PageHWPoison is to avoid the race with
1559	 * memory_failure(). See also comment in __soft_offline_page().
1560	 */
1561	lock_page(hpage);
1562	if (PageHWPoison(hpage)) {
1563		unlock_page(hpage);
1564		put_hwpoison_page(hpage);
1565		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1566		return -EBUSY;
1567	}
1568	unlock_page(hpage);
1569
1570	ret = isolate_huge_page(hpage, &pagelist);
1571	/*
1572	 * get_any_page() and isolate_huge_page() takes a refcount each,
1573	 * so need to drop one here.
1574	 */
1575	put_hwpoison_page(hpage);
1576	if (!ret) {
1577		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1578		return -EBUSY;
1579	}
1580
1581	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1582				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1583	if (ret) {
1584		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1585			pfn, ret, page->flags);
1586		/*
1587		 * We know that soft_offline_huge_page() tries to migrate
1588		 * only one hugepage pointed to by hpage, so we need not
1589		 * run through the pagelist here.
1590		 */
1591		putback_active_hugepage(hpage);
1592		if (ret > 0)
1593			ret = -EIO;
1594	} else {
1595		/* overcommit hugetlb page will be freed to buddy */
1596		if (PageHuge(page)) {
1597			set_page_hwpoison_huge_page(hpage);
1598			dequeue_hwpoisoned_huge_page(hpage);
1599			num_poisoned_pages_add(1 << compound_order(hpage));
1600		} else {
1601			SetPageHWPoison(page);
1602			num_poisoned_pages_inc();
1603		}
1604	}
1605	return ret;
1606}
1607
1608static int __soft_offline_page(struct page *page, int flags)
1609{
1610	int ret;
1611	unsigned long pfn = page_to_pfn(page);
1612
1613	/*
1614	 * Check PageHWPoison again inside page lock because PageHWPoison
1615	 * is set by memory_failure() outside page lock. Note that
1616	 * memory_failure() also double-checks PageHWPoison inside page lock,
1617	 * so there's no race between soft_offline_page() and memory_failure().
1618	 */
1619	lock_page(page);
1620	wait_on_page_writeback(page);
1621	if (PageHWPoison(page)) {
1622		unlock_page(page);
1623		put_hwpoison_page(page);
1624		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1625		return -EBUSY;
1626	}
1627	/*
1628	 * Try to invalidate first. This should work for
1629	 * non dirty unmapped page cache pages.
1630	 */
1631	ret = invalidate_inode_page(page);
1632	unlock_page(page);
1633	/*
1634	 * RED-PEN would be better to keep it isolated here, but we
1635	 * would need to fix isolation locking first.
1636	 */
1637	if (ret == 1) {
1638		put_hwpoison_page(page);
1639		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1640		SetPageHWPoison(page);
1641		num_poisoned_pages_inc();
1642		return 0;
1643	}
1644
 
 
1645	/*
1646	 * Simple invalidation didn't work.
1647	 * Try to migrate to a new page instead. migrate.c
1648	 * handles a large number of cases for us.
1649	 */
1650	ret = isolate_lru_page(page);
1651	/*
1652	 * Drop page reference which is came from get_any_page()
1653	 * successful isolate_lru_page() already took another one.
1654	 */
1655	put_hwpoison_page(page);
1656	if (!ret) {
1657		LIST_HEAD(pagelist);
1658		inc_zone_page_state(page, NR_ISOLATED_ANON +
1659					page_is_file_cache(page));
1660		list_add(&page->lru, &pagelist);
1661		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1662					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1663		if (ret) {
1664			if (!list_empty(&pagelist)) {
1665				list_del(&page->lru);
1666				dec_zone_page_state(page, NR_ISOLATED_ANON +
1667						page_is_file_cache(page));
1668				putback_lru_page(page);
1669			}
1670
1671			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1672				pfn, ret, page->flags);
1673			if (ret > 0)
1674				ret = -EIO;
1675		}
1676	} else {
1677		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1678			pfn, ret, page_count(page), page->flags);
1679	}
1680	return ret;
1681}
1682
1683static int soft_offline_in_use_page(struct page *page, int flags)
1684{
1685	int ret;
1686	struct page *hpage = compound_head(page);
 
1687
1688	if (!PageHuge(page) && PageTransHuge(hpage)) {
1689		lock_page(hpage);
1690		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1691			unlock_page(hpage);
1692			if (!PageAnon(hpage))
1693				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1694			else
1695				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1696			put_hwpoison_page(hpage);
1697			return -EBUSY;
1698		}
1699		unlock_page(hpage);
1700		get_hwpoison_page(page);
1701		put_hwpoison_page(hpage);
1702	}
1703
1704	if (PageHuge(page))
1705		ret = soft_offline_huge_page(page, flags);
1706	else
1707		ret = __soft_offline_page(page, flags);
1708
1709	return ret;
1710}
1711
1712static void soft_offline_free_page(struct page *page)
1713{
1714	if (PageHuge(page)) {
1715		struct page *hpage = compound_head(page);
1716
1717		set_page_hwpoison_huge_page(hpage);
1718		if (!dequeue_hwpoisoned_huge_page(hpage))
1719			num_poisoned_pages_add(1 << compound_order(hpage));
1720	} else {
1721		if (!TestSetPageHWPoison(page))
1722			num_poisoned_pages_inc();
 
1723	}
 
1724}
1725
1726/**
1727 * soft_offline_page - Soft offline a page.
1728 * @page: page to offline
1729 * @flags: flags. Same as memory_failure().
1730 *
1731 * Returns 0 on success, otherwise negated errno.
 
 
 
1732 *
1733 * Soft offline a page, by migration or invalidation,
1734 * without killing anything. This is for the case when
1735 * a page is not corrupted yet (so it's still valid to access),
1736 * but has had a number of corrected errors and is better taken
1737 * out.
1738 *
1739 * The actual policy on when to do that is maintained by
1740 * user space.
1741 *
1742 * This should never impact any application or cause data loss,
1743 * however it might take some time.
1744 *
1745 * This is not a 100% solution for all memory, but tries to be
1746 * ``good enough'' for the majority of memory.
1747 */
1748int soft_offline_page(struct page *page, int flags)
1749{
1750	int ret;
1751	unsigned long pfn = page_to_pfn(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752
1753	if (PageHWPoison(page)) {
1754		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755		if (flags & MF_COUNT_INCREASED)
1756			put_hwpoison_page(page);
1757		return -EBUSY;
1758	}
1759
 
1760	get_online_mems();
1761	ret = get_any_page(page, pfn, flags);
1762	put_online_mems();
1763
1764	if (ret > 0)
1765		ret = soft_offline_in_use_page(page, flags);
1766	else if (ret == 0)
1767		soft_offline_free_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768
1769	return ret;
1770}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2008, 2009 Intel Corporation
   4 * Authors: Andi Kleen, Fengguang Wu
   5 *
 
 
 
 
   6 * High level machine check handler. Handles pages reported by the
   7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
   8 * failure.
   9 *
  10 * In addition there is a "soft offline" entry point that allows stop using
  11 * not-yet-corrupted-by-suspicious pages without killing anything.
  12 *
  13 * Handles page cache pages in various states.	The tricky part
  14 * here is that we can access any page asynchronously in respect to
  15 * other VM users, because memory failures could happen anytime and
  16 * anywhere. This could violate some of their assumptions. This is why
  17 * this code has to be extremely careful. Generally it tries to use
  18 * normal locking rules, as in get the standard locks, even if that means
  19 * the error handling takes potentially a long time.
  20 *
  21 * It can be very tempting to add handling for obscure cases here.
  22 * In general any code for handling new cases should only be added iff:
  23 * - You know how to test it.
  24 * - You have a test that can be added to mce-test
  25 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  26 * - The case actually shows up as a frequent (top 10) page state in
  27 *   tools/mm/page-types when running a real workload.
  28 *
  29 * There are several operations here with exponential complexity because
  30 * of unsuitable VM data structures. For example the operation to map back
  31 * from RMAP chains to processes has to walk the complete process list and
  32 * has non linear complexity with the number. But since memory corruptions
  33 * are rare we hope to get away with this. This avoids impacting the core
  34 * VM.
  35 */
  36
  37#define pr_fmt(fmt) "Memory failure: " fmt
  38
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/sched/signal.h>
  43#include <linux/sched/task.h>
  44#include <linux/dax.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
 
 
  52#include <linux/slab.h>
  53#include <linux/swapops.h>
  54#include <linux/hugetlb.h>
  55#include <linux/memory_hotplug.h>
  56#include <linux/mm_inline.h>
  57#include <linux/memremap.h>
  58#include <linux/kfifo.h>
  59#include <linux/ratelimit.h>
  60#include <linux/pagewalk.h>
  61#include <linux/shmem_fs.h>
  62#include <linux/sysctl.h>
  63#include "swap.h"
  64#include "internal.h"
  65#include "ras/ras_event.h"
  66
  67static int sysctl_memory_failure_early_kill __read_mostly;
  68
  69static int sysctl_memory_failure_recovery __read_mostly = 1;
  70
  71static int sysctl_enable_soft_offline __read_mostly = 1;
  72
  73atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  74
  75static bool hw_memory_failure __read_mostly = false;
  76
  77static DEFINE_MUTEX(mf_mutex);
  78
  79void num_poisoned_pages_inc(unsigned long pfn)
  80{
  81	atomic_long_inc(&num_poisoned_pages);
  82	memblk_nr_poison_inc(pfn);
  83}
  84
  85void num_poisoned_pages_sub(unsigned long pfn, long i)
  86{
  87	atomic_long_sub(i, &num_poisoned_pages);
  88	if (pfn != -1UL)
  89		memblk_nr_poison_sub(pfn, i);
  90}
  91
  92/**
  93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
  94 * @_name: name of the file in the per NUMA sysfs directory.
  95 */
  96#define MF_ATTR_RO(_name)					\
  97static ssize_t _name##_show(struct device *dev,			\
  98			    struct device_attribute *attr,	\
  99			    char *buf)				\
 100{								\
 101	struct memory_failure_stats *mf_stats =			\
 102		&NODE_DATA(dev->id)->mf_stats;			\
 103	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
 104}								\
 105static DEVICE_ATTR_RO(_name)
 106
 107MF_ATTR_RO(total);
 108MF_ATTR_RO(ignored);
 109MF_ATTR_RO(failed);
 110MF_ATTR_RO(delayed);
 111MF_ATTR_RO(recovered);
 112
 113static struct attribute *memory_failure_attr[] = {
 114	&dev_attr_total.attr,
 115	&dev_attr_ignored.attr,
 116	&dev_attr_failed.attr,
 117	&dev_attr_delayed.attr,
 118	&dev_attr_recovered.attr,
 119	NULL,
 120};
 121
 122const struct attribute_group memory_failure_attr_group = {
 123	.name = "memory_failure",
 124	.attrs = memory_failure_attr,
 125};
 126
 127static struct ctl_table memory_failure_table[] = {
 128	{
 129		.procname	= "memory_failure_early_kill",
 130		.data		= &sysctl_memory_failure_early_kill,
 131		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
 132		.mode		= 0644,
 133		.proc_handler	= proc_dointvec_minmax,
 134		.extra1		= SYSCTL_ZERO,
 135		.extra2		= SYSCTL_ONE,
 136	},
 137	{
 138		.procname	= "memory_failure_recovery",
 139		.data		= &sysctl_memory_failure_recovery,
 140		.maxlen		= sizeof(sysctl_memory_failure_recovery),
 141		.mode		= 0644,
 142		.proc_handler	= proc_dointvec_minmax,
 143		.extra1		= SYSCTL_ZERO,
 144		.extra2		= SYSCTL_ONE,
 145	},
 146	{
 147		.procname	= "enable_soft_offline",
 148		.data		= &sysctl_enable_soft_offline,
 149		.maxlen		= sizeof(sysctl_enable_soft_offline),
 150		.mode		= 0644,
 151		.proc_handler	= proc_dointvec_minmax,
 152		.extra1		= SYSCTL_ZERO,
 153		.extra2		= SYSCTL_ONE,
 154	}
 155};
 156
 157/*
 158 * Return values:
 159 *   1:   the page is dissolved (if needed) and taken off from buddy,
 160 *   0:   the page is dissolved (if needed) and not taken off from buddy,
 161 *   < 0: failed to dissolve.
 162 */
 163static int __page_handle_poison(struct page *page)
 164{
 165	int ret;
 166
 167	/*
 168	 * zone_pcp_disable() can't be used here. It will
 169	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
 170	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
 171	 * optimization is enabled. This will break current lock dependency
 172	 * chain and leads to deadlock.
 173	 * Disabling pcp before dissolving the page was a deterministic
 174	 * approach because we made sure that those pages cannot end up in any
 175	 * PCP list. Draining PCP lists expels those pages to the buddy system,
 176	 * but nothing guarantees that those pages do not get back to a PCP
 177	 * queue if we need to refill those.
 178	 */
 179	ret = dissolve_free_hugetlb_folio(page_folio(page));
 180	if (!ret) {
 181		drain_all_pages(page_zone(page));
 182		ret = take_page_off_buddy(page);
 183	}
 184
 185	return ret;
 186}
 187
 188static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
 189{
 190	if (hugepage_or_freepage) {
 191		/*
 192		 * Doing this check for free pages is also fine since
 193		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
 194		 */
 195		if (__page_handle_poison(page) <= 0)
 196			/*
 197			 * We could fail to take off the target page from buddy
 198			 * for example due to racy page allocation, but that's
 199			 * acceptable because soft-offlined page is not broken
 200			 * and if someone really want to use it, they should
 201			 * take it.
 202			 */
 203			return false;
 204	}
 205
 206	SetPageHWPoison(page);
 207	if (release)
 208		put_page(page);
 209	page_ref_inc(page);
 210	num_poisoned_pages_inc(page_to_pfn(page));
 211
 212	return true;
 213}
 214
 215#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
 216
 217u32 hwpoison_filter_enable = 0;
 218u32 hwpoison_filter_dev_major = ~0U;
 219u32 hwpoison_filter_dev_minor = ~0U;
 220u64 hwpoison_filter_flags_mask;
 221u64 hwpoison_filter_flags_value;
 222EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
 223EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
 224EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
 225EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
 226EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
 227
 228static int hwpoison_filter_dev(struct page *p)
 229{
 230	struct folio *folio = page_folio(p);
 231	struct address_space *mapping;
 232	dev_t dev;
 233
 234	if (hwpoison_filter_dev_major == ~0U &&
 235	    hwpoison_filter_dev_minor == ~0U)
 236		return 0;
 237
 238	mapping = folio_mapping(folio);
 
 
 
 
 
 
 239	if (mapping == NULL || mapping->host == NULL)
 240		return -EINVAL;
 241
 242	dev = mapping->host->i_sb->s_dev;
 243	if (hwpoison_filter_dev_major != ~0U &&
 244	    hwpoison_filter_dev_major != MAJOR(dev))
 245		return -EINVAL;
 246	if (hwpoison_filter_dev_minor != ~0U &&
 247	    hwpoison_filter_dev_minor != MINOR(dev))
 248		return -EINVAL;
 249
 250	return 0;
 251}
 252
 253static int hwpoison_filter_flags(struct page *p)
 254{
 255	if (!hwpoison_filter_flags_mask)
 256		return 0;
 257
 258	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 259				    hwpoison_filter_flags_value)
 260		return 0;
 261	else
 262		return -EINVAL;
 263}
 264
 265/*
 266 * This allows stress tests to limit test scope to a collection of tasks
 267 * by putting them under some memcg. This prevents killing unrelated/important
 268 * processes such as /sbin/init. Note that the target task may share clean
 269 * pages with init (eg. libc text), which is harmless. If the target task
 270 * share _dirty_ pages with another task B, the test scheme must make sure B
 271 * is also included in the memcg. At last, due to race conditions this filter
 272 * can only guarantee that the page either belongs to the memcg tasks, or is
 273 * a freed page.
 274 */
 275#ifdef CONFIG_MEMCG
 276u64 hwpoison_filter_memcg;
 277EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 278static int hwpoison_filter_task(struct page *p)
 279{
 280	if (!hwpoison_filter_memcg)
 281		return 0;
 282
 283	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 284		return -EINVAL;
 285
 286	return 0;
 287}
 288#else
 289static int hwpoison_filter_task(struct page *p) { return 0; }
 290#endif
 291
 292int hwpoison_filter(struct page *p)
 293{
 294	if (!hwpoison_filter_enable)
 295		return 0;
 296
 297	if (hwpoison_filter_dev(p))
 298		return -EINVAL;
 299
 300	if (hwpoison_filter_flags(p))
 301		return -EINVAL;
 302
 303	if (hwpoison_filter_task(p))
 304		return -EINVAL;
 305
 306	return 0;
 307}
 308EXPORT_SYMBOL_GPL(hwpoison_filter);
 309#else
 310int hwpoison_filter(struct page *p)
 311{
 312	return 0;
 313}
 314#endif
 315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316/*
 317 * Kill all processes that have a poisoned page mapped and then isolate
 318 * the page.
 319 *
 320 * General strategy:
 321 * Find all processes having the page mapped and kill them.
 322 * But we keep a page reference around so that the page is not
 323 * actually freed yet.
 324 * Then stash the page away
 325 *
 326 * There's no convenient way to get back to mapped processes
 327 * from the VMAs. So do a brute-force search over all
 328 * running processes.
 329 *
 330 * Remember that machine checks are not common (or rather
 331 * if they are common you have other problems), so this shouldn't
 332 * be a performance issue.
 333 *
 334 * Also there are some races possible while we get from the
 335 * error detection to actually handle it.
 336 */
 337
 338struct to_kill {
 339	struct list_head nd;
 340	struct task_struct *tsk;
 341	unsigned long addr;
 342	short size_shift;
 343};
 344
 345/*
 346 * Send all the processes who have the page mapped a signal.
 347 * ``action optional'' if they are not immediately affected by the error
 348 * ``action required'' if error happened in current execution context
 349 */
 350static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 351{
 352	struct task_struct *t = tk->tsk;
 353	short addr_lsb = tk->size_shift;
 354	int ret = 0;
 355
 356	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
 357			pfn, t->comm, task_pid_nr(t));
 358
 359	if ((flags & MF_ACTION_REQUIRED) && (t == current))
 360		ret = force_sig_mceerr(BUS_MCEERR_AR,
 361				 (void __user *)tk->addr, addr_lsb);
 362	else
 363		/*
 364		 * Signal other processes sharing the page if they have
 365		 * PF_MCE_EARLY set.
 366		 * Don't use force here, it's convenient if the signal
 367		 * can be temporarily blocked.
 368		 */
 369		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 370				      addr_lsb, t);
 371	if (ret < 0)
 372		pr_info("Error sending signal to %s:%d: %d\n",
 373			t->comm, task_pid_nr(t), ret);
 374	return ret;
 375}
 376
 377/*
 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
 379 * lru_add_drain_all.
 380 */
 381void shake_folio(struct folio *folio)
 382{
 383	if (folio_test_hugetlb(folio))
 384		return;
 385	/*
 386	 * TODO: Could shrink slab caches here if a lightweight range-based
 387	 * shrinker will be available.
 388	 */
 389	if (folio_test_slab(folio))
 390		return;
 391
 392	lru_add_drain_all();
 393}
 394EXPORT_SYMBOL_GPL(shake_folio);
 395
 396static void shake_page(struct page *page)
 397{
 398	shake_folio(page_folio(page));
 399}
 400
 401static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
 402		unsigned long address)
 403{
 404	unsigned long ret = 0;
 405	pgd_t *pgd;
 406	p4d_t *p4d;
 407	pud_t *pud;
 408	pmd_t *pmd;
 409	pte_t *pte;
 410	pte_t ptent;
 411
 412	VM_BUG_ON_VMA(address == -EFAULT, vma);
 413	pgd = pgd_offset(vma->vm_mm, address);
 414	if (!pgd_present(*pgd))
 415		return 0;
 416	p4d = p4d_offset(pgd, address);
 417	if (!p4d_present(*p4d))
 418		return 0;
 419	pud = pud_offset(p4d, address);
 420	if (!pud_present(*pud))
 421		return 0;
 422	if (pud_devmap(*pud))
 423		return PUD_SHIFT;
 424	pmd = pmd_offset(pud, address);
 425	if (!pmd_present(*pmd))
 426		return 0;
 427	if (pmd_devmap(*pmd))
 428		return PMD_SHIFT;
 429	pte = pte_offset_map(pmd, address);
 430	if (!pte)
 431		return 0;
 432	ptent = ptep_get(pte);
 433	if (pte_present(ptent) && pte_devmap(ptent))
 434		ret = PAGE_SHIFT;
 435	pte_unmap(pte);
 436	return ret;
 437}
 438
 439/*
 440 * Failure handling: if we can't find or can't kill a process there's
 441 * not much we can do.	We just print a message and ignore otherwise.
 442 */
 443
 444/*
 445 * Schedule a process for later kill.
 446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 
 447 */
 448static void __add_to_kill(struct task_struct *tsk, const struct page *p,
 449			  struct vm_area_struct *vma, struct list_head *to_kill,
 450			  unsigned long addr)
 
 451{
 452	struct to_kill *tk;
 453
 454	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 455	if (!tk) {
 456		pr_err("Out of memory while machine check handling\n");
 457		return;
 
 
 
 
 
 458	}
 459
 460	tk->addr = addr;
 461	if (is_zone_device_page(p))
 462		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
 463	else
 464		tk->size_shift = folio_shift(page_folio(p));
 465
 466	/*
 467	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
 468	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
 469	 * so "tk->size_shift == 0" effectively checks no mapping on
 470	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
 471	 * to a process' address space, it's possible not all N VMAs
 472	 * contain mappings for the page, but at least one VMA does.
 473	 * Only deliver SIGBUS with payload derived from the VMA that
 474	 * has a mapping for the page.
 475	 */
 476	if (tk->addr == -EFAULT) {
 477		pr_info("Unable to find user space address %lx in %s\n",
 478			page_to_pfn(p), tsk->comm);
 479	} else if (tk->size_shift == 0) {
 480		kfree(tk);
 481		return;
 482	}
 483
 484	get_task_struct(tsk);
 485	tk->tsk = tsk;
 486	list_add_tail(&tk->nd, to_kill);
 487}
 488
 489static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
 490		struct vm_area_struct *vma, struct list_head *to_kill,
 491		unsigned long addr)
 492{
 493	if (addr == -EFAULT)
 494		return;
 495	__add_to_kill(tsk, p, vma, to_kill, addr);
 496}
 497
 498#ifdef CONFIG_KSM
 499static bool task_in_to_kill_list(struct list_head *to_kill,
 500				 struct task_struct *tsk)
 501{
 502	struct to_kill *tk, *next;
 503
 504	list_for_each_entry_safe(tk, next, to_kill, nd) {
 505		if (tk->tsk == tsk)
 506			return true;
 507	}
 508
 509	return false;
 510}
 511
 512void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
 513		     struct vm_area_struct *vma, struct list_head *to_kill,
 514		     unsigned long addr)
 515{
 516	if (!task_in_to_kill_list(to_kill, tsk))
 517		__add_to_kill(tsk, p, vma, to_kill, addr);
 518}
 519#endif
 520/*
 521 * Kill the processes that have been collected earlier.
 522 *
 523 * Only do anything when FORCEKILL is set, otherwise just free the
 524 * list (this is used for clean pages which do not need killing)
 525 */
 526static void kill_procs(struct list_head *to_kill, int forcekill,
 527		unsigned long pfn, int flags)
 
 
 
 528{
 529	struct to_kill *tk, *next;
 530
 531	list_for_each_entry_safe(tk, next, to_kill, nd) {
 532		if (forcekill) {
 533			if (tk->addr == -EFAULT) {
 534				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 535				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
 536				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
 537						 tk->tsk, PIDTYPE_PID);
 
 
 
 
 538			}
 539
 540			/*
 541			 * In theory the process could have mapped
 542			 * something else on the address in-between. We could
 543			 * check for that, but we need to tell the
 544			 * process anyways.
 545			 */
 546			else if (kill_proc(tk, pfn, flags) < 0)
 547				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
 548				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
 
 549		}
 550		list_del(&tk->nd);
 551		put_task_struct(tk->tsk);
 552		kfree(tk);
 553	}
 554}
 555
 556/*
 557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 558 * on behalf of the thread group. Return task_struct of the (first found)
 559 * dedicated thread if found, and return NULL otherwise.
 560 *
 561 * We already hold rcu lock in the caller, so we don't have to call
 562 * rcu_read_lock/unlock() in this function.
 563 */
 564static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 565{
 566	struct task_struct *t;
 567
 568	for_each_thread(tsk, t) {
 569		if (t->flags & PF_MCE_PROCESS) {
 570			if (t->flags & PF_MCE_EARLY)
 571				return t;
 572		} else {
 573			if (sysctl_memory_failure_early_kill)
 574				return t;
 575		}
 576	}
 577	return NULL;
 578}
 579
 580/*
 581 * Determine whether a given process is "early kill" process which expects
 582 * to be signaled when some page under the process is hwpoisoned.
 583 * Return task_struct of the dedicated thread (main thread unless explicitly
 584 * specified) if the process is "early kill" and otherwise returns NULL.
 585 *
 586 * Note that the above is true for Action Optional case. For Action Required
 587 * case, it's only meaningful to the current thread which need to be signaled
 588 * with SIGBUS, this error is Action Optional for other non current
 589 * processes sharing the same error page,if the process is "early kill", the
 590 * task_struct of the dedicated thread will also be returned.
 591 */
 592struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
 
 593{
 
 594	if (!tsk->mm)
 595		return NULL;
 596	/*
 597	 * Comparing ->mm here because current task might represent
 598	 * a subthread, while tsk always points to the main thread.
 599	 */
 600	if (force_early && tsk->mm == current->mm)
 601		return current;
 602
 603	return find_early_kill_thread(tsk);
 604}
 605
 606/*
 607 * Collect processes when the error hit an anonymous page.
 608 */
 609static void collect_procs_anon(const struct folio *folio,
 610		const struct page *page, struct list_head *to_kill,
 611		int force_early)
 612{
 
 613	struct task_struct *tsk;
 614	struct anon_vma *av;
 615	pgoff_t pgoff;
 616
 617	av = folio_lock_anon_vma_read(folio, NULL);
 618	if (av == NULL)	/* Not actually mapped anymore */
 619		return;
 620
 621	pgoff = page_pgoff(folio, page);
 622	rcu_read_lock();
 623	for_each_process(tsk) {
 624		struct vm_area_struct *vma;
 625		struct anon_vma_chain *vmac;
 626		struct task_struct *t = task_early_kill(tsk, force_early);
 627		unsigned long addr;
 628
 629		if (!t)
 630			continue;
 631		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 632					       pgoff, pgoff) {
 633			vma = vmac->vma;
 634			if (vma->vm_mm != t->mm)
 635				continue;
 636			addr = page_mapped_in_vma(page, vma);
 637			add_to_kill_anon_file(t, page, vma, to_kill, addr);
 638		}
 639	}
 640	rcu_read_unlock();
 641	anon_vma_unlock_read(av);
 642}
 643
 644/*
 645 * Collect processes when the error hit a file mapped page.
 646 */
 647static void collect_procs_file(const struct folio *folio,
 648		const struct page *page, struct list_head *to_kill,
 649		int force_early)
 650{
 651	struct vm_area_struct *vma;
 652	struct task_struct *tsk;
 653	struct address_space *mapping = folio->mapping;
 654	pgoff_t pgoff;
 655
 656	i_mmap_lock_read(mapping);
 657	rcu_read_lock();
 658	pgoff = page_pgoff(folio, page);
 659	for_each_process(tsk) {
 
 660		struct task_struct *t = task_early_kill(tsk, force_early);
 661		unsigned long addr;
 662
 663		if (!t)
 664			continue;
 665		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 666				      pgoff) {
 667			/*
 668			 * Send early kill signal to tasks where a vma covers
 669			 * the page but the corrupted page is not necessarily
 670			 * mapped in its pte.
 671			 * Assume applications who requested early kill want
 672			 * to be informed of all such data corruptions.
 673			 */
 674			if (vma->vm_mm != t->mm)
 675				continue;
 676			addr = page_address_in_vma(folio, page, vma);
 677			add_to_kill_anon_file(t, page, vma, to_kill, addr);
 678		}
 679	}
 680	rcu_read_unlock();
 681	i_mmap_unlock_read(mapping);
 682}
 683
 684#ifdef CONFIG_FS_DAX
 685static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
 686			      struct vm_area_struct *vma,
 687			      struct list_head *to_kill, pgoff_t pgoff)
 688{
 689	unsigned long addr = vma_address(vma, pgoff, 1);
 690	__add_to_kill(tsk, p, vma, to_kill, addr);
 691}
 692
 693/*
 694 * Collect processes when the error hit a fsdax page.
 695 */
 696static void collect_procs_fsdax(const struct page *page,
 697		struct address_space *mapping, pgoff_t pgoff,
 698		struct list_head *to_kill, bool pre_remove)
 699{
 700	struct vm_area_struct *vma;
 701	struct task_struct *tsk;
 702
 703	i_mmap_lock_read(mapping);
 704	rcu_read_lock();
 705	for_each_process(tsk) {
 706		struct task_struct *t = tsk;
 707
 708		/*
 709		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
 710		 * the current may not be the one accessing the fsdax page.
 711		 * Otherwise, search for the current task.
 712		 */
 713		if (!pre_remove)
 714			t = task_early_kill(tsk, true);
 715		if (!t)
 716			continue;
 717		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
 718			if (vma->vm_mm == t->mm)
 719				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
 720		}
 721	}
 722	rcu_read_unlock();
 723	i_mmap_unlock_read(mapping);
 724}
 725#endif /* CONFIG_FS_DAX */
 726
 727/*
 728 * Collect the processes who have the corrupted page mapped to kill.
 
 
 
 729 */
 730static void collect_procs(const struct folio *folio, const struct page *page,
 731		struct list_head *tokill, int force_early)
 732{
 733	if (!folio->mapping)
 
 
 734		return;
 735	if (unlikely(folio_test_ksm(folio)))
 736		collect_procs_ksm(folio, page, tokill, force_early);
 737	else if (folio_test_anon(folio))
 738		collect_procs_anon(folio, page, tokill, force_early);
 739	else
 740		collect_procs_file(folio, page, tokill, force_early);
 741}
 742
 743struct hwpoison_walk {
 744	struct to_kill tk;
 745	unsigned long pfn;
 746	int flags;
 747};
 748
 749static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
 750{
 751	tk->addr = addr;
 752	tk->size_shift = shift;
 753}
 754
 755static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
 756				unsigned long poisoned_pfn, struct to_kill *tk)
 757{
 758	unsigned long pfn = 0;
 759
 760	if (pte_present(pte)) {
 761		pfn = pte_pfn(pte);
 762	} else {
 763		swp_entry_t swp = pte_to_swp_entry(pte);
 764
 765		if (is_hwpoison_entry(swp))
 766			pfn = swp_offset_pfn(swp);
 767	}
 768
 769	if (!pfn || pfn != poisoned_pfn)
 770		return 0;
 771
 772	set_to_kill(tk, addr, shift);
 773	return 1;
 774}
 775
 776#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 777static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 778				      struct hwpoison_walk *hwp)
 779{
 780	pmd_t pmd = *pmdp;
 781	unsigned long pfn;
 782	unsigned long hwpoison_vaddr;
 783
 784	if (!pmd_present(pmd))
 785		return 0;
 786	pfn = pmd_pfn(pmd);
 787	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
 788		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
 789		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
 790		return 1;
 791	}
 792	return 0;
 793}
 794#else
 795static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
 796				      struct hwpoison_walk *hwp)
 797{
 798	return 0;
 799}
 800#endif
 801
 802static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
 803			      unsigned long end, struct mm_walk *walk)
 804{
 805	struct hwpoison_walk *hwp = walk->private;
 806	int ret = 0;
 807	pte_t *ptep, *mapped_pte;
 808	spinlock_t *ptl;
 809
 810	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
 811	if (ptl) {
 812		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
 813		spin_unlock(ptl);
 814		goto out;
 815	}
 816
 817	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
 818						addr, &ptl);
 819	if (!ptep)
 820		goto out;
 821
 822	for (; addr != end; ptep++, addr += PAGE_SIZE) {
 823		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
 824					     hwp->pfn, &hwp->tk);
 825		if (ret == 1)
 826			break;
 827	}
 828	pte_unmap_unlock(mapped_pte, ptl);
 829out:
 830	cond_resched();
 831	return ret;
 832}
 833
 834#ifdef CONFIG_HUGETLB_PAGE
 835static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
 836			    unsigned long addr, unsigned long end,
 837			    struct mm_walk *walk)
 838{
 839	struct hwpoison_walk *hwp = walk->private;
 840	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
 841	struct hstate *h = hstate_vma(walk->vma);
 842
 843	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
 844				      hwp->pfn, &hwp->tk);
 845}
 846#else
 847#define hwpoison_hugetlb_range	NULL
 848#endif
 849
 850static const struct mm_walk_ops hwpoison_walk_ops = {
 851	.pmd_entry = hwpoison_pte_range,
 852	.hugetlb_entry = hwpoison_hugetlb_range,
 853	.walk_lock = PGWALK_RDLOCK,
 854};
 855
 856/*
 857 * Sends SIGBUS to the current process with error info.
 858 *
 859 * This function is intended to handle "Action Required" MCEs on already
 860 * hardware poisoned pages. They could happen, for example, when
 861 * memory_failure() failed to unmap the error page at the first call, or
 862 * when multiple local machine checks happened on different CPUs.
 863 *
 864 * MCE handler currently has no easy access to the error virtual address,
 865 * so this function walks page table to find it. The returned virtual address
 866 * is proper in most cases, but it could be wrong when the application
 867 * process has multiple entries mapping the error page.
 868 */
 869static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
 870				  int flags)
 871{
 872	int ret;
 873	struct hwpoison_walk priv = {
 874		.pfn = pfn,
 875	};
 876	priv.tk.tsk = p;
 877
 878	if (!p->mm)
 879		return -EFAULT;
 880
 881	mmap_read_lock(p->mm);
 882	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
 883			      (void *)&priv);
 884	if (ret == 1 && priv.tk.addr)
 885		kill_proc(&priv.tk, pfn, flags);
 886	else
 887		ret = 0;
 888	mmap_read_unlock(p->mm);
 889	return ret > 0 ? -EHWPOISON : -EFAULT;
 890}
 891
 892/*
 893 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 894 * But it could not do more to isolate the page from being accessed again,
 895 * nor does it kill the process. This is extremely rare and one of the
 896 * potential causes is that the page state has been changed due to
 897 * underlying race condition. This is the most severe outcomes.
 898 *
 899 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 900 * It should have killed the process, but it can't isolate the page,
 901 * due to conditions such as extra pin, unmap failure, etc. Accessing
 902 * the page again may trigger another MCE and the process will be killed
 903 * by the m-f() handler immediately.
 904 *
 905 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 906 * The page is unmapped, and is removed from the LRU or file mapping.
 907 * An attempt to access the page again will trigger page fault and the
 908 * PF handler will kill the process.
 909 *
 910 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
 911 * The page has been completely isolated, that is, unmapped, taken out of
 912 * the buddy system, or hole-punnched out of the file mapping.
 913 */
 914static const char *action_name[] = {
 915	[MF_IGNORED] = "Ignored",
 916	[MF_FAILED] = "Failed",
 917	[MF_DELAYED] = "Delayed",
 918	[MF_RECOVERED] = "Recovered",
 919};
 920
 921static const char * const action_page_types[] = {
 922	[MF_MSG_KERNEL]			= "reserved kernel page",
 923	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
 
 
 
 924	[MF_MSG_HUGE]			= "huge page",
 925	[MF_MSG_FREE_HUGE]		= "free huge page",
 926	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
 927	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
 928	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
 929	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
 930	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
 931	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
 932	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
 933	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
 934	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
 935	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
 936	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
 937	[MF_MSG_BUDDY]			= "free buddy page",
 938	[MF_MSG_DAX]			= "dax page",
 939	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
 940	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
 941	[MF_MSG_UNKNOWN]		= "unknown page",
 942};
 943
 944/*
 945 * XXX: It is possible that a page is isolated from LRU cache,
 946 * and then kept in swap cache or failed to remove from page cache.
 947 * The page count will stop it from being freed by unpoison.
 948 * Stress tests should be aware of this memory leak problem.
 949 */
 950static int delete_from_lru_cache(struct folio *folio)
 951{
 952	if (folio_isolate_lru(folio)) {
 953		/*
 954		 * Clear sensible page flags, so that the buddy system won't
 955		 * complain when the folio is unpoison-and-freed.
 956		 */
 957		folio_clear_active(folio);
 958		folio_clear_unevictable(folio);
 959
 960		/*
 961		 * Poisoned page might never drop its ref count to 0 so we have
 962		 * to uncharge it manually from its memcg.
 963		 */
 964		mem_cgroup_uncharge(folio);
 965
 966		/*
 967		 * drop the refcount elevated by folio_isolate_lru()
 968		 */
 969		folio_put(folio);
 970		return 0;
 971	}
 972	return -EIO;
 973}
 974
 975static int truncate_error_folio(struct folio *folio, unsigned long pfn,
 976				struct address_space *mapping)
 977{
 978	int ret = MF_FAILED;
 979
 980	if (mapping->a_ops->error_remove_folio) {
 981		int err = mapping->a_ops->error_remove_folio(mapping, folio);
 982
 983		if (err != 0)
 984			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
 985		else if (!filemap_release_folio(folio, GFP_NOIO))
 986			pr_info("%#lx: failed to release buffers\n", pfn);
 987		else
 988			ret = MF_RECOVERED;
 989	} else {
 990		/*
 991		 * If the file system doesn't support it just invalidate
 992		 * This fails on dirty or anything with private pages
 993		 */
 994		if (mapping_evict_folio(mapping, folio))
 995			ret = MF_RECOVERED;
 996		else
 997			pr_info("%#lx: Failed to invalidate\n",	pfn);
 998	}
 999
1000	return ret;
1001}
1002
1003struct page_state {
1004	unsigned long mask;
1005	unsigned long res;
1006	enum mf_action_page_type type;
1007
1008	/* Callback ->action() has to unlock the relevant page inside it. */
1009	int (*action)(struct page_state *ps, struct page *p);
1010};
1011
1012/*
1013 * Return true if page is still referenced by others, otherwise return
1014 * false.
1015 *
1016 * The extra_pins is true when one extra refcount is expected.
1017 */
1018static bool has_extra_refcount(struct page_state *ps, struct page *p,
1019			       bool extra_pins)
1020{
1021	int count = page_count(p) - 1;
1022
1023	if (extra_pins)
1024		count -= folio_nr_pages(page_folio(p));
1025
1026	if (count > 0) {
1027		pr_err("%#lx: %s still referenced by %d users\n",
1028		       page_to_pfn(p), action_page_types[ps->type], count);
1029		return true;
1030	}
1031
1032	return false;
1033}
1034
1035/*
1036 * Error hit kernel page.
1037 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1038 * could be more sophisticated.
1039 */
1040static int me_kernel(struct page_state *ps, struct page *p)
1041{
1042	unlock_page(p);
1043	return MF_IGNORED;
1044}
1045
1046/*
1047 * Page in unknown state. Do nothing.
1048 * This is a catch-all in case we fail to make sense of the page state.
1049 */
1050static int me_unknown(struct page_state *ps, struct page *p)
1051{
1052	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1053	unlock_page(p);
1054	return MF_IGNORED;
1055}
1056
1057/*
1058 * Clean (or cleaned) page cache page.
1059 */
1060static int me_pagecache_clean(struct page_state *ps, struct page *p)
1061{
1062	struct folio *folio = page_folio(p);
1063	int ret;
1064	struct address_space *mapping;
1065	bool extra_pins;
1066
1067	delete_from_lru_cache(folio);
1068
1069	/*
1070	 * For anonymous folios the only reference left
1071	 * should be the one m_f() holds.
1072	 */
1073	if (folio_test_anon(folio)) {
1074		ret = MF_RECOVERED;
1075		goto out;
1076	}
1077
1078	/*
1079	 * Now truncate the page in the page cache. This is really
1080	 * more like a "temporary hole punch"
1081	 * Don't do this for block devices when someone else
1082	 * has a reference, because it could be file system metadata
1083	 * and that's not safe to truncate.
1084	 */
1085	mapping = folio_mapping(folio);
1086	if (!mapping) {
1087		/* Folio has been torn down in the meantime */
1088		ret = MF_FAILED;
1089		goto out;
 
1090	}
1091
1092	/*
1093	 * The shmem page is kept in page cache instead of truncating
1094	 * so is expected to have an extra refcount after error-handling.
1095	 */
1096	extra_pins = shmem_mapping(mapping);
1097
1098	/*
1099	 * Truncation is a bit tricky. Enable it per file system for now.
1100	 *
1101	 * Open: to take i_rwsem or not for this? Right now we don't.
1102	 */
1103	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1104	if (has_extra_refcount(ps, p, extra_pins))
1105		ret = MF_FAILED;
1106
1107out:
1108	folio_unlock(folio);
1109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1110	return ret;
1111}
1112
1113/*
1114 * Dirty pagecache page
1115 * Issues: when the error hit a hole page the error is not properly
1116 * propagated.
1117 */
1118static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1119{
1120	struct folio *folio = page_folio(p);
1121	struct address_space *mapping = folio_mapping(folio);
1122
 
1123	/* TBD: print more information about the file. */
1124	if (mapping) {
1125		/*
1126		 * IO error will be reported by write(), fsync(), etc.
1127		 * who check the mapping.
1128		 * This way the application knows that something went
1129		 * wrong with its dirty file data.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1130		 */
1131		mapping_set_error(mapping, -EIO);
1132	}
1133
1134	return me_pagecache_clean(ps, p);
1135}
1136
1137/*
1138 * Clean and dirty swap cache.
1139 *
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * table and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145 * and then
1146 *      - clear dirty bit to prevent IO
1147 *      - remove from LRU
1148 *      - but keep in the swap cache, so that when we return to it on
1149 *        a later page fault, we know the application is accessing
1150 *        corrupted data and shall be killed (we installed simple
1151 *        interception code in do_swap_page to catch it).
1152 *
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1155 */
1156static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157{
1158	struct folio *folio = page_folio(p);
1159	int ret;
1160	bool extra_pins = false;
1161
1162	folio_clear_dirty(folio);
1163	/* Trigger EIO in shmem: */
1164	folio_clear_uptodate(folio);
1165
1166	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167	folio_unlock(folio);
1168
1169	if (ret == MF_DELAYED)
1170		extra_pins = true;
1171
1172	if (has_extra_refcount(ps, p, extra_pins))
1173		ret = MF_FAILED;
1174
1175	return ret;
1176}
1177
1178static int me_swapcache_clean(struct page_state *ps, struct page *p)
1179{
1180	struct folio *folio = page_folio(p);
1181	int ret;
1182
1183	delete_from_swap_cache(folio);
1184
1185	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186	folio_unlock(folio);
1187
1188	if (has_extra_refcount(ps, p, false))
1189		ret = MF_FAILED;
1190
1191	return ret;
1192}
1193
1194/*
1195 * Huge pages. Needs work.
1196 * Issues:
1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198 *   To narrow down kill region to one page, we need to break up pmd.
1199 */
1200static int me_huge_page(struct page_state *ps, struct page *p)
1201{
1202	struct folio *folio = page_folio(p);
1203	int res;
1204	struct address_space *mapping;
1205	bool extra_pins = false;
 
1206
1207	mapping = folio_mapping(folio);
1208	if (mapping) {
1209		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210		/* The page is kept in page cache. */
1211		extra_pins = true;
1212		folio_unlock(folio);
1213	} else {
1214		folio_unlock(folio);
1215		/*
1216		 * migration entry prevents later access on error hugepage,
1217		 * so we can free and dissolve it into buddy to save healthy
1218		 * subpages.
1219		 */
1220		folio_put(folio);
1221		if (__page_handle_poison(p) > 0) {
1222			page_ref_inc(p);
1223			res = MF_RECOVERED;
1224		} else {
1225			res = MF_FAILED;
1226		}
1227	}
1228
1229	if (has_extra_refcount(ps, p, extra_pins))
1230		res = MF_FAILED;
1231
1232	return res;
1233}
1234
1235/*
1236 * Various page states we can handle.
1237 *
1238 * A page state is defined by its current page->flags bits.
1239 * The table matches them in order and calls the right handler.
1240 *
1241 * This is quite tricky because we can access page at any time
1242 * in its live cycle, so all accesses have to be extremely careful.
1243 *
1244 * This is not complete. More states could be added.
1245 * For any missing state don't attempt recovery.
1246 */
1247
1248#define dirty		(1UL << PG_dirty)
1249#define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250#define unevict		(1UL << PG_unevictable)
1251#define mlock		(1UL << PG_mlocked)
 
1252#define lru		(1UL << PG_lru)
 
1253#define head		(1UL << PG_head)
 
1254#define reserved	(1UL << PG_reserved)
1255
1256static struct page_state error_states[] = {
 
 
 
 
 
1257	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1258	/*
1259	 * free pages are specially detected outside this table:
1260	 * PG_buddy pages only make a small fraction of all free pages.
1261	 */
1262
 
 
 
 
 
 
 
1263	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1264
1265	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1266	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1267
1268	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1269	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1270
1271	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1272	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1273
1274	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1275	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1276
1277	/*
1278	 * Catchall entry: must be at end.
1279	 */
1280	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1281};
1282
1283#undef dirty
1284#undef sc
1285#undef unevict
1286#undef mlock
 
1287#undef lru
 
1288#undef head
 
1289#undef reserved
1290
1291static void update_per_node_mf_stats(unsigned long pfn,
1292				     enum mf_result result)
1293{
1294	int nid = MAX_NUMNODES;
1295	struct memory_failure_stats *mf_stats = NULL;
1296
1297	nid = pfn_to_nid(pfn);
1298	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1299		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1300		return;
1301	}
1302
1303	mf_stats = &NODE_DATA(nid)->mf_stats;
1304	switch (result) {
1305	case MF_IGNORED:
1306		++mf_stats->ignored;
1307		break;
1308	case MF_FAILED:
1309		++mf_stats->failed;
1310		break;
1311	case MF_DELAYED:
1312		++mf_stats->delayed;
1313		break;
1314	case MF_RECOVERED:
1315		++mf_stats->recovered;
1316		break;
1317	default:
1318		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1319		break;
1320	}
1321	++mf_stats->total;
1322}
1323
1324/*
1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1327 */
1328static int action_result(unsigned long pfn, enum mf_action_page_type type,
1329			 enum mf_result result)
1330{
1331	trace_memory_failure_event(pfn, type, result);
1332
1333	num_poisoned_pages_inc(pfn);
1334
1335	update_per_node_mf_stats(pfn, result);
1336
1337	pr_err("%#lx: recovery action for %s: %s\n",
1338		pfn, action_page_types[type], action_name[result]);
1339
1340	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1341}
1342
1343static int page_action(struct page_state *ps, struct page *p,
1344			unsigned long pfn)
1345{
1346	int result;
 
 
 
1347
1348	/* page p should be unlocked after returning from ps->action().  */
1349	result = ps->action(ps, p);
 
 
 
 
 
 
 
1350
1351	/* Could do more checks here if page looks ok */
1352	/*
1353	 * Could adjust zone counters here to correct for the missing page.
1354	 */
1355
1356	return action_result(pfn, ps->type, result);
1357}
1358
1359static inline bool PageHWPoisonTakenOff(struct page *page)
1360{
1361	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1362}
1363
1364void SetPageHWPoisonTakenOff(struct page *page)
1365{
1366	set_page_private(page, MAGIC_HWPOISON);
1367}
1368
1369void ClearPageHWPoisonTakenOff(struct page *page)
1370{
1371	if (PageHWPoison(page))
1372		set_page_private(page, 0);
1373}
1374
1375/*
1376 * Return true if a page type of a given page is supported by hwpoison
1377 * mechanism (while handling could fail), otherwise false.  This function
1378 * does not return true for hugetlb or device memory pages, so it's assumed
1379 * to be called only in the context where we never have such pages.
1380 */
1381static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1382{
1383	if (PageSlab(page))
1384		return false;
1385
1386	/* Soft offline could migrate non-LRU movable pages */
1387	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388		return true;
1389
1390	return PageLRU(page) || is_free_buddy_page(page);
1391}
1392
1393static int __get_hwpoison_page(struct page *page, unsigned long flags)
1394{
1395	struct folio *folio = page_folio(page);
1396	int ret = 0;
1397	bool hugetlb = false;
1398
1399	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1400	if (hugetlb) {
1401		/* Make sure hugetlb demotion did not happen from under us. */
1402		if (folio == page_folio(page))
1403			return ret;
1404		if (ret > 0) {
1405			folio_put(folio);
1406			folio = page_folio(page);
1407		}
1408	}
1409
1410	/*
1411	 * This check prevents from calling folio_try_get() for any
1412	 * unsupported type of folio in order to reduce the risk of unexpected
1413	 * races caused by taking a folio refcount.
1414	 */
1415	if (!HWPoisonHandlable(&folio->page, flags))
1416		return -EBUSY;
1417
1418	if (folio_try_get(folio)) {
1419		if (folio == page_folio(page))
1420			return 1;
1421
1422		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1423		folio_put(folio);
1424	}
1425
1426	return 0;
1427}
 
1428
1429#define GET_PAGE_MAX_RETRY_NUM 3
1430
1431static int get_any_page(struct page *p, unsigned long flags)
 
 
 
1432{
1433	int ret = 0, pass = 0;
1434	bool count_increased = false;
 
 
 
 
1435
1436	if (flags & MF_COUNT_INCREASED)
1437		count_increased = true;
1438
1439try_again:
1440	if (!count_increased) {
1441		ret = __get_hwpoison_page(p, flags);
1442		if (!ret) {
1443			if (page_count(p)) {
1444				/* We raced with an allocation, retry. */
1445				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1446					goto try_again;
1447				ret = -EBUSY;
1448			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1449				/* We raced with put_page, retry. */
1450				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451					goto try_again;
1452				ret = -EIO;
1453			}
1454			goto out;
1455		} else if (ret == -EBUSY) {
1456			/*
1457			 * We raced with (possibly temporary) unhandlable
1458			 * page, retry.
1459			 */
1460			if (pass++ < 3) {
1461				shake_page(p);
1462				goto try_again;
1463			}
1464			ret = -EIO;
1465			goto out;
1466		}
1467	}
1468
1469	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1470		ret = 1;
1471	} else {
1472		/*
1473		 * A page we cannot handle. Check whether we can turn
1474		 * it into something we can handle.
1475		 */
1476		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1477			put_page(p);
1478			shake_page(p);
1479			count_increased = false;
1480			goto try_again;
1481		}
1482		put_page(p);
1483		ret = -EIO;
1484	}
1485out:
1486	if (ret == -EIO)
1487		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1488
1489	return ret;
1490}
1491
1492static int __get_unpoison_page(struct page *page)
1493{
1494	struct folio *folio = page_folio(page);
1495	int ret = 0;
1496	bool hugetlb = false;
1497
1498	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1499	if (hugetlb) {
1500		/* Make sure hugetlb demotion did not happen from under us. */
1501		if (folio == page_folio(page))
1502			return ret;
1503		if (ret > 0)
1504			folio_put(folio);
1505	}
1506
1507	/*
1508	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1509	 * but also isolated from buddy freelist, so need to identify the
1510	 * state and have to cancel both operations to unpoison.
1511	 */
1512	if (PageHWPoisonTakenOff(page))
1513		return -EHWPOISON;
1514
1515	return get_page_unless_zero(page) ? 1 : 0;
1516}
 
 
1517
1518/**
1519 * get_hwpoison_page() - Get refcount for memory error handling
1520 * @p:		Raw error page (hit by memory error)
1521 * @flags:	Flags controlling behavior of error handling
1522 *
1523 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1524 * error on it, after checking that the error page is in a well-defined state
1525 * (defined as a page-type we can successfully handle the memory error on it,
1526 * such as LRU page and hugetlb page).
1527 *
1528 * Memory error handling could be triggered at any time on any type of page,
1529 * so it's prone to race with typical memory management lifecycle (like
1530 * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1531 * extra care for the error page's state (as done in __get_hwpoison_page()),
1532 * and has some retry logic in get_any_page().
1533 *
1534 * When called from unpoison_memory(), the caller should already ensure that
1535 * the given page has PG_hwpoison. So it's never reused for other page
1536 * allocations, and __get_unpoison_page() never races with them.
1537 *
1538 * Return: 0 on failure or free buddy (hugetlb) page,
1539 *         1 on success for in-use pages in a well-defined state,
1540 *         -EIO for pages on which we can not handle memory errors,
1541 *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1542 *         operations like allocation and free,
1543 *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1544 */
1545static int get_hwpoison_page(struct page *p, unsigned long flags)
1546{
1547	int ret;
1548
1549	zone_pcp_disable(page_zone(p));
1550	if (flags & MF_UNPOISON)
1551		ret = __get_unpoison_page(p);
1552	else
1553		ret = get_any_page(p, flags);
1554	zone_pcp_enable(page_zone(p));
1555
1556	return ret;
1557}
1558
1559int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1560{
1561	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1562	struct address_space *mapping;
1563
1564	if (folio_test_swapcache(folio)) {
1565		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1566		ttu &= ~TTU_HWPOISON;
1567	}
1568
1569	/*
1570	 * Propagate the dirty bit from PTEs to struct page first, because we
1571	 * need this to decide if we should kill or just drop the page.
1572	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1573	 * be called inside page lock (it's recommended but not enforced).
1574	 */
1575	mapping = folio_mapping(folio);
1576	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1577	    mapping_can_writeback(mapping)) {
1578		if (folio_mkclean(folio)) {
1579			folio_set_dirty(folio);
1580		} else {
1581			ttu &= ~TTU_HWPOISON;
1582			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
 
1583				pfn);
1584		}
1585	}
1586
1587	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1588		/*
1589		 * For hugetlb folios in shared mappings, try_to_unmap
1590		 * could potentially call huge_pmd_unshare.  Because of
1591		 * this, take semaphore in write mode here and set
1592		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1593		 * at this higher level.
1594		 */
1595		mapping = hugetlb_folio_mapping_lock_write(folio);
1596		if (!mapping) {
1597			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1598				folio_pfn(folio));
1599			return -EBUSY;
1600		}
1601
1602		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1603		i_mmap_unlock_write(mapping);
1604	} else {
1605		try_to_unmap(folio, ttu);
1606	}
1607
1608	return folio_mapped(folio) ? -EBUSY : 0;
1609}
1610
1611/*
1612 * Do all that is necessary to remove user space mappings. Unmap
1613 * the pages and send SIGBUS to the processes if the data was dirty.
1614 */
1615static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1616		unsigned long pfn, int flags)
1617{
1618	LIST_HEAD(tokill);
1619	bool unmap_success;
1620	int forcekill;
1621	bool mlocked = folio_test_mlocked(folio);
1622
1623	/*
1624	 * Here we are interested only in user-mapped pages, so skip any
1625	 * other types of pages.
1626	 */
1627	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1628	    folio_test_pgtable(folio) || folio_test_offline(folio))
1629		return true;
1630	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1631		return true;
1632
1633	/*
1634	 * This check implies we don't kill processes if their pages
1635	 * are in the swap cache early. Those are always late kills.
1636	 */
1637	if (!folio_mapped(folio))
1638		return true;
1639
1640	/*
1641	 * First collect all the processes that have the page
1642	 * mapped in dirty form.  This has to be done before try_to_unmap,
1643	 * because ttu takes the rmap data structures down.
 
 
 
1644	 */
1645	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
 
1646
1647	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1648	if (!unmap_success)
1649		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1650		       pfn, folio_mapcount(folio));
1651
1652	/*
1653	 * try_to_unmap() might put mlocked page in lru cache, so call
1654	 * shake_page() again to ensure that it's flushed.
1655	 */
1656	if (mlocked)
1657		shake_folio(folio);
1658
1659	/*
1660	 * Now that the dirty bit has been propagated to the
1661	 * struct page and all unmaps done we can decide if
1662	 * killing is needed or not.  Only kill when the page
1663	 * was dirty or the process is not restartable,
1664	 * otherwise the tokill list is merely
1665	 * freed.  When there was a problem unmapping earlier
1666	 * use a more force-full uncatchable kill to prevent
1667	 * any accesses to the poisoned memory.
1668	 */
1669	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1670		    !unmap_success;
1671	kill_procs(&tokill, forcekill, pfn, flags);
1672
1673	return unmap_success;
1674}
1675
1676static int identify_page_state(unsigned long pfn, struct page *p,
1677				unsigned long page_flags)
1678{
1679	struct page_state *ps;
1680
1681	/*
1682	 * The first check uses the current page flags which may not have any
1683	 * relevant information. The second check with the saved page flags is
1684	 * carried out only if the first check can't determine the page status.
1685	 */
1686	for (ps = error_states;; ps++)
1687		if ((p->flags & ps->mask) == ps->res)
1688			break;
1689
1690	page_flags |= (p->flags & (1UL << PG_dirty));
1691
1692	if (!ps->mask)
1693		for (ps = error_states;; ps++)
1694			if ((page_flags & ps->mask) == ps->res)
1695				break;
1696	return page_action(ps, p, pfn);
1697}
1698
1699/*
1700 * When 'release' is 'false', it means that if thp split has failed,
1701 * there is still more to do, hence the page refcount we took earlier
1702 * is still needed.
1703 */
1704static int try_to_split_thp_page(struct page *page, bool release)
1705{
1706	int ret;
1707
1708	lock_page(page);
1709	ret = split_huge_page(page);
1710	unlock_page(page);
1711
1712	if (ret && release)
1713		put_page(page);
1714
1715	return ret;
1716}
1717
1718static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1719		struct address_space *mapping, pgoff_t index, int flags)
1720{
1721	struct to_kill *tk;
1722	unsigned long size = 0;
1723
1724	list_for_each_entry(tk, to_kill, nd)
1725		if (tk->size_shift)
1726			size = max(size, 1UL << tk->size_shift);
1727
1728	if (size) {
1729		/*
1730		 * Unmap the largest mapping to avoid breaking up device-dax
1731		 * mappings which are constant size. The actual size of the
1732		 * mapping being torn down is communicated in siginfo, see
1733		 * kill_proc()
1734		 */
1735		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1736
1737		unmap_mapping_range(mapping, start, size, 0);
1738	}
1739
1740	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1741}
1742
1743/*
1744 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1745 * either do not claim or fails to claim a hwpoison event, or devdax.
1746 * The fsdax pages are initialized per base page, and the devdax pages
1747 * could be initialized either as base pages, or as compound pages with
1748 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1749 * hwpoison, such that, if a subpage of a compound page is poisoned,
1750 * simply mark the compound head page is by far sufficient.
1751 */
1752static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1753		struct dev_pagemap *pgmap)
1754{
1755	struct folio *folio = pfn_folio(pfn);
1756	LIST_HEAD(to_kill);
1757	dax_entry_t cookie;
1758	int rc = 0;
1759
1760	/*
1761	 * Prevent the inode from being freed while we are interrogating
1762	 * the address_space, typically this would be handled by
1763	 * lock_page(), but dax pages do not use the page lock. This
1764	 * also prevents changes to the mapping of this pfn until
1765	 * poison signaling is complete.
1766	 */
1767	cookie = dax_lock_folio(folio);
1768	if (!cookie)
1769		return -EBUSY;
1770
1771	if (hwpoison_filter(&folio->page)) {
1772		rc = -EOPNOTSUPP;
1773		goto unlock;
1774	}
1775
1776	switch (pgmap->type) {
1777	case MEMORY_DEVICE_PRIVATE:
1778	case MEMORY_DEVICE_COHERENT:
1779		/*
1780		 * TODO: Handle device pages which may need coordination
1781		 * with device-side memory.
1782		 */
1783		rc = -ENXIO;
1784		goto unlock;
1785	default:
1786		break;
1787	}
1788
1789	/*
1790	 * Use this flag as an indication that the dax page has been
1791	 * remapped UC to prevent speculative consumption of poison.
1792	 */
1793	SetPageHWPoison(&folio->page);
1794
1795	/*
1796	 * Unlike System-RAM there is no possibility to swap in a
1797	 * different physical page at a given virtual address, so all
1798	 * userspace consumption of ZONE_DEVICE memory necessitates
1799	 * SIGBUS (i.e. MF_MUST_KILL)
1800	 */
1801	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1802	collect_procs(folio, &folio->page, &to_kill, true);
1803
1804	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1805unlock:
1806	dax_unlock_folio(folio, cookie);
1807	return rc;
1808}
1809
1810#ifdef CONFIG_FS_DAX
1811/**
1812 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1813 * @mapping:	address_space of the file in use
1814 * @index:	start pgoff of the range within the file
1815 * @count:	length of the range, in unit of PAGE_SIZE
1816 * @mf_flags:	memory failure flags
1817 */
1818int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1819		unsigned long count, int mf_flags)
1820{
1821	LIST_HEAD(to_kill);
1822	dax_entry_t cookie;
1823	struct page *page;
1824	size_t end = index + count;
1825	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1826
1827	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1828
1829	for (; index < end; index++) {
1830		page = NULL;
1831		cookie = dax_lock_mapping_entry(mapping, index, &page);
1832		if (!cookie)
1833			return -EBUSY;
1834		if (!page)
1835			goto unlock;
1836
1837		if (!pre_remove)
1838			SetPageHWPoison(page);
1839
1840		/*
1841		 * The pre_remove case is revoking access, the memory is still
1842		 * good and could theoretically be put back into service.
1843		 */
1844		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1845		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1846				index, mf_flags);
1847unlock:
1848		dax_unlock_mapping_entry(mapping, index, cookie);
1849	}
1850	return 0;
1851}
1852EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1853#endif /* CONFIG_FS_DAX */
1854
1855#ifdef CONFIG_HUGETLB_PAGE
1856
1857/*
1858 * Struct raw_hwp_page represents information about "raw error page",
1859 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1860 */
1861struct raw_hwp_page {
1862	struct llist_node node;
1863	struct page *page;
1864};
1865
1866static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1867{
1868	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1869}
1870
1871bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1872{
1873	struct llist_head *raw_hwp_head;
1874	struct raw_hwp_page *p;
1875	struct folio *folio = page_folio(page);
1876	bool ret = false;
1877
1878	if (!folio_test_hwpoison(folio))
1879		return false;
1880
1881	if (!folio_test_hugetlb(folio))
1882		return PageHWPoison(page);
1883
1884	/*
1885	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1886	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1887	 */
1888	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1889		return true;
1890
1891	mutex_lock(&mf_mutex);
1892
1893	raw_hwp_head = raw_hwp_list_head(folio);
1894	llist_for_each_entry(p, raw_hwp_head->first, node) {
1895		if (page == p->page) {
1896			ret = true;
1897			break;
1898		}
1899	}
1900
1901	mutex_unlock(&mf_mutex);
1902
1903	return ret;
1904}
1905
1906static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1907{
1908	struct llist_node *head;
1909	struct raw_hwp_page *p, *next;
1910	unsigned long count = 0;
1911
1912	head = llist_del_all(raw_hwp_list_head(folio));
1913	llist_for_each_entry_safe(p, next, head, node) {
1914		if (move_flag)
1915			SetPageHWPoison(p->page);
1916		else
1917			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1918		kfree(p);
1919		count++;
1920	}
1921	return count;
1922}
1923
1924static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1925{
1926	struct llist_head *head;
1927	struct raw_hwp_page *raw_hwp;
1928	struct raw_hwp_page *p;
1929	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1930
1931	/*
1932	 * Once the hwpoison hugepage has lost reliable raw error info,
1933	 * there is little meaning to keep additional error info precisely,
1934	 * so skip to add additional raw error info.
1935	 */
1936	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1937		return -EHWPOISON;
1938	head = raw_hwp_list_head(folio);
1939	llist_for_each_entry(p, head->first, node) {
1940		if (p->page == page)
1941			return -EHWPOISON;
1942	}
1943
1944	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1945	if (raw_hwp) {
1946		raw_hwp->page = page;
1947		llist_add(&raw_hwp->node, head);
1948		/* the first error event will be counted in action_result(). */
1949		if (ret)
1950			num_poisoned_pages_inc(page_to_pfn(page));
1951	} else {
1952		/*
1953		 * Failed to save raw error info.  We no longer trace all
1954		 * hwpoisoned subpages, and we need refuse to free/dissolve
1955		 * this hwpoisoned hugepage.
1956		 */
1957		folio_set_hugetlb_raw_hwp_unreliable(folio);
1958		/*
1959		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1960		 * used any more, so free it.
1961		 */
1962		__folio_free_raw_hwp(folio, false);
1963	}
1964	return ret;
1965}
1966
1967static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1968{
1969	/*
1970	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1971	 * pages for tail pages are required but they don't exist.
1972	 */
1973	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1974		return 0;
1975
1976	/*
1977	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1978	 * definition.
1979	 */
1980	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1981		return 0;
1982
1983	return __folio_free_raw_hwp(folio, move_flag);
1984}
1985
1986void folio_clear_hugetlb_hwpoison(struct folio *folio)
1987{
1988	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1989		return;
1990	if (folio_test_hugetlb_vmemmap_optimized(folio))
1991		return;
1992	folio_clear_hwpoison(folio);
1993	folio_free_raw_hwp(folio, true);
1994}
1995
1996/*
1997 * Called from hugetlb code with hugetlb_lock held.
1998 *
1999 * Return values:
2000 *   0             - free hugepage
2001 *   1             - in-use hugepage
2002 *   2             - not a hugepage
2003 *   -EBUSY        - the hugepage is busy (try to retry)
2004 *   -EHWPOISON    - the hugepage is already hwpoisoned
2005 */
2006int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2007				 bool *migratable_cleared)
2008{
2009	struct page *page = pfn_to_page(pfn);
2010	struct folio *folio = page_folio(page);
2011	int ret = 2;	/* fallback to normal page handling */
2012	bool count_increased = false;
2013
2014	if (!folio_test_hugetlb(folio))
2015		goto out;
2016
2017	if (flags & MF_COUNT_INCREASED) {
2018		ret = 1;
2019		count_increased = true;
2020	} else if (folio_test_hugetlb_freed(folio)) {
2021		ret = 0;
2022	} else if (folio_test_hugetlb_migratable(folio)) {
2023		ret = folio_try_get(folio);
2024		if (ret)
2025			count_increased = true;
2026	} else {
2027		ret = -EBUSY;
2028		if (!(flags & MF_NO_RETRY))
2029			goto out;
2030	}
2031
2032	if (folio_set_hugetlb_hwpoison(folio, page)) {
2033		ret = -EHWPOISON;
2034		goto out;
2035	}
2036
2037	/*
2038	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2039	 * from being migrated by memory hotremove.
2040	 */
2041	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2042		folio_clear_hugetlb_migratable(folio);
2043		*migratable_cleared = true;
2044	}
2045
2046	return ret;
2047out:
2048	if (count_increased)
2049		folio_put(folio);
2050	return ret;
2051}
2052
2053/*
2054 * Taking refcount of hugetlb pages needs extra care about race conditions
2055 * with basic operations like hugepage allocation/free/demotion.
2056 * So some of prechecks for hwpoison (pinning, and testing/setting
2057 * PageHWPoison) should be done in single hugetlb_lock range.
2058 */
2059static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2060{
2061	int res;
2062	struct page *p = pfn_to_page(pfn);
2063	struct folio *folio;
2064	unsigned long page_flags;
2065	bool migratable_cleared = false;
2066
2067	*hugetlb = 1;
2068retry:
2069	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2070	if (res == 2) { /* fallback to normal page handling */
2071		*hugetlb = 0;
2072		return 0;
2073	} else if (res == -EHWPOISON) {
2074		pr_err("%#lx: already hardware poisoned\n", pfn);
2075		if (flags & MF_ACTION_REQUIRED) {
2076			folio = page_folio(p);
2077			res = kill_accessing_process(current, folio_pfn(folio), flags);
2078			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2079		}
2080		return res;
2081	} else if (res == -EBUSY) {
2082		if (!(flags & MF_NO_RETRY)) {
2083			flags |= MF_NO_RETRY;
2084			goto retry;
2085		}
2086		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2087	}
2088
2089	folio = page_folio(p);
2090	folio_lock(folio);
2091
2092	if (hwpoison_filter(p)) {
2093		folio_clear_hugetlb_hwpoison(folio);
2094		if (migratable_cleared)
2095			folio_set_hugetlb_migratable(folio);
2096		folio_unlock(folio);
2097		if (res == 1)
2098			folio_put(folio);
2099		return -EOPNOTSUPP;
2100	}
2101
2102	/*
2103	 * Handling free hugepage.  The possible race with hugepage allocation
2104	 * or demotion can be prevented by PageHWPoison flag.
2105	 */
2106	if (res == 0) {
2107		folio_unlock(folio);
2108		if (__page_handle_poison(p) > 0) {
2109			page_ref_inc(p);
2110			res = MF_RECOVERED;
2111		} else {
2112			res = MF_FAILED;
2113		}
2114		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2115	}
2116
2117	page_flags = folio->flags;
2118
2119	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2120		folio_unlock(folio);
2121		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2122	}
2123
2124	return identify_page_state(pfn, p, page_flags);
2125}
2126
2127#else
2128static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2129{
2130	return 0;
2131}
2132
2133static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2134{
2135	return 0;
2136}
2137#endif	/* CONFIG_HUGETLB_PAGE */
2138
2139/* Drop the extra refcount in case we come from madvise() */
2140static void put_ref_page(unsigned long pfn, int flags)
2141{
2142	if (!(flags & MF_COUNT_INCREASED))
2143		return;
2144
2145	put_page(pfn_to_page(pfn));
2146}
2147
2148static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2149		struct dev_pagemap *pgmap)
2150{
2151	int rc = -ENXIO;
2152
2153	/* device metadata space is not recoverable */
2154	if (!pgmap_pfn_valid(pgmap, pfn))
2155		goto out;
2156
2157	/*
2158	 * Call driver's implementation to handle the memory failure, otherwise
2159	 * fall back to generic handler.
2160	 */
2161	if (pgmap_has_memory_failure(pgmap)) {
2162		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2163		/*
2164		 * Fall back to generic handler too if operation is not
2165		 * supported inside the driver/device/filesystem.
2166		 */
2167		if (rc != -EOPNOTSUPP)
2168			goto out;
2169	}
2170
2171	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2172out:
2173	/* drop pgmap ref acquired in caller */
2174	put_dev_pagemap(pgmap);
2175	if (rc != -EOPNOTSUPP)
2176		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2177	return rc;
2178}
2179
2180/*
2181 * The calling condition is as such: thp split failed, page might have
2182 * been RDMA pinned, not much can be done for recovery.
2183 * But a SIGBUS should be delivered with vaddr provided so that the user
2184 * application has a chance to recover. Also, application processes'
2185 * election for MCE early killed will be honored.
2186 */
2187static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2188				struct folio *folio)
2189{
2190	LIST_HEAD(tokill);
2191
2192	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2193	kill_procs(&tokill, true, pfn, flags);
2194}
2195
2196/**
2197 * memory_failure - Handle memory failure of a page.
2198 * @pfn: Page Number of the corrupted page
 
2199 * @flags: fine tune action taken
2200 *
2201 * This function is called by the low level machine check code
2202 * of an architecture when it detects hardware memory corruption
2203 * of a page. It tries its best to recover, which includes
2204 * dropping pages, killing processes etc.
2205 *
2206 * The function is primarily of use for corruptions that
2207 * happen outside the current execution context (e.g. when
2208 * detected by a background scrubber)
2209 *
2210 * Must run in process context (e.g. a work queue) with interrupts
2211 * enabled and no spinlocks held.
2212 *
2213 * Return: 0 for successfully handled the memory error,
2214 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2215 *         < 0(except -EOPNOTSUPP) on failure.
2216 */
2217int memory_failure(unsigned long pfn, int flags)
2218{
 
2219	struct page *p;
2220	struct folio *folio;
2221	struct dev_pagemap *pgmap;
2222	int res = 0;
 
2223	unsigned long page_flags;
2224	bool retry = true;
2225	int hugetlb = 0;
2226
2227	if (!sysctl_memory_failure_recovery)
2228		panic("Memory failure on page %lx", pfn);
2229
2230	mutex_lock(&mf_mutex);
2231
2232	if (!(flags & MF_SW_SIMULATED))
2233		hw_memory_failure = true;
2234
2235	p = pfn_to_online_page(pfn);
2236	if (!p) {
2237		res = arch_memory_failure(pfn, flags);
2238		if (res == 0)
2239			goto unlock_mutex;
2240
2241		if (pfn_valid(pfn)) {
2242			pgmap = get_dev_pagemap(pfn, NULL);
2243			put_ref_page(pfn, flags);
2244			if (pgmap) {
2245				res = memory_failure_dev_pagemap(pfn, flags,
2246								 pgmap);
2247				goto unlock_mutex;
2248			}
2249		}
2250		pr_err("%#lx: memory outside kernel control\n", pfn);
2251		res = -ENXIO;
2252		goto unlock_mutex;
2253	}
2254
2255try_again:
2256	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2257	if (hugetlb)
2258		goto unlock_mutex;
2259
2260	if (TestSetPageHWPoison(p)) {
2261		pr_err("%#lx: already hardware poisoned\n", pfn);
2262		res = -EHWPOISON;
2263		if (flags & MF_ACTION_REQUIRED)
2264			res = kill_accessing_process(current, pfn, flags);
2265		if (flags & MF_COUNT_INCREASED)
2266			put_page(p);
2267		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2268		goto unlock_mutex;
2269	}
2270
2271	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2272	 * We need/can do nothing about count=0 pages.
2273	 * 1) it's a free page, and therefore in safe hand:
2274	 *    check_new_page() will be the gate keeper.
2275	 * 2) it's part of a non-compound high order page.
 
 
 
2276	 *    Implies some kernel user: cannot stop them from
2277	 *    R/W the page; let's pray that the page has been
2278	 *    used and will be freed some time later.
2279	 * In fact it's dangerous to directly bump up page count from 0,
2280	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2281	 */
2282	if (!(flags & MF_COUNT_INCREASED)) {
2283		res = get_hwpoison_page(p, flags);
2284		if (!res) {
2285			if (is_free_buddy_page(p)) {
2286				if (take_page_off_buddy(p)) {
2287					page_ref_inc(p);
2288					res = MF_RECOVERED;
2289				} else {
2290					/* We lost the race, try again */
2291					if (retry) {
2292						ClearPageHWPoison(p);
2293						retry = false;
2294						goto try_again;
2295					}
2296					res = MF_FAILED;
2297				}
2298				res = action_result(pfn, MF_MSG_BUDDY, res);
2299			} else {
2300				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2301			}
2302			goto unlock_mutex;
2303		} else if (res < 0) {
2304			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2305			goto unlock_mutex;
 
 
 
 
 
2306		}
2307	}
2308
2309	folio = page_folio(p);
2310
2311	/* filter pages that are protected from hwpoison test by users */
2312	folio_lock(folio);
2313	if (hwpoison_filter(p)) {
2314		ClearPageHWPoison(p);
2315		folio_unlock(folio);
2316		folio_put(folio);
2317		res = -EOPNOTSUPP;
2318		goto unlock_mutex;
2319	}
2320	folio_unlock(folio);
2321
2322	if (folio_test_large(folio)) {
2323		/*
2324		 * The flag must be set after the refcount is bumped
2325		 * otherwise it may race with THP split.
2326		 * And the flag can't be set in get_hwpoison_page() since
2327		 * it is called by soft offline too and it is just called
2328		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2329		 * place.
2330		 *
2331		 * Don't need care about the above error handling paths for
2332		 * get_hwpoison_page() since they handle either free page
2333		 * or unhandlable page.  The refcount is bumped iff the
2334		 * page is a valid handlable page.
2335		 */
2336		folio_set_has_hwpoisoned(folio);
2337		if (try_to_split_thp_page(p, false) < 0) {
2338			res = -EHWPOISON;
2339			kill_procs_now(p, pfn, flags, folio);
2340			put_page(p);
2341			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2342			goto unlock_mutex;
2343		}
 
 
 
2344		VM_BUG_ON_PAGE(!page_count(p), p);
2345		folio = page_folio(p);
2346	}
2347
2348	/*
2349	 * We ignore non-LRU pages for good reasons.
2350	 * - PG_locked is only well defined for LRU pages and a few others
2351	 * - to avoid races with __SetPageLocked()
2352	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2353	 * The check (unnecessarily) ignores LRU pages being isolated and
2354	 * walked by the page reclaim code, however that's not a big loss.
2355	 */
2356	shake_folio(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2357
2358	folio_lock(folio);
2359
2360	/*
2361	 * We're only intended to deal with the non-Compound page here.
2362	 * The page cannot become compound pages again as folio has been
2363	 * splited and extra refcnt is held.
2364	 */
2365	WARN_ON(folio_test_large(folio));
 
 
 
 
2366
2367	/*
2368	 * We use page flags to determine what action should be taken, but
2369	 * the flags can be modified by the error containment action.  One
2370	 * example is an mlocked page, where PG_mlocked is cleared by
2371	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2372	 * status correctly, we save a copy of the page flags at this time.
2373	 */
2374	page_flags = folio->flags;
2375
2376	/*
2377	 * __munlock_folio() may clear a writeback folio's LRU flag without
2378	 * the folio lock. We need to wait for writeback completion for this
2379	 * folio or it may trigger a vfs BUG while evicting inode.
2380	 */
2381	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2382		goto identify_page_state;
2383
2384	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2385	 * It's very difficult to mess with pages currently under IO
2386	 * and in many cases impossible, so we just avoid it here.
2387	 */
2388	folio_wait_writeback(folio);
2389
2390	/*
2391	 * Now take care of user space mappings.
2392	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
 
 
 
2393	 */
2394	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2395		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2396		goto unlock_page;
 
 
2397	}
2398
2399	/*
2400	 * Torn down by someone else?
2401	 */
2402	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2403	    folio->mapping == NULL) {
2404		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2405		goto unlock_page;
2406	}
2407
2408identify_page_state:
2409	res = identify_page_state(pfn, p, page_flags);
2410	mutex_unlock(&mf_mutex);
2411	return res;
2412unlock_page:
2413	folio_unlock(folio);
2414unlock_mutex:
2415	mutex_unlock(&mf_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
2416	return res;
2417}
2418EXPORT_SYMBOL_GPL(memory_failure);
2419
2420#define MEMORY_FAILURE_FIFO_ORDER	4
2421#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2422
2423struct memory_failure_entry {
2424	unsigned long pfn;
 
2425	int flags;
2426};
2427
2428struct memory_failure_cpu {
2429	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2430		      MEMORY_FAILURE_FIFO_SIZE);
2431	raw_spinlock_t lock;
2432	struct work_struct work;
2433};
2434
2435static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2436
2437/**
2438 * memory_failure_queue - Schedule handling memory failure of a page.
2439 * @pfn: Page Number of the corrupted page
 
2440 * @flags: Flags for memory failure handling
2441 *
2442 * This function is called by the low level hardware error handler
2443 * when it detects hardware memory corruption of a page. It schedules
2444 * the recovering of error page, including dropping pages, killing
2445 * processes etc.
2446 *
2447 * The function is primarily of use for corruptions that
2448 * happen outside the current execution context (e.g. when
2449 * detected by a background scrubber)
2450 *
2451 * Can run in IRQ context.
2452 */
2453void memory_failure_queue(unsigned long pfn, int flags)
2454{
2455	struct memory_failure_cpu *mf_cpu;
2456	unsigned long proc_flags;
2457	bool buffer_overflow;
2458	struct memory_failure_entry entry = {
2459		.pfn =		pfn,
 
2460		.flags =	flags,
2461	};
2462
2463	mf_cpu = &get_cpu_var(memory_failure_cpu);
2464	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2465	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2466	if (!buffer_overflow)
2467		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2468	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
 
 
 
2469	put_cpu_var(memory_failure_cpu);
2470	if (buffer_overflow)
2471		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2472		       pfn);
2473}
2474EXPORT_SYMBOL_GPL(memory_failure_queue);
2475
2476static void memory_failure_work_func(struct work_struct *work)
2477{
2478	struct memory_failure_cpu *mf_cpu;
2479	struct memory_failure_entry entry = { 0, };
2480	unsigned long proc_flags;
2481	int gotten;
2482
2483	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2484	for (;;) {
2485		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2486		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2487		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2488		if (!gotten)
2489			break;
2490		if (entry.flags & MF_SOFT_OFFLINE)
2491			soft_offline_page(entry.pfn, entry.flags);
2492		else
2493			memory_failure(entry.pfn, entry.flags);
2494	}
2495}
2496
2497/*
2498 * Process memory_failure work queued on the specified CPU.
2499 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2500 */
2501void memory_failure_queue_kick(int cpu)
2502{
2503	struct memory_failure_cpu *mf_cpu;
2504
2505	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2506	cancel_work_sync(&mf_cpu->work);
2507	memory_failure_work_func(&mf_cpu->work);
2508}
2509
2510static int __init memory_failure_init(void)
2511{
2512	struct memory_failure_cpu *mf_cpu;
2513	int cpu;
2514
2515	for_each_possible_cpu(cpu) {
2516		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2517		raw_spin_lock_init(&mf_cpu->lock);
2518		INIT_KFIFO(mf_cpu->fifo);
2519		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2520	}
2521
2522	register_sysctl_init("vm", memory_failure_table);
2523
2524	return 0;
2525}
2526core_initcall(memory_failure_init);
2527
2528#undef pr_fmt
2529#define pr_fmt(fmt)	"Unpoison: " fmt
2530#define unpoison_pr_info(fmt, pfn, rs)			\
2531({							\
2532	if (__ratelimit(rs))				\
2533		pr_info(fmt, pfn);			\
2534})
2535
2536/**
2537 * unpoison_memory - Unpoison a previously poisoned page
2538 * @pfn: Page number of the to be unpoisoned page
2539 *
2540 * Software-unpoison a page that has been poisoned by
2541 * memory_failure() earlier.
2542 *
2543 * This is only done on the software-level, so it only works
2544 * for linux injected failures, not real hardware failures
2545 *
2546 * Returns 0 for success, otherwise -errno.
2547 */
2548int unpoison_memory(unsigned long pfn)
2549{
2550	struct folio *folio;
2551	struct page *p;
2552	int ret = -EBUSY, ghp;
2553	unsigned long count;
2554	bool huge = false;
2555	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2556					DEFAULT_RATELIMIT_BURST);
2557
2558	if (!pfn_valid(pfn))
2559		return -ENXIO;
2560
2561	p = pfn_to_page(pfn);
2562	folio = page_folio(p);
2563
2564	mutex_lock(&mf_mutex);
 
 
 
 
2565
2566	if (hw_memory_failure) {
2567		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2568				 pfn, &unpoison_rs);
2569		ret = -EOPNOTSUPP;
2570		goto unlock_mutex;
2571	}
2572
2573	if (is_huge_zero_folio(folio)) {
2574		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2575				 pfn, &unpoison_rs);
2576		ret = -EOPNOTSUPP;
2577		goto unlock_mutex;
2578	}
2579
2580	if (!PageHWPoison(p)) {
2581		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2582				 pfn, &unpoison_rs);
2583		goto unlock_mutex;
2584	}
2585
2586	if (folio_ref_count(folio) > 1) {
2587		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
 
 
 
 
 
2588				 pfn, &unpoison_rs);
2589		goto unlock_mutex;
2590	}
2591
2592	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2593	    folio_test_reserved(folio) || folio_test_offline(folio))
2594		goto unlock_mutex;
2595
2596	if (folio_mapped(folio)) {
2597		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
2598				 pfn, &unpoison_rs);
2599		goto unlock_mutex;
2600	}
2601
2602	if (folio_mapping(folio)) {
2603		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
 
 
 
 
 
 
 
2604				 pfn, &unpoison_rs);
2605		goto unlock_mutex;
 
 
 
2606	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2607
2608	ghp = get_hwpoison_page(p, MF_UNPOISON);
2609	if (!ghp) {
2610		if (folio_test_hugetlb(folio)) {
2611			huge = true;
2612			count = folio_free_raw_hwp(folio, false);
2613			if (count == 0)
2614				goto unlock_mutex;
2615		}
2616		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2617	} else if (ghp < 0) {
2618		if (ghp == -EHWPOISON) {
2619			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
 
 
2620		} else {
2621			ret = ghp;
2622			unpoison_pr_info("%#lx: failed to grab page\n",
2623					 pfn, &unpoison_rs);
2624		}
2625	} else {
2626		if (folio_test_hugetlb(folio)) {
2627			huge = true;
2628			count = folio_free_raw_hwp(folio, false);
2629			if (count == 0) {
2630				folio_put(folio);
2631				goto unlock_mutex;
2632			}
2633		}
 
 
 
 
 
 
 
 
2634
2635		folio_put(folio);
2636		if (TestClearPageHWPoison(p)) {
2637			folio_put(folio);
2638			ret = 0;
 
 
 
 
 
 
2639		}
2640	}
2641
2642unlock_mutex:
2643	mutex_unlock(&mf_mutex);
2644	if (!ret) {
2645		if (!huge)
2646			num_poisoned_pages_sub(pfn, 1);
2647		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2648				 page_to_pfn(p), &unpoison_rs);
2649	}
2650	return ret;
2651}
2652EXPORT_SYMBOL(unpoison_memory);
2653
2654#undef pr_fmt
2655#define pr_fmt(fmt) "Soft offline: " fmt
2656
2657/*
2658 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2659 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2660 * If the page is mapped, it migrates the contents over.
2661 */
2662static int soft_offline_in_use_page(struct page *page)
2663{
2664	long ret = 0;
2665	unsigned long pfn = page_to_pfn(page);
2666	struct folio *folio = page_folio(page);
2667	char const *msg_page[] = {"page", "hugepage"};
2668	bool huge = folio_test_hugetlb(folio);
2669	bool isolated;
2670	LIST_HEAD(pagelist);
2671	struct migration_target_control mtc = {
2672		.nid = NUMA_NO_NODE,
2673		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2674		.reason = MR_MEMORY_FAILURE,
2675	};
2676
2677	if (!huge && folio_test_large(folio)) {
2678		if (try_to_split_thp_page(page, true)) {
2679			pr_info("%#lx: thp split failed\n", pfn);
2680			return -EBUSY;
2681		}
2682		folio = page_folio(page);
 
 
 
 
2683	}
 
2684
2685	folio_lock(folio);
2686	if (!huge)
2687		folio_wait_writeback(folio);
2688	if (PageHWPoison(page)) {
2689		folio_unlock(folio);
2690		folio_put(folio);
2691		pr_info("%#lx: page already poisoned\n", pfn);
2692		return 0;
 
2693	}
2694
2695	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
 
 
 
 
2696		/*
2697		 * Try to invalidate first. This should work for
2698		 * non dirty unmapped page cache pages.
 
2699		 */
2700		ret = mapping_evict_folio(folio_mapping(folio), folio);
2701	folio_unlock(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2702
2703	if (ret) {
2704		pr_info("%#lx: invalidated\n", pfn);
2705		page_handle_poison(page, false, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2706		return 0;
2707	}
2708
2709	isolated = isolate_folio_to_list(folio, &pagelist);
2710
2711	/*
2712	 * If we succeed to isolate the folio, we grabbed another refcount on
2713	 * the folio, so we can safely drop the one we got from get_any_page().
2714	 * If we failed to isolate the folio, it means that we cannot go further
2715	 * and we will return an error, so drop the reference we got from
2716	 * get_any_page() as well.
 
 
 
2717	 */
2718	folio_put(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2719
2720	if (isolated) {
2721		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2722			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2723		if (!ret) {
2724			bool release = !huge;
 
 
 
 
 
 
2725
2726			if (!page_handle_poison(page, huge, release))
2727				ret = -EBUSY;
2728		} else {
2729			if (!list_empty(&pagelist))
2730				putback_movable_pages(&pagelist);
2731
2732			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2733				pfn, msg_page[huge], ret, &page->flags);
2734			if (ret > 0)
2735				ret = -EBUSY;
 
 
 
 
 
 
2736		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737	} else {
2738		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2739			pfn, msg_page[huge], page_count(page), &page->flags);
2740		ret = -EBUSY;
2741	}
2742	return ret;
2743}
2744
2745/**
2746 * soft_offline_page - Soft offline a page.
2747 * @pfn: pfn to soft-offline
2748 * @flags: flags. Same as memory_failure().
2749 *
2750 * Returns 0 on success,
2751 *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2752 *         disabled by /proc/sys/vm/enable_soft_offline,
2753 *         < 0 otherwise negated errno.
2754 *
2755 * Soft offline a page, by migration or invalidation,
2756 * without killing anything. This is for the case when
2757 * a page is not corrupted yet (so it's still valid to access),
2758 * but has had a number of corrected errors and is better taken
2759 * out.
2760 *
2761 * The actual policy on when to do that is maintained by
2762 * user space.
2763 *
2764 * This should never impact any application or cause data loss,
2765 * however it might take some time.
2766 *
2767 * This is not a 100% solution for all memory, but tries to be
2768 * ``good enough'' for the majority of memory.
2769 */
2770int soft_offline_page(unsigned long pfn, int flags)
2771{
2772	int ret;
2773	bool try_again = true;
2774	struct page *page;
2775
2776	if (!pfn_valid(pfn)) {
2777		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2778		return -ENXIO;
2779	}
2780
2781	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2782	page = pfn_to_online_page(pfn);
2783	if (!page) {
2784		put_ref_page(pfn, flags);
2785		return -EIO;
2786	}
2787
2788	if (!sysctl_enable_soft_offline) {
2789		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2790		put_ref_page(pfn, flags);
2791		return -EOPNOTSUPP;
2792	}
2793
2794	mutex_lock(&mf_mutex);
2795
2796	if (PageHWPoison(page)) {
2797		pr_info("%#lx: page already poisoned\n", pfn);
2798		put_ref_page(pfn, flags);
2799		mutex_unlock(&mf_mutex);
2800		return 0;
2801	}
2802
2803retry:
2804	get_online_mems();
2805	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2806	put_online_mems();
2807
2808	if (hwpoison_filter(page)) {
2809		if (ret > 0)
2810			put_page(page);
2811
2812		mutex_unlock(&mf_mutex);
2813		return -EOPNOTSUPP;
2814	}
2815
2816	if (ret > 0) {
2817		ret = soft_offline_in_use_page(page);
2818	} else if (ret == 0) {
2819		if (!page_handle_poison(page, true, false)) {
2820			if (try_again) {
2821				try_again = false;
2822				flags &= ~MF_COUNT_INCREASED;
2823				goto retry;
2824			}
2825			ret = -EBUSY;
2826		}
2827	}
2828
2829	mutex_unlock(&mf_mutex);
2830
2831	return ret;
2832}