Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.6
 
  1/*
  2 * High memory handling common code and variables.
  3 *
  4 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
  5 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
  6 *
  7 *
  8 * Redesigned the x86 32-bit VM architecture to deal with
  9 * 64-bit physical space. With current x86 CPUs this
 10 * means up to 64 Gigabytes physical RAM.
 11 *
 12 * Rewrote high memory support to move the page cache into
 13 * high memory. Implemented permanent (schedulable) kmaps
 14 * based on Linus' idea.
 15 *
 16 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 17 */
 18
 19#include <linux/mm.h>
 20#include <linux/export.h>
 21#include <linux/swap.h>
 22#include <linux/bio.h>
 23#include <linux/pagemap.h>
 24#include <linux/mempool.h>
 25#include <linux/blkdev.h>
 26#include <linux/init.h>
 27#include <linux/hash.h>
 28#include <linux/highmem.h>
 29#include <linux/kgdb.h>
 30#include <asm/tlbflush.h>
 
 31
 
 
 
 
 
 32
 33#if defined(CONFIG_HIGHMEM) || defined(CONFIG_X86_32)
 34DEFINE_PER_CPU(int, __kmap_atomic_idx);
 35#endif
 
 36
 37/*
 38 * Virtual_count is not a pure "count".
 39 *  0 means that it is not mapped, and has not been mapped
 40 *    since a TLB flush - it is usable.
 41 *  1 means that there are no users, but it has been mapped
 42 *    since the last TLB flush - so we can't use it.
 43 *  n means that there are (n-1) current users of it.
 44 */
 45#ifdef CONFIG_HIGHMEM
 46
 47/*
 48 * Architecture with aliasing data cache may define the following family of
 49 * helper functions in its asm/highmem.h to control cache color of virtual
 50 * addresses where physical memory pages are mapped by kmap.
 51 */
 52#ifndef get_pkmap_color
 53
 54/*
 55 * Determine color of virtual address where the page should be mapped.
 56 */
 57static inline unsigned int get_pkmap_color(struct page *page)
 58{
 59	return 0;
 60}
 61#define get_pkmap_color get_pkmap_color
 62
 63/*
 64 * Get next index for mapping inside PKMAP region for page with given color.
 65 */
 66static inline unsigned int get_next_pkmap_nr(unsigned int color)
 67{
 68	static unsigned int last_pkmap_nr;
 69
 70	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
 71	return last_pkmap_nr;
 72}
 73
 74/*
 75 * Determine if page index inside PKMAP region (pkmap_nr) of given color
 76 * has wrapped around PKMAP region end. When this happens an attempt to
 77 * flush all unused PKMAP slots is made.
 78 */
 79static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
 80{
 81	return pkmap_nr == 0;
 82}
 83
 84/*
 85 * Get the number of PKMAP entries of the given color. If no free slot is
 86 * found after checking that many entries, kmap will sleep waiting for
 87 * someone to call kunmap and free PKMAP slot.
 88 */
 89static inline int get_pkmap_entries_count(unsigned int color)
 90{
 91	return LAST_PKMAP;
 92}
 93
 94/*
 95 * Get head of a wait queue for PKMAP entries of the given color.
 96 * Wait queues for different mapping colors should be independent to avoid
 97 * unnecessary wakeups caused by freeing of slots of other colors.
 98 */
 99static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
100{
101	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
102
103	return &pkmap_map_wait;
104}
105#endif
106
107unsigned long totalhigh_pages __read_mostly;
108EXPORT_SYMBOL(totalhigh_pages);
 
 
109
 
 
 
 
110
111EXPORT_PER_CPU_SYMBOL(__kmap_atomic_idx);
 
112
113unsigned int nr_free_highpages (void)
114{
115	pg_data_t *pgdat;
116	unsigned int pages = 0;
117
118	for_each_online_pgdat(pgdat) {
119		pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
120			NR_FREE_PAGES);
121		if (zone_movable_is_highmem())
122			pages += zone_page_state(
123					&pgdat->node_zones[ZONE_MOVABLE],
124					NR_FREE_PAGES);
125	}
126
127	return pages;
128}
 
129
130static int pkmap_count[LAST_PKMAP];
131static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
132
133pte_t * pkmap_page_table;
134
135/*
136 * Most architectures have no use for kmap_high_get(), so let's abstract
137 * the disabling of IRQ out of the locking in that case to save on a
138 * potential useless overhead.
139 */
140#ifdef ARCH_NEEDS_KMAP_HIGH_GET
141#define lock_kmap()             spin_lock_irq(&kmap_lock)
142#define unlock_kmap()           spin_unlock_irq(&kmap_lock)
143#define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
144#define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
145#else
146#define lock_kmap()             spin_lock(&kmap_lock)
147#define unlock_kmap()           spin_unlock(&kmap_lock)
148#define lock_kmap_any(flags)    \
149		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
150#define unlock_kmap_any(flags)  \
151		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
152#endif
153
154struct page *kmap_to_page(void *vaddr)
155{
 
 
156	unsigned long addr = (unsigned long)vaddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
157
158	if (addr >= PKMAP_ADDR(0) && addr < PKMAP_ADDR(LAST_PKMAP)) {
159		int i = PKMAP_NR(addr);
160		return pte_page(pkmap_page_table[i]);
 
 
 
161	}
162
163	return virt_to_page(addr);
164}
165EXPORT_SYMBOL(kmap_to_page);
166
167static void flush_all_zero_pkmaps(void)
168{
169	int i;
170	int need_flush = 0;
171
172	flush_cache_kmaps();
173
174	for (i = 0; i < LAST_PKMAP; i++) {
175		struct page *page;
 
176
177		/*
178		 * zero means we don't have anything to do,
179		 * >1 means that it is still in use. Only
180		 * a count of 1 means that it is free but
181		 * needs to be unmapped
182		 */
183		if (pkmap_count[i] != 1)
184			continue;
185		pkmap_count[i] = 0;
186
187		/* sanity check */
188		BUG_ON(pte_none(pkmap_page_table[i]));
 
189
190		/*
191		 * Don't need an atomic fetch-and-clear op here;
192		 * no-one has the page mapped, and cannot get at
193		 * its virtual address (and hence PTE) without first
194		 * getting the kmap_lock (which is held here).
195		 * So no dangers, even with speculative execution.
196		 */
197		page = pte_page(pkmap_page_table[i]);
198		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
199
200		set_page_address(page, NULL);
201		need_flush = 1;
202	}
203	if (need_flush)
204		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
205}
206
207/**
208 * kmap_flush_unused - flush all unused kmap mappings in order to remove stray mappings
209 */
210void kmap_flush_unused(void)
211{
212	lock_kmap();
213	flush_all_zero_pkmaps();
214	unlock_kmap();
215}
216
217static inline unsigned long map_new_virtual(struct page *page)
218{
219	unsigned long vaddr;
220	int count;
221	unsigned int last_pkmap_nr;
222	unsigned int color = get_pkmap_color(page);
223
224start:
225	count = get_pkmap_entries_count(color);
226	/* Find an empty entry */
227	for (;;) {
228		last_pkmap_nr = get_next_pkmap_nr(color);
229		if (no_more_pkmaps(last_pkmap_nr, color)) {
230			flush_all_zero_pkmaps();
231			count = get_pkmap_entries_count(color);
232		}
233		if (!pkmap_count[last_pkmap_nr])
234			break;	/* Found a usable entry */
235		if (--count)
236			continue;
237
238		/*
239		 * Sleep for somebody else to unmap their entries
240		 */
241		{
242			DECLARE_WAITQUEUE(wait, current);
243			wait_queue_head_t *pkmap_map_wait =
244				get_pkmap_wait_queue_head(color);
245
246			__set_current_state(TASK_UNINTERRUPTIBLE);
247			add_wait_queue(pkmap_map_wait, &wait);
248			unlock_kmap();
249			schedule();
250			remove_wait_queue(pkmap_map_wait, &wait);
251			lock_kmap();
252
253			/* Somebody else might have mapped it while we slept */
254			if (page_address(page))
255				return (unsigned long)page_address(page);
256
257			/* Re-start */
258			goto start;
259		}
260	}
261	vaddr = PKMAP_ADDR(last_pkmap_nr);
262	set_pte_at(&init_mm, vaddr,
263		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
264
265	pkmap_count[last_pkmap_nr] = 1;
266	set_page_address(page, (void *)vaddr);
267
268	return vaddr;
269}
270
271/**
272 * kmap_high - map a highmem page into memory
273 * @page: &struct page to map
274 *
275 * Returns the page's virtual memory address.
276 *
277 * We cannot call this from interrupts, as it may block.
278 */
279void *kmap_high(struct page *page)
280{
281	unsigned long vaddr;
282
283	/*
284	 * For highmem pages, we can't trust "virtual" until
285	 * after we have the lock.
286	 */
287	lock_kmap();
288	vaddr = (unsigned long)page_address(page);
289	if (!vaddr)
290		vaddr = map_new_virtual(page);
291	pkmap_count[PKMAP_NR(vaddr)]++;
292	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
293	unlock_kmap();
294	return (void*) vaddr;
295}
296
297EXPORT_SYMBOL(kmap_high);
298
299#ifdef ARCH_NEEDS_KMAP_HIGH_GET
300/**
301 * kmap_high_get - pin a highmem page into memory
302 * @page: &struct page to pin
303 *
304 * Returns the page's current virtual memory address, or NULL if no mapping
305 * exists.  If and only if a non null address is returned then a
306 * matching call to kunmap_high() is necessary.
307 *
308 * This can be called from any context.
309 */
310void *kmap_high_get(struct page *page)
311{
312	unsigned long vaddr, flags;
313
314	lock_kmap_any(flags);
315	vaddr = (unsigned long)page_address(page);
316	if (vaddr) {
317		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
318		pkmap_count[PKMAP_NR(vaddr)]++;
319	}
320	unlock_kmap_any(flags);
321	return (void*) vaddr;
322}
323#endif
324
325/**
326 * kunmap_high - unmap a highmem page into memory
327 * @page: &struct page to unmap
328 *
329 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
330 * only from user context.
331 */
332void kunmap_high(struct page *page)
333{
334	unsigned long vaddr;
335	unsigned long nr;
336	unsigned long flags;
337	int need_wakeup;
338	unsigned int color = get_pkmap_color(page);
339	wait_queue_head_t *pkmap_map_wait;
340
341	lock_kmap_any(flags);
342	vaddr = (unsigned long)page_address(page);
343	BUG_ON(!vaddr);
344	nr = PKMAP_NR(vaddr);
345
346	/*
347	 * A count must never go down to zero
348	 * without a TLB flush!
349	 */
350	need_wakeup = 0;
351	switch (--pkmap_count[nr]) {
352	case 0:
353		BUG();
354	case 1:
355		/*
356		 * Avoid an unnecessary wake_up() function call.
357		 * The common case is pkmap_count[] == 1, but
358		 * no waiters.
359		 * The tasks queued in the wait-queue are guarded
360		 * by both the lock in the wait-queue-head and by
361		 * the kmap_lock.  As the kmap_lock is held here,
362		 * no need for the wait-queue-head's lock.  Simply
363		 * test if the queue is empty.
364		 */
365		pkmap_map_wait = get_pkmap_wait_queue_head(color);
366		need_wakeup = waitqueue_active(pkmap_map_wait);
367	}
368	unlock_kmap_any(flags);
369
370	/* do wake-up, if needed, race-free outside of the spin lock */
371	if (need_wakeup)
372		wake_up(pkmap_map_wait);
373}
374
375EXPORT_SYMBOL(kunmap_high);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
376#endif
377
378#if defined(HASHED_PAGE_VIRTUAL)
379
380#define PA_HASH_ORDER	7
381
382/*
383 * Describes one page->virtual association
384 */
385struct page_address_map {
386	struct page *page;
387	void *virtual;
388	struct list_head list;
389};
390
391static struct page_address_map page_address_maps[LAST_PKMAP];
392
393/*
394 * Hash table bucket
395 */
396static struct page_address_slot {
397	struct list_head lh;			/* List of page_address_maps */
398	spinlock_t lock;			/* Protect this bucket's list */
399} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
400
401static struct page_address_slot *page_slot(const struct page *page)
402{
403	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
404}
405
406/**
407 * page_address - get the mapped virtual address of a page
408 * @page: &struct page to get the virtual address of
409 *
410 * Returns the page's virtual address.
411 */
412void *page_address(const struct page *page)
413{
414	unsigned long flags;
415	void *ret;
416	struct page_address_slot *pas;
417
418	if (!PageHighMem(page))
419		return lowmem_page_address(page);
420
421	pas = page_slot(page);
422	ret = NULL;
423	spin_lock_irqsave(&pas->lock, flags);
424	if (!list_empty(&pas->lh)) {
425		struct page_address_map *pam;
426
427		list_for_each_entry(pam, &pas->lh, list) {
428			if (pam->page == page) {
429				ret = pam->virtual;
430				goto done;
431			}
432		}
433	}
434done:
435	spin_unlock_irqrestore(&pas->lock, flags);
436	return ret;
437}
438
439EXPORT_SYMBOL(page_address);
440
441/**
442 * set_page_address - set a page's virtual address
443 * @page: &struct page to set
444 * @virtual: virtual address to use
445 */
446void set_page_address(struct page *page, void *virtual)
447{
448	unsigned long flags;
449	struct page_address_slot *pas;
450	struct page_address_map *pam;
451
452	BUG_ON(!PageHighMem(page));
453
454	pas = page_slot(page);
455	if (virtual) {		/* Add */
456		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
457		pam->page = page;
458		pam->virtual = virtual;
459
460		spin_lock_irqsave(&pas->lock, flags);
461		list_add_tail(&pam->list, &pas->lh);
462		spin_unlock_irqrestore(&pas->lock, flags);
463	} else {		/* Remove */
464		spin_lock_irqsave(&pas->lock, flags);
465		list_for_each_entry(pam, &pas->lh, list) {
466			if (pam->page == page) {
467				list_del(&pam->list);
468				spin_unlock_irqrestore(&pas->lock, flags);
469				goto done;
470			}
471		}
472		spin_unlock_irqrestore(&pas->lock, flags);
473	}
474done:
475	return;
476}
477
478void __init page_address_init(void)
479{
480	int i;
481
482	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
483		INIT_LIST_HEAD(&page_address_htable[i].lh);
484		spin_lock_init(&page_address_htable[i].lock);
485	}
486}
487
488#endif	/* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * High memory handling common code and variables.
  4 *
  5 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
  6 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
  7 *
  8 *
  9 * Redesigned the x86 32-bit VM architecture to deal with
 10 * 64-bit physical space. With current x86 CPUs this
 11 * means up to 64 Gigabytes physical RAM.
 12 *
 13 * Rewrote high memory support to move the page cache into
 14 * high memory. Implemented permanent (schedulable) kmaps
 15 * based on Linus' idea.
 16 *
 17 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 18 */
 19
 20#include <linux/mm.h>
 21#include <linux/export.h>
 22#include <linux/swap.h>
 23#include <linux/bio.h>
 24#include <linux/pagemap.h>
 25#include <linux/mempool.h>
 
 26#include <linux/init.h>
 27#include <linux/hash.h>
 28#include <linux/highmem.h>
 29#include <linux/kgdb.h>
 30#include <asm/tlbflush.h>
 31#include <linux/vmalloc.h>
 32
 33#ifdef CONFIG_KMAP_LOCAL
 34static inline int kmap_local_calc_idx(int idx)
 35{
 36	return idx + KM_MAX_IDX * smp_processor_id();
 37}
 38
 39#ifndef arch_kmap_local_map_idx
 40#define arch_kmap_local_map_idx(idx, pfn)	kmap_local_calc_idx(idx)
 41#endif
 42#endif /* CONFIG_KMAP_LOCAL */
 43
 44/*
 45 * Virtual_count is not a pure "count".
 46 *  0 means that it is not mapped, and has not been mapped
 47 *    since a TLB flush - it is usable.
 48 *  1 means that there are no users, but it has been mapped
 49 *    since the last TLB flush - so we can't use it.
 50 *  n means that there are (n-1) current users of it.
 51 */
 52#ifdef CONFIG_HIGHMEM
 53
 54/*
 55 * Architecture with aliasing data cache may define the following family of
 56 * helper functions in its asm/highmem.h to control cache color of virtual
 57 * addresses where physical memory pages are mapped by kmap.
 58 */
 59#ifndef get_pkmap_color
 60
 61/*
 62 * Determine color of virtual address where the page should be mapped.
 63 */
 64static inline unsigned int get_pkmap_color(struct page *page)
 65{
 66	return 0;
 67}
 68#define get_pkmap_color get_pkmap_color
 69
 70/*
 71 * Get next index for mapping inside PKMAP region for page with given color.
 72 */
 73static inline unsigned int get_next_pkmap_nr(unsigned int color)
 74{
 75	static unsigned int last_pkmap_nr;
 76
 77	last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
 78	return last_pkmap_nr;
 79}
 80
 81/*
 82 * Determine if page index inside PKMAP region (pkmap_nr) of given color
 83 * has wrapped around PKMAP region end. When this happens an attempt to
 84 * flush all unused PKMAP slots is made.
 85 */
 86static inline int no_more_pkmaps(unsigned int pkmap_nr, unsigned int color)
 87{
 88	return pkmap_nr == 0;
 89}
 90
 91/*
 92 * Get the number of PKMAP entries of the given color. If no free slot is
 93 * found after checking that many entries, kmap will sleep waiting for
 94 * someone to call kunmap and free PKMAP slot.
 95 */
 96static inline int get_pkmap_entries_count(unsigned int color)
 97{
 98	return LAST_PKMAP;
 99}
100
101/*
102 * Get head of a wait queue for PKMAP entries of the given color.
103 * Wait queues for different mapping colors should be independent to avoid
104 * unnecessary wakeups caused by freeing of slots of other colors.
105 */
106static inline wait_queue_head_t *get_pkmap_wait_queue_head(unsigned int color)
107{
108	static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
109
110	return &pkmap_map_wait;
111}
112#endif
113
114unsigned long __nr_free_highpages(void)
115{
116	unsigned long pages = 0;
117	struct zone *zone;
118
119	for_each_populated_zone(zone) {
120		if (is_highmem(zone))
121			pages += zone_page_state(zone, NR_FREE_PAGES);
122	}
123
124	return pages;
125}
126
127unsigned long __totalhigh_pages(void)
128{
129	unsigned long pages = 0;
130	struct zone *zone;
131
132	for_each_populated_zone(zone) {
133		if (is_highmem(zone))
134			pages += zone_managed_pages(zone);
 
 
 
 
135	}
136
137	return pages;
138}
139EXPORT_SYMBOL(__totalhigh_pages);
140
141static int pkmap_count[LAST_PKMAP];
142static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
143
144pte_t *pkmap_page_table;
145
146/*
147 * Most architectures have no use for kmap_high_get(), so let's abstract
148 * the disabling of IRQ out of the locking in that case to save on a
149 * potential useless overhead.
150 */
151#ifdef ARCH_NEEDS_KMAP_HIGH_GET
152#define lock_kmap()             spin_lock_irq(&kmap_lock)
153#define unlock_kmap()           spin_unlock_irq(&kmap_lock)
154#define lock_kmap_any(flags)    spin_lock_irqsave(&kmap_lock, flags)
155#define unlock_kmap_any(flags)  spin_unlock_irqrestore(&kmap_lock, flags)
156#else
157#define lock_kmap()             spin_lock(&kmap_lock)
158#define unlock_kmap()           spin_unlock(&kmap_lock)
159#define lock_kmap_any(flags)    \
160		do { spin_lock(&kmap_lock); (void)(flags); } while (0)
161#define unlock_kmap_any(flags)  \
162		do { spin_unlock(&kmap_lock); (void)(flags); } while (0)
163#endif
164
165struct page *__kmap_to_page(void *vaddr)
166{
167	unsigned long base = (unsigned long) vaddr & PAGE_MASK;
168	struct kmap_ctrl *kctrl = &current->kmap_ctrl;
169	unsigned long addr = (unsigned long)vaddr;
170	int i;
171
172	/* kmap() mappings */
173	if (WARN_ON_ONCE(addr >= PKMAP_ADDR(0) &&
174			 addr < PKMAP_ADDR(LAST_PKMAP)))
175		return pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(addr)]));
176
177	/* kmap_local_page() mappings */
178	if (WARN_ON_ONCE(base >= __fix_to_virt(FIX_KMAP_END) &&
179			 base < __fix_to_virt(FIX_KMAP_BEGIN))) {
180		for (i = 0; i < kctrl->idx; i++) {
181			unsigned long base_addr;
182			int idx;
183
184			idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
185			base_addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
186
187			if (base_addr == base)
188				return pte_page(kctrl->pteval[i]);
189		}
190	}
191
192	return virt_to_page(vaddr);
193}
194EXPORT_SYMBOL(__kmap_to_page);
195
196static void flush_all_zero_pkmaps(void)
197{
198	int i;
199	int need_flush = 0;
200
201	flush_cache_kmaps();
202
203	for (i = 0; i < LAST_PKMAP; i++) {
204		struct page *page;
205		pte_t ptent;
206
207		/*
208		 * zero means we don't have anything to do,
209		 * >1 means that it is still in use. Only
210		 * a count of 1 means that it is free but
211		 * needs to be unmapped
212		 */
213		if (pkmap_count[i] != 1)
214			continue;
215		pkmap_count[i] = 0;
216
217		/* sanity check */
218		ptent = ptep_get(&pkmap_page_table[i]);
219		BUG_ON(pte_none(ptent));
220
221		/*
222		 * Don't need an atomic fetch-and-clear op here;
223		 * no-one has the page mapped, and cannot get at
224		 * its virtual address (and hence PTE) without first
225		 * getting the kmap_lock (which is held here).
226		 * So no dangers, even with speculative execution.
227		 */
228		page = pte_page(ptent);
229		pte_clear(&init_mm, PKMAP_ADDR(i), &pkmap_page_table[i]);
230
231		set_page_address(page, NULL);
232		need_flush = 1;
233	}
234	if (need_flush)
235		flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
236}
237
238void __kmap_flush_unused(void)
 
 
 
239{
240	lock_kmap();
241	flush_all_zero_pkmaps();
242	unlock_kmap();
243}
244
245static inline unsigned long map_new_virtual(struct page *page)
246{
247	unsigned long vaddr;
248	int count;
249	unsigned int last_pkmap_nr;
250	unsigned int color = get_pkmap_color(page);
251
252start:
253	count = get_pkmap_entries_count(color);
254	/* Find an empty entry */
255	for (;;) {
256		last_pkmap_nr = get_next_pkmap_nr(color);
257		if (no_more_pkmaps(last_pkmap_nr, color)) {
258			flush_all_zero_pkmaps();
259			count = get_pkmap_entries_count(color);
260		}
261		if (!pkmap_count[last_pkmap_nr])
262			break;	/* Found a usable entry */
263		if (--count)
264			continue;
265
266		/*
267		 * Sleep for somebody else to unmap their entries
268		 */
269		{
270			DECLARE_WAITQUEUE(wait, current);
271			wait_queue_head_t *pkmap_map_wait =
272				get_pkmap_wait_queue_head(color);
273
274			__set_current_state(TASK_UNINTERRUPTIBLE);
275			add_wait_queue(pkmap_map_wait, &wait);
276			unlock_kmap();
277			schedule();
278			remove_wait_queue(pkmap_map_wait, &wait);
279			lock_kmap();
280
281			/* Somebody else might have mapped it while we slept */
282			if (page_address(page))
283				return (unsigned long)page_address(page);
284
285			/* Re-start */
286			goto start;
287		}
288	}
289	vaddr = PKMAP_ADDR(last_pkmap_nr);
290	set_pte_at(&init_mm, vaddr,
291		   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
292
293	pkmap_count[last_pkmap_nr] = 1;
294	set_page_address(page, (void *)vaddr);
295
296	return vaddr;
297}
298
299/**
300 * kmap_high - map a highmem page into memory
301 * @page: &struct page to map
302 *
303 * Returns the page's virtual memory address.
304 *
305 * We cannot call this from interrupts, as it may block.
306 */
307void *kmap_high(struct page *page)
308{
309	unsigned long vaddr;
310
311	/*
312	 * For highmem pages, we can't trust "virtual" until
313	 * after we have the lock.
314	 */
315	lock_kmap();
316	vaddr = (unsigned long)page_address(page);
317	if (!vaddr)
318		vaddr = map_new_virtual(page);
319	pkmap_count[PKMAP_NR(vaddr)]++;
320	BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
321	unlock_kmap();
322	return (void *) vaddr;
323}
 
324EXPORT_SYMBOL(kmap_high);
325
326#ifdef ARCH_NEEDS_KMAP_HIGH_GET
327/**
328 * kmap_high_get - pin a highmem page into memory
329 * @page: &struct page to pin
330 *
331 * Returns the page's current virtual memory address, or NULL if no mapping
332 * exists.  If and only if a non null address is returned then a
333 * matching call to kunmap_high() is necessary.
334 *
335 * This can be called from any context.
336 */
337void *kmap_high_get(struct page *page)
338{
339	unsigned long vaddr, flags;
340
341	lock_kmap_any(flags);
342	vaddr = (unsigned long)page_address(page);
343	if (vaddr) {
344		BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 1);
345		pkmap_count[PKMAP_NR(vaddr)]++;
346	}
347	unlock_kmap_any(flags);
348	return (void *) vaddr;
349}
350#endif
351
352/**
353 * kunmap_high - unmap a highmem page into memory
354 * @page: &struct page to unmap
355 *
356 * If ARCH_NEEDS_KMAP_HIGH_GET is not defined then this may be called
357 * only from user context.
358 */
359void kunmap_high(struct page *page)
360{
361	unsigned long vaddr;
362	unsigned long nr;
363	unsigned long flags;
364	int need_wakeup;
365	unsigned int color = get_pkmap_color(page);
366	wait_queue_head_t *pkmap_map_wait;
367
368	lock_kmap_any(flags);
369	vaddr = (unsigned long)page_address(page);
370	BUG_ON(!vaddr);
371	nr = PKMAP_NR(vaddr);
372
373	/*
374	 * A count must never go down to zero
375	 * without a TLB flush!
376	 */
377	need_wakeup = 0;
378	switch (--pkmap_count[nr]) {
379	case 0:
380		BUG();
381	case 1:
382		/*
383		 * Avoid an unnecessary wake_up() function call.
384		 * The common case is pkmap_count[] == 1, but
385		 * no waiters.
386		 * The tasks queued in the wait-queue are guarded
387		 * by both the lock in the wait-queue-head and by
388		 * the kmap_lock.  As the kmap_lock is held here,
389		 * no need for the wait-queue-head's lock.  Simply
390		 * test if the queue is empty.
391		 */
392		pkmap_map_wait = get_pkmap_wait_queue_head(color);
393		need_wakeup = waitqueue_active(pkmap_map_wait);
394	}
395	unlock_kmap_any(flags);
396
397	/* do wake-up, if needed, race-free outside of the spin lock */
398	if (need_wakeup)
399		wake_up(pkmap_map_wait);
400}
 
401EXPORT_SYMBOL(kunmap_high);
402
403void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
404		unsigned start2, unsigned end2)
405{
406	unsigned int i;
407
408	BUG_ON(end1 > page_size(page) || end2 > page_size(page));
409
410	if (start1 >= end1)
411		start1 = end1 = 0;
412	if (start2 >= end2)
413		start2 = end2 = 0;
414
415	for (i = 0; i < compound_nr(page); i++) {
416		void *kaddr = NULL;
417
418		if (start1 >= PAGE_SIZE) {
419			start1 -= PAGE_SIZE;
420			end1 -= PAGE_SIZE;
421		} else {
422			unsigned this_end = min_t(unsigned, end1, PAGE_SIZE);
423
424			if (end1 > start1) {
425				kaddr = kmap_local_page(page + i);
426				memset(kaddr + start1, 0, this_end - start1);
427			}
428			end1 -= this_end;
429			start1 = 0;
430		}
431
432		if (start2 >= PAGE_SIZE) {
433			start2 -= PAGE_SIZE;
434			end2 -= PAGE_SIZE;
435		} else {
436			unsigned this_end = min_t(unsigned, end2, PAGE_SIZE);
437
438			if (end2 > start2) {
439				if (!kaddr)
440					kaddr = kmap_local_page(page + i);
441				memset(kaddr + start2, 0, this_end - start2);
442			}
443			end2 -= this_end;
444			start2 = 0;
445		}
446
447		if (kaddr) {
448			kunmap_local(kaddr);
449			flush_dcache_page(page + i);
450		}
451
452		if (!end1 && !end2)
453			break;
454	}
455
456	BUG_ON((start1 | start2 | end1 | end2) != 0);
457}
458EXPORT_SYMBOL(zero_user_segments);
459#endif /* CONFIG_HIGHMEM */
460
461#ifdef CONFIG_KMAP_LOCAL
462
463#include <asm/kmap_size.h>
464
465/*
466 * With DEBUG_KMAP_LOCAL the stack depth is doubled and every second
467 * slot is unused which acts as a guard page
468 */
469#ifdef CONFIG_DEBUG_KMAP_LOCAL
470# define KM_INCR	2
471#else
472# define KM_INCR	1
473#endif
474
475static inline int kmap_local_idx_push(void)
476{
477	WARN_ON_ONCE(in_hardirq() && !irqs_disabled());
478	current->kmap_ctrl.idx += KM_INCR;
479	BUG_ON(current->kmap_ctrl.idx >= KM_MAX_IDX);
480	return current->kmap_ctrl.idx - 1;
481}
482
483static inline int kmap_local_idx(void)
484{
485	return current->kmap_ctrl.idx - 1;
486}
487
488static inline void kmap_local_idx_pop(void)
489{
490	current->kmap_ctrl.idx -= KM_INCR;
491	BUG_ON(current->kmap_ctrl.idx < 0);
492}
493
494#ifndef arch_kmap_local_post_map
495# define arch_kmap_local_post_map(vaddr, pteval)	do { } while (0)
496#endif
497
498#ifndef arch_kmap_local_pre_unmap
499# define arch_kmap_local_pre_unmap(vaddr)		do { } while (0)
500#endif
501
502#ifndef arch_kmap_local_post_unmap
503# define arch_kmap_local_post_unmap(vaddr)		do { } while (0)
504#endif
505
506#ifndef arch_kmap_local_unmap_idx
507#define arch_kmap_local_unmap_idx(idx, vaddr)	kmap_local_calc_idx(idx)
508#endif
509
510#ifndef arch_kmap_local_high_get
511static inline void *arch_kmap_local_high_get(struct page *page)
512{
513	return NULL;
514}
515#endif
516
517#ifndef arch_kmap_local_set_pte
518#define arch_kmap_local_set_pte(mm, vaddr, ptep, ptev)	\
519	set_pte_at(mm, vaddr, ptep, ptev)
520#endif
521
522/* Unmap a local mapping which was obtained by kmap_high_get() */
523static inline bool kmap_high_unmap_local(unsigned long vaddr)
524{
525#ifdef ARCH_NEEDS_KMAP_HIGH_GET
526	if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
527		kunmap_high(pte_page(ptep_get(&pkmap_page_table[PKMAP_NR(vaddr)])));
528		return true;
529	}
530#endif
531	return false;
532}
533
534static pte_t *__kmap_pte;
535
536static pte_t *kmap_get_pte(unsigned long vaddr, int idx)
537{
538	if (IS_ENABLED(CONFIG_KMAP_LOCAL_NON_LINEAR_PTE_ARRAY))
539		/*
540		 * Set by the arch if __kmap_pte[-idx] does not produce
541		 * the correct entry.
542		 */
543		return virt_to_kpte(vaddr);
544	if (!__kmap_pte)
545		__kmap_pte = virt_to_kpte(__fix_to_virt(FIX_KMAP_BEGIN));
546	return &__kmap_pte[-idx];
547}
548
549void *__kmap_local_pfn_prot(unsigned long pfn, pgprot_t prot)
550{
551	pte_t pteval, *kmap_pte;
552	unsigned long vaddr;
553	int idx;
554
555	/*
556	 * Disable migration so resulting virtual address is stable
557	 * across preemption.
558	 */
559	migrate_disable();
560	preempt_disable();
561	idx = arch_kmap_local_map_idx(kmap_local_idx_push(), pfn);
562	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
563	kmap_pte = kmap_get_pte(vaddr, idx);
564	BUG_ON(!pte_none(ptep_get(kmap_pte)));
565	pteval = pfn_pte(pfn, prot);
566	arch_kmap_local_set_pte(&init_mm, vaddr, kmap_pte, pteval);
567	arch_kmap_local_post_map(vaddr, pteval);
568	current->kmap_ctrl.pteval[kmap_local_idx()] = pteval;
569	preempt_enable();
570
571	return (void *)vaddr;
572}
573EXPORT_SYMBOL_GPL(__kmap_local_pfn_prot);
574
575void *__kmap_local_page_prot(struct page *page, pgprot_t prot)
576{
577	void *kmap;
578
579	/*
580	 * To broaden the usage of the actual kmap_local() machinery always map
581	 * pages when debugging is enabled and the architecture has no problems
582	 * with alias mappings.
583	 */
584	if (!IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) && !PageHighMem(page))
585		return page_address(page);
586
587	/* Try kmap_high_get() if architecture has it enabled */
588	kmap = arch_kmap_local_high_get(page);
589	if (kmap)
590		return kmap;
591
592	return __kmap_local_pfn_prot(page_to_pfn(page), prot);
593}
594EXPORT_SYMBOL(__kmap_local_page_prot);
595
596void kunmap_local_indexed(const void *vaddr)
597{
598	unsigned long addr = (unsigned long) vaddr & PAGE_MASK;
599	pte_t *kmap_pte;
600	int idx;
601
602	if (addr < __fix_to_virt(FIX_KMAP_END) ||
603	    addr > __fix_to_virt(FIX_KMAP_BEGIN)) {
604		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP)) {
605			/* This _should_ never happen! See above. */
606			WARN_ON_ONCE(1);
607			return;
608		}
609		/*
610		 * Handle mappings which were obtained by kmap_high_get()
611		 * first as the virtual address of such mappings is below
612		 * PAGE_OFFSET. Warn for all other addresses which are in
613		 * the user space part of the virtual address space.
614		 */
615		if (!kmap_high_unmap_local(addr))
616			WARN_ON_ONCE(addr < PAGE_OFFSET);
617		return;
618	}
619
620	preempt_disable();
621	idx = arch_kmap_local_unmap_idx(kmap_local_idx(), addr);
622	WARN_ON_ONCE(addr != __fix_to_virt(FIX_KMAP_BEGIN + idx));
623
624	kmap_pte = kmap_get_pte(addr, idx);
625	arch_kmap_local_pre_unmap(addr);
626	pte_clear(&init_mm, addr, kmap_pte);
627	arch_kmap_local_post_unmap(addr);
628	current->kmap_ctrl.pteval[kmap_local_idx()] = __pte(0);
629	kmap_local_idx_pop();
630	preempt_enable();
631	migrate_enable();
632}
633EXPORT_SYMBOL(kunmap_local_indexed);
634
635/*
636 * Invoked before switch_to(). This is safe even when during or after
637 * clearing the maps an interrupt which needs a kmap_local happens because
638 * the task::kmap_ctrl.idx is not modified by the unmapping code so a
639 * nested kmap_local will use the next unused index and restore the index
640 * on unmap. The already cleared kmaps of the outgoing task are irrelevant
641 * because the interrupt context does not know about them. The same applies
642 * when scheduling back in for an interrupt which happens before the
643 * restore is complete.
644 */
645void __kmap_local_sched_out(void)
646{
647	struct task_struct *tsk = current;
648	pte_t *kmap_pte;
649	int i;
650
651	/* Clear kmaps */
652	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
653		pte_t pteval = tsk->kmap_ctrl.pteval[i];
654		unsigned long addr;
655		int idx;
656
657		/* With debug all even slots are unmapped and act as guard */
658		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
659			WARN_ON_ONCE(pte_val(pteval) != 0);
660			continue;
661		}
662		if (WARN_ON_ONCE(pte_none(pteval)))
663			continue;
664
665		/*
666		 * This is a horrible hack for XTENSA to calculate the
667		 * coloured PTE index. Uses the PFN encoded into the pteval
668		 * and the map index calculation because the actual mapped
669		 * virtual address is not stored in task::kmap_ctrl.
670		 * For any sane architecture this is optimized out.
671		 */
672		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
673
674		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
675		kmap_pte = kmap_get_pte(addr, idx);
676		arch_kmap_local_pre_unmap(addr);
677		pte_clear(&init_mm, addr, kmap_pte);
678		arch_kmap_local_post_unmap(addr);
679	}
680}
681
682void __kmap_local_sched_in(void)
683{
684	struct task_struct *tsk = current;
685	pte_t *kmap_pte;
686	int i;
687
688	/* Restore kmaps */
689	for (i = 0; i < tsk->kmap_ctrl.idx; i++) {
690		pte_t pteval = tsk->kmap_ctrl.pteval[i];
691		unsigned long addr;
692		int idx;
693
694		/* With debug all even slots are unmapped and act as guard */
695		if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL) && !(i & 0x01)) {
696			WARN_ON_ONCE(pte_val(pteval) != 0);
697			continue;
698		}
699		if (WARN_ON_ONCE(pte_none(pteval)))
700			continue;
701
702		/* See comment in __kmap_local_sched_out() */
703		idx = arch_kmap_local_map_idx(i, pte_pfn(pteval));
704		addr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
705		kmap_pte = kmap_get_pte(addr, idx);
706		set_pte_at(&init_mm, addr, kmap_pte, pteval);
707		arch_kmap_local_post_map(addr, pteval);
708	}
709}
710
711void kmap_local_fork(struct task_struct *tsk)
712{
713	if (WARN_ON_ONCE(tsk->kmap_ctrl.idx))
714		memset(&tsk->kmap_ctrl, 0, sizeof(tsk->kmap_ctrl));
715}
716
717#endif
718
719#if defined(HASHED_PAGE_VIRTUAL)
720
721#define PA_HASH_ORDER	7
722
723/*
724 * Describes one page->virtual association
725 */
726struct page_address_map {
727	struct page *page;
728	void *virtual;
729	struct list_head list;
730};
731
732static struct page_address_map page_address_maps[LAST_PKMAP];
733
734/*
735 * Hash table bucket
736 */
737static struct page_address_slot {
738	struct list_head lh;			/* List of page_address_maps */
739	spinlock_t lock;			/* Protect this bucket's list */
740} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
741
742static struct page_address_slot *page_slot(const struct page *page)
743{
744	return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
745}
746
747/**
748 * page_address - get the mapped virtual address of a page
749 * @page: &struct page to get the virtual address of
750 *
751 * Returns the page's virtual address.
752 */
753void *page_address(const struct page *page)
754{
755	unsigned long flags;
756	void *ret;
757	struct page_address_slot *pas;
758
759	if (!PageHighMem(page))
760		return lowmem_page_address(page);
761
762	pas = page_slot(page);
763	ret = NULL;
764	spin_lock_irqsave(&pas->lock, flags);
765	if (!list_empty(&pas->lh)) {
766		struct page_address_map *pam;
767
768		list_for_each_entry(pam, &pas->lh, list) {
769			if (pam->page == page) {
770				ret = pam->virtual;
771				break;
772			}
773		}
774	}
775
776	spin_unlock_irqrestore(&pas->lock, flags);
777	return ret;
778}
 
779EXPORT_SYMBOL(page_address);
780
781/**
782 * set_page_address - set a page's virtual address
783 * @page: &struct page to set
784 * @virtual: virtual address to use
785 */
786void set_page_address(struct page *page, void *virtual)
787{
788	unsigned long flags;
789	struct page_address_slot *pas;
790	struct page_address_map *pam;
791
792	BUG_ON(!PageHighMem(page));
793
794	pas = page_slot(page);
795	if (virtual) {		/* Add */
796		pam = &page_address_maps[PKMAP_NR((unsigned long)virtual)];
797		pam->page = page;
798		pam->virtual = virtual;
799
800		spin_lock_irqsave(&pas->lock, flags);
801		list_add_tail(&pam->list, &pas->lh);
802		spin_unlock_irqrestore(&pas->lock, flags);
803	} else {		/* Remove */
804		spin_lock_irqsave(&pas->lock, flags);
805		list_for_each_entry(pam, &pas->lh, list) {
806			if (pam->page == page) {
807				list_del(&pam->list);
808				break;
 
809			}
810		}
811		spin_unlock_irqrestore(&pas->lock, flags);
812	}
 
 
813}
814
815void __init page_address_init(void)
816{
817	int i;
818
819	for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
820		INIT_LIST_HEAD(&page_address_htable[i].lh);
821		spin_lock_init(&page_address_htable[i].lock);
822	}
823}
824
825#endif	/* defined(HASHED_PAGE_VIRTUAL) */