Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *	based on kernel/timer.c
  24 *
  25 *	Help, testing, suggestions, bugfixes, improvements were
  26 *	provided by:
  27 *
  28 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *	et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/export.h>
  36#include <linux/percpu.h>
  37#include <linux/hrtimer.h>
  38#include <linux/notifier.h>
  39#include <linux/syscalls.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/tick.h>
  43#include <linux/seq_file.h>
  44#include <linux/err.h>
  45#include <linux/debugobjects.h>
  46#include <linux/sched.h>
  47#include <linux/sched/sysctl.h>
  48#include <linux/sched/rt.h>
  49#include <linux/sched/deadline.h>
 
 
 
  50#include <linux/timer.h>
  51#include <linux/freezer.h>
 
  52
  53#include <asm/uaccess.h>
  54
  55#include <trace/events/timer.h>
  56
  57#include "tick-internal.h"
  58
  59/*
 
 
 
 
 
 
 
 
 
 
 
  60 * The timer bases:
  61 *
  62 * There are more clockids than hrtimer bases. Thus, we index
  63 * into the timer bases by the hrtimer_base_type enum. When trying
  64 * to reach a base using a clockid, hrtimer_clockid_to_base()
  65 * is used to convert from clockid to the proper hrtimer_base_type.
  66 */
  67DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  68{
  69	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
  70	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
  71	.clock_base =
  72	{
  73		{
  74			.index = HRTIMER_BASE_MONOTONIC,
  75			.clockid = CLOCK_MONOTONIC,
  76			.get_time = &ktime_get,
  77		},
  78		{
  79			.index = HRTIMER_BASE_REALTIME,
  80			.clockid = CLOCK_REALTIME,
  81			.get_time = &ktime_get_real,
  82		},
  83		{
  84			.index = HRTIMER_BASE_BOOTTIME,
  85			.clockid = CLOCK_BOOTTIME,
  86			.get_time = &ktime_get_boottime,
  87		},
  88		{
  89			.index = HRTIMER_BASE_TAI,
  90			.clockid = CLOCK_TAI,
  91			.get_time = &ktime_get_clocktai,
  92		},
  93	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  94};
  95
  96static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 
 
 
  97	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
  98	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
  99	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 100	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
 101};
 102
 103static inline int hrtimer_clockid_to_base(clockid_t clock_id)
 104{
 105	return hrtimer_clock_to_base_table[clock_id];
 
 
 
 106}
 107
 108/*
 109 * Functions and macros which are different for UP/SMP systems are kept in a
 110 * single place
 111 */
 112#ifdef CONFIG_SMP
 113
 114/*
 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 116 * such that hrtimer_callback_running() can unconditionally dereference
 117 * timer->base->cpu_base
 118 */
 119static struct hrtimer_cpu_base migration_cpu_base = {
 120	.seq = SEQCNT_ZERO(migration_cpu_base),
 121	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
 
 
 
 122};
 123
 124#define migration_base	migration_cpu_base.clock_base[0]
 125
 
 
 
 
 
 126/*
 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 128 * means that all timers which are tied to this base via timer->base are
 129 * locked, and the base itself is locked too.
 130 *
 131 * So __run_timers/migrate_timers can safely modify all timers which could
 132 * be found on the lists/queues.
 133 *
 134 * When the timer's base is locked, and the timer removed from list, it is
 135 * possible to set timer->base = &migration_base and drop the lock: the timer
 136 * remains locked.
 137 */
 138static
 139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 140					     unsigned long *flags)
 
 141{
 142	struct hrtimer_clock_base *base;
 143
 144	for (;;) {
 145		base = timer->base;
 146		if (likely(base != &migration_base)) {
 147			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 148			if (likely(base == timer->base))
 149				return base;
 150			/* The timer has migrated to another CPU: */
 151			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 152		}
 153		cpu_relax();
 154	}
 155}
 156
 157/*
 158 * With HIGHRES=y we do not migrate the timer when it is expiring
 159 * before the next event on the target cpu because we cannot reprogram
 160 * the target cpu hardware and we would cause it to fire late.
 
 
 
 
 
 
 
 161 *
 162 * Called with cpu_base->lock of target cpu held.
 163 */
 164static int
 165hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
 
 166{
 167#ifdef CONFIG_HIGH_RES_TIMERS
 168	ktime_t expires;
 169
 170	if (!new_base->cpu_base->hres_active)
 171		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 172
 173	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 174	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
 175#else
 176	return 0;
 177#endif
 178}
 179
 180#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 181static inline
 182struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 183					 int pinned)
 184{
 185	if (pinned || !base->migration_enabled)
 186		return base;
 187	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 188}
 189#else
 190static inline
 191struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
 192					 int pinned)
 193{
 
 
 
 
 
 
 
 
 
 
 194	return base;
 195}
 196#endif
 197
 198/*
 199 * We switch the timer base to a power-optimized selected CPU target,
 200 * if:
 201 *	- NO_HZ_COMMON is enabled
 202 *	- timer migration is enabled
 203 *	- the timer callback is not running
 204 *	- the timer is not the first expiring timer on the new target
 205 *
 206 * If one of the above requirements is not fulfilled we move the timer
 207 * to the current CPU or leave it on the previously assigned CPU if
 208 * the timer callback is currently running.
 209 */
 210static inline struct hrtimer_clock_base *
 211switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 212		    int pinned)
 213{
 214	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 215	struct hrtimer_clock_base *new_base;
 216	int basenum = base->index;
 217
 218	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 219	new_cpu_base = get_target_base(this_cpu_base, pinned);
 220again:
 221	new_base = &new_cpu_base->clock_base[basenum];
 222
 223	if (base != new_base) {
 224		/*
 225		 * We are trying to move timer to new_base.
 226		 * However we can't change timer's base while it is running,
 227		 * so we keep it on the same CPU. No hassle vs. reprogramming
 228		 * the event source in the high resolution case. The softirq
 229		 * code will take care of this when the timer function has
 230		 * completed. There is no conflict as we hold the lock until
 231		 * the timer is enqueued.
 232		 */
 233		if (unlikely(hrtimer_callback_running(timer)))
 234			return base;
 235
 236		/* See the comment in lock_hrtimer_base() */
 237		timer->base = &migration_base;
 238		raw_spin_unlock(&base->cpu_base->lock);
 239		raw_spin_lock(&new_base->cpu_base->lock);
 240
 241		if (new_cpu_base != this_cpu_base &&
 242		    hrtimer_check_target(timer, new_base)) {
 243			raw_spin_unlock(&new_base->cpu_base->lock);
 244			raw_spin_lock(&base->cpu_base->lock);
 245			new_cpu_base = this_cpu_base;
 246			timer->base = base;
 247			goto again;
 248		}
 249		timer->base = new_base;
 250	} else {
 251		if (new_cpu_base != this_cpu_base &&
 252		    hrtimer_check_target(timer, new_base)) {
 253			new_cpu_base = this_cpu_base;
 254			goto again;
 255		}
 256	}
 257	return new_base;
 258}
 259
 260#else /* CONFIG_SMP */
 261
 
 
 
 
 
 262static inline struct hrtimer_clock_base *
 263lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 
 264{
 265	struct hrtimer_clock_base *base = timer->base;
 266
 267	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 268
 269	return base;
 270}
 271
 272# define switch_hrtimer_base(t, b, p)	(b)
 273
 274#endif	/* !CONFIG_SMP */
 275
 276/*
 277 * Functions for the union type storage format of ktime_t which are
 278 * too large for inlining:
 279 */
 280#if BITS_PER_LONG < 64
 281/*
 282 * Divide a ktime value by a nanosecond value
 283 */
 284s64 __ktime_divns(const ktime_t kt, s64 div)
 285{
 286	int sft = 0;
 287	s64 dclc;
 288	u64 tmp;
 289
 290	dclc = ktime_to_ns(kt);
 291	tmp = dclc < 0 ? -dclc : dclc;
 292
 293	/* Make sure the divisor is less than 2^32: */
 294	while (div >> 32) {
 295		sft++;
 296		div >>= 1;
 297	}
 298	tmp >>= sft;
 299	do_div(tmp, (unsigned long) div);
 300	return dclc < 0 ? -tmp : tmp;
 301}
 302EXPORT_SYMBOL_GPL(__ktime_divns);
 303#endif /* BITS_PER_LONG >= 64 */
 304
 305/*
 306 * Add two ktime values and do a safety check for overflow:
 307 */
 308ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 309{
 310	ktime_t res = ktime_add(lhs, rhs);
 311
 312	/*
 313	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 314	 * return to user space in a timespec:
 315	 */
 316	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
 317		res = ktime_set(KTIME_SEC_MAX, 0);
 318
 319	return res;
 320}
 321
 322EXPORT_SYMBOL_GPL(ktime_add_safe);
 323
 324#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 325
 326static struct debug_obj_descr hrtimer_debug_descr;
 327
 328static void *hrtimer_debug_hint(void *addr)
 329{
 330	return ((struct hrtimer *) addr)->function;
 331}
 332
 333/*
 334 * fixup_init is called when:
 335 * - an active object is initialized
 336 */
 337static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 338{
 339	struct hrtimer *timer = addr;
 340
 341	switch (state) {
 342	case ODEBUG_STATE_ACTIVE:
 343		hrtimer_cancel(timer);
 344		debug_object_init(timer, &hrtimer_debug_descr);
 345		return 1;
 346	default:
 347		return 0;
 348	}
 349}
 350
 351/*
 352 * fixup_activate is called when:
 353 * - an active object is activated
 354 * - an unknown object is activated (might be a statically initialized object)
 355 */
 356static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 357{
 358	switch (state) {
 359
 360	case ODEBUG_STATE_NOTAVAILABLE:
 361		WARN_ON_ONCE(1);
 362		return 0;
 363
 364	case ODEBUG_STATE_ACTIVE:
 365		WARN_ON(1);
 366
 367	default:
 368		return 0;
 369	}
 370}
 371
 372/*
 373 * fixup_free is called when:
 374 * - an active object is freed
 375 */
 376static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 377{
 378	struct hrtimer *timer = addr;
 379
 380	switch (state) {
 381	case ODEBUG_STATE_ACTIVE:
 382		hrtimer_cancel(timer);
 383		debug_object_free(timer, &hrtimer_debug_descr);
 384		return 1;
 385	default:
 386		return 0;
 387	}
 388}
 389
 390static struct debug_obj_descr hrtimer_debug_descr = {
 391	.name		= "hrtimer",
 392	.debug_hint	= hrtimer_debug_hint,
 393	.fixup_init	= hrtimer_fixup_init,
 394	.fixup_activate	= hrtimer_fixup_activate,
 395	.fixup_free	= hrtimer_fixup_free,
 396};
 397
 398static inline void debug_hrtimer_init(struct hrtimer *timer)
 399{
 400	debug_object_init(timer, &hrtimer_debug_descr);
 401}
 402
 403static inline void debug_hrtimer_activate(struct hrtimer *timer)
 404{
 405	debug_object_activate(timer, &hrtimer_debug_descr);
 406}
 407
 408static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 409{
 410	debug_object_deactivate(timer, &hrtimer_debug_descr);
 411}
 412
 413static inline void debug_hrtimer_free(struct hrtimer *timer)
 
 414{
 415	debug_object_free(timer, &hrtimer_debug_descr);
 416}
 417
 418static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 419			   enum hrtimer_mode mode);
 420
 421void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
 422			   enum hrtimer_mode mode)
 423{
 424	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 425	__hrtimer_init(timer, clock_id, mode);
 426}
 427EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
 428
 429void destroy_hrtimer_on_stack(struct hrtimer *timer)
 430{
 431	debug_object_free(timer, &hrtimer_debug_descr);
 432}
 
 433
 434#else
 
 435static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 436static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
 
 
 437static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 438#endif
 439
 440static inline void
 441debug_init(struct hrtimer *timer, clockid_t clockid,
 442	   enum hrtimer_mode mode)
 443{
 444	debug_hrtimer_init(timer);
 445	trace_hrtimer_init(timer, clockid, mode);
 446}
 447
 448static inline void debug_activate(struct hrtimer *timer)
 
 
 
 
 
 
 
 
 449{
 450	debug_hrtimer_activate(timer);
 451	trace_hrtimer_start(timer);
 452}
 453
 454static inline void debug_deactivate(struct hrtimer *timer)
 455{
 456	debug_hrtimer_deactivate(timer);
 457	trace_hrtimer_cancel(timer);
 458}
 459
 460#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
 461static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
 462					     struct hrtimer *timer)
 463{
 464#ifdef CONFIG_HIGH_RES_TIMERS
 465	cpu_base->next_timer = timer;
 466#endif
 
 
 
 
 
 
 467}
 468
 469static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
 
 
 
 
 
 
 470{
 471	struct hrtimer_clock_base *base = cpu_base->clock_base;
 472	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
 473	unsigned int active = cpu_base->active_bases;
 474
 475	hrtimer_update_next_timer(cpu_base, NULL);
 476	for (; active; base++, active >>= 1) {
 477		struct timerqueue_node *next;
 478		struct hrtimer *timer;
 479
 480		if (!(active & 0x01))
 481			continue;
 482
 483		next = timerqueue_getnext(&base->active);
 484		timer = container_of(next, struct hrtimer, node);
 
 
 
 
 
 
 
 
 485		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 486		if (expires.tv64 < expires_next.tv64) {
 487			expires_next = expires;
 488			hrtimer_update_next_timer(cpu_base, timer);
 
 
 
 
 
 
 
 
 489		}
 490	}
 491	/*
 492	 * clock_was_set() might have changed base->offset of any of
 493	 * the clock bases so the result might be negative. Fix it up
 494	 * to prevent a false positive in clockevents_program_event().
 495	 */
 496	if (expires_next.tv64 < 0)
 497		expires_next.tv64 = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498	return expires_next;
 499}
 500#endif
 501
 502static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 503{
 504	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 505	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 506	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 507
 508	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
 509					    offs_real, offs_boot, offs_tai);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510}
 511
 512/* High resolution timer related functions */
 513#ifdef CONFIG_HIGH_RES_TIMERS
 514
 515/*
 516 * High resolution timer enabled ?
 517 */
 518static bool hrtimer_hres_enabled __read_mostly  = true;
 519unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 520EXPORT_SYMBOL_GPL(hrtimer_resolution);
 521
 522/*
 523 * Enable / Disable high resolution mode
 524 */
 525static int __init setup_hrtimer_hres(char *str)
 526{
 527	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 528}
 529
 530__setup("highres=", setup_hrtimer_hres);
 531
 532/*
 533 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 534 */
 535static inline int hrtimer_is_hres_enabled(void)
 536{
 537	return hrtimer_hres_enabled;
 538}
 539
 540/*
 541 * Is the high resolution mode active ?
 542 */
 543static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 544{
 545	return cpu_base->hres_active;
 546}
 547
 548static inline int hrtimer_hres_active(void)
 549{
 550	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
 
 
 
 
 
 
 
 
 551}
 552
 
 
 
 
 
 
 553/*
 554 * Reprogram the event source with checking both queues for the
 555 * next event
 556 * Called with interrupts disabled and base->lock held
 
 
 
 
 
 
 
 
 557 */
 558static void
 559hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 560{
 561	ktime_t expires_next;
 562
 563	if (!cpu_base->hres_active)
 564		return;
 565
 566	expires_next = __hrtimer_get_next_event(cpu_base);
 567
 568	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
 569		return;
 570
 571	cpu_base->expires_next.tv64 = expires_next.tv64;
 572
 573	/*
 574	 * If a hang was detected in the last timer interrupt then we
 575	 * leave the hang delay active in the hardware. We want the
 576	 * system to make progress. That also prevents the following
 577	 * scenario:
 578	 * T1 expires 50ms from now
 579	 * T2 expires 5s from now
 580	 *
 581	 * T1 is removed, so this code is called and would reprogram
 582	 * the hardware to 5s from now. Any hrtimer_start after that
 583	 * will not reprogram the hardware due to hang_detected being
 584	 * set. So we'd effectivly block all timers until the T2 event
 585	 * fires.
 
 
 
 586	 */
 587	if (cpu_base->hang_detected)
 588		return;
 589
 590	tick_program_event(cpu_base->expires_next, 1);
 
 
 
 
 
 
 591}
 592
 593/*
 594 * When a timer is enqueued and expires earlier than the already enqueued
 595 * timers, we have to check, whether it expires earlier than the timer for
 596 * which the clock event device was armed.
 597 *
 598 * Called with interrupts disabled and base->cpu_base.lock held
 599 */
 600static void hrtimer_reprogram(struct hrtimer *timer,
 601			      struct hrtimer_clock_base *base)
 602{
 603	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 
 604	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 605
 606	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 607
 608	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 609	 * If the timer is not on the current cpu, we cannot reprogram
 610	 * the other cpus clock event device.
 611	 */
 612	if (base->cpu_base != cpu_base)
 613		return;
 614
 
 
 
 615	/*
 616	 * If the hrtimer interrupt is running, then it will
 617	 * reevaluate the clock bases and reprogram the clock event
 618	 * device. The callbacks are always executed in hard interrupt
 619	 * context so we don't need an extra check for a running
 620	 * callback.
 621	 */
 622	if (cpu_base->in_hrtirq)
 623		return;
 624
 
 
 
 
 
 
 
 
 
 
 
 
 625	/*
 626	 * CLOCK_REALTIME timer might be requested with an absolute
 627	 * expiry time which is less than base->offset. Set it to 0.
 
 
 
 
 
 
 628	 */
 629	if (expires.tv64 < 0)
 630		expires.tv64 = 0;
 631
 632	if (expires.tv64 >= cpu_base->expires_next.tv64)
 633		return;
 634
 635	/* Update the pointer to the next expiring timer */
 636	cpu_base->next_timer = timer;
 
 
 
 
 637
 638	/*
 639	 * If a hang was detected in the last timer interrupt then we
 640	 * do not schedule a timer which is earlier than the expiry
 641	 * which we enforced in the hang detection. We want the system
 642	 * to make progress.
 643	 */
 644	if (cpu_base->hang_detected)
 645		return;
 646
 647	/*
 648	 * Program the timer hardware. We enforce the expiry for
 649	 * events which are already in the past.
 
 
 650	 */
 651	cpu_base->expires_next = expires;
 652	tick_program_event(expires, 1);
 653}
 654
 655/*
 656 * Initialize the high resolution related parts of cpu_base
 657 */
 658static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 659{
 660	base->expires_next.tv64 = KTIME_MAX;
 661	base->hres_active = 0;
 
 
 
 
 
 
 
 
 
 
 662}
 663
 664/*
 665 * Retrigger next event is called after clock was set
 
 666 *
 667 * Called with interrupts disabled via on_each_cpu()
 
 
 
 
 
 
 
 
 668 */
 669static void retrigger_next_event(void *arg)
 670{
 671	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 
 
 672
 673	if (!base->hres_active)
 674		return;
 675
 676	raw_spin_lock(&base->lock);
 677	hrtimer_update_base(base);
 678	hrtimer_force_reprogram(base, 0);
 679	raw_spin_unlock(&base->lock);
 680}
 681
 682/*
 683 * Switch to high resolution mode
 684 */
 685static void hrtimer_switch_to_hres(void)
 686{
 687	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 688
 689	if (tick_init_highres()) {
 690		printk(KERN_WARNING "Could not switch to high resolution "
 691				    "mode on CPU %d\n", base->cpu);
 692		return;
 
 
 
 693	}
 694	base->hres_active = 1;
 695	hrtimer_resolution = HIGH_RES_NSEC;
 696
 697	tick_setup_sched_timer();
 698	/* "Retrigger" the interrupt to get things going */
 699	retrigger_next_event(NULL);
 
 
 
 
 
 700}
 701
 702static void clock_was_set_work(struct work_struct *work)
 703{
 704	clock_was_set();
 705}
 706
 707static DECLARE_WORK(hrtimer_work, clock_was_set_work);
 708
 709/*
 710 * Called from timekeeping and resume code to reprogramm the hrtimer
 711 * interrupt device on all cpus.
 712 */
 713void clock_was_set_delayed(void)
 714{
 715	schedule_work(&hrtimer_work);
 716}
 717
 718#else
 719
 720static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
 721static inline int hrtimer_hres_active(void) { return 0; }
 722static inline int hrtimer_is_hres_enabled(void) { return 0; }
 723static inline void hrtimer_switch_to_hres(void) { }
 724static inline void
 725hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
 726static inline int hrtimer_reprogram(struct hrtimer *timer,
 727				    struct hrtimer_clock_base *base)
 728{
 729	return 0;
 730}
 731static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 732static inline void retrigger_next_event(void *arg) { }
 733
 734#endif /* CONFIG_HIGH_RES_TIMERS */
 735
 736/*
 737 * Clock realtime was set
 738 *
 739 * Change the offset of the realtime clock vs. the monotonic
 740 * clock.
 741 *
 742 * We might have to reprogram the high resolution timer interrupt. On
 743 * SMP we call the architecture specific code to retrigger _all_ high
 744 * resolution timer interrupts. On UP we just disable interrupts and
 745 * call the high resolution interrupt code.
 746 */
 747void clock_was_set(void)
 748{
 749#ifdef CONFIG_HIGH_RES_TIMERS
 750	/* Retrigger the CPU local events everywhere */
 751	on_each_cpu(retrigger_next_event, NULL, 1);
 752#endif
 753	timerfd_clock_was_set();
 754}
 755
 756/*
 757 * During resume we might have to reprogram the high resolution timer
 758 * interrupt on all online CPUs.  However, all other CPUs will be
 759 * stopped with IRQs interrupts disabled so the clock_was_set() call
 760 * must be deferred.
 761 */
 762void hrtimers_resume(void)
 763{
 764	WARN_ONCE(!irqs_disabled(),
 765		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
 766
 767	/* Retrigger on the local CPU */
 768	retrigger_next_event(NULL);
 769	/* And schedule a retrigger for all others */
 770	clock_was_set_delayed();
 771}
 772
 773static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
 774{
 775#ifdef CONFIG_TIMER_STATS
 776	if (timer->start_site)
 777		return;
 778	timer->start_site = __builtin_return_address(0);
 779	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 780	timer->start_pid = current->pid;
 781#endif
 782}
 783
 784static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
 785{
 786#ifdef CONFIG_TIMER_STATS
 787	timer->start_site = NULL;
 788#endif
 789}
 790
 791static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
 792{
 793#ifdef CONFIG_TIMER_STATS
 794	if (likely(!timer_stats_active))
 795		return;
 796	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
 797				 timer->function, timer->start_comm, 0);
 798#endif
 799}
 800
 801/*
 802 * Counterpart to lock_hrtimer_base above:
 803 */
 804static inline
 805void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 
 806{
 807	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 808}
 809
 810/**
 811 * hrtimer_forward - forward the timer expiry
 812 * @timer:	hrtimer to forward
 813 * @now:	forward past this time
 814 * @interval:	the interval to forward
 815 *
 816 * Forward the timer expiry so it will expire in the future.
 817 * Returns the number of overruns.
 818 *
 819 * Can be safely called from the callback function of @timer. If
 820 * called from other contexts @timer must neither be enqueued nor
 821 * running the callback and the caller needs to take care of
 822 * serialization.
 823 *
 824 * Note: This only updates the timer expiry value and does not requeue
 825 * the timer.
 
 
 
 
 
 826 */
 827u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 828{
 829	u64 orun = 1;
 830	ktime_t delta;
 831
 832	delta = ktime_sub(now, hrtimer_get_expires(timer));
 833
 834	if (delta.tv64 < 0)
 835		return 0;
 836
 837	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
 838		return 0;
 839
 840	if (interval.tv64 < hrtimer_resolution)
 841		interval.tv64 = hrtimer_resolution;
 842
 843	if (unlikely(delta.tv64 >= interval.tv64)) {
 844		s64 incr = ktime_to_ns(interval);
 845
 846		orun = ktime_divns(delta, incr);
 847		hrtimer_add_expires_ns(timer, incr * orun);
 848		if (hrtimer_get_expires_tv64(timer) > now.tv64)
 849			return orun;
 850		/*
 851		 * This (and the ktime_add() below) is the
 852		 * correction for exact:
 853		 */
 854		orun++;
 855	}
 856	hrtimer_add_expires(timer, interval);
 857
 858	return orun;
 859}
 860EXPORT_SYMBOL_GPL(hrtimer_forward);
 861
 862/*
 863 * enqueue_hrtimer - internal function to (re)start a timer
 864 *
 865 * The timer is inserted in expiry order. Insertion into the
 866 * red black tree is O(log(n)). Must hold the base lock.
 867 *
 868 * Returns 1 when the new timer is the leftmost timer in the tree.
 869 */
 870static int enqueue_hrtimer(struct hrtimer *timer,
 871			   struct hrtimer_clock_base *base)
 
 872{
 873	debug_activate(timer);
 
 874
 875	base->cpu_base->active_bases |= 1 << base->index;
 876
 877	timer->state = HRTIMER_STATE_ENQUEUED;
 
 878
 879	return timerqueue_add(&base->active, &timer->node);
 880}
 881
 882/*
 883 * __remove_hrtimer - internal function to remove a timer
 884 *
 885 * Caller must hold the base lock.
 886 *
 887 * High resolution timer mode reprograms the clock event device when the
 888 * timer is the one which expires next. The caller can disable this by setting
 889 * reprogram to zero. This is useful, when the context does a reprogramming
 890 * anyway (e.g. timer interrupt)
 891 */
 892static void __remove_hrtimer(struct hrtimer *timer,
 893			     struct hrtimer_clock_base *base,
 894			     u8 newstate, int reprogram)
 895{
 896	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
 897	u8 state = timer->state;
 898
 899	timer->state = newstate;
 
 900	if (!(state & HRTIMER_STATE_ENQUEUED))
 901		return;
 902
 903	if (!timerqueue_del(&base->active, &timer->node))
 904		cpu_base->active_bases &= ~(1 << base->index);
 905
 906#ifdef CONFIG_HIGH_RES_TIMERS
 907	/*
 908	 * Note: If reprogram is false we do not update
 909	 * cpu_base->next_timer. This happens when we remove the first
 910	 * timer on a remote cpu. No harm as we never dereference
 911	 * cpu_base->next_timer. So the worst thing what can happen is
 912	 * an superflous call to hrtimer_force_reprogram() on the
 913	 * remote cpu later on if the same timer gets enqueued again.
 914	 */
 915	if (reprogram && timer == cpu_base->next_timer)
 916		hrtimer_force_reprogram(cpu_base, 1);
 917#endif
 918}
 919
 920/*
 921 * remove hrtimer, called with base lock held
 922 */
 923static inline int
 924remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
 
 925{
 926	if (hrtimer_is_queued(timer)) {
 927		u8 state = timer->state;
 928		int reprogram;
 
 929
 930		/*
 931		 * Remove the timer and force reprogramming when high
 932		 * resolution mode is active and the timer is on the current
 933		 * CPU. If we remove a timer on another CPU, reprogramming is
 934		 * skipped. The interrupt event on this CPU is fired and
 935		 * reprogramming happens in the interrupt handler. This is a
 936		 * rare case and less expensive than a smp call.
 937		 */
 938		debug_deactivate(timer);
 939		timer_stats_hrtimer_clear_start_info(timer);
 940		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
 941
 
 
 
 
 
 
 942		if (!restart)
 943			state = HRTIMER_STATE_INACTIVE;
 
 
 944
 945		__remove_hrtimer(timer, base, state, reprogram);
 946		return 1;
 947	}
 948	return 0;
 949}
 950
 951static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
 952					    const enum hrtimer_mode mode)
 953{
 954#ifdef CONFIG_TIME_LOW_RES
 955	/*
 956	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
 957	 * granular time values. For relative timers we add hrtimer_resolution
 958	 * (i.e. one jiffie) to prevent short timeouts.
 959	 */
 960	timer->is_rel = mode & HRTIMER_MODE_REL;
 961	if (timer->is_rel)
 962		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
 963#endif
 964	return tim;
 965}
 966
 967/**
 968 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
 969 * @timer:	the timer to be added
 970 * @tim:	expiry time
 971 * @delta_ns:	"slack" range for the timer
 972 * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
 973 *		relative (HRTIMER_MODE_REL)
 974 */
 975void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
 976			    u64 delta_ns, const enum hrtimer_mode mode)
 977{
 978	struct hrtimer_clock_base *base, *new_base;
 979	unsigned long flags;
 980	int leftmost;
 981
 982	base = lock_hrtimer_base(timer, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 983
 984	/* Remove an active timer from the queue: */
 985	remove_hrtimer(timer, base, true);
 
 
 
 
 
 
 
 
 
 
 986
 987	if (mode & HRTIMER_MODE_REL)
 988		tim = ktime_add_safe(tim, base->get_time());
 989
 990	tim = hrtimer_update_lowres(timer, tim, mode);
 991
 992	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
 993
 994	/* Switch the timer base, if necessary: */
 995	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
 996
 997	timer_stats_hrtimer_set_start_info(timer);
 
 
 
 998
 999	leftmost = enqueue_hrtimer(timer, new_base);
1000	if (!leftmost)
1001		goto unlock;
 
 
 
 
 
 
1002
1003	if (!hrtimer_is_hres_active(timer)) {
1004		/*
1005		 * Kick to reschedule the next tick to handle the new timer
1006		 * on dynticks target.
 
1007		 */
1008		if (new_base->cpu_base->nohz_active)
1009			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1010	} else {
1011		hrtimer_reprogram(timer, new_base);
 
 
1012	}
1013unlock:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014	unlock_hrtimer_base(timer, &flags);
1015}
1016EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1017
1018/**
1019 * hrtimer_try_to_cancel - try to deactivate a timer
1020 * @timer:	hrtimer to stop
1021 *
1022 * Returns:
1023 *  0 when the timer was not active
1024 *  1 when the timer was active
1025 * -1 when the timer is currently excuting the callback function and
 
1026 *    cannot be stopped
1027 */
1028int hrtimer_try_to_cancel(struct hrtimer *timer)
1029{
1030	struct hrtimer_clock_base *base;
1031	unsigned long flags;
1032	int ret = -1;
1033
1034	/*
1035	 * Check lockless first. If the timer is not active (neither
1036	 * enqueued nor running the callback, nothing to do here.  The
1037	 * base lock does not serialize against a concurrent enqueue,
1038	 * so we can avoid taking it.
1039	 */
1040	if (!hrtimer_active(timer))
1041		return 0;
1042
1043	base = lock_hrtimer_base(timer, &flags);
1044
1045	if (!hrtimer_callback_running(timer))
1046		ret = remove_hrtimer(timer, base, false);
1047
1048	unlock_hrtimer_base(timer, &flags);
1049
1050	return ret;
1051
1052}
1053EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055/**
1056 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1057 * @timer:	the timer to be cancelled
1058 *
1059 * Returns:
1060 *  0 when the timer was not active
1061 *  1 when the timer was active
1062 */
1063int hrtimer_cancel(struct hrtimer *timer)
1064{
1065	for (;;) {
1066		int ret = hrtimer_try_to_cancel(timer);
1067
1068		if (ret >= 0)
1069			return ret;
1070		cpu_relax();
1071	}
 
 
 
1072}
1073EXPORT_SYMBOL_GPL(hrtimer_cancel);
1074
1075/**
1076 * hrtimer_get_remaining - get remaining time for the timer
1077 * @timer:	the timer to read
1078 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1079 */
1080ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1081{
1082	unsigned long flags;
1083	ktime_t rem;
1084
1085	lock_hrtimer_base(timer, &flags);
1086	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1087		rem = hrtimer_expires_remaining_adjusted(timer);
1088	else
1089		rem = hrtimer_expires_remaining(timer);
1090	unlock_hrtimer_base(timer, &flags);
1091
1092	return rem;
1093}
1094EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1095
1096#ifdef CONFIG_NO_HZ_COMMON
1097/**
1098 * hrtimer_get_next_event - get the time until next expiry event
1099 *
1100 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1101 */
1102u64 hrtimer_get_next_event(void)
1103{
1104	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1105	u64 expires = KTIME_MAX;
1106	unsigned long flags;
1107
1108	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1109
1110	if (!__hrtimer_hres_active(cpu_base))
1111		expires = __hrtimer_get_next_event(cpu_base).tv64;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112
1113	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1114
1115	return expires;
1116}
1117#endif
1118
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1119static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1120			   enum hrtimer_mode mode)
1121{
 
1122	struct hrtimer_cpu_base *cpu_base;
1123	int base;
1124
 
 
 
 
 
 
 
 
 
1125	memset(timer, 0, sizeof(struct hrtimer));
1126
1127	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1128
1129	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
 
 
 
 
 
1130		clock_id = CLOCK_MONOTONIC;
1131
1132	base = hrtimer_clockid_to_base(clock_id);
 
 
 
1133	timer->base = &cpu_base->clock_base[base];
1134	timerqueue_init(&timer->node);
 
1135
1136#ifdef CONFIG_TIMER_STATS
1137	timer->start_site = NULL;
1138	timer->start_pid = -1;
1139	memset(timer->start_comm, 0, TASK_COMM_LEN);
1140#endif
 
 
 
 
 
1141}
1142
1143/**
1144 * hrtimer_init - initialize a timer to the given clock
1145 * @timer:	the timer to be initialized
1146 * @clock_id:	the clock to be used
1147 * @mode:	timer mode abs/rel
 
 
 
 
 
 
1148 */
1149void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150		  enum hrtimer_mode mode)
1151{
1152	debug_init(timer, clock_id, mode);
1153	__hrtimer_init(timer, clock_id, mode);
1154}
1155EXPORT_SYMBOL_GPL(hrtimer_init);
1156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1157/*
1158 * A timer is active, when it is enqueued into the rbtree or the
1159 * callback function is running or it's in the state of being migrated
1160 * to another cpu.
1161 *
1162 * It is important for this function to not return a false negative.
1163 */
1164bool hrtimer_active(const struct hrtimer *timer)
1165{
1166	struct hrtimer_cpu_base *cpu_base;
1167	unsigned int seq;
1168
1169	do {
1170		cpu_base = READ_ONCE(timer->base->cpu_base);
1171		seq = raw_read_seqcount_begin(&cpu_base->seq);
1172
1173		if (timer->state != HRTIMER_STATE_INACTIVE ||
1174		    cpu_base->running == timer)
1175			return true;
1176
1177	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1178		 cpu_base != READ_ONCE(timer->base->cpu_base));
1179
1180	return false;
1181}
1182EXPORT_SYMBOL_GPL(hrtimer_active);
1183
1184/*
1185 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1186 * distinct sections:
1187 *
1188 *  - queued:	the timer is queued
1189 *  - callback:	the timer is being ran
1190 *  - post:	the timer is inactive or (re)queued
1191 *
1192 * On the read side we ensure we observe timer->state and cpu_base->running
1193 * from the same section, if anything changed while we looked at it, we retry.
1194 * This includes timer->base changing because sequence numbers alone are
1195 * insufficient for that.
1196 *
1197 * The sequence numbers are required because otherwise we could still observe
1198 * a false negative if the read side got smeared over multiple consequtive
1199 * __run_hrtimer() invocations.
1200 */
1201
1202static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1203			  struct hrtimer_clock_base *base,
1204			  struct hrtimer *timer, ktime_t *now)
 
1205{
1206	enum hrtimer_restart (*fn)(struct hrtimer *);
 
1207	int restart;
1208
1209	lockdep_assert_held(&cpu_base->lock);
1210
1211	debug_deactivate(timer);
1212	cpu_base->running = timer;
1213
1214	/*
1215	 * Separate the ->running assignment from the ->state assignment.
1216	 *
1217	 * As with a regular write barrier, this ensures the read side in
1218	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1219	 * timer->state == INACTIVE.
1220	 */
1221	raw_write_seqcount_barrier(&cpu_base->seq);
1222
1223	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1224	timer_stats_account_hrtimer(timer);
1225	fn = timer->function;
1226
1227	/*
1228	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1229	 * timer is restarted with a period then it becomes an absolute
1230	 * timer. If its not restarted it does not matter.
1231	 */
1232	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1233		timer->is_rel = false;
1234
1235	/*
1236	 * Because we run timers from hardirq context, there is no chance
1237	 * they get migrated to another cpu, therefore its safe to unlock
1238	 * the timer base.
1239	 */
1240	raw_spin_unlock(&cpu_base->lock);
1241	trace_hrtimer_expire_entry(timer, now);
 
 
1242	restart = fn(timer);
 
 
1243	trace_hrtimer_expire_exit(timer);
1244	raw_spin_lock(&cpu_base->lock);
1245
1246	/*
1247	 * Note: We clear the running state after enqueue_hrtimer and
1248	 * we do not reprogramm the event hardware. Happens either in
1249	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1250	 *
1251	 * Note: Because we dropped the cpu_base->lock above,
1252	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1253	 * for us already.
1254	 */
1255	if (restart != HRTIMER_NORESTART &&
1256	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1257		enqueue_hrtimer(timer, base);
1258
1259	/*
1260	 * Separate the ->running assignment from the ->state assignment.
1261	 *
1262	 * As with a regular write barrier, this ensures the read side in
1263	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1264	 * timer->state == INACTIVE.
1265	 */
1266	raw_write_seqcount_barrier(&cpu_base->seq);
1267
1268	WARN_ON_ONCE(cpu_base->running != timer);
1269	cpu_base->running = NULL;
1270}
1271
1272static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
 
1273{
1274	struct hrtimer_clock_base *base = cpu_base->clock_base;
1275	unsigned int active = cpu_base->active_bases;
1276
1277	for (; active; base++, active >>= 1) {
1278		struct timerqueue_node *node;
1279		ktime_t basenow;
1280
1281		if (!(active & 0x01))
1282			continue;
1283
1284		basenow = ktime_add(now, base->offset);
1285
1286		while ((node = timerqueue_getnext(&base->active))) {
1287			struct hrtimer *timer;
1288
1289			timer = container_of(node, struct hrtimer, node);
1290
1291			/*
1292			 * The immediate goal for using the softexpires is
1293			 * minimizing wakeups, not running timers at the
1294			 * earliest interrupt after their soft expiration.
1295			 * This allows us to avoid using a Priority Search
1296			 * Tree, which can answer a stabbing querry for
1297			 * overlapping intervals and instead use the simple
1298			 * BST we already have.
1299			 * We don't add extra wakeups by delaying timers that
1300			 * are right-of a not yet expired timer, because that
1301			 * timer will have to trigger a wakeup anyway.
1302			 */
1303			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1304				break;
1305
1306			__run_hrtimer(cpu_base, base, timer, &basenow);
 
 
1307		}
1308	}
1309}
1310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1311#ifdef CONFIG_HIGH_RES_TIMERS
1312
1313/*
1314 * High resolution timer interrupt
1315 * Called with interrupts disabled
1316 */
1317void hrtimer_interrupt(struct clock_event_device *dev)
1318{
1319	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1320	ktime_t expires_next, now, entry_time, delta;
 
1321	int retries = 0;
1322
1323	BUG_ON(!cpu_base->hres_active);
1324	cpu_base->nr_events++;
1325	dev->next_event.tv64 = KTIME_MAX;
1326
1327	raw_spin_lock(&cpu_base->lock);
1328	entry_time = now = hrtimer_update_base(cpu_base);
1329retry:
1330	cpu_base->in_hrtirq = 1;
1331	/*
1332	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1333	 * held to prevent that a timer is enqueued in our queue via
1334	 * the migration code. This does not affect enqueueing of
1335	 * timers which run their callback and need to be requeued on
1336	 * this CPU.
1337	 */
1338	cpu_base->expires_next.tv64 = KTIME_MAX;
1339
1340	__hrtimer_run_queues(cpu_base, now);
 
 
 
 
1341
1342	/* Reevaluate the clock bases for the next expiry */
1343	expires_next = __hrtimer_get_next_event(cpu_base);
 
 
1344	/*
1345	 * Store the new expiry value so the migration code can verify
1346	 * against it.
1347	 */
1348	cpu_base->expires_next = expires_next;
1349	cpu_base->in_hrtirq = 0;
1350	raw_spin_unlock(&cpu_base->lock);
1351
1352	/* Reprogramming necessary ? */
1353	if (!tick_program_event(expires_next, 0)) {
1354		cpu_base->hang_detected = 0;
1355		return;
1356	}
1357
1358	/*
1359	 * The next timer was already expired due to:
1360	 * - tracing
1361	 * - long lasting callbacks
1362	 * - being scheduled away when running in a VM
1363	 *
1364	 * We need to prevent that we loop forever in the hrtimer
1365	 * interrupt routine. We give it 3 attempts to avoid
1366	 * overreacting on some spurious event.
1367	 *
1368	 * Acquire base lock for updating the offsets and retrieving
1369	 * the current time.
1370	 */
1371	raw_spin_lock(&cpu_base->lock);
1372	now = hrtimer_update_base(cpu_base);
1373	cpu_base->nr_retries++;
1374	if (++retries < 3)
1375		goto retry;
1376	/*
1377	 * Give the system a chance to do something else than looping
1378	 * here. We stored the entry time, so we know exactly how long
1379	 * we spent here. We schedule the next event this amount of
1380	 * time away.
1381	 */
1382	cpu_base->nr_hangs++;
1383	cpu_base->hang_detected = 1;
1384	raw_spin_unlock(&cpu_base->lock);
 
1385	delta = ktime_sub(now, entry_time);
1386	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1387		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1388	/*
1389	 * Limit it to a sensible value as we enforce a longer
1390	 * delay. Give the CPU at least 100ms to catch up.
1391	 */
1392	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1393		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1394	else
1395		expires_next = ktime_add(now, delta);
1396	tick_program_event(expires_next, 1);
1397	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1398		    ktime_to_ns(delta));
1399}
1400
1401/*
1402 * local version of hrtimer_peek_ahead_timers() called with interrupts
1403 * disabled.
1404 */
1405static inline void __hrtimer_peek_ahead_timers(void)
1406{
1407	struct tick_device *td;
1408
1409	if (!hrtimer_hres_active())
1410		return;
1411
1412	td = this_cpu_ptr(&tick_cpu_device);
1413	if (td && td->evtdev)
1414		hrtimer_interrupt(td->evtdev);
1415}
1416
1417#else /* CONFIG_HIGH_RES_TIMERS */
1418
1419static inline void __hrtimer_peek_ahead_timers(void) { }
1420
1421#endif	/* !CONFIG_HIGH_RES_TIMERS */
1422
1423/*
1424 * Called from run_local_timers in hardirq context every jiffy
1425 */
1426void hrtimer_run_queues(void)
1427{
1428	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 
1429	ktime_t now;
1430
1431	if (__hrtimer_hres_active(cpu_base))
1432		return;
1433
1434	/*
1435	 * This _is_ ugly: We have to check periodically, whether we
1436	 * can switch to highres and / or nohz mode. The clocksource
1437	 * switch happens with xtime_lock held. Notification from
1438	 * there only sets the check bit in the tick_oneshot code,
1439	 * otherwise we might deadlock vs. xtime_lock.
1440	 */
1441	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1442		hrtimer_switch_to_hres();
1443		return;
1444	}
1445
1446	raw_spin_lock(&cpu_base->lock);
1447	now = hrtimer_update_base(cpu_base);
1448	__hrtimer_run_queues(cpu_base, now);
1449	raw_spin_unlock(&cpu_base->lock);
 
 
 
 
 
 
 
1450}
1451
1452/*
1453 * Sleep related functions:
1454 */
1455static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1456{
1457	struct hrtimer_sleeper *t =
1458		container_of(timer, struct hrtimer_sleeper, timer);
1459	struct task_struct *task = t->task;
1460
1461	t->task = NULL;
1462	if (task)
1463		wake_up_process(task);
1464
1465	return HRTIMER_NORESTART;
1466}
1467
1468void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1469{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	sl->timer.function = hrtimer_wakeup;
1471	sl->task = task;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472}
1473EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1474
1475static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1476{
1477	hrtimer_init_sleeper(t, current);
1478
1479	do {
1480		set_current_state(TASK_INTERRUPTIBLE);
1481		hrtimer_start_expires(&t->timer, mode);
1482
1483		if (likely(t->task))
1484			freezable_schedule();
1485
1486		hrtimer_cancel(&t->timer);
1487		mode = HRTIMER_MODE_ABS;
1488
1489	} while (t->task && !signal_pending(current));
1490
1491	__set_current_state(TASK_RUNNING);
1492
1493	return t->task == NULL;
1494}
1495
1496static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1497{
1498	struct timespec rmt;
1499	ktime_t rem;
1500
1501	rem = hrtimer_expires_remaining(timer);
1502	if (rem.tv64 <= 0)
1503		return 0;
1504	rmt = ktime_to_timespec(rem);
1505
1506	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1507		return -EFAULT;
 
 
 
 
 
 
1508
1509	return 1;
 
 
1510}
1511
1512long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1513{
1514	struct hrtimer_sleeper t;
1515	struct timespec __user  *rmtp;
1516	int ret = 0;
1517
1518	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1519				HRTIMER_MODE_ABS);
1520	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1521
1522	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1523		goto out;
1524
1525	rmtp = restart->nanosleep.rmtp;
1526	if (rmtp) {
1527		ret = update_rmtp(&t.timer, rmtp);
1528		if (ret <= 0)
1529			goto out;
1530	}
1531
1532	/* The other values in restart are already filled in */
1533	ret = -ERESTART_RESTARTBLOCK;
1534out:
1535	destroy_hrtimer_on_stack(&t.timer);
1536	return ret;
1537}
1538
1539long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1540		       const enum hrtimer_mode mode, const clockid_t clockid)
1541{
1542	struct restart_block *restart;
1543	struct hrtimer_sleeper t;
1544	int ret = 0;
1545	u64 slack;
1546
1547	slack = current->timer_slack_ns;
1548	if (dl_task(current) || rt_task(current))
1549		slack = 0;
1550
1551	hrtimer_init_on_stack(&t.timer, clockid, mode);
1552	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1553	if (do_nanosleep(&t, mode))
1554		goto out;
1555
1556	/* Absolute timers do not update the rmtp value and restart: */
1557	if (mode == HRTIMER_MODE_ABS) {
1558		ret = -ERESTARTNOHAND;
1559		goto out;
1560	}
1561
1562	if (rmtp) {
1563		ret = update_rmtp(&t.timer, rmtp);
1564		if (ret <= 0)
1565			goto out;
1566	}
1567
1568	restart = &current->restart_block;
1569	restart->fn = hrtimer_nanosleep_restart;
1570	restart->nanosleep.clockid = t.timer.base->clockid;
1571	restart->nanosleep.rmtp = rmtp;
1572	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1573
1574	ret = -ERESTART_RESTARTBLOCK;
1575out:
1576	destroy_hrtimer_on_stack(&t.timer);
1577	return ret;
1578}
1579
1580SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1581		struct timespec __user *, rmtp)
 
 
1582{
1583	struct timespec tu;
1584
1585	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1586		return -EFAULT;
1587
1588	if (!timespec_valid(&tu))
1589		return -EINVAL;
1590
1591	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
 
 
 
 
1592}
1593
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1594/*
1595 * Functions related to boot-time initialization:
1596 */
1597static void init_hrtimers_cpu(int cpu)
1598{
1599	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1600	int i;
1601
1602	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603		cpu_base->clock_base[i].cpu_base = cpu_base;
1604		timerqueue_init_head(&cpu_base->clock_base[i].active);
 
 
 
1605	}
1606
1607	cpu_base->cpu = cpu;
1608	hrtimer_init_hres(cpu_base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1609}
1610
1611#ifdef CONFIG_HOTPLUG_CPU
1612
1613static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1614				struct hrtimer_clock_base *new_base)
1615{
1616	struct hrtimer *timer;
1617	struct timerqueue_node *node;
1618
1619	while ((node = timerqueue_getnext(&old_base->active))) {
1620		timer = container_of(node, struct hrtimer, node);
1621		BUG_ON(hrtimer_callback_running(timer));
1622		debug_deactivate(timer);
1623
1624		/*
1625		 * Mark it as ENQUEUED not INACTIVE otherwise the
1626		 * timer could be seen as !active and just vanish away
1627		 * under us on another CPU
1628		 */
1629		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1630		timer->base = new_base;
1631		/*
1632		 * Enqueue the timers on the new cpu. This does not
1633		 * reprogram the event device in case the timer
1634		 * expires before the earliest on this CPU, but we run
1635		 * hrtimer_interrupt after we migrated everything to
1636		 * sort out already expired timers and reprogram the
1637		 * event device.
1638		 */
1639		enqueue_hrtimer(timer, new_base);
1640	}
1641}
1642
1643static void migrate_hrtimers(int scpu)
1644{
 
1645	struct hrtimer_cpu_base *old_base, *new_base;
1646	int i;
1647
1648	BUG_ON(cpu_online(scpu));
1649	tick_cancel_sched_timer(scpu);
1650
1651	local_irq_disable();
1652	old_base = &per_cpu(hrtimer_bases, scpu);
1653	new_base = this_cpu_ptr(&hrtimer_bases);
1654	/*
1655	 * The caller is globally serialized and nobody else
1656	 * takes two locks at once, deadlock is not possible.
1657	 */
1658	raw_spin_lock(&new_base->lock);
1659	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1660
1661	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1662		migrate_hrtimer_list(&old_base->clock_base[i],
1663				     &new_base->clock_base[i]);
1664	}
1665
1666	raw_spin_unlock(&old_base->lock);
1667	raw_spin_unlock(&new_base->lock);
1668
1669	/* Check, if we got expired work to do */
1670	__hrtimer_peek_ahead_timers();
1671	local_irq_enable();
1672}
1673
1674#endif /* CONFIG_HOTPLUG_CPU */
1675
1676static int hrtimer_cpu_notify(struct notifier_block *self,
1677					unsigned long action, void *hcpu)
1678{
1679	int scpu = (long)hcpu;
1680
1681	switch (action) {
1682
1683	case CPU_UP_PREPARE:
1684	case CPU_UP_PREPARE_FROZEN:
1685		init_hrtimers_cpu(scpu);
1686		break;
1687
1688#ifdef CONFIG_HOTPLUG_CPU
1689	case CPU_DEAD:
1690	case CPU_DEAD_FROZEN:
1691		migrate_hrtimers(scpu);
1692		break;
1693#endif
1694
1695	default:
1696		break;
1697	}
1698
1699	return NOTIFY_OK;
1700}
1701
1702static struct notifier_block hrtimers_nb = {
1703	.notifier_call = hrtimer_cpu_notify,
1704};
1705
1706void __init hrtimers_init(void)
1707{
1708	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1709			  (void *)(long)smp_processor_id());
1710	register_cpu_notifier(&hrtimers_nb);
1711}
1712
1713/**
1714 * schedule_hrtimeout_range_clock - sleep until timeout
1715 * @expires:	timeout value (ktime_t)
1716 * @delta:	slack in expires timeout (ktime_t)
1717 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1718 * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1719 */
1720int __sched
1721schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1722			       const enum hrtimer_mode mode, int clock)
1723{
1724	struct hrtimer_sleeper t;
1725
1726	/*
1727	 * Optimize when a zero timeout value is given. It does not
1728	 * matter whether this is an absolute or a relative time.
1729	 */
1730	if (expires && !expires->tv64) {
1731		__set_current_state(TASK_RUNNING);
1732		return 0;
1733	}
1734
1735	/*
1736	 * A NULL parameter means "infinite"
 
1737	 */
1738	if (!expires) {
1739		schedule();
1740		return -EINTR;
1741	}
1742
1743	hrtimer_init_on_stack(&t.timer, clock, mode);
1744	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1745
1746	hrtimer_init_sleeper(&t, current);
1747
1748	hrtimer_start_expires(&t.timer, mode);
1749
1750	if (likely(t.task))
1751		schedule();
1752
1753	hrtimer_cancel(&t.timer);
1754	destroy_hrtimer_on_stack(&t.timer);
1755
1756	__set_current_state(TASK_RUNNING);
1757
1758	return !t.task ? 0 : -EINTR;
1759}
1760
1761/**
1762 * schedule_hrtimeout_range - sleep until timeout
1763 * @expires:	timeout value (ktime_t)
1764 * @delta:	slack in expires timeout (ktime_t)
1765 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1766 *
1767 * Make the current task sleep until the given expiry time has
1768 * elapsed. The routine will return immediately unless
1769 * the current task state has been set (see set_current_state()).
1770 *
1771 * The @delta argument gives the kernel the freedom to schedule the
1772 * actual wakeup to a time that is both power and performance friendly.
1773 * The kernel give the normal best effort behavior for "@expires+@delta",
1774 * but may decide to fire the timer earlier, but no earlier than @expires.
1775 *
1776 * You can set the task state as follows -
1777 *
1778 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1779 * pass before the routine returns.
1780 *
1781 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1782 * delivered to the current task.
1783 *
1784 * The current task state is guaranteed to be TASK_RUNNING when this
1785 * routine returns.
1786 *
1787 * Returns 0 when the timer has expired otherwise -EINTR
1788 */
1789int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1790				     const enum hrtimer_mode mode)
1791{
1792	return schedule_hrtimeout_range_clock(expires, delta, mode,
1793					      CLOCK_MONOTONIC);
1794}
1795EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1796
1797/**
1798 * schedule_hrtimeout - sleep until timeout
1799 * @expires:	timeout value (ktime_t)
1800 * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1801 *
1802 * Make the current task sleep until the given expiry time has
1803 * elapsed. The routine will return immediately unless
1804 * the current task state has been set (see set_current_state()).
1805 *
1806 * You can set the task state as follows -
1807 *
1808 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1809 * pass before the routine returns.
1810 *
1811 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1812 * delivered to the current task.
1813 *
1814 * The current task state is guaranteed to be TASK_RUNNING when this
1815 * routine returns.
1816 *
1817 * Returns 0 when the timer has expired otherwise -EINTR
1818 */
1819int __sched schedule_hrtimeout(ktime_t *expires,
1820			       const enum hrtimer_mode mode)
1821{
1822	return schedule_hrtimeout_range(expires, 0, mode);
 
 
1823}
1824EXPORT_SYMBOL_GPL(schedule_hrtimeout);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  High-resolution kernel timers
   8 *
   9 *  In contrast to the low-resolution timeout API, aka timer wheel,
  10 *  hrtimers provide finer resolution and accuracy depending on system
  11 *  configuration and capabilities.
 
 
 
 
 
 
  12 *
  13 *  Started by: Thomas Gleixner and Ingo Molnar
  14 *
  15 *  Credits:
  16 *	Based on the original timer wheel code
  17 *
  18 *	Help, testing, suggestions, bugfixes, improvements were
  19 *	provided by:
  20 *
  21 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  22 *	et. al.
 
 
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/export.h>
  27#include <linux/percpu.h>
  28#include <linux/hrtimer.h>
  29#include <linux/notifier.h>
  30#include <linux/syscalls.h>
 
  31#include <linux/interrupt.h>
  32#include <linux/tick.h>
 
  33#include <linux/err.h>
  34#include <linux/debugobjects.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/sysctl.h>
  37#include <linux/sched/rt.h>
  38#include <linux/sched/deadline.h>
  39#include <linux/sched/nohz.h>
  40#include <linux/sched/debug.h>
  41#include <linux/sched/isolation.h>
  42#include <linux/timer.h>
  43#include <linux/freezer.h>
  44#include <linux/compat.h>
  45
  46#include <linux/uaccess.h>
  47
  48#include <trace/events/timer.h>
  49
  50#include "tick-internal.h"
  51
  52/*
  53 * Masks for selecting the soft and hard context timers from
  54 * cpu_base->active
  55 */
  56#define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
  57#define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
  58#define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
  59#define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
  60
  61static void retrigger_next_event(void *arg);
  62
  63/*
  64 * The timer bases:
  65 *
  66 * There are more clockids than hrtimer bases. Thus, we index
  67 * into the timer bases by the hrtimer_base_type enum. When trying
  68 * to reach a base using a clockid, hrtimer_clockid_to_base()
  69 * is used to convert from clockid to the proper hrtimer_base_type.
  70 */
  71DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  72{
  73	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
 
  74	.clock_base =
  75	{
  76		{
  77			.index = HRTIMER_BASE_MONOTONIC,
  78			.clockid = CLOCK_MONOTONIC,
  79			.get_time = &ktime_get,
  80		},
  81		{
  82			.index = HRTIMER_BASE_REALTIME,
  83			.clockid = CLOCK_REALTIME,
  84			.get_time = &ktime_get_real,
  85		},
  86		{
  87			.index = HRTIMER_BASE_BOOTTIME,
  88			.clockid = CLOCK_BOOTTIME,
  89			.get_time = &ktime_get_boottime,
  90		},
  91		{
  92			.index = HRTIMER_BASE_TAI,
  93			.clockid = CLOCK_TAI,
  94			.get_time = &ktime_get_clocktai,
  95		},
  96		{
  97			.index = HRTIMER_BASE_MONOTONIC_SOFT,
  98			.clockid = CLOCK_MONOTONIC,
  99			.get_time = &ktime_get,
 100		},
 101		{
 102			.index = HRTIMER_BASE_REALTIME_SOFT,
 103			.clockid = CLOCK_REALTIME,
 104			.get_time = &ktime_get_real,
 105		},
 106		{
 107			.index = HRTIMER_BASE_BOOTTIME_SOFT,
 108			.clockid = CLOCK_BOOTTIME,
 109			.get_time = &ktime_get_boottime,
 110		},
 111		{
 112			.index = HRTIMER_BASE_TAI_SOFT,
 113			.clockid = CLOCK_TAI,
 114			.get_time = &ktime_get_clocktai,
 115		},
 116	},
 117	.csd = CSD_INIT(retrigger_next_event, NULL)
 118};
 119
 120static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
 121	/* Make sure we catch unsupported clockids */
 122	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
 123
 124	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
 125	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
 126	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
 127	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
 128};
 129
 130static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base)
 131{
 132	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
 133		return true;
 134	else
 135		return likely(base->online);
 136}
 137
 138/*
 139 * Functions and macros which are different for UP/SMP systems are kept in a
 140 * single place
 141 */
 142#ifdef CONFIG_SMP
 143
 144/*
 145 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 146 * such that hrtimer_callback_running() can unconditionally dereference
 147 * timer->base->cpu_base
 148 */
 149static struct hrtimer_cpu_base migration_cpu_base = {
 150	.clock_base = { {
 151		.cpu_base = &migration_cpu_base,
 152		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
 153						     &migration_cpu_base.lock),
 154	}, },
 155};
 156
 157#define migration_base	migration_cpu_base.clock_base[0]
 158
 159static inline bool is_migration_base(struct hrtimer_clock_base *base)
 160{
 161	return base == &migration_base;
 162}
 163
 164/*
 165 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 166 * means that all timers which are tied to this base via timer->base are
 167 * locked, and the base itself is locked too.
 168 *
 169 * So __run_timers/migrate_timers can safely modify all timers which could
 170 * be found on the lists/queues.
 171 *
 172 * When the timer's base is locked, and the timer removed from list, it is
 173 * possible to set timer->base = &migration_base and drop the lock: the timer
 174 * remains locked.
 175 */
 176static
 177struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 178					     unsigned long *flags)
 179	__acquires(&timer->base->lock)
 180{
 181	struct hrtimer_clock_base *base;
 182
 183	for (;;) {
 184		base = READ_ONCE(timer->base);
 185		if (likely(base != &migration_base)) {
 186			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 187			if (likely(base == timer->base))
 188				return base;
 189			/* The timer has migrated to another CPU: */
 190			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 191		}
 192		cpu_relax();
 193	}
 194}
 195
 196/*
 197 * Check if the elected target is suitable considering its next
 198 * event and the hotplug state of the current CPU.
 199 *
 200 * If the elected target is remote and its next event is after the timer
 201 * to queue, then a remote reprogram is necessary. However there is no
 202 * guarantee the IPI handling the operation would arrive in time to meet
 203 * the high resolution deadline. In this case the local CPU becomes a
 204 * preferred target, unless it is offline.
 205 *
 206 * High and low resolution modes are handled the same way for simplicity.
 207 *
 208 * Called with cpu_base->lock of target cpu held.
 209 */
 210static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base,
 211				    struct hrtimer_cpu_base *new_cpu_base,
 212				    struct hrtimer_cpu_base *this_cpu_base)
 213{
 
 214	ktime_t expires;
 215
 216	/*
 217	 * The local CPU clockevent can be reprogrammed. Also get_target_base()
 218	 * guarantees it is online.
 219	 */
 220	if (new_cpu_base == this_cpu_base)
 221		return true;
 222
 223	/*
 224	 * The offline local CPU can't be the default target if the
 225	 * next remote target event is after this timer. Keep the
 226	 * elected new base. An IPI will we issued to reprogram
 227	 * it as a last resort.
 228	 */
 229	if (!hrtimer_base_is_online(this_cpu_base))
 230		return true;
 231
 232	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
 
 
 
 
 
 233
 234	return expires >= new_base->cpu_base->expires_next;
 
 
 
 
 
 
 
 235}
 236
 237static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned)
 
 
 238{
 239	if (!hrtimer_base_is_online(base)) {
 240		int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER));
 241
 242		return &per_cpu(hrtimer_bases, cpu);
 243	}
 244
 245#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 246	if (static_branch_likely(&timers_migration_enabled) && !pinned)
 247		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
 248#endif
 249	return base;
 250}
 
 251
 252/*
 253 * We switch the timer base to a power-optimized selected CPU target,
 254 * if:
 255 *	- NO_HZ_COMMON is enabled
 256 *	- timer migration is enabled
 257 *	- the timer callback is not running
 258 *	- the timer is not the first expiring timer on the new target
 259 *
 260 * If one of the above requirements is not fulfilled we move the timer
 261 * to the current CPU or leave it on the previously assigned CPU if
 262 * the timer callback is currently running.
 263 */
 264static inline struct hrtimer_clock_base *
 265switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
 266		    int pinned)
 267{
 268	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
 269	struct hrtimer_clock_base *new_base;
 270	int basenum = base->index;
 271
 272	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
 273	new_cpu_base = get_target_base(this_cpu_base, pinned);
 274again:
 275	new_base = &new_cpu_base->clock_base[basenum];
 276
 277	if (base != new_base) {
 278		/*
 279		 * We are trying to move timer to new_base.
 280		 * However we can't change timer's base while it is running,
 281		 * so we keep it on the same CPU. No hassle vs. reprogramming
 282		 * the event source in the high resolution case. The softirq
 283		 * code will take care of this when the timer function has
 284		 * completed. There is no conflict as we hold the lock until
 285		 * the timer is enqueued.
 286		 */
 287		if (unlikely(hrtimer_callback_running(timer)))
 288			return base;
 289
 290		/* See the comment in lock_hrtimer_base() */
 291		WRITE_ONCE(timer->base, &migration_base);
 292		raw_spin_unlock(&base->cpu_base->lock);
 293		raw_spin_lock(&new_base->cpu_base->lock);
 294
 295		if (!hrtimer_suitable_target(timer, new_base, new_cpu_base,
 296					     this_cpu_base)) {
 297			raw_spin_unlock(&new_base->cpu_base->lock);
 298			raw_spin_lock(&base->cpu_base->lock);
 299			new_cpu_base = this_cpu_base;
 300			WRITE_ONCE(timer->base, base);
 301			goto again;
 302		}
 303		WRITE_ONCE(timer->base, new_base);
 304	} else {
 305		if (!hrtimer_suitable_target(timer, new_base,  new_cpu_base, this_cpu_base)) {
 
 306			new_cpu_base = this_cpu_base;
 307			goto again;
 308		}
 309	}
 310	return new_base;
 311}
 312
 313#else /* CONFIG_SMP */
 314
 315static inline bool is_migration_base(struct hrtimer_clock_base *base)
 316{
 317	return false;
 318}
 319
 320static inline struct hrtimer_clock_base *
 321lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 322	__acquires(&timer->base->cpu_base->lock)
 323{
 324	struct hrtimer_clock_base *base = timer->base;
 325
 326	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
 327
 328	return base;
 329}
 330
 331# define switch_hrtimer_base(t, b, p)	(b)
 332
 333#endif	/* !CONFIG_SMP */
 334
 335/*
 336 * Functions for the union type storage format of ktime_t which are
 337 * too large for inlining:
 338 */
 339#if BITS_PER_LONG < 64
 340/*
 341 * Divide a ktime value by a nanosecond value
 342 */
 343s64 __ktime_divns(const ktime_t kt, s64 div)
 344{
 345	int sft = 0;
 346	s64 dclc;
 347	u64 tmp;
 348
 349	dclc = ktime_to_ns(kt);
 350	tmp = dclc < 0 ? -dclc : dclc;
 351
 352	/* Make sure the divisor is less than 2^32: */
 353	while (div >> 32) {
 354		sft++;
 355		div >>= 1;
 356	}
 357	tmp >>= sft;
 358	do_div(tmp, (u32) div);
 359	return dclc < 0 ? -tmp : tmp;
 360}
 361EXPORT_SYMBOL_GPL(__ktime_divns);
 362#endif /* BITS_PER_LONG >= 64 */
 363
 364/*
 365 * Add two ktime values and do a safety check for overflow:
 366 */
 367ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
 368{
 369	ktime_t res = ktime_add_unsafe(lhs, rhs);
 370
 371	/*
 372	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
 373	 * return to user space in a timespec:
 374	 */
 375	if (res < 0 || res < lhs || res < rhs)
 376		res = ktime_set(KTIME_SEC_MAX, 0);
 377
 378	return res;
 379}
 380
 381EXPORT_SYMBOL_GPL(ktime_add_safe);
 382
 383#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 384
 385static const struct debug_obj_descr hrtimer_debug_descr;
 386
 387static void *hrtimer_debug_hint(void *addr)
 388{
 389	return ((struct hrtimer *) addr)->function;
 390}
 391
 392/*
 393 * fixup_init is called when:
 394 * - an active object is initialized
 395 */
 396static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
 397{
 398	struct hrtimer *timer = addr;
 399
 400	switch (state) {
 401	case ODEBUG_STATE_ACTIVE:
 402		hrtimer_cancel(timer);
 403		debug_object_init(timer, &hrtimer_debug_descr);
 404		return true;
 405	default:
 406		return false;
 407	}
 408}
 409
 410/*
 411 * fixup_activate is called when:
 412 * - an active object is activated
 413 * - an unknown non-static object is activated
 414 */
 415static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
 416{
 417	switch (state) {
 
 
 
 
 
 418	case ODEBUG_STATE_ACTIVE:
 419		WARN_ON(1);
 420		fallthrough;
 421	default:
 422		return false;
 423	}
 424}
 425
 426/*
 427 * fixup_free is called when:
 428 * - an active object is freed
 429 */
 430static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
 431{
 432	struct hrtimer *timer = addr;
 433
 434	switch (state) {
 435	case ODEBUG_STATE_ACTIVE:
 436		hrtimer_cancel(timer);
 437		debug_object_free(timer, &hrtimer_debug_descr);
 438		return true;
 439	default:
 440		return false;
 441	}
 442}
 443
 444static const struct debug_obj_descr hrtimer_debug_descr = {
 445	.name		= "hrtimer",
 446	.debug_hint	= hrtimer_debug_hint,
 447	.fixup_init	= hrtimer_fixup_init,
 448	.fixup_activate	= hrtimer_fixup_activate,
 449	.fixup_free	= hrtimer_fixup_free,
 450};
 451
 452static inline void debug_hrtimer_init(struct hrtimer *timer)
 453{
 454	debug_object_init(timer, &hrtimer_debug_descr);
 455}
 456
 457static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer)
 458{
 459	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
 
 
 
 
 
 460}
 461
 462static inline void debug_hrtimer_activate(struct hrtimer *timer,
 463					  enum hrtimer_mode mode)
 464{
 465	debug_object_activate(timer, &hrtimer_debug_descr);
 466}
 467
 468static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
 
 
 
 
 469{
 470	debug_object_deactivate(timer, &hrtimer_debug_descr);
 
 471}
 
 472
 473void destroy_hrtimer_on_stack(struct hrtimer *timer)
 474{
 475	debug_object_free(timer, &hrtimer_debug_descr);
 476}
 477EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
 478
 479#else
 480
 481static inline void debug_hrtimer_init(struct hrtimer *timer) { }
 482static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { }
 483static inline void debug_hrtimer_activate(struct hrtimer *timer,
 484					  enum hrtimer_mode mode) { }
 485static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
 486#endif
 487
 488static inline void
 489debug_init(struct hrtimer *timer, clockid_t clockid,
 490	   enum hrtimer_mode mode)
 491{
 492	debug_hrtimer_init(timer);
 493	trace_hrtimer_init(timer, clockid, mode);
 494}
 495
 496static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid,
 497				       enum hrtimer_mode mode)
 498{
 499	debug_hrtimer_init_on_stack(timer);
 500	trace_hrtimer_init(timer, clockid, mode);
 501}
 502
 503static inline void debug_activate(struct hrtimer *timer,
 504				  enum hrtimer_mode mode)
 505{
 506	debug_hrtimer_activate(timer, mode);
 507	trace_hrtimer_start(timer, mode);
 508}
 509
 510static inline void debug_deactivate(struct hrtimer *timer)
 511{
 512	debug_hrtimer_deactivate(timer);
 513	trace_hrtimer_cancel(timer);
 514}
 515
 516static struct hrtimer_clock_base *
 517__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
 
 518{
 519	unsigned int idx;
 520
 521	if (!*active)
 522		return NULL;
 523
 524	idx = __ffs(*active);
 525	*active &= ~(1U << idx);
 526
 527	return &cpu_base->clock_base[idx];
 528}
 529
 530#define for_each_active_base(base, cpu_base, active)	\
 531	while ((base = __next_base((cpu_base), &(active))))
 532
 533static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
 534					 const struct hrtimer *exclude,
 535					 unsigned int active,
 536					 ktime_t expires_next)
 537{
 538	struct hrtimer_clock_base *base;
 539	ktime_t expires;
 
 540
 541	for_each_active_base(base, cpu_base, active) {
 
 542		struct timerqueue_node *next;
 543		struct hrtimer *timer;
 544
 
 
 
 545		next = timerqueue_getnext(&base->active);
 546		timer = container_of(next, struct hrtimer, node);
 547		if (timer == exclude) {
 548			/* Get to the next timer in the queue. */
 549			next = timerqueue_iterate_next(next);
 550			if (!next)
 551				continue;
 552
 553			timer = container_of(next, struct hrtimer, node);
 554		}
 555		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 556		if (expires < expires_next) {
 557			expires_next = expires;
 558
 559			/* Skip cpu_base update if a timer is being excluded. */
 560			if (exclude)
 561				continue;
 562
 563			if (timer->is_soft)
 564				cpu_base->softirq_next_timer = timer;
 565			else
 566				cpu_base->next_timer = timer;
 567		}
 568	}
 569	/*
 570	 * clock_was_set() might have changed base->offset of any of
 571	 * the clock bases so the result might be negative. Fix it up
 572	 * to prevent a false positive in clockevents_program_event().
 573	 */
 574	if (expires_next < 0)
 575		expires_next = 0;
 576	return expires_next;
 577}
 578
 579/*
 580 * Recomputes cpu_base::*next_timer and returns the earliest expires_next
 581 * but does not set cpu_base::*expires_next, that is done by
 582 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
 583 * cpu_base::*expires_next right away, reprogramming logic would no longer
 584 * work.
 585 *
 586 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
 587 * those timers will get run whenever the softirq gets handled, at the end of
 588 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
 589 *
 590 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
 591 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
 592 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
 593 *
 594 * @active_mask must be one of:
 595 *  - HRTIMER_ACTIVE_ALL,
 596 *  - HRTIMER_ACTIVE_SOFT, or
 597 *  - HRTIMER_ACTIVE_HARD.
 598 */
 599static ktime_t
 600__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
 601{
 602	unsigned int active;
 603	struct hrtimer *next_timer = NULL;
 604	ktime_t expires_next = KTIME_MAX;
 605
 606	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
 607		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
 608		cpu_base->softirq_next_timer = NULL;
 609		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
 610							 active, KTIME_MAX);
 611
 612		next_timer = cpu_base->softirq_next_timer;
 613	}
 614
 615	if (active_mask & HRTIMER_ACTIVE_HARD) {
 616		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
 617		cpu_base->next_timer = next_timer;
 618		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
 619							 expires_next);
 620	}
 621
 622	return expires_next;
 623}
 624
 625static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
 626{
 627	ktime_t expires_next, soft = KTIME_MAX;
 628
 629	/*
 630	 * If the soft interrupt has already been activated, ignore the
 631	 * soft bases. They will be handled in the already raised soft
 632	 * interrupt.
 633	 */
 634	if (!cpu_base->softirq_activated) {
 635		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
 636		/*
 637		 * Update the soft expiry time. clock_settime() might have
 638		 * affected it.
 639		 */
 640		cpu_base->softirq_expires_next = soft;
 641	}
 642
 643	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
 644	/*
 645	 * If a softirq timer is expiring first, update cpu_base->next_timer
 646	 * and program the hardware with the soft expiry time.
 647	 */
 648	if (expires_next > soft) {
 649		cpu_base->next_timer = cpu_base->softirq_next_timer;
 650		expires_next = soft;
 651	}
 652
 653	return expires_next;
 654}
 
 655
 656static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
 657{
 658	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
 659	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
 660	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
 661
 662	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
 663					    offs_real, offs_boot, offs_tai);
 664
 665	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
 666	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
 667	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
 668
 669	return now;
 670}
 671
 672/*
 673 * Is the high resolution mode active ?
 674 */
 675static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
 676{
 677	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
 678		cpu_base->hres_active : 0;
 679}
 680
 681static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base,
 682				struct hrtimer *next_timer,
 683				ktime_t expires_next)
 684{
 685	cpu_base->expires_next = expires_next;
 686
 687	/*
 688	 * If hres is not active, hardware does not have to be
 689	 * reprogrammed yet.
 690	 *
 691	 * If a hang was detected in the last timer interrupt then we
 692	 * leave the hang delay active in the hardware. We want the
 693	 * system to make progress. That also prevents the following
 694	 * scenario:
 695	 * T1 expires 50ms from now
 696	 * T2 expires 5s from now
 697	 *
 698	 * T1 is removed, so this code is called and would reprogram
 699	 * the hardware to 5s from now. Any hrtimer_start after that
 700	 * will not reprogram the hardware due to hang_detected being
 701	 * set. So we'd effectively block all timers until the T2 event
 702	 * fires.
 703	 */
 704	if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
 705		return;
 706
 707	tick_program_event(expires_next, 1);
 708}
 709
 710/*
 711 * Reprogram the event source with checking both queues for the
 712 * next event
 713 * Called with interrupts disabled and base->lock held
 714 */
 715static void
 716hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
 717{
 718	ktime_t expires_next;
 719
 720	expires_next = hrtimer_update_next_event(cpu_base);
 721
 722	if (skip_equal && expires_next == cpu_base->expires_next)
 723		return;
 724
 725	__hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next);
 726}
 727
 728/* High resolution timer related functions */
 729#ifdef CONFIG_HIGH_RES_TIMERS
 730
 731/*
 732 * High resolution timer enabled ?
 733 */
 734static bool hrtimer_hres_enabled __read_mostly  = true;
 735unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
 736EXPORT_SYMBOL_GPL(hrtimer_resolution);
 737
 738/*
 739 * Enable / Disable high resolution mode
 740 */
 741static int __init setup_hrtimer_hres(char *str)
 742{
 743	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
 744}
 745
 746__setup("highres=", setup_hrtimer_hres);
 747
 748/*
 749 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 750 */
 751static inline int hrtimer_is_hres_enabled(void)
 752{
 753	return hrtimer_hres_enabled;
 754}
 755
 756/*
 757 * Switch to high resolution mode
 758 */
 759static void hrtimer_switch_to_hres(void)
 760{
 761	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 
 762
 763	if (tick_init_highres()) {
 764		pr_warn("Could not switch to high resolution mode on CPU %u\n",
 765			base->cpu);
 766		return;
 767	}
 768	base->hres_active = 1;
 769	hrtimer_resolution = HIGH_RES_NSEC;
 770
 771	tick_setup_sched_timer(true);
 772	/* "Retrigger" the interrupt to get things going */
 773	retrigger_next_event(NULL);
 774}
 775
 776#else
 777
 778static inline int hrtimer_is_hres_enabled(void) { return 0; }
 779static inline void hrtimer_switch_to_hres(void) { }
 780
 781#endif /* CONFIG_HIGH_RES_TIMERS */
 782/*
 783 * Retrigger next event is called after clock was set with interrupts
 784 * disabled through an SMP function call or directly from low level
 785 * resume code.
 786 *
 787 * This is only invoked when:
 788 *	- CONFIG_HIGH_RES_TIMERS is enabled.
 789 *	- CONFIG_NOHZ_COMMON is enabled
 790 *
 791 * For the other cases this function is empty and because the call sites
 792 * are optimized out it vanishes as well, i.e. no need for lots of
 793 * #ifdeffery.
 794 */
 795static void retrigger_next_event(void *arg)
 
 796{
 797	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
 
 
 
 
 
 
 
 
 
 
 798
 799	/*
 800	 * When high resolution mode or nohz is active, then the offsets of
 801	 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the
 802	 * next tick will take care of that.
 
 
 
 803	 *
 804	 * If high resolution mode is active then the next expiring timer
 805	 * must be reevaluated and the clock event device reprogrammed if
 806	 * necessary.
 807	 *
 808	 * In the NOHZ case the update of the offset and the reevaluation
 809	 * of the next expiring timer is enough. The return from the SMP
 810	 * function call will take care of the reprogramming in case the
 811	 * CPU was in a NOHZ idle sleep.
 812	 */
 813	if (!hrtimer_hres_active(base) && !tick_nohz_active)
 814		return;
 815
 816	raw_spin_lock(&base->lock);
 817	hrtimer_update_base(base);
 818	if (hrtimer_hres_active(base))
 819		hrtimer_force_reprogram(base, 0);
 820	else
 821		hrtimer_update_next_event(base);
 822	raw_spin_unlock(&base->lock);
 823}
 824
 825/*
 826 * When a timer is enqueued and expires earlier than the already enqueued
 827 * timers, we have to check, whether it expires earlier than the timer for
 828 * which the clock event device was armed.
 829 *
 830 * Called with interrupts disabled and base->cpu_base.lock held
 831 */
 832static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
 
 833{
 834	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
 835	struct hrtimer_clock_base *base = timer->base;
 836	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
 837
 838	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
 839
 840	/*
 841	 * CLOCK_REALTIME timer might be requested with an absolute
 842	 * expiry time which is less than base->offset. Set it to 0.
 843	 */
 844	if (expires < 0)
 845		expires = 0;
 846
 847	if (timer->is_soft) {
 848		/*
 849		 * soft hrtimer could be started on a remote CPU. In this
 850		 * case softirq_expires_next needs to be updated on the
 851		 * remote CPU. The soft hrtimer will not expire before the
 852		 * first hard hrtimer on the remote CPU -
 853		 * hrtimer_check_target() prevents this case.
 854		 */
 855		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
 856
 857		if (timer_cpu_base->softirq_activated)
 858			return;
 859
 860		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
 861			return;
 862
 863		timer_cpu_base->softirq_next_timer = timer;
 864		timer_cpu_base->softirq_expires_next = expires;
 865
 866		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
 867		    !reprogram)
 868			return;
 869	}
 870
 871	/*
 872	 * If the timer is not on the current cpu, we cannot reprogram
 873	 * the other cpus clock event device.
 874	 */
 875	if (base->cpu_base != cpu_base)
 876		return;
 877
 878	if (expires >= cpu_base->expires_next)
 879		return;
 880
 881	/*
 882	 * If the hrtimer interrupt is running, then it will reevaluate the
 883	 * clock bases and reprogram the clock event device.
 
 
 
 884	 */
 885	if (cpu_base->in_hrtirq)
 886		return;
 887
 888	cpu_base->next_timer = timer;
 889
 890	__hrtimer_reprogram(cpu_base, timer, expires);
 891}
 892
 893static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base,
 894			     unsigned int active)
 895{
 896	struct hrtimer_clock_base *base;
 897	unsigned int seq;
 898	ktime_t expires;
 899
 900	/*
 901	 * Update the base offsets unconditionally so the following
 902	 * checks whether the SMP function call is required works.
 903	 *
 904	 * The update is safe even when the remote CPU is in the hrtimer
 905	 * interrupt or the hrtimer soft interrupt and expiring affected
 906	 * bases. Either it will see the update before handling a base or
 907	 * it will see it when it finishes the processing and reevaluates
 908	 * the next expiring timer.
 909	 */
 910	seq = cpu_base->clock_was_set_seq;
 911	hrtimer_update_base(cpu_base);
 
 
 
 912
 913	/*
 914	 * If the sequence did not change over the update then the
 915	 * remote CPU already handled it.
 916	 */
 917	if (seq == cpu_base->clock_was_set_seq)
 918		return false;
 919
 920	/*
 921	 * If the remote CPU is currently handling an hrtimer interrupt, it
 922	 * will reevaluate the first expiring timer of all clock bases
 923	 * before reprogramming. Nothing to do here.
 
 924	 */
 925	if (cpu_base->in_hrtirq)
 926		return false;
 927
 928	/*
 929	 * Walk the affected clock bases and check whether the first expiring
 930	 * timer in a clock base is moving ahead of the first expiring timer of
 931	 * @cpu_base. If so, the IPI must be invoked because per CPU clock
 932	 * event devices cannot be remotely reprogrammed.
 933	 */
 934	active &= cpu_base->active_bases;
 
 
 935
 936	for_each_active_base(base, cpu_base, active) {
 937		struct timerqueue_node *next;
 938
 939		next = timerqueue_getnext(&base->active);
 940		expires = ktime_sub(next->expires, base->offset);
 941		if (expires < cpu_base->expires_next)
 942			return true;
 943
 944		/* Extra check for softirq clock bases */
 945		if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT)
 946			continue;
 947		if (cpu_base->softirq_activated)
 948			continue;
 949		if (expires < cpu_base->softirq_expires_next)
 950			return true;
 951	}
 952	return false;
 953}
 954
 955/*
 956 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and
 957 * CLOCK_BOOTTIME (for late sleep time injection).
 958 *
 959 * This requires to update the offsets for these clocks
 960 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this
 961 * also requires to eventually reprogram the per CPU clock event devices
 962 * when the change moves an affected timer ahead of the first expiring
 963 * timer on that CPU. Obviously remote per CPU clock event devices cannot
 964 * be reprogrammed. The other reason why an IPI has to be sent is when the
 965 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets
 966 * in the tick, which obviously might be stopped, so this has to bring out
 967 * the remote CPU which might sleep in idle to get this sorted.
 968 */
 969void clock_was_set(unsigned int bases)
 970{
 971	struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases);
 972	cpumask_var_t mask;
 973	int cpu;
 974
 975	if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active)
 976		goto out_timerfd;
 977
 978	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
 979		on_each_cpu(retrigger_next_event, NULL, 1);
 980		goto out_timerfd;
 981	}
 
 982
 983	/* Avoid interrupting CPUs if possible */
 984	cpus_read_lock();
 985	for_each_online_cpu(cpu) {
 986		unsigned long flags;
 
 
 987
 988		cpu_base = &per_cpu(hrtimer_bases, cpu);
 989		raw_spin_lock_irqsave(&cpu_base->lock, flags);
 990
 991		if (update_needs_ipi(cpu_base, bases))
 992			cpumask_set_cpu(cpu, mask);
 993
 994		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
 995	}
 
 
 996
 997	preempt_disable();
 998	smp_call_function_many(mask, retrigger_next_event, NULL, 1);
 999	preempt_enable();
1000	cpus_read_unlock();
1001	free_cpumask_var(mask);
1002
1003out_timerfd:
1004	timerfd_clock_was_set();
1005}
1006
1007static void clock_was_set_work(struct work_struct *work)
1008{
1009	clock_was_set(CLOCK_SET_WALL);
1010}
1011
1012static DECLARE_WORK(hrtimer_work, clock_was_set_work);
1013
1014/*
1015 * Called from timekeeping code to reprogram the hrtimer interrupt device
1016 * on all cpus and to notify timerfd.
1017 */
1018void clock_was_set_delayed(void)
1019{
1020	schedule_work(&hrtimer_work);
1021}
1022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023/*
1024 * Called during resume either directly from via timekeeping_resume()
1025 * or in the case of s2idle from tick_unfreeze() to ensure that the
1026 * hrtimers are up to date.
 
 
 
 
 
 
1027 */
1028void hrtimers_resume_local(void)
1029{
1030	lockdep_assert_irqs_disabled();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031	/* Retrigger on the local CPU */
1032	retrigger_next_event(NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033}
1034
1035/*
1036 * Counterpart to lock_hrtimer_base above:
1037 */
1038static inline
1039void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
1040	__releases(&timer->base->cpu_base->lock)
1041{
1042	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
1043}
1044
1045/**
1046 * hrtimer_forward() - forward the timer expiry
1047 * @timer:	hrtimer to forward
1048 * @now:	forward past this time
1049 * @interval:	the interval to forward
1050 *
1051 * Forward the timer expiry so it will expire in the future.
 
1052 *
1053 * .. note::
1054 *  This only updates the timer expiry value and does not requeue the timer.
 
 
1055 *
1056 * There is also a variant of the function hrtimer_forward_now().
1057 *
1058 * Context: Can be safely called from the callback function of @timer. If called
1059 *          from other contexts @timer must neither be enqueued nor running the
1060 *          callback and the caller needs to take care of serialization.
1061 *
1062 * Return: The number of overruns are returned.
1063 */
1064u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
1065{
1066	u64 orun = 1;
1067	ktime_t delta;
1068
1069	delta = ktime_sub(now, hrtimer_get_expires(timer));
1070
1071	if (delta < 0)
1072		return 0;
1073
1074	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
1075		return 0;
1076
1077	if (interval < hrtimer_resolution)
1078		interval = hrtimer_resolution;
1079
1080	if (unlikely(delta >= interval)) {
1081		s64 incr = ktime_to_ns(interval);
1082
1083		orun = ktime_divns(delta, incr);
1084		hrtimer_add_expires_ns(timer, incr * orun);
1085		if (hrtimer_get_expires_tv64(timer) > now)
1086			return orun;
1087		/*
1088		 * This (and the ktime_add() below) is the
1089		 * correction for exact:
1090		 */
1091		orun++;
1092	}
1093	hrtimer_add_expires(timer, interval);
1094
1095	return orun;
1096}
1097EXPORT_SYMBOL_GPL(hrtimer_forward);
1098
1099/*
1100 * enqueue_hrtimer - internal function to (re)start a timer
1101 *
1102 * The timer is inserted in expiry order. Insertion into the
1103 * red black tree is O(log(n)). Must hold the base lock.
1104 *
1105 * Returns 1 when the new timer is the leftmost timer in the tree.
1106 */
1107static int enqueue_hrtimer(struct hrtimer *timer,
1108			   struct hrtimer_clock_base *base,
1109			   enum hrtimer_mode mode)
1110{
1111	debug_activate(timer, mode);
1112	WARN_ON_ONCE(!base->cpu_base->online);
1113
1114	base->cpu_base->active_bases |= 1 << base->index;
1115
1116	/* Pairs with the lockless read in hrtimer_is_queued() */
1117	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
1118
1119	return timerqueue_add(&base->active, &timer->node);
1120}
1121
1122/*
1123 * __remove_hrtimer - internal function to remove a timer
1124 *
1125 * Caller must hold the base lock.
1126 *
1127 * High resolution timer mode reprograms the clock event device when the
1128 * timer is the one which expires next. The caller can disable this by setting
1129 * reprogram to zero. This is useful, when the context does a reprogramming
1130 * anyway (e.g. timer interrupt)
1131 */
1132static void __remove_hrtimer(struct hrtimer *timer,
1133			     struct hrtimer_clock_base *base,
1134			     u8 newstate, int reprogram)
1135{
1136	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1137	u8 state = timer->state;
1138
1139	/* Pairs with the lockless read in hrtimer_is_queued() */
1140	WRITE_ONCE(timer->state, newstate);
1141	if (!(state & HRTIMER_STATE_ENQUEUED))
1142		return;
1143
1144	if (!timerqueue_del(&base->active, &timer->node))
1145		cpu_base->active_bases &= ~(1 << base->index);
1146
 
1147	/*
1148	 * Note: If reprogram is false we do not update
1149	 * cpu_base->next_timer. This happens when we remove the first
1150	 * timer on a remote cpu. No harm as we never dereference
1151	 * cpu_base->next_timer. So the worst thing what can happen is
1152	 * an superfluous call to hrtimer_force_reprogram() on the
1153	 * remote cpu later on if the same timer gets enqueued again.
1154	 */
1155	if (reprogram && timer == cpu_base->next_timer)
1156		hrtimer_force_reprogram(cpu_base, 1);
 
1157}
1158
1159/*
1160 * remove hrtimer, called with base lock held
1161 */
1162static inline int
1163remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base,
1164	       bool restart, bool keep_local)
1165{
1166	u8 state = timer->state;
1167
1168	if (state & HRTIMER_STATE_ENQUEUED) {
1169		bool reprogram;
1170
1171		/*
1172		 * Remove the timer and force reprogramming when high
1173		 * resolution mode is active and the timer is on the current
1174		 * CPU. If we remove a timer on another CPU, reprogramming is
1175		 * skipped. The interrupt event on this CPU is fired and
1176		 * reprogramming happens in the interrupt handler. This is a
1177		 * rare case and less expensive than a smp call.
1178		 */
1179		debug_deactivate(timer);
 
1180		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1181
1182		/*
1183		 * If the timer is not restarted then reprogramming is
1184		 * required if the timer is local. If it is local and about
1185		 * to be restarted, avoid programming it twice (on removal
1186		 * and a moment later when it's requeued).
1187		 */
1188		if (!restart)
1189			state = HRTIMER_STATE_INACTIVE;
1190		else
1191			reprogram &= !keep_local;
1192
1193		__remove_hrtimer(timer, base, state, reprogram);
1194		return 1;
1195	}
1196	return 0;
1197}
1198
1199static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1200					    const enum hrtimer_mode mode)
1201{
1202#ifdef CONFIG_TIME_LOW_RES
1203	/*
1204	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1205	 * granular time values. For relative timers we add hrtimer_resolution
1206	 * (i.e. one jiffy) to prevent short timeouts.
1207	 */
1208	timer->is_rel = mode & HRTIMER_MODE_REL;
1209	if (timer->is_rel)
1210		tim = ktime_add_safe(tim, hrtimer_resolution);
1211#endif
1212	return tim;
1213}
1214
1215static void
1216hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
 
 
 
 
 
 
 
 
1217{
1218	ktime_t expires;
 
 
1219
1220	/*
1221	 * Find the next SOFT expiration.
1222	 */
1223	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1224
1225	/*
1226	 * reprogramming needs to be triggered, even if the next soft
1227	 * hrtimer expires at the same time than the next hard
1228	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1229	 */
1230	if (expires == KTIME_MAX)
1231		return;
1232
1233	/*
1234	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1235	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1236	 */
1237	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1238}
1239
1240static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1241				    u64 delta_ns, const enum hrtimer_mode mode,
1242				    struct hrtimer_clock_base *base)
1243{
1244	struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases);
1245	struct hrtimer_clock_base *new_base;
1246	bool force_local, first;
1247
1248	/*
1249	 * If the timer is on the local cpu base and is the first expiring
1250	 * timer then this might end up reprogramming the hardware twice
1251	 * (on removal and on enqueue). To avoid that by prevent the
1252	 * reprogram on removal, keep the timer local to the current CPU
1253	 * and enforce reprogramming after it is queued no matter whether
1254	 * it is the new first expiring timer again or not.
1255	 */
1256	force_local = base->cpu_base == this_cpu_base;
1257	force_local &= base->cpu_base->next_timer == timer;
1258
1259	/*
1260	 * Don't force local queuing if this enqueue happens on a unplugged
1261	 * CPU after hrtimer_cpu_dying() has been invoked.
1262	 */
1263	force_local &= this_cpu_base->online;
1264
1265	/*
1266	 * Remove an active timer from the queue. In case it is not queued
1267	 * on the current CPU, make sure that remove_hrtimer() updates the
1268	 * remote data correctly.
1269	 *
1270	 * If it's on the current CPU and the first expiring timer, then
1271	 * skip reprogramming, keep the timer local and enforce
1272	 * reprogramming later if it was the first expiring timer.  This
1273	 * avoids programming the underlying clock event twice (once at
1274	 * removal and once after enqueue).
1275	 */
1276	remove_hrtimer(timer, base, true, force_local);
1277
1278	if (mode & HRTIMER_MODE_REL)
1279		tim = ktime_add_safe(tim, base->get_time());
1280
1281	tim = hrtimer_update_lowres(timer, tim, mode);
1282
1283	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1284
1285	/* Switch the timer base, if necessary: */
1286	if (!force_local) {
1287		new_base = switch_hrtimer_base(timer, base,
1288					       mode & HRTIMER_MODE_PINNED);
1289	} else {
1290		new_base = base;
1291	}
1292
1293	first = enqueue_hrtimer(timer, new_base, mode);
1294	if (!force_local) {
1295		/*
1296		 * If the current CPU base is online, then the timer is
1297		 * never queued on a remote CPU if it would be the first
1298		 * expiring timer there.
1299		 */
1300		if (hrtimer_base_is_online(this_cpu_base))
1301			return first;
1302
 
1303		/*
1304		 * Timer was enqueued remote because the current base is
1305		 * already offline. If the timer is the first to expire,
1306		 * kick the remote CPU to reprogram the clock event.
1307		 */
1308		if (first) {
1309			struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base;
1310
1311			smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd);
1312		}
1313		return 0;
1314	}
1315
1316	/*
1317	 * Timer was forced to stay on the current CPU to avoid
1318	 * reprogramming on removal and enqueue. Force reprogram the
1319	 * hardware by evaluating the new first expiring timer.
1320	 */
1321	hrtimer_force_reprogram(new_base->cpu_base, 1);
1322	return 0;
1323}
1324
1325/**
1326 * hrtimer_start_range_ns - (re)start an hrtimer
1327 * @timer:	the timer to be added
1328 * @tim:	expiry time
1329 * @delta_ns:	"slack" range for the timer
1330 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1331 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1332 *		softirq based mode is considered for debug purpose only!
1333 */
1334void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1335			    u64 delta_ns, const enum hrtimer_mode mode)
1336{
1337	struct hrtimer_clock_base *base;
1338	unsigned long flags;
1339
1340	if (WARN_ON_ONCE(!timer->function))
1341		return;
1342	/*
1343	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1344	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1345	 * expiry mode because unmarked timers are moved to softirq expiry.
1346	 */
1347	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1348		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1349	else
1350		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1351
1352	base = lock_hrtimer_base(timer, &flags);
1353
1354	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1355		hrtimer_reprogram(timer, true);
1356
1357	unlock_hrtimer_base(timer, &flags);
1358}
1359EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1360
1361/**
1362 * hrtimer_try_to_cancel - try to deactivate a timer
1363 * @timer:	hrtimer to stop
1364 *
1365 * Returns:
1366 *
1367 *  *  0 when the timer was not active
1368 *  *  1 when the timer was active
1369 *  * -1 when the timer is currently executing the callback function and
1370 *    cannot be stopped
1371 */
1372int hrtimer_try_to_cancel(struct hrtimer *timer)
1373{
1374	struct hrtimer_clock_base *base;
1375	unsigned long flags;
1376	int ret = -1;
1377
1378	/*
1379	 * Check lockless first. If the timer is not active (neither
1380	 * enqueued nor running the callback, nothing to do here.  The
1381	 * base lock does not serialize against a concurrent enqueue,
1382	 * so we can avoid taking it.
1383	 */
1384	if (!hrtimer_active(timer))
1385		return 0;
1386
1387	base = lock_hrtimer_base(timer, &flags);
1388
1389	if (!hrtimer_callback_running(timer))
1390		ret = remove_hrtimer(timer, base, false, false);
1391
1392	unlock_hrtimer_base(timer, &flags);
1393
1394	return ret;
1395
1396}
1397EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1398
1399#ifdef CONFIG_PREEMPT_RT
1400static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1401{
1402	spin_lock_init(&base->softirq_expiry_lock);
1403}
1404
1405static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1406	__acquires(&base->softirq_expiry_lock)
1407{
1408	spin_lock(&base->softirq_expiry_lock);
1409}
1410
1411static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1412	__releases(&base->softirq_expiry_lock)
1413{
1414	spin_unlock(&base->softirq_expiry_lock);
1415}
1416
1417/*
1418 * The counterpart to hrtimer_cancel_wait_running().
1419 *
1420 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1421 * the timer callback to finish. Drop expiry_lock and reacquire it. That
1422 * allows the waiter to acquire the lock and make progress.
1423 */
1424static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1425				      unsigned long flags)
1426{
1427	if (atomic_read(&cpu_base->timer_waiters)) {
1428		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1429		spin_unlock(&cpu_base->softirq_expiry_lock);
1430		spin_lock(&cpu_base->softirq_expiry_lock);
1431		raw_spin_lock_irq(&cpu_base->lock);
1432	}
1433}
1434
1435/*
1436 * This function is called on PREEMPT_RT kernels when the fast path
1437 * deletion of a timer failed because the timer callback function was
1438 * running.
1439 *
1440 * This prevents priority inversion: if the soft irq thread is preempted
1441 * in the middle of a timer callback, then calling del_timer_sync() can
1442 * lead to two issues:
1443 *
1444 *  - If the caller is on a remote CPU then it has to spin wait for the timer
1445 *    handler to complete. This can result in unbound priority inversion.
1446 *
1447 *  - If the caller originates from the task which preempted the timer
1448 *    handler on the same CPU, then spin waiting for the timer handler to
1449 *    complete is never going to end.
1450 */
1451void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1452{
1453	/* Lockless read. Prevent the compiler from reloading it below */
1454	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1455
1456	/*
1457	 * Just relax if the timer expires in hard interrupt context or if
1458	 * it is currently on the migration base.
1459	 */
1460	if (!timer->is_soft || is_migration_base(base)) {
1461		cpu_relax();
1462		return;
1463	}
1464
1465	/*
1466	 * Mark the base as contended and grab the expiry lock, which is
1467	 * held by the softirq across the timer callback. Drop the lock
1468	 * immediately so the softirq can expire the next timer. In theory
1469	 * the timer could already be running again, but that's more than
1470	 * unlikely and just causes another wait loop.
1471	 */
1472	atomic_inc(&base->cpu_base->timer_waiters);
1473	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1474	atomic_dec(&base->cpu_base->timer_waiters);
1475	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1476}
1477#else
1478static inline void
1479hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1480static inline void
1481hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1482static inline void
1483hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1484static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1485					     unsigned long flags) { }
1486#endif
1487
1488/**
1489 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1490 * @timer:	the timer to be cancelled
1491 *
1492 * Returns:
1493 *  0 when the timer was not active
1494 *  1 when the timer was active
1495 */
1496int hrtimer_cancel(struct hrtimer *timer)
1497{
1498	int ret;
 
1499
1500	do {
1501		ret = hrtimer_try_to_cancel(timer);
1502
1503		if (ret < 0)
1504			hrtimer_cancel_wait_running(timer);
1505	} while (ret < 0);
1506	return ret;
1507}
1508EXPORT_SYMBOL_GPL(hrtimer_cancel);
1509
1510/**
1511 * __hrtimer_get_remaining - get remaining time for the timer
1512 * @timer:	the timer to read
1513 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1514 */
1515ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1516{
1517	unsigned long flags;
1518	ktime_t rem;
1519
1520	lock_hrtimer_base(timer, &flags);
1521	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1522		rem = hrtimer_expires_remaining_adjusted(timer);
1523	else
1524		rem = hrtimer_expires_remaining(timer);
1525	unlock_hrtimer_base(timer, &flags);
1526
1527	return rem;
1528}
1529EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1530
1531#ifdef CONFIG_NO_HZ_COMMON
1532/**
1533 * hrtimer_get_next_event - get the time until next expiry event
1534 *
1535 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1536 */
1537u64 hrtimer_get_next_event(void)
1538{
1539	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1540	u64 expires = KTIME_MAX;
1541	unsigned long flags;
1542
1543	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1544
1545	if (!hrtimer_hres_active(cpu_base))
1546		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1547
1548	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1549
1550	return expires;
1551}
1552
1553/**
1554 * hrtimer_next_event_without - time until next expiry event w/o one timer
1555 * @exclude:	timer to exclude
1556 *
1557 * Returns the next expiry time over all timers except for the @exclude one or
1558 * KTIME_MAX if none of them is pending.
1559 */
1560u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1561{
1562	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1563	u64 expires = KTIME_MAX;
1564	unsigned long flags;
1565
1566	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1567
1568	if (hrtimer_hres_active(cpu_base)) {
1569		unsigned int active;
1570
1571		if (!cpu_base->softirq_activated) {
1572			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1573			expires = __hrtimer_next_event_base(cpu_base, exclude,
1574							    active, KTIME_MAX);
1575		}
1576		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1577		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1578						    expires);
1579	}
1580
1581	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1582
1583	return expires;
1584}
1585#endif
1586
1587static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1588{
1589	if (likely(clock_id < MAX_CLOCKS)) {
1590		int base = hrtimer_clock_to_base_table[clock_id];
1591
1592		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1593			return base;
1594	}
1595	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1596	return HRTIMER_BASE_MONOTONIC;
1597}
1598
1599static enum hrtimer_restart hrtimer_dummy_timeout(struct hrtimer *unused)
1600{
1601	return HRTIMER_NORESTART;
1602}
1603
1604static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1605			   enum hrtimer_mode mode)
1606{
1607	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1608	struct hrtimer_cpu_base *cpu_base;
1609	int base;
1610
1611	/*
1612	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
1613	 * marked for hard interrupt expiry mode are moved into soft
1614	 * interrupt context for latency reasons and because the callbacks
1615	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1616	 */
1617	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1618		softtimer = true;
1619
1620	memset(timer, 0, sizeof(struct hrtimer));
1621
1622	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1623
1624	/*
1625	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1626	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1627	 * ensure POSIX compliance.
1628	 */
1629	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1630		clock_id = CLOCK_MONOTONIC;
1631
1632	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1633	base += hrtimer_clockid_to_base(clock_id);
1634	timer->is_soft = softtimer;
1635	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1636	timer->base = &cpu_base->clock_base[base];
1637	timerqueue_init(&timer->node);
1638}
1639
1640static void __hrtimer_setup(struct hrtimer *timer,
1641			    enum hrtimer_restart (*function)(struct hrtimer *),
1642			    clockid_t clock_id, enum hrtimer_mode mode)
1643{
1644	__hrtimer_init(timer, clock_id, mode);
1645
1646	if (WARN_ON_ONCE(!function))
1647		timer->function = hrtimer_dummy_timeout;
1648	else
1649		timer->function = function;
1650}
1651
1652/**
1653 * hrtimer_init - initialize a timer to the given clock
1654 * @timer:	the timer to be initialized
1655 * @clock_id:	the clock to be used
1656 * @mode:       The modes which are relevant for initialization:
1657 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1658 *              HRTIMER_MODE_REL_SOFT
1659 *
1660 *              The PINNED variants of the above can be handed in,
1661 *              but the PINNED bit is ignored as pinning happens
1662 *              when the hrtimer is started
1663 */
1664void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1665		  enum hrtimer_mode mode)
1666{
1667	debug_init(timer, clock_id, mode);
1668	__hrtimer_init(timer, clock_id, mode);
1669}
1670EXPORT_SYMBOL_GPL(hrtimer_init);
1671
1672/**
1673 * hrtimer_setup - initialize a timer to the given clock
1674 * @timer:	the timer to be initialized
1675 * @function:	the callback function
1676 * @clock_id:	the clock to be used
1677 * @mode:       The modes which are relevant for initialization:
1678 *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1679 *              HRTIMER_MODE_REL_SOFT
1680 *
1681 *              The PINNED variants of the above can be handed in,
1682 *              but the PINNED bit is ignored as pinning happens
1683 *              when the hrtimer is started
1684 */
1685void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *),
1686		   clockid_t clock_id, enum hrtimer_mode mode)
1687{
1688	debug_init(timer, clock_id, mode);
1689	__hrtimer_setup(timer, function, clock_id, mode);
1690}
1691EXPORT_SYMBOL_GPL(hrtimer_setup);
1692
1693/**
1694 * hrtimer_setup_on_stack - initialize a timer on stack memory
1695 * @timer:	The timer to be initialized
1696 * @function:	the callback function
1697 * @clock_id:	The clock to be used
1698 * @mode:       The timer mode
1699 *
1700 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack
1701 * memory.
1702 */
1703void hrtimer_setup_on_stack(struct hrtimer *timer,
1704			    enum hrtimer_restart (*function)(struct hrtimer *),
1705			    clockid_t clock_id, enum hrtimer_mode mode)
1706{
1707	debug_init_on_stack(timer, clock_id, mode);
1708	__hrtimer_setup(timer, function, clock_id, mode);
1709}
1710EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack);
1711
1712/*
1713 * A timer is active, when it is enqueued into the rbtree or the
1714 * callback function is running or it's in the state of being migrated
1715 * to another cpu.
1716 *
1717 * It is important for this function to not return a false negative.
1718 */
1719bool hrtimer_active(const struct hrtimer *timer)
1720{
1721	struct hrtimer_clock_base *base;
1722	unsigned int seq;
1723
1724	do {
1725		base = READ_ONCE(timer->base);
1726		seq = raw_read_seqcount_begin(&base->seq);
1727
1728		if (timer->state != HRTIMER_STATE_INACTIVE ||
1729		    base->running == timer)
1730			return true;
1731
1732	} while (read_seqcount_retry(&base->seq, seq) ||
1733		 base != READ_ONCE(timer->base));
1734
1735	return false;
1736}
1737EXPORT_SYMBOL_GPL(hrtimer_active);
1738
1739/*
1740 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1741 * distinct sections:
1742 *
1743 *  - queued:	the timer is queued
1744 *  - callback:	the timer is being ran
1745 *  - post:	the timer is inactive or (re)queued
1746 *
1747 * On the read side we ensure we observe timer->state and cpu_base->running
1748 * from the same section, if anything changed while we looked at it, we retry.
1749 * This includes timer->base changing because sequence numbers alone are
1750 * insufficient for that.
1751 *
1752 * The sequence numbers are required because otherwise we could still observe
1753 * a false negative if the read side got smeared over multiple consecutive
1754 * __run_hrtimer() invocations.
1755 */
1756
1757static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1758			  struct hrtimer_clock_base *base,
1759			  struct hrtimer *timer, ktime_t *now,
1760			  unsigned long flags) __must_hold(&cpu_base->lock)
1761{
1762	enum hrtimer_restart (*fn)(struct hrtimer *);
1763	bool expires_in_hardirq;
1764	int restart;
1765
1766	lockdep_assert_held(&cpu_base->lock);
1767
1768	debug_deactivate(timer);
1769	base->running = timer;
1770
1771	/*
1772	 * Separate the ->running assignment from the ->state assignment.
1773	 *
1774	 * As with a regular write barrier, this ensures the read side in
1775	 * hrtimer_active() cannot observe base->running == NULL &&
1776	 * timer->state == INACTIVE.
1777	 */
1778	raw_write_seqcount_barrier(&base->seq);
1779
1780	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
 
1781	fn = timer->function;
1782
1783	/*
1784	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1785	 * timer is restarted with a period then it becomes an absolute
1786	 * timer. If its not restarted it does not matter.
1787	 */
1788	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1789		timer->is_rel = false;
1790
1791	/*
1792	 * The timer is marked as running in the CPU base, so it is
1793	 * protected against migration to a different CPU even if the lock
1794	 * is dropped.
1795	 */
1796	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1797	trace_hrtimer_expire_entry(timer, now);
1798	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1799
1800	restart = fn(timer);
1801
1802	lockdep_hrtimer_exit(expires_in_hardirq);
1803	trace_hrtimer_expire_exit(timer);
1804	raw_spin_lock_irq(&cpu_base->lock);
1805
1806	/*
1807	 * Note: We clear the running state after enqueue_hrtimer and
1808	 * we do not reprogram the event hardware. Happens either in
1809	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1810	 *
1811	 * Note: Because we dropped the cpu_base->lock above,
1812	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1813	 * for us already.
1814	 */
1815	if (restart != HRTIMER_NORESTART &&
1816	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1817		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1818
1819	/*
1820	 * Separate the ->running assignment from the ->state assignment.
1821	 *
1822	 * As with a regular write barrier, this ensures the read side in
1823	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1824	 * timer->state == INACTIVE.
1825	 */
1826	raw_write_seqcount_barrier(&base->seq);
1827
1828	WARN_ON_ONCE(base->running != timer);
1829	base->running = NULL;
1830}
1831
1832static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1833				 unsigned long flags, unsigned int active_mask)
1834{
1835	struct hrtimer_clock_base *base;
1836	unsigned int active = cpu_base->active_bases & active_mask;
1837
1838	for_each_active_base(base, cpu_base, active) {
1839		struct timerqueue_node *node;
1840		ktime_t basenow;
1841
 
 
 
1842		basenow = ktime_add(now, base->offset);
1843
1844		while ((node = timerqueue_getnext(&base->active))) {
1845			struct hrtimer *timer;
1846
1847			timer = container_of(node, struct hrtimer, node);
1848
1849			/*
1850			 * The immediate goal for using the softexpires is
1851			 * minimizing wakeups, not running timers at the
1852			 * earliest interrupt after their soft expiration.
1853			 * This allows us to avoid using a Priority Search
1854			 * Tree, which can answer a stabbing query for
1855			 * overlapping intervals and instead use the simple
1856			 * BST we already have.
1857			 * We don't add extra wakeups by delaying timers that
1858			 * are right-of a not yet expired timer, because that
1859			 * timer will have to trigger a wakeup anyway.
1860			 */
1861			if (basenow < hrtimer_get_softexpires_tv64(timer))
1862				break;
1863
1864			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1865			if (active_mask == HRTIMER_ACTIVE_SOFT)
1866				hrtimer_sync_wait_running(cpu_base, flags);
1867		}
1868	}
1869}
1870
1871static __latent_entropy void hrtimer_run_softirq(void)
1872{
1873	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1874	unsigned long flags;
1875	ktime_t now;
1876
1877	hrtimer_cpu_base_lock_expiry(cpu_base);
1878	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1879
1880	now = hrtimer_update_base(cpu_base);
1881	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1882
1883	cpu_base->softirq_activated = 0;
1884	hrtimer_update_softirq_timer(cpu_base, true);
1885
1886	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1887	hrtimer_cpu_base_unlock_expiry(cpu_base);
1888}
1889
1890#ifdef CONFIG_HIGH_RES_TIMERS
1891
1892/*
1893 * High resolution timer interrupt
1894 * Called with interrupts disabled
1895 */
1896void hrtimer_interrupt(struct clock_event_device *dev)
1897{
1898	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1899	ktime_t expires_next, now, entry_time, delta;
1900	unsigned long flags;
1901	int retries = 0;
1902
1903	BUG_ON(!cpu_base->hres_active);
1904	cpu_base->nr_events++;
1905	dev->next_event = KTIME_MAX;
1906
1907	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1908	entry_time = now = hrtimer_update_base(cpu_base);
1909retry:
1910	cpu_base->in_hrtirq = 1;
1911	/*
1912	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1913	 * held to prevent that a timer is enqueued in our queue via
1914	 * the migration code. This does not affect enqueueing of
1915	 * timers which run their callback and need to be requeued on
1916	 * this CPU.
1917	 */
1918	cpu_base->expires_next = KTIME_MAX;
1919
1920	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1921		cpu_base->softirq_expires_next = KTIME_MAX;
1922		cpu_base->softirq_activated = 1;
1923		raise_timer_softirq(HRTIMER_SOFTIRQ);
1924	}
1925
1926	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1927
1928	/* Reevaluate the clock bases for the [soft] next expiry */
1929	expires_next = hrtimer_update_next_event(cpu_base);
1930	/*
1931	 * Store the new expiry value so the migration code can verify
1932	 * against it.
1933	 */
1934	cpu_base->expires_next = expires_next;
1935	cpu_base->in_hrtirq = 0;
1936	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1937
1938	/* Reprogramming necessary ? */
1939	if (!tick_program_event(expires_next, 0)) {
1940		cpu_base->hang_detected = 0;
1941		return;
1942	}
1943
1944	/*
1945	 * The next timer was already expired due to:
1946	 * - tracing
1947	 * - long lasting callbacks
1948	 * - being scheduled away when running in a VM
1949	 *
1950	 * We need to prevent that we loop forever in the hrtimer
1951	 * interrupt routine. We give it 3 attempts to avoid
1952	 * overreacting on some spurious event.
1953	 *
1954	 * Acquire base lock for updating the offsets and retrieving
1955	 * the current time.
1956	 */
1957	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1958	now = hrtimer_update_base(cpu_base);
1959	cpu_base->nr_retries++;
1960	if (++retries < 3)
1961		goto retry;
1962	/*
1963	 * Give the system a chance to do something else than looping
1964	 * here. We stored the entry time, so we know exactly how long
1965	 * we spent here. We schedule the next event this amount of
1966	 * time away.
1967	 */
1968	cpu_base->nr_hangs++;
1969	cpu_base->hang_detected = 1;
1970	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1971
1972	delta = ktime_sub(now, entry_time);
1973	if ((unsigned int)delta > cpu_base->max_hang_time)
1974		cpu_base->max_hang_time = (unsigned int) delta;
1975	/*
1976	 * Limit it to a sensible value as we enforce a longer
1977	 * delay. Give the CPU at least 100ms to catch up.
1978	 */
1979	if (delta > 100 * NSEC_PER_MSEC)
1980		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1981	else
1982		expires_next = ktime_add(now, delta);
1983	tick_program_event(expires_next, 1);
1984	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985}
1986#endif /* !CONFIG_HIGH_RES_TIMERS */
 
 
 
 
 
1987
1988/*
1989 * Called from run_local_timers in hardirq context every jiffy
1990 */
1991void hrtimer_run_queues(void)
1992{
1993	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1994	unsigned long flags;
1995	ktime_t now;
1996
1997	if (hrtimer_hres_active(cpu_base))
1998		return;
1999
2000	/*
2001	 * This _is_ ugly: We have to check periodically, whether we
2002	 * can switch to highres and / or nohz mode. The clocksource
2003	 * switch happens with xtime_lock held. Notification from
2004	 * there only sets the check bit in the tick_oneshot code,
2005	 * otherwise we might deadlock vs. xtime_lock.
2006	 */
2007	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
2008		hrtimer_switch_to_hres();
2009		return;
2010	}
2011
2012	raw_spin_lock_irqsave(&cpu_base->lock, flags);
2013	now = hrtimer_update_base(cpu_base);
2014
2015	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
2016		cpu_base->softirq_expires_next = KTIME_MAX;
2017		cpu_base->softirq_activated = 1;
2018		raise_timer_softirq(HRTIMER_SOFTIRQ);
2019	}
2020
2021	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
2022	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
2023}
2024
2025/*
2026 * Sleep related functions:
2027 */
2028static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
2029{
2030	struct hrtimer_sleeper *t =
2031		container_of(timer, struct hrtimer_sleeper, timer);
2032	struct task_struct *task = t->task;
2033
2034	t->task = NULL;
2035	if (task)
2036		wake_up_process(task);
2037
2038	return HRTIMER_NORESTART;
2039}
2040
2041/**
2042 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
2043 * @sl:		sleeper to be started
2044 * @mode:	timer mode abs/rel
2045 *
2046 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
2047 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
2048 */
2049void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
2050				   enum hrtimer_mode mode)
2051{
2052	/*
2053	 * Make the enqueue delivery mode check work on RT. If the sleeper
2054	 * was initialized for hard interrupt delivery, force the mode bit.
2055	 * This is a special case for hrtimer_sleepers because
2056	 * __hrtimer_init_sleeper() determines the delivery mode on RT so the
2057	 * fiddling with this decision is avoided at the call sites.
2058	 */
2059	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
2060		mode |= HRTIMER_MODE_HARD;
2061
2062	hrtimer_start_expires(&sl->timer, mode);
2063}
2064EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
2065
2066static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
2067				   clockid_t clock_id, enum hrtimer_mode mode)
2068{
2069	/*
2070	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly
2071	 * marked for hard interrupt expiry mode are moved into soft
2072	 * interrupt context either for latency reasons or because the
2073	 * hrtimer callback takes regular spinlocks or invokes other
2074	 * functions which are not suitable for hard interrupt context on
2075	 * PREEMPT_RT.
2076	 *
2077	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
2078	 * context, but there is a latency concern: Untrusted userspace can
2079	 * spawn many threads which arm timers for the same expiry time on
2080	 * the same CPU. That causes a latency spike due to the wakeup of
2081	 * a gazillion threads.
2082	 *
2083	 * OTOH, privileged real-time user space applications rely on the
2084	 * low latency of hard interrupt wakeups. If the current task is in
2085	 * a real-time scheduling class, mark the mode for hard interrupt
2086	 * expiry.
2087	 */
2088	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
2089		if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT))
2090			mode |= HRTIMER_MODE_HARD;
2091	}
2092
2093	__hrtimer_init(&sl->timer, clock_id, mode);
2094	sl->timer.function = hrtimer_wakeup;
2095	sl->task = current;
2096}
2097
2098/**
2099 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory
2100 * @sl:		sleeper to be initialized
2101 * @clock_id:	the clock to be used
2102 * @mode:	timer mode abs/rel
2103 */
2104void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl,
2105				    clockid_t clock_id, enum hrtimer_mode mode)
2106{
2107	debug_init_on_stack(&sl->timer, clock_id, mode);
2108	__hrtimer_init_sleeper(sl, clock_id, mode);
2109}
2110EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack);
2111
2112int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
2113{
2114	switch(restart->nanosleep.type) {
2115#ifdef CONFIG_COMPAT_32BIT_TIME
2116	case TT_COMPAT:
2117		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
2118			return -EFAULT;
2119		break;
2120#endif
2121	case TT_NATIVE:
2122		if (put_timespec64(ts, restart->nanosleep.rmtp))
2123			return -EFAULT;
2124		break;
2125	default:
2126		BUG();
2127	}
2128	return -ERESTART_RESTARTBLOCK;
2129}
 
2130
2131static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
2132{
2133	struct restart_block *restart;
2134
2135	do {
2136		set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
2137		hrtimer_sleeper_start_expires(t, mode);
2138
2139		if (likely(t->task))
2140			schedule();
2141
2142		hrtimer_cancel(&t->timer);
2143		mode = HRTIMER_MODE_ABS;
2144
2145	} while (t->task && !signal_pending(current));
2146
2147	__set_current_state(TASK_RUNNING);
2148
2149	if (!t->task)
 
 
 
 
 
 
 
 
 
2150		return 0;
 
2151
2152	restart = &current->restart_block;
2153	if (restart->nanosleep.type != TT_NONE) {
2154		ktime_t rem = hrtimer_expires_remaining(&t->timer);
2155		struct timespec64 rmt;
2156
2157		if (rem <= 0)
2158			return 0;
2159		rmt = ktime_to_timespec64(rem);
2160
2161		return nanosleep_copyout(restart, &rmt);
2162	}
2163	return -ERESTART_RESTARTBLOCK;
2164}
2165
2166static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
2167{
2168	struct hrtimer_sleeper t;
2169	int ret;
 
2170
2171	hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS);
 
2172	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
2173	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
 
 
 
 
 
 
 
 
 
 
 
 
 
2174	destroy_hrtimer_on_stack(&t.timer);
2175	return ret;
2176}
2177
2178long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
2179		       const clockid_t clockid)
2180{
2181	struct restart_block *restart;
2182	struct hrtimer_sleeper t;
2183	int ret = 0;
 
2184
2185	hrtimer_setup_sleeper_on_stack(&t, clockid, mode);
2186	hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns);
2187	ret = do_nanosleep(&t, mode);
2188	if (ret != -ERESTART_RESTARTBLOCK)
 
 
 
2189		goto out;
2190
2191	/* Absolute timers do not update the rmtp value and restart: */
2192	if (mode == HRTIMER_MODE_ABS) {
2193		ret = -ERESTARTNOHAND;
2194		goto out;
2195	}
2196
 
 
 
 
 
 
2197	restart = &current->restart_block;
 
2198	restart->nanosleep.clockid = t.timer.base->clockid;
 
2199	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
2200	set_restart_fn(restart, hrtimer_nanosleep_restart);
 
2201out:
2202	destroy_hrtimer_on_stack(&t.timer);
2203	return ret;
2204}
2205
2206#ifdef CONFIG_64BIT
2207
2208SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
2209		struct __kernel_timespec __user *, rmtp)
2210{
2211	struct timespec64 tu;
2212
2213	if (get_timespec64(&tu, rqtp))
2214		return -EFAULT;
2215
2216	if (!timespec64_valid(&tu))
2217		return -EINVAL;
2218
2219	current->restart_block.fn = do_no_restart_syscall;
2220	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
2221	current->restart_block.nanosleep.rmtp = rmtp;
2222	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2223				 CLOCK_MONOTONIC);
2224}
2225
2226#endif
2227
2228#ifdef CONFIG_COMPAT_32BIT_TIME
2229
2230SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
2231		       struct old_timespec32 __user *, rmtp)
2232{
2233	struct timespec64 tu;
2234
2235	if (get_old_timespec32(&tu, rqtp))
2236		return -EFAULT;
2237
2238	if (!timespec64_valid(&tu))
2239		return -EINVAL;
2240
2241	current->restart_block.fn = do_no_restart_syscall;
2242	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2243	current->restart_block.nanosleep.compat_rmtp = rmtp;
2244	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2245				 CLOCK_MONOTONIC);
2246}
2247#endif
2248
2249/*
2250 * Functions related to boot-time initialization:
2251 */
2252int hrtimers_prepare_cpu(unsigned int cpu)
2253{
2254	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2255	int i;
2256
2257	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2258		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2259
2260		clock_b->cpu_base = cpu_base;
2261		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2262		timerqueue_init_head(&clock_b->active);
2263	}
2264
2265	cpu_base->cpu = cpu;
2266	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2267	return 0;
2268}
2269
2270int hrtimers_cpu_starting(unsigned int cpu)
2271{
2272	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
2273
2274	/* Clear out any left over state from a CPU down operation */
2275	cpu_base->active_bases = 0;
2276	cpu_base->hres_active = 0;
2277	cpu_base->hang_detected = 0;
2278	cpu_base->next_timer = NULL;
2279	cpu_base->softirq_next_timer = NULL;
2280	cpu_base->expires_next = KTIME_MAX;
2281	cpu_base->softirq_expires_next = KTIME_MAX;
2282	cpu_base->online = 1;
2283	return 0;
2284}
2285
2286#ifdef CONFIG_HOTPLUG_CPU
2287
2288static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2289				struct hrtimer_clock_base *new_base)
2290{
2291	struct hrtimer *timer;
2292	struct timerqueue_node *node;
2293
2294	while ((node = timerqueue_getnext(&old_base->active))) {
2295		timer = container_of(node, struct hrtimer, node);
2296		BUG_ON(hrtimer_callback_running(timer));
2297		debug_deactivate(timer);
2298
2299		/*
2300		 * Mark it as ENQUEUED not INACTIVE otherwise the
2301		 * timer could be seen as !active and just vanish away
2302		 * under us on another CPU
2303		 */
2304		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2305		timer->base = new_base;
2306		/*
2307		 * Enqueue the timers on the new cpu. This does not
2308		 * reprogram the event device in case the timer
2309		 * expires before the earliest on this CPU, but we run
2310		 * hrtimer_interrupt after we migrated everything to
2311		 * sort out already expired timers and reprogram the
2312		 * event device.
2313		 */
2314		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2315	}
2316}
2317
2318int hrtimers_cpu_dying(unsigned int dying_cpu)
2319{
2320	int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER));
2321	struct hrtimer_cpu_base *old_base, *new_base;
 
2322
2323	old_base = this_cpu_ptr(&hrtimer_bases);
2324	new_base = &per_cpu(hrtimer_bases, ncpu);
2325
 
 
 
2326	/*
2327	 * The caller is globally serialized and nobody else
2328	 * takes two locks at once, deadlock is not possible.
2329	 */
2330	raw_spin_lock(&old_base->lock);
2331	raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING);
2332
2333	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2334		migrate_hrtimer_list(&old_base->clock_base[i],
2335				     &new_base->clock_base[i]);
2336	}
2337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338	/*
2339	 * The migration might have changed the first expiring softirq
2340	 * timer on this CPU. Update it.
2341	 */
2342	__hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT);
2343	/* Tell the other CPU to retrigger the next event */
2344	smp_call_function_single(ncpu, retrigger_next_event, NULL, 0);
 
 
 
 
 
 
2345
2346	raw_spin_unlock(&new_base->lock);
2347	old_base->online = 0;
2348	raw_spin_unlock(&old_base->lock);
 
 
 
 
 
 
2349
2350	return 0;
2351}
2352
2353#endif /* CONFIG_HOTPLUG_CPU */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354
2355void __init hrtimers_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356{
2357	hrtimers_prepare_cpu(smp_processor_id());
2358	hrtimers_cpu_starting(smp_processor_id());
2359	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2360}