Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update module-based scalability-test facility
   4 *
   5 * Copyright (C) IBM Corporation, 2015
   6 *
   7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
   8 */
   9
  10#define pr_fmt(fmt) fmt
  11
  12#include <linux/types.h>
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/mm.h>
  16#include <linux/module.h>
  17#include <linux/kthread.h>
  18#include <linux/err.h>
  19#include <linux/spinlock.h>
  20#include <linux/smp.h>
  21#include <linux/rcupdate.h>
  22#include <linux/interrupt.h>
  23#include <linux/sched.h>
  24#include <uapi/linux/sched/types.h>
  25#include <linux/atomic.h>
  26#include <linux/bitops.h>
  27#include <linux/completion.h>
  28#include <linux/moduleparam.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/reboot.h>
  32#include <linux/freezer.h>
  33#include <linux/cpu.h>
  34#include <linux/delay.h>
  35#include <linux/stat.h>
  36#include <linux/srcu.h>
  37#include <linux/slab.h>
  38#include <asm/byteorder.h>
  39#include <linux/torture.h>
  40#include <linux/vmalloc.h>
  41#include <linux/rcupdate_trace.h>
  42#include <linux/sched/debug.h>
  43
  44#include "rcu.h"
  45
  46MODULE_DESCRIPTION("Read-Copy Update module-based scalability-test facility");
  47MODULE_LICENSE("GPL");
  48MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
  49
  50#define SCALE_FLAG "-scale:"
  51#define SCALEOUT_STRING(s) \
  52	pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
  53#define VERBOSE_SCALEOUT_STRING(s) \
  54	do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
  55#define SCALEOUT_ERRSTRING(s) \
  56	pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s)
  57
  58/*
  59 * The intended use cases for the nreaders and nwriters module parameters
  60 * are as follows:
  61 *
  62 * 1.	Specify only the nr_cpus kernel boot parameter.  This will
  63 *	set both nreaders and nwriters to the value specified by
  64 *	nr_cpus for a mixed reader/writer test.
  65 *
  66 * 2.	Specify the nr_cpus kernel boot parameter, but set
  67 *	rcuscale.nreaders to zero.  This will set nwriters to the
  68 *	value specified by nr_cpus for an update-only test.
  69 *
  70 * 3.	Specify the nr_cpus kernel boot parameter, but set
  71 *	rcuscale.nwriters to zero.  This will set nreaders to the
  72 *	value specified by nr_cpus for a read-only test.
  73 *
  74 * Various other use cases may of course be specified.
  75 *
  76 * Note that this test's readers are intended only as a test load for
  77 * the writers.  The reader scalability statistics will be overly
  78 * pessimistic due to the per-critical-section interrupt disabling,
  79 * test-end checks, and the pair of calls through pointers.
  80 */
  81
  82#ifdef MODULE
  83# define RCUSCALE_SHUTDOWN 0
  84#else
  85# define RCUSCALE_SHUTDOWN 1
  86#endif
  87
  88torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
  89torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer");
  90torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
  91torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
  92torture_param(int, minruntime, 0, "Minimum run time (s)");
  93torture_param(int, nreaders, -1, "Number of RCU reader threads");
  94torture_param(int, nwriters, -1, "Number of RCU updater threads");
  95torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
  96	      "Shutdown at end of scalability tests.");
  97torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
  98torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
  99torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable");
 100torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
 101torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
 102torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
 103
 104static char *scale_type = "rcu";
 105module_param(scale_type, charp, 0444);
 106MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
 107
 108// Structure definitions for custom fixed-per-task allocator.
 109struct writer_mblock {
 110	struct rcu_head wmb_rh;
 111	struct llist_node wmb_node;
 112	struct writer_freelist *wmb_wfl;
 113};
 114
 115struct writer_freelist {
 116	struct llist_head ws_lhg;
 117	atomic_t ws_inflight;
 118	struct llist_head ____cacheline_internodealigned_in_smp ws_lhp;
 119	struct writer_mblock *ws_mblocks;
 120};
 121
 122static int nrealreaders;
 123static int nrealwriters;
 124static struct task_struct **writer_tasks;
 125static struct task_struct **reader_tasks;
 126static struct task_struct *shutdown_task;
 127
 128static u64 **writer_durations;
 129static bool *writer_done;
 130static struct writer_freelist *writer_freelists;
 131static int *writer_n_durations;
 132static atomic_t n_rcu_scale_reader_started;
 133static atomic_t n_rcu_scale_writer_started;
 134static atomic_t n_rcu_scale_writer_finished;
 135static wait_queue_head_t shutdown_wq;
 136static u64 t_rcu_scale_writer_started;
 137static u64 t_rcu_scale_writer_finished;
 138static unsigned long b_rcu_gp_test_started;
 139static unsigned long b_rcu_gp_test_finished;
 140
 141#define MAX_MEAS 10000
 142#define MIN_MEAS 100
 143
 144/*
 145 * Operations vector for selecting different types of tests.
 146 */
 147
 148struct rcu_scale_ops {
 149	int ptype;
 150	void (*init)(void);
 151	void (*cleanup)(void);
 152	int (*readlock)(void);
 153	void (*readunlock)(int idx);
 154	unsigned long (*get_gp_seq)(void);
 155	unsigned long (*gp_diff)(unsigned long new, unsigned long old);
 156	unsigned long (*exp_completed)(void);
 157	void (*async)(struct rcu_head *head, rcu_callback_t func);
 158	void (*gp_barrier)(void);
 159	void (*sync)(void);
 160	void (*exp_sync)(void);
 161	struct task_struct *(*rso_gp_kthread)(void);
 162	void (*stats)(void);
 163	const char *name;
 164};
 165
 166static struct rcu_scale_ops *cur_ops;
 167
 168/*
 169 * Definitions for rcu scalability testing.
 170 */
 171
 172static int rcu_scale_read_lock(void) __acquires(RCU)
 173{
 174	rcu_read_lock();
 175	return 0;
 176}
 177
 178static void rcu_scale_read_unlock(int idx) __releases(RCU)
 179{
 180	rcu_read_unlock();
 181}
 182
 183static unsigned long __maybe_unused rcu_no_completed(void)
 184{
 185	return 0;
 186}
 187
 188static void rcu_sync_scale_init(void)
 189{
 190}
 191
 192static struct rcu_scale_ops rcu_ops = {
 193	.ptype		= RCU_FLAVOR,
 194	.init		= rcu_sync_scale_init,
 195	.readlock	= rcu_scale_read_lock,
 196	.readunlock	= rcu_scale_read_unlock,
 197	.get_gp_seq	= rcu_get_gp_seq,
 198	.gp_diff	= rcu_seq_diff,
 199	.exp_completed	= rcu_exp_batches_completed,
 200	.async		= call_rcu_hurry,
 201	.gp_barrier	= rcu_barrier,
 202	.sync		= synchronize_rcu,
 203	.exp_sync	= synchronize_rcu_expedited,
 204	.name		= "rcu"
 205};
 206
 207/*
 208 * Definitions for srcu scalability testing.
 209 */
 210
 211DEFINE_STATIC_SRCU(srcu_ctl_scale);
 212static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
 213
 214static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
 215{
 216	return srcu_read_lock(srcu_ctlp);
 217}
 218
 219static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
 220{
 221	srcu_read_unlock(srcu_ctlp, idx);
 222}
 223
 224static unsigned long srcu_scale_completed(void)
 225{
 226	return srcu_batches_completed(srcu_ctlp);
 227}
 228
 229static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
 230{
 231	call_srcu(srcu_ctlp, head, func);
 232}
 233
 234static void srcu_rcu_barrier(void)
 235{
 236	srcu_barrier(srcu_ctlp);
 237}
 238
 239static void srcu_scale_synchronize(void)
 240{
 241	synchronize_srcu(srcu_ctlp);
 242}
 243
 244static void srcu_scale_stats(void)
 245{
 246	srcu_torture_stats_print(srcu_ctlp, scale_type, SCALE_FLAG);
 247}
 248
 249static void srcu_scale_synchronize_expedited(void)
 250{
 251	synchronize_srcu_expedited(srcu_ctlp);
 252}
 253
 254static struct rcu_scale_ops srcu_ops = {
 255	.ptype		= SRCU_FLAVOR,
 256	.init		= rcu_sync_scale_init,
 257	.readlock	= srcu_scale_read_lock,
 258	.readunlock	= srcu_scale_read_unlock,
 259	.get_gp_seq	= srcu_scale_completed,
 260	.gp_diff	= rcu_seq_diff,
 261	.exp_completed	= srcu_scale_completed,
 262	.async		= srcu_call_rcu,
 263	.gp_barrier	= srcu_rcu_barrier,
 264	.sync		= srcu_scale_synchronize,
 265	.exp_sync	= srcu_scale_synchronize_expedited,
 266	.stats		= srcu_scale_stats,
 267	.name		= "srcu"
 268};
 269
 270static struct srcu_struct srcud;
 271
 272static void srcu_sync_scale_init(void)
 273{
 274	srcu_ctlp = &srcud;
 275	init_srcu_struct(srcu_ctlp);
 276}
 277
 278static void srcu_sync_scale_cleanup(void)
 279{
 280	cleanup_srcu_struct(srcu_ctlp);
 281}
 282
 283static struct rcu_scale_ops srcud_ops = {
 284	.ptype		= SRCU_FLAVOR,
 285	.init		= srcu_sync_scale_init,
 286	.cleanup	= srcu_sync_scale_cleanup,
 287	.readlock	= srcu_scale_read_lock,
 288	.readunlock	= srcu_scale_read_unlock,
 289	.get_gp_seq	= srcu_scale_completed,
 290	.gp_diff	= rcu_seq_diff,
 291	.exp_completed	= srcu_scale_completed,
 292	.async		= srcu_call_rcu,
 293	.gp_barrier	= srcu_rcu_barrier,
 294	.sync		= srcu_scale_synchronize,
 295	.exp_sync	= srcu_scale_synchronize_expedited,
 296	.stats		= srcu_scale_stats,
 297	.name		= "srcud"
 298};
 299
 300#ifdef CONFIG_TASKS_RCU
 301
 302/*
 303 * Definitions for RCU-tasks scalability testing.
 304 */
 305
 306static int tasks_scale_read_lock(void)
 307{
 308	return 0;
 309}
 310
 311static void tasks_scale_read_unlock(int idx)
 312{
 313}
 314
 315static void rcu_tasks_scale_stats(void)
 316{
 317	rcu_tasks_torture_stats_print(scale_type, SCALE_FLAG);
 318}
 319
 320static struct rcu_scale_ops tasks_ops = {
 321	.ptype		= RCU_TASKS_FLAVOR,
 322	.init		= rcu_sync_scale_init,
 323	.readlock	= tasks_scale_read_lock,
 324	.readunlock	= tasks_scale_read_unlock,
 325	.get_gp_seq	= rcu_no_completed,
 326	.gp_diff	= rcu_seq_diff,
 327	.async		= call_rcu_tasks,
 328	.gp_barrier	= rcu_barrier_tasks,
 329	.sync		= synchronize_rcu_tasks,
 330	.exp_sync	= synchronize_rcu_tasks,
 331	.rso_gp_kthread	= get_rcu_tasks_gp_kthread,
 332	.stats		= IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_scale_stats,
 333	.name		= "tasks"
 334};
 335
 336#define TASKS_OPS &tasks_ops,
 337
 338#else // #ifdef CONFIG_TASKS_RCU
 339
 340#define TASKS_OPS
 341
 342#endif // #else // #ifdef CONFIG_TASKS_RCU
 343
 344#ifdef CONFIG_TASKS_RUDE_RCU
 345
 346/*
 347 * Definitions for RCU-tasks-rude scalability testing.
 348 */
 349
 350static int tasks_rude_scale_read_lock(void)
 351{
 352	return 0;
 353}
 354
 355static void tasks_rude_scale_read_unlock(int idx)
 356{
 357}
 358
 359static void rcu_tasks_rude_scale_stats(void)
 360{
 361	rcu_tasks_rude_torture_stats_print(scale_type, SCALE_FLAG);
 362}
 363
 364static struct rcu_scale_ops tasks_rude_ops = {
 365	.ptype		= RCU_TASKS_RUDE_FLAVOR,
 366	.init		= rcu_sync_scale_init,
 367	.readlock	= tasks_rude_scale_read_lock,
 368	.readunlock	= tasks_rude_scale_read_unlock,
 369	.get_gp_seq	= rcu_no_completed,
 370	.gp_diff	= rcu_seq_diff,
 371	.sync		= synchronize_rcu_tasks_rude,
 372	.exp_sync	= synchronize_rcu_tasks_rude,
 373	.rso_gp_kthread	= get_rcu_tasks_rude_gp_kthread,
 374	.stats		= IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_rude_scale_stats,
 375	.name		= "tasks-rude"
 376};
 377
 378#define TASKS_RUDE_OPS &tasks_rude_ops,
 379
 380#else // #ifdef CONFIG_TASKS_RUDE_RCU
 381
 382#define TASKS_RUDE_OPS
 383
 384#endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU
 385
 386#ifdef CONFIG_TASKS_TRACE_RCU
 387
 388/*
 389 * Definitions for RCU-tasks-trace scalability testing.
 390 */
 391
 392static int tasks_trace_scale_read_lock(void)
 393{
 394	rcu_read_lock_trace();
 395	return 0;
 396}
 397
 398static void tasks_trace_scale_read_unlock(int idx)
 399{
 400	rcu_read_unlock_trace();
 401}
 402
 403static void rcu_tasks_trace_scale_stats(void)
 404{
 405	rcu_tasks_trace_torture_stats_print(scale_type, SCALE_FLAG);
 406}
 407
 408static struct rcu_scale_ops tasks_tracing_ops = {
 409	.ptype		= RCU_TASKS_FLAVOR,
 410	.init		= rcu_sync_scale_init,
 411	.readlock	= tasks_trace_scale_read_lock,
 412	.readunlock	= tasks_trace_scale_read_unlock,
 413	.get_gp_seq	= rcu_no_completed,
 414	.gp_diff	= rcu_seq_diff,
 415	.async		= call_rcu_tasks_trace,
 416	.gp_barrier	= rcu_barrier_tasks_trace,
 417	.sync		= synchronize_rcu_tasks_trace,
 418	.exp_sync	= synchronize_rcu_tasks_trace,
 419	.rso_gp_kthread	= get_rcu_tasks_trace_gp_kthread,
 420	.stats		= IS_ENABLED(CONFIG_TINY_RCU) ? NULL : rcu_tasks_trace_scale_stats,
 421	.name		= "tasks-tracing"
 422};
 423
 424#define TASKS_TRACING_OPS &tasks_tracing_ops,
 425
 426#else // #ifdef CONFIG_TASKS_TRACE_RCU
 427
 428#define TASKS_TRACING_OPS
 429
 430#endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
 431
 432static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
 433{
 434	if (!cur_ops->gp_diff)
 435		return new - old;
 436	return cur_ops->gp_diff(new, old);
 437}
 438
 439/*
 440 * If scalability tests complete, wait for shutdown to commence.
 441 */
 442static void rcu_scale_wait_shutdown(void)
 443{
 444	cond_resched_tasks_rcu_qs();
 445	if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
 446		return;
 447	while (!torture_must_stop())
 448		schedule_timeout_uninterruptible(1);
 449}
 450
 451/*
 452 * RCU scalability reader kthread.  Repeatedly does empty RCU read-side
 453 * critical section, minimizing update-side interference.  However, the
 454 * point of this test is not to evaluate reader scalability, but instead
 455 * to serve as a test load for update-side scalability testing.
 456 */
 457static int
 458rcu_scale_reader(void *arg)
 459{
 460	unsigned long flags;
 461	int idx;
 462	long me = (long)arg;
 463
 464	VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
 465	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
 466	set_user_nice(current, MAX_NICE);
 467	atomic_inc(&n_rcu_scale_reader_started);
 468
 469	do {
 470		local_irq_save(flags);
 471		idx = cur_ops->readlock();
 472		cur_ops->readunlock(idx);
 473		local_irq_restore(flags);
 474		rcu_scale_wait_shutdown();
 475	} while (!torture_must_stop());
 476	torture_kthread_stopping("rcu_scale_reader");
 477	return 0;
 478}
 479
 480/*
 481 * Allocate a writer_mblock structure for the specified rcu_scale_writer
 482 * task.
 483 */
 484static struct writer_mblock *rcu_scale_alloc(long me)
 485{
 486	struct llist_node *llnp;
 487	struct writer_freelist *wflp;
 488	struct writer_mblock *wmbp;
 489
 490	if (WARN_ON_ONCE(!writer_freelists))
 491		return NULL;
 492	wflp = &writer_freelists[me];
 493	if (llist_empty(&wflp->ws_lhp)) {
 494		// ->ws_lhp is private to its rcu_scale_writer task.
 495		wmbp = container_of(llist_del_all(&wflp->ws_lhg), struct writer_mblock, wmb_node);
 496		wflp->ws_lhp.first = &wmbp->wmb_node;
 497	}
 498	llnp = llist_del_first(&wflp->ws_lhp);
 499	if (!llnp)
 500		return NULL;
 501	return container_of(llnp, struct writer_mblock, wmb_node);
 502}
 503
 504/*
 505 * Free a writer_mblock structure to its rcu_scale_writer task.
 506 */
 507static void rcu_scale_free(struct writer_mblock *wmbp)
 508{
 509	struct writer_freelist *wflp;
 510
 511	if (!wmbp)
 512		return;
 513	wflp = wmbp->wmb_wfl;
 514	llist_add(&wmbp->wmb_node, &wflp->ws_lhg);
 515}
 516
 517/*
 518 * Callback function for asynchronous grace periods from rcu_scale_writer().
 519 */
 520static void rcu_scale_async_cb(struct rcu_head *rhp)
 521{
 522	struct writer_mblock *wmbp = container_of(rhp, struct writer_mblock, wmb_rh);
 523	struct writer_freelist *wflp = wmbp->wmb_wfl;
 524
 525	atomic_dec(&wflp->ws_inflight);
 526	rcu_scale_free(wmbp);
 527}
 528
 529/*
 530 * RCU scale writer kthread.  Repeatedly does a grace period.
 531 */
 532static int
 533rcu_scale_writer(void *arg)
 534{
 535	int i = 0;
 536	int i_max;
 537	unsigned long jdone;
 538	long me = (long)arg;
 539	bool selfreport = false;
 540	bool started = false, done = false, alldone = false;
 541	u64 t;
 542	DEFINE_TORTURE_RANDOM(tr);
 543	u64 *wdp;
 544	u64 *wdpp = writer_durations[me];
 545	struct writer_freelist *wflp = &writer_freelists[me];
 546	struct writer_mblock *wmbp = NULL;
 547
 548	VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
 549	WARN_ON(!wdpp);
 550	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
 551	current->flags |= PF_NO_SETAFFINITY;
 552	sched_set_fifo_low(current);
 553
 554	if (holdoff)
 555		schedule_timeout_idle(holdoff * HZ);
 556
 557	/*
 558	 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
 559	 * so that RCU is not always expedited for normal GP tests.
 560	 * The system_state test is approximate, but works well in practice.
 561	 */
 562	while (!gp_exp && system_state != SYSTEM_RUNNING)
 563		schedule_timeout_uninterruptible(1);
 564
 565	t = ktime_get_mono_fast_ns();
 566	if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
 567		t_rcu_scale_writer_started = t;
 568		if (gp_exp) {
 569			b_rcu_gp_test_started =
 570				cur_ops->exp_completed() / 2;
 571		} else {
 572			b_rcu_gp_test_started = cur_ops->get_gp_seq();
 573		}
 574	}
 575
 576	jdone = jiffies + minruntime * HZ;
 577	do {
 578		bool gp_succeeded = false;
 579
 580		if (writer_holdoff)
 581			udelay(writer_holdoff);
 582		if (writer_holdoff_jiffies)
 583			schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1);
 584		wdp = &wdpp[i];
 585		*wdp = ktime_get_mono_fast_ns();
 586		if (gp_async && !WARN_ON_ONCE(!cur_ops->async)) {
 587			if (!wmbp)
 588				wmbp = rcu_scale_alloc(me);
 589			if (wmbp && atomic_read(&wflp->ws_inflight) < gp_async_max) {
 590				atomic_inc(&wflp->ws_inflight);
 591				cur_ops->async(&wmbp->wmb_rh, rcu_scale_async_cb);
 592				wmbp = NULL;
 593				gp_succeeded = true;
 594			} else if (!kthread_should_stop()) {
 595				cur_ops->gp_barrier();
 596			} else {
 597				rcu_scale_free(wmbp); /* Because we are stopping. */
 598				wmbp = NULL;
 599			}
 600		} else if (gp_exp) {
 601			cur_ops->exp_sync();
 602			gp_succeeded = true;
 603		} else {
 604			cur_ops->sync();
 605			gp_succeeded = true;
 606		}
 607		t = ktime_get_mono_fast_ns();
 608		*wdp = t - *wdp;
 609		i_max = i;
 610		if (!started &&
 611		    atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
 612			started = true;
 613		if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) {
 614			done = true;
 615			WRITE_ONCE(writer_done[me], true);
 616			sched_set_normal(current, 0);
 617			pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
 618				 scale_type, SCALE_FLAG, me, MIN_MEAS);
 619			if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
 620			    nrealwriters) {
 621				schedule_timeout_interruptible(10);
 622				rcu_ftrace_dump(DUMP_ALL);
 623				SCALEOUT_STRING("Test complete");
 624				t_rcu_scale_writer_finished = t;
 625				if (gp_exp) {
 626					b_rcu_gp_test_finished =
 627						cur_ops->exp_completed() / 2;
 628				} else {
 629					b_rcu_gp_test_finished =
 630						cur_ops->get_gp_seq();
 631				}
 632				if (shutdown) {
 633					smp_mb(); /* Assign before wake. */
 634					wake_up(&shutdown_wq);
 635				}
 636			}
 637		}
 638		if (done && !alldone &&
 639		    atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
 640			alldone = true;
 641		if (done && !alldone && time_after(jiffies, jdone + HZ * 60)) {
 642			static atomic_t dumped;
 643			int i;
 644
 645			if (!atomic_xchg(&dumped, 1)) {
 646				for (i = 0; i < nrealwriters; i++) {
 647					if (writer_done[i])
 648						continue;
 649					pr_info("%s: Task %ld flags writer %d:\n", __func__, me, i);
 650					sched_show_task(writer_tasks[i]);
 651				}
 652				if (cur_ops->stats)
 653					cur_ops->stats();
 654			}
 655		}
 656		if (!selfreport && time_after(jiffies, jdone + HZ * (70 + me))) {
 657			pr_info("%s: Writer %ld self-report: started %d done %d/%d->%d i %d jdone %lu.\n",
 658				__func__, me, started, done, writer_done[me], atomic_read(&n_rcu_scale_writer_finished), i, jiffies - jdone);
 659			selfreport = true;
 660		}
 661		if (gp_succeeded && started && !alldone && i < MAX_MEAS - 1)
 662			i++;
 663		rcu_scale_wait_shutdown();
 664	} while (!torture_must_stop());
 665	if (gp_async && cur_ops->async) {
 666		rcu_scale_free(wmbp);
 667		cur_ops->gp_barrier();
 668	}
 669	writer_n_durations[me] = i_max + 1;
 670	torture_kthread_stopping("rcu_scale_writer");
 671	return 0;
 672}
 673
 674static void
 675rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
 676{
 677	pr_alert("%s" SCALE_FLAG
 678		 "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n",
 679		 scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown);
 680}
 681
 682/*
 683 * Return the number if non-negative.  If -1, the number of CPUs.
 684 * If less than -1, that much less than the number of CPUs, but
 685 * at least one.
 686 */
 687static int compute_real(int n)
 688{
 689	int nr;
 690
 691	if (n >= 0) {
 692		nr = n;
 693	} else {
 694		nr = num_online_cpus() + 1 + n;
 695		if (nr <= 0)
 696			nr = 1;
 697	}
 698	return nr;
 699}
 700
 701/*
 702 * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
 703 * of iterations and measure total time and number of GP for all iterations to complete.
 704 */
 705
 706torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
 707torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
 708torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
 709torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
 710torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
 711
 712static struct task_struct **kfree_reader_tasks;
 713static int kfree_nrealthreads;
 714static atomic_t n_kfree_scale_thread_started;
 715static atomic_t n_kfree_scale_thread_ended;
 716static struct task_struct *kthread_tp;
 717static u64 kthread_stime;
 718
 719struct kfree_obj {
 720	char kfree_obj[8];
 721	struct rcu_head rh;
 722};
 723
 724/* Used if doing RCU-kfree'ing via call_rcu(). */
 725static void kfree_call_rcu(struct rcu_head *rh)
 726{
 727	struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
 728
 729	kfree(obj);
 730}
 731
 732static int
 733kfree_scale_thread(void *arg)
 734{
 735	int i, loop = 0;
 736	long me = (long)arg;
 737	struct kfree_obj *alloc_ptr;
 738	u64 start_time, end_time;
 739	long long mem_begin, mem_during = 0;
 740	bool kfree_rcu_test_both;
 741	DEFINE_TORTURE_RANDOM(tr);
 742
 743	VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
 744	set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
 745	set_user_nice(current, MAX_NICE);
 746	kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
 747
 748	start_time = ktime_get_mono_fast_ns();
 749
 750	if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
 751		if (gp_exp)
 752			b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
 753		else
 754			b_rcu_gp_test_started = cur_ops->get_gp_seq();
 755	}
 756
 757	do {
 758		if (!mem_during) {
 759			mem_during = mem_begin = si_mem_available();
 760		} else if (loop % (kfree_loops / 4) == 0) {
 761			mem_during = (mem_during + si_mem_available()) / 2;
 762		}
 763
 764		for (i = 0; i < kfree_alloc_num; i++) {
 765			alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
 766			if (!alloc_ptr)
 767				return -ENOMEM;
 768
 769			if (kfree_by_call_rcu) {
 770				call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
 771				continue;
 772			}
 773
 774			// By default kfree_rcu_test_single and kfree_rcu_test_double are
 775			// initialized to false. If both have the same value (false or true)
 776			// both are randomly tested, otherwise only the one with value true
 777			// is tested.
 778			if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
 779					(kfree_rcu_test_both && torture_random(&tr) & 0x800))
 780				kfree_rcu_mightsleep(alloc_ptr);
 781			else
 782				kfree_rcu(alloc_ptr, rh);
 783		}
 784
 785		cond_resched();
 786	} while (!torture_must_stop() && ++loop < kfree_loops);
 787
 788	if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
 789		end_time = ktime_get_mono_fast_ns();
 790
 791		if (gp_exp)
 792			b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
 793		else
 794			b_rcu_gp_test_finished = cur_ops->get_gp_seq();
 795
 796		pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
 797		       (unsigned long long)(end_time - start_time), kfree_loops,
 798		       rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
 799		       (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
 800
 801		if (shutdown) {
 802			smp_mb(); /* Assign before wake. */
 803			wake_up(&shutdown_wq);
 804		}
 805	}
 806
 807	torture_kthread_stopping("kfree_scale_thread");
 808	return 0;
 809}
 810
 811static void
 812kfree_scale_cleanup(void)
 813{
 814	int i;
 815
 816	if (torture_cleanup_begin())
 817		return;
 818
 819	if (kfree_reader_tasks) {
 820		for (i = 0; i < kfree_nrealthreads; i++)
 821			torture_stop_kthread(kfree_scale_thread,
 822					     kfree_reader_tasks[i]);
 823		kfree(kfree_reader_tasks);
 824		kfree_reader_tasks = NULL;
 825	}
 826
 827	torture_cleanup_end();
 828}
 829
 830/*
 831 * shutdown kthread.  Just waits to be awakened, then shuts down system.
 832 */
 833static int
 834kfree_scale_shutdown(void *arg)
 835{
 836	wait_event_idle(shutdown_wq,
 837			atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
 838
 839	smp_mb(); /* Wake before output. */
 840
 841	kfree_scale_cleanup();
 842	kernel_power_off();
 843	return -EINVAL;
 844}
 845
 846// Used if doing RCU-kfree'ing via call_rcu().
 847static unsigned long jiffies_at_lazy_cb;
 848static struct rcu_head lazy_test1_rh;
 849static int rcu_lazy_test1_cb_called;
 850static void call_rcu_lazy_test1(struct rcu_head *rh)
 851{
 852	jiffies_at_lazy_cb = jiffies;
 853	WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
 854}
 855
 856static int __init
 857kfree_scale_init(void)
 858{
 859	int firsterr = 0;
 860	long i;
 861	unsigned long jif_start;
 862	unsigned long orig_jif;
 863
 864	pr_alert("%s" SCALE_FLAG
 865		 "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n",
 866		 scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single);
 867
 868	// Also, do a quick self-test to ensure laziness is as much as
 869	// expected.
 870	if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
 871		pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
 872		kfree_by_call_rcu = 0;
 873	}
 874
 875	if (kfree_by_call_rcu) {
 876		/* do a test to check the timeout. */
 877		orig_jif = rcu_get_jiffies_lazy_flush();
 878
 879		rcu_set_jiffies_lazy_flush(2 * HZ);
 880		rcu_barrier();
 881
 882		jif_start = jiffies;
 883		jiffies_at_lazy_cb = 0;
 884		call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
 885
 886		smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
 887
 888		rcu_set_jiffies_lazy_flush(orig_jif);
 889
 890		if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
 891			pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
 892			firsterr = -1;
 893			goto unwind;
 894		}
 895
 896		if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
 897			pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
 898			firsterr = -1;
 899			goto unwind;
 900		}
 901	}
 902
 903	kfree_nrealthreads = compute_real(kfree_nthreads);
 904	/* Start up the kthreads. */
 905	if (shutdown) {
 906		init_waitqueue_head(&shutdown_wq);
 907		firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
 908						  shutdown_task);
 909		if (torture_init_error(firsterr))
 910			goto unwind;
 911		schedule_timeout_uninterruptible(1);
 912	}
 913
 914	pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
 915			kfree_mult * sizeof(struct kfree_obj),
 916			kfree_by_call_rcu);
 917
 918	kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
 919			       GFP_KERNEL);
 920	if (kfree_reader_tasks == NULL) {
 921		firsterr = -ENOMEM;
 922		goto unwind;
 923	}
 924
 925	for (i = 0; i < kfree_nrealthreads; i++) {
 926		firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
 927						  kfree_reader_tasks[i]);
 928		if (torture_init_error(firsterr))
 929			goto unwind;
 930	}
 931
 932	while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
 933		schedule_timeout_uninterruptible(1);
 934
 935	torture_init_end();
 936	return 0;
 937
 938unwind:
 939	torture_init_end();
 940	kfree_scale_cleanup();
 941	return firsterr;
 942}
 943
 944static void
 945rcu_scale_cleanup(void)
 946{
 947	int i;
 948	int j;
 949	int ngps = 0;
 950	u64 *wdp;
 951	u64 *wdpp;
 952
 953	/*
 954	 * Would like warning at start, but everything is expedited
 955	 * during the mid-boot phase, so have to wait till the end.
 956	 */
 957	if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
 958		SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
 959	if (rcu_gp_is_normal() && gp_exp)
 960		SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
 961	if (gp_exp && gp_async)
 962		SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
 963
 964	// If built-in, just report all of the GP kthread's CPU time.
 965	if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread)
 966		kthread_tp = cur_ops->rso_gp_kthread();
 967	if (kthread_tp) {
 968		u32 ns;
 969		u64 us;
 970
 971		kthread_stime = kthread_tp->stime - kthread_stime;
 972		us = div_u64_rem(kthread_stime, 1000, &ns);
 973		pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns);
 974		show_rcu_gp_kthreads();
 975	}
 976	if (kfree_rcu_test) {
 977		kfree_scale_cleanup();
 978		return;
 979	}
 980
 981	if (torture_cleanup_begin())
 982		return;
 983	if (!cur_ops) {
 984		torture_cleanup_end();
 985		return;
 986	}
 987
 988	if (reader_tasks) {
 989		for (i = 0; i < nrealreaders; i++)
 990			torture_stop_kthread(rcu_scale_reader,
 991					     reader_tasks[i]);
 992		kfree(reader_tasks);
 993		reader_tasks = NULL;
 994	}
 995
 996	if (writer_tasks) {
 997		for (i = 0; i < nrealwriters; i++) {
 998			torture_stop_kthread(rcu_scale_writer,
 999					     writer_tasks[i]);
1000			if (!writer_n_durations)
1001				continue;
1002			j = writer_n_durations[i];
1003			pr_alert("%s%s writer %d gps: %d\n",
1004				 scale_type, SCALE_FLAG, i, j);
1005			ngps += j;
1006		}
1007		pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
1008			 scale_type, SCALE_FLAG,
1009			 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
1010			 t_rcu_scale_writer_finished -
1011			 t_rcu_scale_writer_started,
1012			 ngps,
1013			 rcuscale_seq_diff(b_rcu_gp_test_finished,
1014					   b_rcu_gp_test_started));
1015		for (i = 0; i < nrealwriters; i++) {
1016			if (!writer_durations)
1017				break;
1018			if (!writer_n_durations)
1019				continue;
1020			wdpp = writer_durations[i];
1021			if (!wdpp)
1022				continue;
1023			for (j = 0; j < writer_n_durations[i]; j++) {
1024				wdp = &wdpp[j];
1025				pr_alert("%s%s %4d writer-duration: %5d %llu\n",
1026					scale_type, SCALE_FLAG,
1027					i, j, *wdp);
1028				if (j % 100 == 0)
1029					schedule_timeout_uninterruptible(1);
1030			}
1031			kfree(writer_durations[i]);
1032			if (writer_freelists) {
1033				int ctr = 0;
1034				struct llist_node *llnp;
1035				struct writer_freelist *wflp = &writer_freelists[i];
1036
1037				if (wflp->ws_mblocks) {
1038					llist_for_each(llnp, wflp->ws_lhg.first)
1039						ctr++;
1040					llist_for_each(llnp, wflp->ws_lhp.first)
1041						ctr++;
1042					WARN_ONCE(ctr != gp_async_max,
1043						  "%s: ctr = %d gp_async_max = %d\n",
1044						  __func__, ctr, gp_async_max);
1045					kfree(wflp->ws_mblocks);
1046				}
1047			}
1048		}
1049		kfree(writer_tasks);
1050		writer_tasks = NULL;
1051		kfree(writer_durations);
1052		writer_durations = NULL;
1053		kfree(writer_n_durations);
1054		writer_n_durations = NULL;
1055		kfree(writer_done);
1056		writer_done = NULL;
1057		kfree(writer_freelists);
1058		writer_freelists = NULL;
1059	}
1060
1061	/* Do torture-type-specific cleanup operations.  */
1062	if (cur_ops->cleanup != NULL)
1063		cur_ops->cleanup();
1064
1065	torture_cleanup_end();
1066}
1067
1068/*
1069 * RCU scalability shutdown kthread.  Just waits to be awakened, then shuts
1070 * down system.
1071 */
1072static int
1073rcu_scale_shutdown(void *arg)
1074{
1075	wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
1076	smp_mb(); /* Wake before output. */
1077	rcu_scale_cleanup();
1078	kernel_power_off();
1079	return -EINVAL;
1080}
1081
1082static int __init
1083rcu_scale_init(void)
1084{
1085	int firsterr = 0;
1086	long i;
1087	long j;
1088	static struct rcu_scale_ops *scale_ops[] = {
1089		&rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS
1090	};
1091
1092	if (!torture_init_begin(scale_type, verbose))
1093		return -EBUSY;
1094
1095	/* Process args and announce that the scalability'er is on the job. */
1096	for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
1097		cur_ops = scale_ops[i];
1098		if (strcmp(scale_type, cur_ops->name) == 0)
1099			break;
1100	}
1101	if (i == ARRAY_SIZE(scale_ops)) {
1102		pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
1103		pr_alert("rcu-scale types:");
1104		for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
1105			pr_cont(" %s", scale_ops[i]->name);
1106		pr_cont("\n");
1107		firsterr = -EINVAL;
1108		cur_ops = NULL;
1109		goto unwind;
1110	}
1111	if (cur_ops->init)
1112		cur_ops->init();
1113
1114	if (cur_ops->rso_gp_kthread) {
1115		kthread_tp = cur_ops->rso_gp_kthread();
1116		if (kthread_tp)
1117			kthread_stime = kthread_tp->stime;
1118	}
1119	if (kfree_rcu_test)
1120		return kfree_scale_init();
1121
1122	nrealwriters = compute_real(nwriters);
1123	nrealreaders = compute_real(nreaders);
1124	atomic_set(&n_rcu_scale_reader_started, 0);
1125	atomic_set(&n_rcu_scale_writer_started, 0);
1126	atomic_set(&n_rcu_scale_writer_finished, 0);
1127	rcu_scale_print_module_parms(cur_ops, "Start of test");
1128
1129	/* Start up the kthreads. */
1130
1131	if (shutdown) {
1132		init_waitqueue_head(&shutdown_wq);
1133		firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
1134						  shutdown_task);
1135		if (torture_init_error(firsterr))
1136			goto unwind;
1137		schedule_timeout_uninterruptible(1);
1138	}
1139	reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
1140			       GFP_KERNEL);
1141	if (reader_tasks == NULL) {
1142		SCALEOUT_ERRSTRING("out of memory");
1143		firsterr = -ENOMEM;
1144		goto unwind;
1145	}
1146	for (i = 0; i < nrealreaders; i++) {
1147		firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
1148						  reader_tasks[i]);
1149		if (torture_init_error(firsterr))
1150			goto unwind;
1151	}
1152	while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
1153		schedule_timeout_uninterruptible(1);
1154	writer_tasks = kcalloc(nrealwriters, sizeof(writer_tasks[0]), GFP_KERNEL);
1155	writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations), GFP_KERNEL);
1156	writer_n_durations = kcalloc(nrealwriters, sizeof(*writer_n_durations), GFP_KERNEL);
1157	writer_done = kcalloc(nrealwriters, sizeof(writer_done[0]), GFP_KERNEL);
1158	if (gp_async) {
1159		if (gp_async_max <= 0) {
1160			pr_warn("%s: gp_async_max = %d must be greater than zero.\n",
1161				__func__, gp_async_max);
1162			WARN_ON_ONCE(IS_BUILTIN(CONFIG_RCU_TORTURE_TEST));
1163			firsterr = -EINVAL;
1164			goto unwind;
1165		}
1166		writer_freelists = kcalloc(nrealwriters, sizeof(writer_freelists[0]), GFP_KERNEL);
1167	}
1168	if (!writer_tasks || !writer_durations || !writer_n_durations || !writer_done ||
1169	    (gp_async && !writer_freelists)) {
1170		SCALEOUT_ERRSTRING("out of memory");
1171		firsterr = -ENOMEM;
1172		goto unwind;
1173	}
1174	for (i = 0; i < nrealwriters; i++) {
1175		writer_durations[i] =
1176			kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
1177				GFP_KERNEL);
1178		if (!writer_durations[i]) {
1179			firsterr = -ENOMEM;
1180			goto unwind;
1181		}
1182		if (writer_freelists) {
1183			struct writer_freelist *wflp = &writer_freelists[i];
1184
1185			init_llist_head(&wflp->ws_lhg);
1186			init_llist_head(&wflp->ws_lhp);
1187			wflp->ws_mblocks = kcalloc(gp_async_max, sizeof(wflp->ws_mblocks[0]),
1188						   GFP_KERNEL);
1189			if (!wflp->ws_mblocks) {
1190				firsterr = -ENOMEM;
1191				goto unwind;
1192			}
1193			for (j = 0; j < gp_async_max; j++) {
1194				struct writer_mblock *wmbp = &wflp->ws_mblocks[j];
1195
1196				wmbp->wmb_wfl = wflp;
1197				llist_add(&wmbp->wmb_node, &wflp->ws_lhp);
1198			}
1199		}
1200		firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
1201						  writer_tasks[i]);
1202		if (torture_init_error(firsterr))
1203			goto unwind;
1204	}
1205	torture_init_end();
1206	return 0;
1207
1208unwind:
1209	torture_init_end();
1210	rcu_scale_cleanup();
1211	if (shutdown) {
1212		WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
1213		kernel_power_off();
1214	}
1215	return firsterr;
1216}
1217
1218module_init(rcu_scale_init);
1219module_exit(rcu_scale_cleanup);