Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * fs/f2fs/segment.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11#include <linux/blkdev.h>
 12#include <linux/backing-dev.h>
 13
 14/* constant macro */
 15#define NULL_SEGNO			((unsigned int)(~0))
 16#define NULL_SECNO			((unsigned int)(~0))
 17
 18#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 
 
 
 
 
 
 19
 20/* L: Logical segment # in volume, R: Relative segment # in main area */
 21#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
 22#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
 23
 24#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
 25#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
 
 
 
 
 
 
 
 26
 27#define IS_CURSEG(sbi, seg)						\
 28	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 29	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 30	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 31	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 32	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 33	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
 
 
 34
 35#define IS_CURSEC(sbi, secno)						\
 36	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 37	  sbi->segs_per_sec) ||	\
 38	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 39	  sbi->segs_per_sec) ||	\
 40	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 41	  sbi->segs_per_sec) ||	\
 42	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 43	  sbi->segs_per_sec) ||	\
 44	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 45	  sbi->segs_per_sec) ||	\
 46	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 47	  sbi->segs_per_sec))	\
 48
 49#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
 50#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
 
 
 
 
 
 
 
 
 51
 52#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 53#define MAIN_SECS(sbi)	(sbi->total_sections)
 54
 55#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
 56#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
 
 
 57
 58#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 59#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
 60					sbi->log_blocks_per_seg))
 61
 62#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 63	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
 64
 65#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 66	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
 67
 68#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 69#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 70	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
 71#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 72	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
 73
 74#define GET_SEGNO(sbi, blk_addr)					\
 75	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
 76	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 77		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
 78#define GET_SECNO(sbi, segno)					\
 79	((segno) / sbi->segs_per_sec)
 80#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
 81	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
 
 
 
 
 
 
 
 
 
 82
 83#define GET_SUM_BLOCK(sbi, segno)				\
 84	((sbi->sm_info->ssa_blkaddr) + segno)
 85
 86#define GET_SUM_TYPE(footer) ((footer)->entry_type)
 87#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
 88
 89#define SIT_ENTRY_OFFSET(sit_i, segno)					\
 90	(segno % sit_i->sents_per_block)
 91#define SIT_BLOCK_OFFSET(segno)					\
 92	(segno / SIT_ENTRY_PER_BLOCK)
 93#define	START_SEGNO(segno)		\
 94	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
 95#define SIT_BLK_CNT(sbi)			\
 96	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
 97#define f2fs_bitmap_size(nr)			\
 98	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
 99
100#define SECTOR_FROM_BLOCK(blk_addr)					\
101	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
102#define SECTOR_TO_BLOCK(sectors)					\
103	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
104#define MAX_BIO_BLOCKS(sbi)						\
105	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
106
107/*
108 * indicate a block allocation direction: RIGHT and LEFT.
109 * RIGHT means allocating new sections towards the end of volume.
110 * LEFT means the opposite direction.
111 */
112enum {
113	ALLOC_RIGHT = 0,
114	ALLOC_LEFT
115};
116
117/*
118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
119 * LFS writes data sequentially with cleaning operations.
120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
 
 
121 */
122enum {
123	LFS = 0,
124	SSR
 
125};
126
127/*
128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
129 * GC_CB is based on cost-benefit algorithm.
130 * GC_GREEDY is based on greedy algorithm.
 
131 */
132enum {
133	GC_CB = 0,
134	GC_GREEDY
 
 
 
 
135};
136
137/*
138 * BG_GC means the background cleaning job.
139 * FG_GC means the on-demand cleaning job.
140 * FORCE_FG_GC means on-demand cleaning job in background.
141 */
142enum {
143	BG_GC = 0,
144	FG_GC,
145	FORCE_FG_GC,
146};
147
148/* for a function parameter to select a victim segment */
149struct victim_sel_policy {
150	int alloc_mode;			/* LFS or SSR */
151	int gc_mode;			/* GC_CB or GC_GREEDY */
152	unsigned long *dirty_segmap;	/* dirty segment bitmap */
153	unsigned int max_search;	/* maximum # of segments to search */
 
 
 
154	unsigned int offset;		/* last scanned bitmap offset */
155	unsigned int ofs_unit;		/* bitmap search unit */
156	unsigned int min_cost;		/* minimum cost */
 
157	unsigned int min_segno;		/* segment # having min. cost */
 
 
 
158};
159
160struct seg_entry {
161	unsigned short valid_blocks;	/* # of valid blocks */
 
 
 
162	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
 
 
 
163	/*
164	 * # of valid blocks and the validity bitmap stored in the the last
165	 * checkpoint pack. This information is used by the SSR mode.
166	 */
167	unsigned short ckpt_valid_blocks;
168	unsigned char *ckpt_valid_map;
169	unsigned char *discard_map;
170	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
171	unsigned long long mtime;	/* modification time of the segment */
172};
173
174struct sec_entry {
175	unsigned int valid_blocks;	/* # of valid blocks in a section */
176};
177
178struct segment_allocation {
179	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
180};
181
182/*
183 * this value is set in page as a private data which indicate that
184 * the page is atomically written, and it is in inmem_pages list.
185 */
186#define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
187
188#define IS_ATOMIC_WRITTEN_PAGE(page)			\
189		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
190
191struct inmem_pages {
192	struct list_head list;
193	struct page *page;
194	block_t old_addr;		/* for revoking when fail to commit */
 
195};
196
197struct sit_info {
198	const struct segment_allocation *s_ops;
199
200	block_t sit_base_addr;		/* start block address of SIT area */
201	block_t sit_blocks;		/* # of blocks used by SIT area */
202	block_t written_valid_blocks;	/* # of valid blocks in main area */
 
203	char *sit_bitmap;		/* SIT bitmap pointer */
 
 
 
 
 
 
204	unsigned int bitmap_size;	/* SIT bitmap size */
205
206	unsigned long *tmp_map;			/* bitmap for temporal use */
207	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
208	unsigned int dirty_sentries;		/* # of dirty sentries */
209	unsigned int sents_per_block;		/* # of SIT entries per block */
210	struct mutex sentry_lock;		/* to protect SIT cache */
211	struct seg_entry *sentries;		/* SIT segment-level cache */
212	struct sec_entry *sec_entries;		/* SIT section-level cache */
213
214	/* for cost-benefit algorithm in cleaning procedure */
215	unsigned long long elapsed_time;	/* elapsed time after mount */
216	unsigned long long mounted_time;	/* mount time */
217	unsigned long long min_mtime;		/* min. modification time */
218	unsigned long long max_mtime;		/* max. modification time */
 
 
 
 
219};
220
221struct free_segmap_info {
222	unsigned int start_segno;	/* start segment number logically */
223	unsigned int free_segments;	/* # of free segments */
224	unsigned int free_sections;	/* # of free sections */
225	spinlock_t segmap_lock;		/* free segmap lock */
226	unsigned long *free_segmap;	/* free segment bitmap */
227	unsigned long *free_secmap;	/* free section bitmap */
228};
229
230/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
231enum dirty_type {
232	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
233	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
234	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
235	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
236	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
237	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
238	DIRTY,			/* to count # of dirty segments */
239	PRE,			/* to count # of entirely obsolete segments */
240	NR_DIRTY_TYPE
241};
242
243struct dirty_seglist_info {
244	const struct victim_selection *v_ops;	/* victim selction operation */
245	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
 
246	struct mutex seglist_lock;		/* lock for segment bitmaps */
247	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
248	unsigned long *victim_secmap;		/* background GC victims */
249};
250
251/* victim selection function for cleaning and SSR */
252struct victim_selection {
253	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
254							int, int, char);
255};
256
257/* for active log information */
258struct curseg_info {
259	struct mutex curseg_mutex;		/* lock for consistency */
260	struct f2fs_summary_block *sum_blk;	/* cached summary block */
261	struct rw_semaphore journal_rwsem;	/* protect journal area */
262	struct f2fs_journal *journal;		/* cached journal info */
263	unsigned char alloc_type;		/* current allocation type */
 
264	unsigned int segno;			/* current segment number */
265	unsigned short next_blkoff;		/* next block offset to write */
266	unsigned int zone;			/* current zone number */
267	unsigned int next_segno;		/* preallocated segment */
 
 
268};
269
270struct sit_entry_set {
271	struct list_head set_list;	/* link with all sit sets */
272	unsigned int start_segno;	/* start segno of sits in set */
273	unsigned int entry_cnt;		/* the # of sit entries in set */
274};
275
276/*
277 * inline functions
278 */
279static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
280{
281	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
282}
283
284static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
285						unsigned int segno)
286{
287	struct sit_info *sit_i = SIT_I(sbi);
288	return &sit_i->sentries[segno];
289}
290
291static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
292						unsigned int segno)
293{
294	struct sit_info *sit_i = SIT_I(sbi);
295	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
296}
297
298static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
299				unsigned int segno, int section)
300{
301	/*
302	 * In order to get # of valid blocks in a section instantly from many
303	 * segments, f2fs manages two counting structures separately.
304	 */
305	if (section > 1)
306		return get_sec_entry(sbi, segno)->valid_blocks;
307	else
308		return get_seg_entry(sbi, segno)->valid_blocks;
309}
310
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311static inline void seg_info_from_raw_sit(struct seg_entry *se,
312					struct f2fs_sit_entry *rs)
313{
314	se->valid_blocks = GET_SIT_VBLOCKS(rs);
315	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
316	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
317	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
318	se->type = GET_SIT_TYPE(rs);
319	se->mtime = le64_to_cpu(rs->mtime);
320}
321
322static inline void seg_info_to_raw_sit(struct seg_entry *se,
323					struct f2fs_sit_entry *rs)
324{
325	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
326					se->valid_blocks;
327	rs->vblocks = cpu_to_le16(raw_vblocks);
328	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
330	se->ckpt_valid_blocks = se->valid_blocks;
331	rs->mtime = cpu_to_le64(se->mtime);
332}
333
334static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
335		unsigned int max, unsigned int segno)
336{
337	unsigned int ret;
338	spin_lock(&free_i->segmap_lock);
339	ret = find_next_bit(free_i->free_segmap, max, segno);
340	spin_unlock(&free_i->segmap_lock);
341	return ret;
342}
343
344static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
345{
346	struct free_segmap_info *free_i = FREE_I(sbi);
347	unsigned int secno = segno / sbi->segs_per_sec;
348	unsigned int start_segno = secno * sbi->segs_per_sec;
349	unsigned int next;
 
350
351	spin_lock(&free_i->segmap_lock);
352	clear_bit(segno, free_i->free_segmap);
353	free_i->free_segments++;
354
355	next = find_next_bit(free_i->free_segmap,
356			start_segno + sbi->segs_per_sec, start_segno);
357	if (next >= start_segno + sbi->segs_per_sec) {
358		clear_bit(secno, free_i->free_secmap);
359		free_i->free_sections++;
360	}
361	spin_unlock(&free_i->segmap_lock);
362}
363
364static inline void __set_inuse(struct f2fs_sb_info *sbi,
365		unsigned int segno)
366{
367	struct free_segmap_info *free_i = FREE_I(sbi);
368	unsigned int secno = segno / sbi->segs_per_sec;
 
369	set_bit(segno, free_i->free_segmap);
370	free_i->free_segments--;
371	if (!test_and_set_bit(secno, free_i->free_secmap))
372		free_i->free_sections--;
373}
374
375static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
376		unsigned int segno)
377{
378	struct free_segmap_info *free_i = FREE_I(sbi);
379	unsigned int secno = segno / sbi->segs_per_sec;
380	unsigned int start_segno = secno * sbi->segs_per_sec;
381	unsigned int next;
 
382
383	spin_lock(&free_i->segmap_lock);
384	if (test_and_clear_bit(segno, free_i->free_segmap)) {
385		free_i->free_segments++;
386
 
 
387		next = find_next_bit(free_i->free_segmap,
388				start_segno + sbi->segs_per_sec, start_segno);
389		if (next >= start_segno + sbi->segs_per_sec) {
390			if (test_and_clear_bit(secno, free_i->free_secmap))
391				free_i->free_sections++;
392		}
393	}
 
394	spin_unlock(&free_i->segmap_lock);
395}
396
397static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
398		unsigned int segno)
399{
400	struct free_segmap_info *free_i = FREE_I(sbi);
401	unsigned int secno = segno / sbi->segs_per_sec;
 
402	spin_lock(&free_i->segmap_lock);
403	if (!test_and_set_bit(segno, free_i->free_segmap)) {
404		free_i->free_segments--;
405		if (!test_and_set_bit(secno, free_i->free_secmap))
406			free_i->free_sections--;
407	}
408	spin_unlock(&free_i->segmap_lock);
409}
410
411static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
412		void *dst_addr)
413{
414	struct sit_info *sit_i = SIT_I(sbi);
 
 
 
 
 
 
415	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
416}
417
418static inline block_t written_block_count(struct f2fs_sb_info *sbi)
419{
420	return SIT_I(sbi)->written_valid_blocks;
421}
422
423static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
424{
425	return FREE_I(sbi)->free_segments;
426}
427
428static inline int reserved_segments(struct f2fs_sb_info *sbi)
429{
430	return SM_I(sbi)->reserved_segments;
431}
432
433static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
434{
435	return FREE_I(sbi)->free_sections;
436}
437
438static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
439{
440	return DIRTY_I(sbi)->nr_dirty[PRE];
441}
442
443static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
444{
445	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
446		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
447		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
448		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
449		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
450		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
451}
452
453static inline int overprovision_segments(struct f2fs_sb_info *sbi)
454{
455	return SM_I(sbi)->ovp_segments;
456}
457
458static inline int overprovision_sections(struct f2fs_sb_info *sbi)
459{
460	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
461}
462
463static inline int reserved_sections(struct f2fs_sb_info *sbi)
 
 
464{
465	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
466}
467
468static inline bool need_SSR(struct f2fs_sb_info *sbi)
469{
470	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
471	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
472	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
473						reserved_sections(sbi) + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474}
475
476static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
 
477{
478	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
479	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
480
481	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
482		return false;
483
484	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
485						reserved_sections(sbi));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
486}
487
488static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
489{
490	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
491}
492
493static inline int utilization(struct f2fs_sb_info *sbi)
494{
495	return div_u64((u64)valid_user_blocks(sbi) * 100,
496					sbi->user_block_count);
497}
498
499/*
500 * Sometimes f2fs may be better to drop out-of-place update policy.
501 * And, users can control the policy through sysfs entries.
502 * There are five policies with triggering conditions as follows.
503 * F2FS_IPU_FORCE - all the time,
504 * F2FS_IPU_SSR - if SSR mode is activated,
505 * F2FS_IPU_UTIL - if FS utilization is over threashold,
506 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
507 *                     threashold,
508 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
509 *                     storages. IPU will be triggered only if the # of dirty
510 *                     pages over min_fsync_blocks.
511 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
 
 
 
 
512 */
513#define DEF_MIN_IPU_UTIL	70
514#define DEF_MIN_FSYNC_BLOCKS	8
 
 
 
515
 
 
 
516enum {
517	F2FS_IPU_FORCE,
518	F2FS_IPU_SSR,
519	F2FS_IPU_UTIL,
520	F2FS_IPU_SSR_UTIL,
521	F2FS_IPU_FSYNC,
 
 
 
 
522};
523
524static inline bool need_inplace_update(struct inode *inode)
525{
526	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
527	unsigned int policy = SM_I(sbi)->ipu_policy;
528
529	/* IPU can be done only for the user data */
530	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
531		return false;
532
533	if (policy & (0x1 << F2FS_IPU_FORCE))
534		return true;
535	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
536		return true;
537	if (policy & (0x1 << F2FS_IPU_UTIL) &&
538			utilization(sbi) > SM_I(sbi)->min_ipu_util)
539		return true;
540	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
541			utilization(sbi) > SM_I(sbi)->min_ipu_util)
542		return true;
543
544	/* this is only set during fdatasync */
545	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
546			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
547		return true;
548
549	return false;
 
 
 
550}
551
 
 
 
 
 
 
 
 
 
552static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
553		int type)
554{
555	struct curseg_info *curseg = CURSEG_I(sbi, type);
556	return curseg->segno;
557}
558
559static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
560		int type)
561{
562	struct curseg_info *curseg = CURSEG_I(sbi, type);
563	return curseg->alloc_type;
564}
565
566static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
 
567{
568	struct curseg_info *curseg = CURSEG_I(sbi, type);
569	return curseg->next_blkoff;
570}
571
572static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
573{
574	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
575}
576
577static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
578{
579	f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi)
580					|| blk_addr >= MAX_BLKADDR(sbi));
 
581}
582
583/*
584 * Summary block is always treated as an invalid block
585 */
586static inline void check_block_count(struct f2fs_sb_info *sbi,
587		int segno, struct f2fs_sit_entry *raw_sit)
588{
589#ifdef CONFIG_F2FS_CHECK_FS
590	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
591	int valid_blocks = 0;
592	int cur_pos = 0, next_pos;
 
593
594	/* check bitmap with valid block count */
595	do {
596		if (is_valid) {
597			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
598					sbi->blocks_per_seg,
599					cur_pos);
600			valid_blocks += next_pos - cur_pos;
601		} else
602			next_pos = find_next_bit_le(&raw_sit->valid_map,
603					sbi->blocks_per_seg,
604					cur_pos);
605		cur_pos = next_pos;
606		is_valid = !is_valid;
607	} while (cur_pos < sbi->blocks_per_seg);
608	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
609#endif
 
 
 
 
 
 
 
 
 
 
 
 
610	/* check segment usage, and check boundary of a given segment number */
611	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
612					|| segno > TOTAL_SEGS(sbi) - 1);
 
 
 
 
 
 
 
613}
614
615static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
616						unsigned int start)
617{
618	struct sit_info *sit_i = SIT_I(sbi);
619	unsigned int offset = SIT_BLOCK_OFFSET(start);
620	block_t blk_addr = sit_i->sit_base_addr + offset;
621
622	check_seg_range(sbi, start);
 
 
 
 
 
 
623
624	/* calculate sit block address */
625	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
626		blk_addr += sit_i->sit_blocks;
627
628	return blk_addr;
629}
630
631static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
632						pgoff_t block_addr)
633{
634	struct sit_info *sit_i = SIT_I(sbi);
635	block_addr -= sit_i->sit_base_addr;
636	if (block_addr < sit_i->sit_blocks)
637		block_addr += sit_i->sit_blocks;
638	else
639		block_addr -= sit_i->sit_blocks;
640
641	return block_addr + sit_i->sit_base_addr;
642}
643
644static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
645{
646	unsigned int block_off = SIT_BLOCK_OFFSET(start);
647
648	f2fs_change_bit(block_off, sit_i->sit_bitmap);
 
 
 
649}
650
651static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
 
652{
653	struct sit_info *sit_i = SIT_I(sbi);
654	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
655						sit_i->mounted_time;
 
 
 
 
 
 
 
 
 
 
 
656}
657
658static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
659			unsigned int ofs_in_node, unsigned char version)
660{
661	sum->nid = cpu_to_le32(nid);
662	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
663	sum->version = version;
664}
665
666static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
667{
668	return __start_cp_addr(sbi) +
669		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
670}
671
672static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
673{
674	return __start_cp_addr(sbi) +
675		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
676				- (base + 1) + type;
677}
678
679static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
680{
681	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
682		return true;
683	return false;
684}
685
686static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
687{
688	struct block_device *bdev = sbi->sb->s_bdev;
689	struct request_queue *q = bdev_get_queue(bdev);
690	return SECTOR_TO_BLOCK(queue_max_sectors(q));
691}
692
693/*
694 * It is very important to gather dirty pages and write at once, so that we can
695 * submit a big bio without interfering other data writes.
696 * By default, 512 pages for directory data,
697 * 512 pages (2MB) * 3 for three types of nodes, and
698 * max_bio_blocks for meta are set.
699 */
700static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
701{
702	if (sbi->sb->s_bdi->wb.dirty_exceeded)
703		return 0;
704
705	if (type == DATA)
706		return sbi->blocks_per_seg;
707	else if (type == NODE)
708		return 3 * sbi->blocks_per_seg;
709	else if (type == META)
710		return MAX_BIO_BLOCKS(sbi);
711	else
712		return 0;
713}
714
715/*
716 * When writing pages, it'd better align nr_to_write for segment size.
717 */
718static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
719					struct writeback_control *wbc)
720{
721	long nr_to_write, desired;
722
723	if (wbc->sync_mode != WB_SYNC_NONE)
724		return 0;
725
726	nr_to_write = wbc->nr_to_write;
727
728	if (type == DATA)
729		desired = 4096;
730	else if (type == NODE)
731		desired = 3 * max_hw_blocks(sbi);
732	else
733		desired = MAX_BIO_BLOCKS(sbi);
734
735	wbc->nr_to_write = desired;
736	return desired - nr_to_write;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737}
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/segment.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8#include <linux/blkdev.h>
  9#include <linux/backing-dev.h>
 10
 11/* constant macro */
 12#define NULL_SEGNO			((unsigned int)(~0))
 13#define NULL_SECNO			((unsigned int)(~0))
 14
 15#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
 16#define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
 17
 18#define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
 19#define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
 20
 21#define INVALID_MTIME ULLONG_MAX /* no valid blocks in a segment/section */
 22
 23/* L: Logical segment # in volume, R: Relative segment # in main area */
 24#define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
 25#define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
 26
 27#define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
 28#define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
 29#define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
 30
 31static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
 32						unsigned short seg_type)
 33{
 34	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
 35}
 36
 37#define IS_CURSEG(sbi, seg)						\
 38	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
 39	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
 40	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
 41	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
 42	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
 43	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
 44	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
 45	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
 46
 47#define IS_CURSEC(sbi, secno)						\
 48	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
 49	  SEGS_PER_SEC(sbi)) ||	\
 50	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
 51	  SEGS_PER_SEC(sbi)) ||	\
 52	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
 53	  SEGS_PER_SEC(sbi)) ||	\
 54	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
 55	  SEGS_PER_SEC(sbi)) ||	\
 56	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
 57	  SEGS_PER_SEC(sbi)) ||	\
 58	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
 59	  SEGS_PER_SEC(sbi)) ||	\
 60	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
 61	  SEGS_PER_SEC(sbi)) ||	\
 62	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
 63	  SEGS_PER_SEC(sbi)))
 64
 65#define MAIN_BLKADDR(sbi)						\
 66	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
 67		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
 68#define SEG0_BLKADDR(sbi)						\
 69	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
 70		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
 71
 72#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
 73#define MAIN_SECS(sbi)	((sbi)->total_sections)
 74
 75#define TOTAL_SEGS(sbi)							\
 76	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
 77		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
 78#define TOTAL_BLKS(sbi)	(SEGS_TO_BLKS(sbi, TOTAL_SEGS(sbi)))
 79
 80#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
 81#define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
 82					(sbi)->log_blocks_per_seg))
 83
 84#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
 85	 (SEGS_TO_BLKS(sbi, GET_R2L_SEGNO(FREE_I(sbi), segno))))
 86
 87#define NEXT_FREE_BLKADDR(sbi, curseg)					\
 88	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
 89
 90#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
 91#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
 92	(BLKS_TO_SEGS(sbi, GET_SEGOFF_FROM_SEG0(sbi, blk_addr)))
 93#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
 94	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (BLKS_PER_SEG(sbi) - 1))
 95
 96#define GET_SEGNO(sbi, blk_addr)					\
 97	((!__is_valid_data_blkaddr(blk_addr)) ?			\
 98	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
 99		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
100#define CAP_BLKS_PER_SEC(sbi)					\
101	(BLKS_PER_SEC(sbi) - (sbi)->unusable_blocks_per_sec)
102#define CAP_SEGS_PER_SEC(sbi)					\
103	(SEGS_PER_SEC(sbi) -					\
104	BLKS_TO_SEGS(sbi, (sbi)->unusable_blocks_per_sec))
105#define GET_SEC_FROM_SEG(sbi, segno)				\
106	(((segno) == -1) ? -1 : (segno) / SEGS_PER_SEC(sbi))
107#define GET_SEG_FROM_SEC(sbi, secno)				\
108	((secno) * SEGS_PER_SEC(sbi))
109#define GET_ZONE_FROM_SEC(sbi, secno)				\
110	(((secno) == -1) ? -1 : (secno) / (sbi)->secs_per_zone)
111#define GET_ZONE_FROM_SEG(sbi, segno)				\
112	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
113
114#define GET_SUM_BLOCK(sbi, segno)				\
115	((sbi)->sm_info->ssa_blkaddr + (segno))
116
117#define GET_SUM_TYPE(footer) ((footer)->entry_type)
118#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
119
120#define SIT_ENTRY_OFFSET(sit_i, segno)					\
121	((segno) % (sit_i)->sents_per_block)
122#define SIT_BLOCK_OFFSET(segno)					\
123	((segno) / SIT_ENTRY_PER_BLOCK)
124#define	START_SEGNO(segno)		\
125	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
126#define SIT_BLK_CNT(sbi)			\
127	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
128#define f2fs_bitmap_size(nr)			\
129	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
130
131#define SECTOR_FROM_BLOCK(blk_addr)					\
132	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
133#define SECTOR_TO_BLOCK(sectors)					\
134	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
 
 
135
136/*
137 * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
 
 
 
 
 
 
 
 
 
 
138 * LFS writes data sequentially with cleaning operations.
139 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
140 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
141 * fragmented segment which has similar aging degree.
142 */
143enum {
144	LFS = 0,
145	SSR,
146	AT_SSR,
147};
148
149/*
150 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
151 * GC_CB is based on cost-benefit algorithm.
152 * GC_GREEDY is based on greedy algorithm.
153 * GC_AT is based on age-threshold algorithm.
154 */
155enum {
156	GC_CB = 0,
157	GC_GREEDY,
158	GC_AT,
159	ALLOC_NEXT,
160	FLUSH_DEVICE,
161	MAX_GC_POLICY,
162};
163
164/*
165 * BG_GC means the background cleaning job.
166 * FG_GC means the on-demand cleaning job.
 
167 */
168enum {
169	BG_GC = 0,
170	FG_GC,
 
171};
172
173/* for a function parameter to select a victim segment */
174struct victim_sel_policy {
175	int alloc_mode;			/* LFS or SSR */
176	int gc_mode;			/* GC_CB or GC_GREEDY */
177	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
178	unsigned int max_search;	/*
179					 * maximum # of segments/sections
180					 * to search
181					 */
182	unsigned int offset;		/* last scanned bitmap offset */
183	unsigned int ofs_unit;		/* bitmap search unit */
184	unsigned int min_cost;		/* minimum cost */
185	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
186	unsigned int min_segno;		/* segment # having min. cost */
187	unsigned long long age;		/* mtime of GCed section*/
188	unsigned long long age_threshold;/* age threshold */
189	bool one_time_gc;		/* one time GC */
190};
191
192struct seg_entry {
193	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
194	unsigned int valid_blocks:10;	/* # of valid blocks */
195	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
196	unsigned int padding:6;		/* padding */
197	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
198#ifdef CONFIG_F2FS_CHECK_FS
199	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
200#endif
201	/*
202	 * # of valid blocks and the validity bitmap stored in the last
203	 * checkpoint pack. This information is used by the SSR mode.
204	 */
205	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
 
206	unsigned char *discard_map;
 
207	unsigned long long mtime;	/* modification time of the segment */
208};
209
210struct sec_entry {
211	unsigned int valid_blocks;	/* # of valid blocks in a section */
212};
213
214#define MAX_SKIP_GC_COUNT			16
 
 
 
 
 
 
 
 
 
 
 
215
216struct revoke_entry {
217	struct list_head list;
 
218	block_t old_addr;		/* for revoking when fail to commit */
219	pgoff_t index;
220};
221
222struct sit_info {
 
 
223	block_t sit_base_addr;		/* start block address of SIT area */
224	block_t sit_blocks;		/* # of blocks used by SIT area */
225	block_t written_valid_blocks;	/* # of valid blocks in main area */
226	char *bitmap;			/* all bitmaps pointer */
227	char *sit_bitmap;		/* SIT bitmap pointer */
228#ifdef CONFIG_F2FS_CHECK_FS
229	char *sit_bitmap_mir;		/* SIT bitmap mirror */
230
231	/* bitmap of segments to be ignored by GC in case of errors */
232	unsigned long *invalid_segmap;
233#endif
234	unsigned int bitmap_size;	/* SIT bitmap size */
235
236	unsigned long *tmp_map;			/* bitmap for temporal use */
237	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
238	unsigned int dirty_sentries;		/* # of dirty sentries */
239	unsigned int sents_per_block;		/* # of SIT entries per block */
240	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
241	struct seg_entry *sentries;		/* SIT segment-level cache */
242	struct sec_entry *sec_entries;		/* SIT section-level cache */
243
244	/* for cost-benefit algorithm in cleaning procedure */
245	unsigned long long elapsed_time;	/* elapsed time after mount */
246	unsigned long long mounted_time;	/* mount time */
247	unsigned long long min_mtime;		/* min. modification time */
248	unsigned long long max_mtime;		/* max. modification time */
249	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
250	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
251
252	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253};
254
255struct free_segmap_info {
256	unsigned int start_segno;	/* start segment number logically */
257	unsigned int free_segments;	/* # of free segments */
258	unsigned int free_sections;	/* # of free sections */
259	spinlock_t segmap_lock;		/* free segmap lock */
260	unsigned long *free_segmap;	/* free segment bitmap */
261	unsigned long *free_secmap;	/* free section bitmap */
262};
263
264/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265enum dirty_type {
266	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
267	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
268	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
269	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
270	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
271	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
272	DIRTY,			/* to count # of dirty segments */
273	PRE,			/* to count # of entirely obsolete segments */
274	NR_DIRTY_TYPE
275};
276
277struct dirty_seglist_info {
 
278	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
279	unsigned long *dirty_secmap;
280	struct mutex seglist_lock;		/* lock for segment bitmaps */
281	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
282	unsigned long *victim_secmap;		/* background GC victims */
283	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
284	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
285	bool enable_pin_section;		/* enable pinning section */
 
 
 
286};
287
288/* for active log information */
289struct curseg_info {
290	struct mutex curseg_mutex;		/* lock for consistency */
291	struct f2fs_summary_block *sum_blk;	/* cached summary block */
292	struct rw_semaphore journal_rwsem;	/* protect journal area */
293	struct f2fs_journal *journal;		/* cached journal info */
294	unsigned char alloc_type;		/* current allocation type */
295	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
296	unsigned int segno;			/* current segment number */
297	unsigned short next_blkoff;		/* next block offset to write */
298	unsigned int zone;			/* current zone number */
299	unsigned int next_segno;		/* preallocated segment */
300	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
301	bool inited;				/* indicate inmem log is inited */
302};
303
304struct sit_entry_set {
305	struct list_head set_list;	/* link with all sit sets */
306	unsigned int start_segno;	/* start segno of sits in set */
307	unsigned int entry_cnt;		/* the # of sit entries in set */
308};
309
310/*
311 * inline functions
312 */
313static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314{
315	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316}
317
318static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319						unsigned int segno)
320{
321	struct sit_info *sit_i = SIT_I(sbi);
322	return &sit_i->sentries[segno];
323}
324
325static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326						unsigned int segno)
327{
328	struct sit_info *sit_i = SIT_I(sbi);
329	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330}
331
332static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333				unsigned int segno, bool use_section)
334{
335	/*
336	 * In order to get # of valid blocks in a section instantly from many
337	 * segments, f2fs manages two counting structures separately.
338	 */
339	if (use_section && __is_large_section(sbi))
340		return get_sec_entry(sbi, segno)->valid_blocks;
341	else
342		return get_seg_entry(sbi, segno)->valid_blocks;
343}
344
345static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
346				unsigned int segno, bool use_section)
347{
348	if (use_section && __is_large_section(sbi)) {
349		unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
350		unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
351		unsigned int blocks = 0;
352		int i;
353
354		for (i = 0; i < SEGS_PER_SEC(sbi); i++, start_segno++) {
355			struct seg_entry *se = get_seg_entry(sbi, start_segno);
356
357			blocks += se->ckpt_valid_blocks;
358		}
359		return blocks;
360	}
361	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
362}
363
364static inline void seg_info_from_raw_sit(struct seg_entry *se,
365					struct f2fs_sit_entry *rs)
366{
367	se->valid_blocks = GET_SIT_VBLOCKS(rs);
368	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
369	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
370	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
371#ifdef CONFIG_F2FS_CHECK_FS
372	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
373#endif
374	se->type = GET_SIT_TYPE(rs);
375	se->mtime = le64_to_cpu(rs->mtime);
376}
377
378static inline void __seg_info_to_raw_sit(struct seg_entry *se,
379					struct f2fs_sit_entry *rs)
380{
381	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
382					se->valid_blocks;
383	rs->vblocks = cpu_to_le16(raw_vblocks);
384	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
385	rs->mtime = cpu_to_le64(se->mtime);
386}
387
388static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
389				struct page *page, unsigned int start)
390{
391	struct f2fs_sit_block *raw_sit;
392	struct seg_entry *se;
393	struct f2fs_sit_entry *rs;
394	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
395					(unsigned long)MAIN_SEGS(sbi));
396	int i;
397
398	raw_sit = (struct f2fs_sit_block *)page_address(page);
399	memset(raw_sit, 0, PAGE_SIZE);
400	for (i = 0; i < end - start; i++) {
401		rs = &raw_sit->entries[i];
402		se = get_seg_entry(sbi, start + i);
403		__seg_info_to_raw_sit(se, rs);
404	}
405}
406
407static inline void seg_info_to_raw_sit(struct seg_entry *se,
408					struct f2fs_sit_entry *rs)
409{
410	__seg_info_to_raw_sit(se, rs);
411
412	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
413	se->ckpt_valid_blocks = se->valid_blocks;
 
414}
415
416static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
417		unsigned int max, unsigned int segno)
418{
419	unsigned int ret;
420	spin_lock(&free_i->segmap_lock);
421	ret = find_next_bit(free_i->free_segmap, max, segno);
422	spin_unlock(&free_i->segmap_lock);
423	return ret;
424}
425
426static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
427{
428	struct free_segmap_info *free_i = FREE_I(sbi);
429	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
430	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
431	unsigned int next;
432	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
433
434	spin_lock(&free_i->segmap_lock);
435	clear_bit(segno, free_i->free_segmap);
436	free_i->free_segments++;
437
438	next = find_next_bit(free_i->free_segmap,
439			start_segno + SEGS_PER_SEC(sbi), start_segno);
440	if (next >= start_segno + usable_segs) {
441		clear_bit(secno, free_i->free_secmap);
442		free_i->free_sections++;
443	}
444	spin_unlock(&free_i->segmap_lock);
445}
446
447static inline void __set_inuse(struct f2fs_sb_info *sbi,
448		unsigned int segno)
449{
450	struct free_segmap_info *free_i = FREE_I(sbi);
451	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
452
453	set_bit(segno, free_i->free_segmap);
454	free_i->free_segments--;
455	if (!test_and_set_bit(secno, free_i->free_secmap))
456		free_i->free_sections--;
457}
458
459static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
460		unsigned int segno, bool inmem)
461{
462	struct free_segmap_info *free_i = FREE_I(sbi);
463	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
464	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
465	unsigned int next;
466	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi);
467
468	spin_lock(&free_i->segmap_lock);
469	if (test_and_clear_bit(segno, free_i->free_segmap)) {
470		free_i->free_segments++;
471
472		if (!inmem && IS_CURSEC(sbi, secno))
473			goto skip_free;
474		next = find_next_bit(free_i->free_segmap,
475				start_segno + SEGS_PER_SEC(sbi), start_segno);
476		if (next >= start_segno + usable_segs) {
477			if (test_and_clear_bit(secno, free_i->free_secmap))
478				free_i->free_sections++;
479		}
480	}
481skip_free:
482	spin_unlock(&free_i->segmap_lock);
483}
484
485static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
486		unsigned int segno)
487{
488	struct free_segmap_info *free_i = FREE_I(sbi);
489	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
490
491	spin_lock(&free_i->segmap_lock);
492	if (!test_and_set_bit(segno, free_i->free_segmap)) {
493		free_i->free_segments--;
494		if (!test_and_set_bit(secno, free_i->free_secmap))
495			free_i->free_sections--;
496	}
497	spin_unlock(&free_i->segmap_lock);
498}
499
500static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
501		void *dst_addr)
502{
503	struct sit_info *sit_i = SIT_I(sbi);
504
505#ifdef CONFIG_F2FS_CHECK_FS
506	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
507						sit_i->bitmap_size))
508		f2fs_bug_on(sbi, 1);
509#endif
510	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
511}
512
513static inline block_t written_block_count(struct f2fs_sb_info *sbi)
514{
515	return SIT_I(sbi)->written_valid_blocks;
516}
517
518static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
519{
520	return FREE_I(sbi)->free_segments;
521}
522
523static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
524{
525	return SM_I(sbi)->reserved_segments;
526}
527
528static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
529{
530	return FREE_I(sbi)->free_sections;
531}
532
533static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
534{
535	return DIRTY_I(sbi)->nr_dirty[PRE];
536}
537
538static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
539{
540	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
541		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
542		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
543		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
544		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
545		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
546}
547
548static inline int overprovision_segments(struct f2fs_sb_info *sbi)
549{
550	return SM_I(sbi)->ovp_segments;
551}
552
553static inline int reserved_sections(struct f2fs_sb_info *sbi)
554{
555	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
556}
557
558static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
559			unsigned int node_blocks, unsigned int data_blocks,
560			unsigned int dent_blocks)
561{
562
563	unsigned int segno, left_blocks, blocks;
564	int i;
565
566	/* check current data/node sections in the worst case. */
567	for (i = CURSEG_HOT_DATA; i < NR_PERSISTENT_LOG; i++) {
568		segno = CURSEG_I(sbi, i)->segno;
569		left_blocks = CAP_BLKS_PER_SEC(sbi) -
570				get_ckpt_valid_blocks(sbi, segno, true);
571
572		blocks = i <= CURSEG_COLD_DATA ? data_blocks : node_blocks;
573		if (blocks > left_blocks)
574			return false;
575	}
576
577	/* check current data section for dentry blocks. */
578	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
579	left_blocks = CAP_BLKS_PER_SEC(sbi) -
580			get_ckpt_valid_blocks(sbi, segno, true);
581	if (dent_blocks > left_blocks)
582		return false;
583	return true;
584}
585
586/*
587 * calculate needed sections for dirty node/dentry and call
588 * has_curseg_enough_space, please note that, it needs to account
589 * dirty data as well in lfs mode when checkpoint is disabled.
590 */
591static inline void __get_secs_required(struct f2fs_sb_info *sbi,
592		unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
593{
594	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
595					get_pages(sbi, F2FS_DIRTY_DENTS) +
596					get_pages(sbi, F2FS_DIRTY_IMETA);
597	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
598	unsigned int total_data_blocks = 0;
599	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
600	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
601	unsigned int data_secs = 0;
602	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
603	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
604	unsigned int data_blocks = 0;
605
606	if (f2fs_lfs_mode(sbi) &&
607		unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
608		total_data_blocks = get_pages(sbi, F2FS_DIRTY_DATA);
609		data_secs = total_data_blocks / CAP_BLKS_PER_SEC(sbi);
610		data_blocks = total_data_blocks % CAP_BLKS_PER_SEC(sbi);
611	}
612
613	if (lower_p)
614		*lower_p = node_secs + dent_secs + data_secs;
615	if (upper_p)
616		*upper_p = node_secs + dent_secs +
617			(node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0) +
618			(data_blocks ? 1 : 0);
619	if (curseg_p)
620		*curseg_p = has_curseg_enough_space(sbi,
621				node_blocks, data_blocks, dent_blocks);
622}
623
624static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
625					int freed, int needed)
626{
627	unsigned int free_secs, lower_secs, upper_secs;
628	bool curseg_space;
629
630	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
631		return false;
632
633	__get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
634
635	free_secs = free_sections(sbi) + freed;
636	lower_secs += needed + reserved_sections(sbi);
637	upper_secs += needed + reserved_sections(sbi);
638
639	if (free_secs > upper_secs)
640		return false;
641	if (free_secs <= lower_secs)
642		return true;
643	return !curseg_space;
644}
645
646static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
647					int freed, int needed)
648{
649	return !has_not_enough_free_secs(sbi, freed, needed);
650}
651
652static inline bool has_enough_free_blks(struct f2fs_sb_info *sbi)
653{
654	unsigned int total_free_blocks = 0;
655	unsigned int avail_user_block_count;
656
657	spin_lock(&sbi->stat_lock);
658
659	avail_user_block_count = get_available_block_count(sbi, NULL, true);
660	total_free_blocks = avail_user_block_count - (unsigned int)valid_user_blocks(sbi);
661
662	spin_unlock(&sbi->stat_lock);
663
664	return total_free_blocks > 0;
665}
666
667static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
668{
669	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
670		return true;
671	if (likely(has_enough_free_secs(sbi, 0, 0)))
672		return true;
673	if (!f2fs_lfs_mode(sbi) &&
674		likely(has_enough_free_blks(sbi)))
675		return true;
676	return false;
677}
678
679static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
680{
681	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
682}
683
684static inline int utilization(struct f2fs_sb_info *sbi)
685{
686	return div_u64((u64)valid_user_blocks(sbi) * 100,
687					sbi->user_block_count);
688}
689
690/*
691 * Sometimes f2fs may be better to drop out-of-place update policy.
692 * And, users can control the policy through sysfs entries.
693 * There are five policies with triggering conditions as follows.
694 * F2FS_IPU_FORCE - all the time,
695 * F2FS_IPU_SSR - if SSR mode is activated,
696 * F2FS_IPU_UTIL - if FS utilization is over threashold,
697 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
698 *                     threashold,
699 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
700 *                     storages. IPU will be triggered only if the # of dirty
701 *                     pages over min_fsync_blocks. (=default option)
702 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
703 * F2FS_IPU_NOCACHE - disable IPU bio cache.
704 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
705 *                            FI_OPU_WRITE flag.
706 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
707 */
708#define DEF_MIN_IPU_UTIL	70
709#define DEF_MIN_FSYNC_BLOCKS	8
710#define DEF_MIN_HOT_BLOCKS	16
711
712#define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
713
714#define F2FS_IPU_DISABLE	0
715
716/* Modification on enum should be synchronized with ipu_mode_names array */
717enum {
718	F2FS_IPU_FORCE,
719	F2FS_IPU_SSR,
720	F2FS_IPU_UTIL,
721	F2FS_IPU_SSR_UTIL,
722	F2FS_IPU_FSYNC,
723	F2FS_IPU_ASYNC,
724	F2FS_IPU_NOCACHE,
725	F2FS_IPU_HONOR_OPU_WRITE,
726	F2FS_IPU_MAX,
727};
728
729static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
730{
731	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
732}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733
734#define F2FS_IPU_POLICY(name)					\
735static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
736{								\
737	return SM_I(sbi)->ipu_policy & BIT(name);		\
738}
739
740F2FS_IPU_POLICY(F2FS_IPU_FORCE);
741F2FS_IPU_POLICY(F2FS_IPU_SSR);
742F2FS_IPU_POLICY(F2FS_IPU_UTIL);
743F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
744F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
745F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
746F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
747F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
748
749static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
750		int type)
751{
752	struct curseg_info *curseg = CURSEG_I(sbi, type);
753	return curseg->segno;
754}
755
756static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
757		int type)
758{
759	struct curseg_info *curseg = CURSEG_I(sbi, type);
760	return curseg->alloc_type;
761}
762
763static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
764		unsigned int segno)
765{
766	return segno <= (MAIN_SEGS(sbi) - 1);
 
767}
768
769static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
770{
771	struct f2fs_sb_info *sbi = fio->sbi;
 
772
773	if (__is_valid_data_blkaddr(fio->old_blkaddr))
774		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
775					META_GENERIC : DATA_GENERIC);
776	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
777					META_GENERIC : DATA_GENERIC_ENHANCE);
778}
779
780/*
781 * Summary block is always treated as an invalid block
782 */
783static inline int check_block_count(struct f2fs_sb_info *sbi,
784		int segno, struct f2fs_sit_entry *raw_sit)
785{
 
786	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
787	int valid_blocks = 0;
788	int cur_pos = 0, next_pos;
789	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
790
791	/* check bitmap with valid block count */
792	do {
793		if (is_valid) {
794			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
795					usable_blks_per_seg,
796					cur_pos);
797			valid_blocks += next_pos - cur_pos;
798		} else
799			next_pos = find_next_bit_le(&raw_sit->valid_map,
800					usable_blks_per_seg,
801					cur_pos);
802		cur_pos = next_pos;
803		is_valid = !is_valid;
804	} while (cur_pos < usable_blks_per_seg);
805
806	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
807		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
808			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
809		set_sbi_flag(sbi, SBI_NEED_FSCK);
810		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
811		return -EFSCORRUPTED;
812	}
813
814	if (usable_blks_per_seg < BLKS_PER_SEG(sbi))
815		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
816				BLKS_PER_SEG(sbi),
817				usable_blks_per_seg) != BLKS_PER_SEG(sbi));
818
819	/* check segment usage, and check boundary of a given segment number */
820	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
821					|| !valid_main_segno(sbi, segno))) {
822		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
823			 GET_SIT_VBLOCKS(raw_sit), segno);
824		set_sbi_flag(sbi, SBI_NEED_FSCK);
825		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
826		return -EFSCORRUPTED;
827	}
828	return 0;
829}
830
831static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
832						unsigned int start)
833{
834	struct sit_info *sit_i = SIT_I(sbi);
835	unsigned int offset = SIT_BLOCK_OFFSET(start);
836	block_t blk_addr = sit_i->sit_base_addr + offset;
837
838	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
839
840#ifdef CONFIG_F2FS_CHECK_FS
841	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
842			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
843		f2fs_bug_on(sbi, 1);
844#endif
845
846	/* calculate sit block address */
847	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
848		blk_addr += sit_i->sit_blocks;
849
850	return blk_addr;
851}
852
853static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
854						pgoff_t block_addr)
855{
856	struct sit_info *sit_i = SIT_I(sbi);
857	block_addr -= sit_i->sit_base_addr;
858	if (block_addr < sit_i->sit_blocks)
859		block_addr += sit_i->sit_blocks;
860	else
861		block_addr -= sit_i->sit_blocks;
862
863	return block_addr + sit_i->sit_base_addr;
864}
865
866static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
867{
868	unsigned int block_off = SIT_BLOCK_OFFSET(start);
869
870	f2fs_change_bit(block_off, sit_i->sit_bitmap);
871#ifdef CONFIG_F2FS_CHECK_FS
872	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
873#endif
874}
875
876static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
877						bool base_time)
878{
879	struct sit_info *sit_i = SIT_I(sbi);
880	time64_t diff, now = ktime_get_boottime_seconds();
881
882	if (now >= sit_i->mounted_time)
883		return sit_i->elapsed_time + now - sit_i->mounted_time;
884
885	/* system time is set to the past */
886	if (!base_time) {
887		diff = sit_i->mounted_time - now;
888		if (sit_i->elapsed_time >= diff)
889			return sit_i->elapsed_time - diff;
890		return 0;
891	}
892	return sit_i->elapsed_time;
893}
894
895static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
896			unsigned int ofs_in_node, unsigned char version)
897{
898	sum->nid = cpu_to_le32(nid);
899	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
900	sum->version = version;
901}
902
903static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
904{
905	return __start_cp_addr(sbi) +
906		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
907}
908
909static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
910{
911	return __start_cp_addr(sbi) +
912		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
913				- (base + 1) + type;
914}
915
916static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
917{
918	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
919		return true;
920	return false;
921}
922
 
 
 
 
 
 
 
923/*
924 * It is very important to gather dirty pages and write at once, so that we can
925 * submit a big bio without interfering other data writes.
926 * By default, 512 pages for directory data,
927 * 512 pages (2MB) * 8 for nodes, and
928 * 256 pages * 8 for meta are set.
929 */
930static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
931{
932	if (sbi->sb->s_bdi->wb.dirty_exceeded)
933		return 0;
934
935	if (type == DATA)
936		return BLKS_PER_SEG(sbi);
937	else if (type == NODE)
938		return SEGS_TO_BLKS(sbi, 8);
939	else if (type == META)
940		return 8 * BIO_MAX_VECS;
941	else
942		return 0;
943}
944
945/*
946 * When writing pages, it'd better align nr_to_write for segment size.
947 */
948static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
949					struct writeback_control *wbc)
950{
951	long nr_to_write, desired;
952
953	if (wbc->sync_mode != WB_SYNC_NONE)
954		return 0;
955
956	nr_to_write = wbc->nr_to_write;
957	desired = BIO_MAX_VECS;
958	if (type == NODE)
959		desired <<= 1;
 
 
 
 
960
961	wbc->nr_to_write = desired;
962	return desired - nr_to_write;
963}
964
965static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
966{
967	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
968	bool wakeup = false;
969	int i;
970
971	if (force)
972		goto wake_up;
973
974	mutex_lock(&dcc->cmd_lock);
975	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
976		if (i + 1 < dcc->discard_granularity)
977			break;
978		if (!list_empty(&dcc->pend_list[i])) {
979			wakeup = true;
980			break;
981		}
982	}
983	mutex_unlock(&dcc->cmd_lock);
984	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
985		return;
986wake_up:
987	dcc->discard_wake = true;
988	wake_up_interruptible_all(&dcc->discard_wait_queue);
989}