Loading...
1/*
2 * Copyright (c) 2009-2010 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * The full GNU General Public License is included in this distribution in
18 * the file called "COPYING".
19 *
20 * Authors:
21 * Jesse Barnes <jbarnes@virtuousgeek.org>
22 */
23
24/*
25 * Some Intel Ibex Peak based platforms support so-called "intelligent
26 * power sharing", which allows the CPU and GPU to cooperate to maximize
27 * performance within a given TDP (thermal design point). This driver
28 * performs the coordination between the CPU and GPU, monitors thermal and
29 * power statistics in the platform, and initializes power monitoring
30 * hardware. It also provides a few tunables to control behavior. Its
31 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
32 * by tracking power and thermal budget; secondarily it can boost turbo
33 * performance by allocating more power or thermal budget to the CPU or GPU
34 * based on available headroom and activity.
35 *
36 * The basic algorithm is driven by a 5s moving average of temperature. If
37 * thermal headroom is available, the CPU and/or GPU power clamps may be
38 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
39 * we scale back the clamp. Aside from trigger events (when we're critically
40 * close or over our TDP) we don't adjust the clamps more than once every
41 * five seconds.
42 *
43 * The thermal device (device 31, function 6) has a set of registers that
44 * are updated by the ME firmware. The ME should also take the clamp values
45 * written to those registers and write them to the CPU, but we currently
46 * bypass that functionality and write the CPU MSR directly.
47 *
48 * UNSUPPORTED:
49 * - dual MCP configs
50 *
51 * TODO:
52 * - handle CPU hotplug
53 * - provide turbo enable/disable api
54 *
55 * Related documents:
56 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
57 * - CDI 401376 - Ibex Peak EDS
58 * - ref 26037, 26641 - IPS BIOS spec
59 * - ref 26489 - Nehalem BIOS writer's guide
60 * - ref 26921 - Ibex Peak BIOS Specification
61 */
62
63#include <linux/debugfs.h>
64#include <linux/delay.h>
65#include <linux/interrupt.h>
66#include <linux/kernel.h>
67#include <linux/kthread.h>
68#include <linux/module.h>
69#include <linux/pci.h>
70#include <linux/sched.h>
71#include <linux/seq_file.h>
72#include <linux/string.h>
73#include <linux/tick.h>
74#include <linux/timer.h>
75#include <linux/dmi.h>
76#include <drm/i915_drm.h>
77#include <asm/msr.h>
78#include <asm/processor.h>
79#include "intel_ips.h"
80
81#include <linux/io-64-nonatomic-lo-hi.h>
82
83#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
84
85/*
86 * Package level MSRs for monitor/control
87 */
88#define PLATFORM_INFO 0xce
89#define PLATFORM_TDP (1<<29)
90#define PLATFORM_RATIO (1<<28)
91
92#define IA32_MISC_ENABLE 0x1a0
93#define IA32_MISC_TURBO_EN (1ULL<<38)
94
95#define TURBO_POWER_CURRENT_LIMIT 0x1ac
96#define TURBO_TDC_OVR_EN (1UL<<31)
97#define TURBO_TDC_MASK (0x000000007fff0000UL)
98#define TURBO_TDC_SHIFT (16)
99#define TURBO_TDP_OVR_EN (1UL<<15)
100#define TURBO_TDP_MASK (0x0000000000003fffUL)
101
102/*
103 * Core/thread MSRs for monitoring
104 */
105#define IA32_PERF_CTL 0x199
106#define IA32_PERF_TURBO_DIS (1ULL<<32)
107
108/*
109 * Thermal PCI device regs
110 */
111#define THM_CFG_TBAR 0x10
112#define THM_CFG_TBAR_HI 0x14
113
114#define THM_TSIU 0x00
115#define THM_TSE 0x01
116#define TSE_EN 0xb8
117#define THM_TSS 0x02
118#define THM_TSTR 0x03
119#define THM_TSTTP 0x04
120#define THM_TSCO 0x08
121#define THM_TSES 0x0c
122#define THM_TSGPEN 0x0d
123#define TSGPEN_HOT_LOHI (1<<1)
124#define TSGPEN_CRIT_LOHI (1<<2)
125#define THM_TSPC 0x0e
126#define THM_PPEC 0x10
127#define THM_CTA 0x12
128#define THM_PTA 0x14
129#define PTA_SLOPE_MASK (0xff00)
130#define PTA_SLOPE_SHIFT 8
131#define PTA_OFFSET_MASK (0x00ff)
132#define THM_MGTA 0x16
133#define MGTA_SLOPE_MASK (0xff00)
134#define MGTA_SLOPE_SHIFT 8
135#define MGTA_OFFSET_MASK (0x00ff)
136#define THM_TRC 0x1a
137#define TRC_CORE2_EN (1<<15)
138#define TRC_THM_EN (1<<12)
139#define TRC_C6_WAR (1<<8)
140#define TRC_CORE1_EN (1<<7)
141#define TRC_CORE_PWR (1<<6)
142#define TRC_PCH_EN (1<<5)
143#define TRC_MCH_EN (1<<4)
144#define TRC_DIMM4 (1<<3)
145#define TRC_DIMM3 (1<<2)
146#define TRC_DIMM2 (1<<1)
147#define TRC_DIMM1 (1<<0)
148#define THM_TES 0x20
149#define THM_TEN 0x21
150#define TEN_UPDATE_EN 1
151#define THM_PSC 0x24
152#define PSC_NTG (1<<0) /* No GFX turbo support */
153#define PSC_NTPC (1<<1) /* No CPU turbo support */
154#define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
155#define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
156#define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
157#define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
158#define PSP_PBRT (1<<4) /* BIOS run time support */
159#define THM_CTV1 0x30
160#define CTV_TEMP_ERROR (1<<15)
161#define CTV_TEMP_MASK 0x3f
162#define CTV_
163#define THM_CTV2 0x32
164#define THM_CEC 0x34 /* undocumented power accumulator in joules */
165#define THM_AE 0x3f
166#define THM_HTS 0x50 /* 32 bits */
167#define HTS_PCPL_MASK (0x7fe00000)
168#define HTS_PCPL_SHIFT 21
169#define HTS_GPL_MASK (0x001ff000)
170#define HTS_GPL_SHIFT 12
171#define HTS_PP_MASK (0x00000c00)
172#define HTS_PP_SHIFT 10
173#define HTS_PP_DEF 0
174#define HTS_PP_PROC 1
175#define HTS_PP_BAL 2
176#define HTS_PP_GFX 3
177#define HTS_PCTD_DIS (1<<9)
178#define HTS_GTD_DIS (1<<8)
179#define HTS_PTL_MASK (0x000000fe)
180#define HTS_PTL_SHIFT 1
181#define HTS_NVV (1<<0)
182#define THM_HTSHI 0x54 /* 16 bits */
183#define HTS2_PPL_MASK (0x03ff)
184#define HTS2_PRST_MASK (0x3c00)
185#define HTS2_PRST_SHIFT 10
186#define HTS2_PRST_UNLOADED 0
187#define HTS2_PRST_RUNNING 1
188#define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
189#define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
190#define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
191#define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
192#define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
193#define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
194#define THM_PTL 0x56
195#define THM_MGTV 0x58
196#define TV_MASK 0x000000000000ff00
197#define TV_SHIFT 8
198#define THM_PTV 0x60
199#define PTV_MASK 0x00ff
200#define THM_MMGPC 0x64
201#define THM_MPPC 0x66
202#define THM_MPCPC 0x68
203#define THM_TSPIEN 0x82
204#define TSPIEN_AUX_LOHI (1<<0)
205#define TSPIEN_HOT_LOHI (1<<1)
206#define TSPIEN_CRIT_LOHI (1<<2)
207#define TSPIEN_AUX2_LOHI (1<<3)
208#define THM_TSLOCK 0x83
209#define THM_ATR 0x84
210#define THM_TOF 0x87
211#define THM_STS 0x98
212#define STS_PCPL_MASK (0x7fe00000)
213#define STS_PCPL_SHIFT 21
214#define STS_GPL_MASK (0x001ff000)
215#define STS_GPL_SHIFT 12
216#define STS_PP_MASK (0x00000c00)
217#define STS_PP_SHIFT 10
218#define STS_PP_DEF 0
219#define STS_PP_PROC 1
220#define STS_PP_BAL 2
221#define STS_PP_GFX 3
222#define STS_PCTD_DIS (1<<9)
223#define STS_GTD_DIS (1<<8)
224#define STS_PTL_MASK (0x000000fe)
225#define STS_PTL_SHIFT 1
226#define STS_NVV (1<<0)
227#define THM_SEC 0x9c
228#define SEC_ACK (1<<0)
229#define THM_TC3 0xa4
230#define THM_TC1 0xa8
231#define STS_PPL_MASK (0x0003ff00)
232#define STS_PPL_SHIFT 16
233#define THM_TC2 0xac
234#define THM_DTV 0xb0
235#define THM_ITV 0xd8
236#define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
237#define ITV_ME_SEQNO_SHIFT (16)
238#define ITV_MCH_TEMP_MASK 0x0000ff00
239#define ITV_MCH_TEMP_SHIFT (8)
240#define ITV_PCH_TEMP_MASK 0x000000ff
241
242#define thm_readb(off) readb(ips->regmap + (off))
243#define thm_readw(off) readw(ips->regmap + (off))
244#define thm_readl(off) readl(ips->regmap + (off))
245#define thm_readq(off) readq(ips->regmap + (off))
246
247#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
248#define thm_writew(off, val) writew((val), ips->regmap + (off))
249#define thm_writel(off, val) writel((val), ips->regmap + (off))
250
251static const int IPS_ADJUST_PERIOD = 5000; /* ms */
252static bool late_i915_load = false;
253
254/* For initial average collection */
255static const int IPS_SAMPLE_PERIOD = 200; /* ms */
256static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
257#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
258
259/* Per-SKU limits */
260struct ips_mcp_limits {
261 int cpu_family;
262 int cpu_model; /* includes extended model... */
263 int mcp_power_limit; /* mW units */
264 int core_power_limit;
265 int mch_power_limit;
266 int core_temp_limit; /* degrees C */
267 int mch_temp_limit;
268};
269
270/* Max temps are -10 degrees C to avoid PROCHOT# */
271
272static struct ips_mcp_limits ips_sv_limits = {
273 .mcp_power_limit = 35000,
274 .core_power_limit = 29000,
275 .mch_power_limit = 20000,
276 .core_temp_limit = 95,
277 .mch_temp_limit = 90
278};
279
280static struct ips_mcp_limits ips_lv_limits = {
281 .mcp_power_limit = 25000,
282 .core_power_limit = 21000,
283 .mch_power_limit = 13000,
284 .core_temp_limit = 95,
285 .mch_temp_limit = 90
286};
287
288static struct ips_mcp_limits ips_ulv_limits = {
289 .mcp_power_limit = 18000,
290 .core_power_limit = 14000,
291 .mch_power_limit = 11000,
292 .core_temp_limit = 95,
293 .mch_temp_limit = 90
294};
295
296struct ips_driver {
297 struct pci_dev *dev;
298 void *regmap;
299 struct task_struct *monitor;
300 struct task_struct *adjust;
301 struct dentry *debug_root;
302
303 /* Average CPU core temps (all averages in .01 degrees C for precision) */
304 u16 ctv1_avg_temp;
305 u16 ctv2_avg_temp;
306 /* GMCH average */
307 u16 mch_avg_temp;
308 /* Average for the CPU (both cores?) */
309 u16 mcp_avg_temp;
310 /* Average power consumption (in mW) */
311 u32 cpu_avg_power;
312 u32 mch_avg_power;
313
314 /* Offset values */
315 u16 cta_val;
316 u16 pta_val;
317 u16 mgta_val;
318
319 /* Maximums & prefs, protected by turbo status lock */
320 spinlock_t turbo_status_lock;
321 u16 mcp_temp_limit;
322 u16 mcp_power_limit;
323 u16 core_power_limit;
324 u16 mch_power_limit;
325 bool cpu_turbo_enabled;
326 bool __cpu_turbo_on;
327 bool gpu_turbo_enabled;
328 bool __gpu_turbo_on;
329 bool gpu_preferred;
330 bool poll_turbo_status;
331 bool second_cpu;
332 bool turbo_toggle_allowed;
333 struct ips_mcp_limits *limits;
334
335 /* Optional MCH interfaces for if i915 is in use */
336 unsigned long (*read_mch_val)(void);
337 bool (*gpu_raise)(void);
338 bool (*gpu_lower)(void);
339 bool (*gpu_busy)(void);
340 bool (*gpu_turbo_disable)(void);
341
342 /* For restoration at unload */
343 u64 orig_turbo_limit;
344 u64 orig_turbo_ratios;
345};
346
347static bool
348ips_gpu_turbo_enabled(struct ips_driver *ips);
349
350/**
351 * ips_cpu_busy - is CPU busy?
352 * @ips: IPS driver struct
353 *
354 * Check CPU for load to see whether we should increase its thermal budget.
355 *
356 * RETURNS:
357 * True if the CPU could use more power, false otherwise.
358 */
359static bool ips_cpu_busy(struct ips_driver *ips)
360{
361 if ((avenrun[0] >> FSHIFT) > 1)
362 return true;
363
364 return false;
365}
366
367/**
368 * ips_cpu_raise - raise CPU power clamp
369 * @ips: IPS driver struct
370 *
371 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
372 * this platform.
373 *
374 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
375 * long as we haven't hit the TDP limit for the SKU).
376 */
377static void ips_cpu_raise(struct ips_driver *ips)
378{
379 u64 turbo_override;
380 u16 cur_tdp_limit, new_tdp_limit;
381
382 if (!ips->cpu_turbo_enabled)
383 return;
384
385 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
386
387 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
388 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
389
390 /* Clamp to SKU TDP limit */
391 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
392 new_tdp_limit = cur_tdp_limit;
393
394 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
395
396 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
397 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
398
399 turbo_override &= ~TURBO_TDP_MASK;
400 turbo_override |= new_tdp_limit;
401
402 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
403}
404
405/**
406 * ips_cpu_lower - lower CPU power clamp
407 * @ips: IPS driver struct
408 *
409 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
410 *
411 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
412 * as low as the platform limits will allow (though we could go lower there
413 * wouldn't be much point).
414 */
415static void ips_cpu_lower(struct ips_driver *ips)
416{
417 u64 turbo_override;
418 u16 cur_limit, new_limit;
419
420 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
421
422 cur_limit = turbo_override & TURBO_TDP_MASK;
423 new_limit = cur_limit - 8; /* 1W decrease */
424
425 /* Clamp to SKU TDP limit */
426 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
427 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
428
429 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
430
431 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
432 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
433
434 turbo_override &= ~TURBO_TDP_MASK;
435 turbo_override |= new_limit;
436
437 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
438}
439
440/**
441 * do_enable_cpu_turbo - internal turbo enable function
442 * @data: unused
443 *
444 * Internal function for actually updating MSRs. When we enable/disable
445 * turbo, we need to do it on each CPU; this function is the one called
446 * by on_each_cpu() when needed.
447 */
448static void do_enable_cpu_turbo(void *data)
449{
450 u64 perf_ctl;
451
452 rdmsrl(IA32_PERF_CTL, perf_ctl);
453 if (perf_ctl & IA32_PERF_TURBO_DIS) {
454 perf_ctl &= ~IA32_PERF_TURBO_DIS;
455 wrmsrl(IA32_PERF_CTL, perf_ctl);
456 }
457}
458
459/**
460 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
461 * @ips: IPS driver struct
462 *
463 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
464 * all logical threads.
465 */
466static void ips_enable_cpu_turbo(struct ips_driver *ips)
467{
468 /* Already on, no need to mess with MSRs */
469 if (ips->__cpu_turbo_on)
470 return;
471
472 if (ips->turbo_toggle_allowed)
473 on_each_cpu(do_enable_cpu_turbo, ips, 1);
474
475 ips->__cpu_turbo_on = true;
476}
477
478/**
479 * do_disable_cpu_turbo - internal turbo disable function
480 * @data: unused
481 *
482 * Internal function for actually updating MSRs. When we enable/disable
483 * turbo, we need to do it on each CPU; this function is the one called
484 * by on_each_cpu() when needed.
485 */
486static void do_disable_cpu_turbo(void *data)
487{
488 u64 perf_ctl;
489
490 rdmsrl(IA32_PERF_CTL, perf_ctl);
491 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
492 perf_ctl |= IA32_PERF_TURBO_DIS;
493 wrmsrl(IA32_PERF_CTL, perf_ctl);
494 }
495}
496
497/**
498 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
499 * @ips: IPS driver struct
500 *
501 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
502 * all logical threads.
503 */
504static void ips_disable_cpu_turbo(struct ips_driver *ips)
505{
506 /* Already off, leave it */
507 if (!ips->__cpu_turbo_on)
508 return;
509
510 if (ips->turbo_toggle_allowed)
511 on_each_cpu(do_disable_cpu_turbo, ips, 1);
512
513 ips->__cpu_turbo_on = false;
514}
515
516/**
517 * ips_gpu_busy - is GPU busy?
518 * @ips: IPS driver struct
519 *
520 * Check GPU for load to see whether we should increase its thermal budget.
521 * We need to call into the i915 driver in this case.
522 *
523 * RETURNS:
524 * True if the GPU could use more power, false otherwise.
525 */
526static bool ips_gpu_busy(struct ips_driver *ips)
527{
528 if (!ips_gpu_turbo_enabled(ips))
529 return false;
530
531 return ips->gpu_busy();
532}
533
534/**
535 * ips_gpu_raise - raise GPU power clamp
536 * @ips: IPS driver struct
537 *
538 * Raise the GPU frequency/power if possible. We need to call into the
539 * i915 driver in this case.
540 */
541static void ips_gpu_raise(struct ips_driver *ips)
542{
543 if (!ips_gpu_turbo_enabled(ips))
544 return;
545
546 if (!ips->gpu_raise())
547 ips->gpu_turbo_enabled = false;
548
549 return;
550}
551
552/**
553 * ips_gpu_lower - lower GPU power clamp
554 * @ips: IPS driver struct
555 *
556 * Lower GPU frequency/power if possible. Need to call i915.
557 */
558static void ips_gpu_lower(struct ips_driver *ips)
559{
560 if (!ips_gpu_turbo_enabled(ips))
561 return;
562
563 if (!ips->gpu_lower())
564 ips->gpu_turbo_enabled = false;
565
566 return;
567}
568
569/**
570 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
571 * @ips: IPS driver struct
572 *
573 * Call into the graphics driver indicating that it can safely use
574 * turbo mode.
575 */
576static void ips_enable_gpu_turbo(struct ips_driver *ips)
577{
578 if (ips->__gpu_turbo_on)
579 return;
580 ips->__gpu_turbo_on = true;
581}
582
583/**
584 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
585 * @ips: IPS driver struct
586 *
587 * Request that the graphics driver disable turbo mode.
588 */
589static void ips_disable_gpu_turbo(struct ips_driver *ips)
590{
591 /* Avoid calling i915 if turbo is already disabled */
592 if (!ips->__gpu_turbo_on)
593 return;
594
595 if (!ips->gpu_turbo_disable())
596 dev_err(&ips->dev->dev, "failed to disable graphics turbo\n");
597 else
598 ips->__gpu_turbo_on = false;
599}
600
601/**
602 * mcp_exceeded - check whether we're outside our thermal & power limits
603 * @ips: IPS driver struct
604 *
605 * Check whether the MCP is over its thermal or power budget.
606 */
607static bool mcp_exceeded(struct ips_driver *ips)
608{
609 unsigned long flags;
610 bool ret = false;
611 u32 temp_limit;
612 u32 avg_power;
613
614 spin_lock_irqsave(&ips->turbo_status_lock, flags);
615
616 temp_limit = ips->mcp_temp_limit * 100;
617 if (ips->mcp_avg_temp > temp_limit)
618 ret = true;
619
620 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
621 if (avg_power > ips->mcp_power_limit)
622 ret = true;
623
624 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
625
626 return ret;
627}
628
629/**
630 * cpu_exceeded - check whether a CPU core is outside its limits
631 * @ips: IPS driver struct
632 * @cpu: CPU number to check
633 *
634 * Check a given CPU's average temp or power is over its limit.
635 */
636static bool cpu_exceeded(struct ips_driver *ips, int cpu)
637{
638 unsigned long flags;
639 int avg;
640 bool ret = false;
641
642 spin_lock_irqsave(&ips->turbo_status_lock, flags);
643 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
644 if (avg > (ips->limits->core_temp_limit * 100))
645 ret = true;
646 if (ips->cpu_avg_power > ips->core_power_limit * 100)
647 ret = true;
648 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
649
650 if (ret)
651 dev_info(&ips->dev->dev,
652 "CPU power or thermal limit exceeded\n");
653
654 return ret;
655}
656
657/**
658 * mch_exceeded - check whether the GPU is over budget
659 * @ips: IPS driver struct
660 *
661 * Check the MCH temp & power against their maximums.
662 */
663static bool mch_exceeded(struct ips_driver *ips)
664{
665 unsigned long flags;
666 bool ret = false;
667
668 spin_lock_irqsave(&ips->turbo_status_lock, flags);
669 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
670 ret = true;
671 if (ips->mch_avg_power > ips->mch_power_limit)
672 ret = true;
673 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
674
675 return ret;
676}
677
678/**
679 * verify_limits - verify BIOS provided limits
680 * @ips: IPS structure
681 *
682 * BIOS can optionally provide non-default limits for power and temp. Check
683 * them here and use the defaults if the BIOS values are not provided or
684 * are otherwise unusable.
685 */
686static void verify_limits(struct ips_driver *ips)
687{
688 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
689 ips->mcp_power_limit > 35000)
690 ips->mcp_power_limit = ips->limits->mcp_power_limit;
691
692 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
693 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
694 ips->mcp_temp_limit > 150)
695 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
696 ips->limits->mch_temp_limit);
697}
698
699/**
700 * update_turbo_limits - get various limits & settings from regs
701 * @ips: IPS driver struct
702 *
703 * Update the IPS power & temp limits, along with turbo enable flags,
704 * based on latest register contents.
705 *
706 * Used at init time and for runtime BIOS support, which requires polling
707 * the regs for updates (as a result of AC->DC transition for example).
708 *
709 * LOCKING:
710 * Caller must hold turbo_status_lock (outside of init)
711 */
712static void update_turbo_limits(struct ips_driver *ips)
713{
714 u32 hts = thm_readl(THM_HTS);
715
716 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
717 /*
718 * Disable turbo for now, until we can figure out why the power figures
719 * are wrong
720 */
721 ips->cpu_turbo_enabled = false;
722
723 if (ips->gpu_busy)
724 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
725
726 ips->core_power_limit = thm_readw(THM_MPCPC);
727 ips->mch_power_limit = thm_readw(THM_MMGPC);
728 ips->mcp_temp_limit = thm_readw(THM_PTL);
729 ips->mcp_power_limit = thm_readw(THM_MPPC);
730
731 verify_limits(ips);
732 /* Ignore BIOS CPU vs GPU pref */
733}
734
735/**
736 * ips_adjust - adjust power clamp based on thermal state
737 * @data: ips driver structure
738 *
739 * Wake up every 5s or so and check whether we should adjust the power clamp.
740 * Check CPU and GPU load to determine which needs adjustment. There are
741 * several things to consider here:
742 * - do we need to adjust up or down?
743 * - is CPU busy?
744 * - is GPU busy?
745 * - is CPU in turbo?
746 * - is GPU in turbo?
747 * - is CPU or GPU preferred? (CPU is default)
748 *
749 * So, given the above, we do the following:
750 * - up (TDP available)
751 * - CPU not busy, GPU not busy - nothing
752 * - CPU busy, GPU not busy - adjust CPU up
753 * - CPU not busy, GPU busy - adjust GPU up
754 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
755 * non-preferred unit if necessary
756 * - down (at TDP limit)
757 * - adjust both CPU and GPU down if possible
758 *
759 cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
760cpu < gpu < cpu+gpu+ cpu+ gpu+ nothing
761cpu < gpu >= cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
762cpu >= gpu < cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
763cpu >= gpu >= cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
764 *
765 */
766static int ips_adjust(void *data)
767{
768 struct ips_driver *ips = data;
769 unsigned long flags;
770
771 dev_dbg(&ips->dev->dev, "starting ips-adjust thread\n");
772
773 /*
774 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
775 * often isn't recommended due to ME interaction.
776 */
777 do {
778 bool cpu_busy = ips_cpu_busy(ips);
779 bool gpu_busy = ips_gpu_busy(ips);
780
781 spin_lock_irqsave(&ips->turbo_status_lock, flags);
782 if (ips->poll_turbo_status)
783 update_turbo_limits(ips);
784 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
785
786 /* Update turbo status if necessary */
787 if (ips->cpu_turbo_enabled)
788 ips_enable_cpu_turbo(ips);
789 else
790 ips_disable_cpu_turbo(ips);
791
792 if (ips->gpu_turbo_enabled)
793 ips_enable_gpu_turbo(ips);
794 else
795 ips_disable_gpu_turbo(ips);
796
797 /* We're outside our comfort zone, crank them down */
798 if (mcp_exceeded(ips)) {
799 ips_cpu_lower(ips);
800 ips_gpu_lower(ips);
801 goto sleep;
802 }
803
804 if (!cpu_exceeded(ips, 0) && cpu_busy)
805 ips_cpu_raise(ips);
806 else
807 ips_cpu_lower(ips);
808
809 if (!mch_exceeded(ips) && gpu_busy)
810 ips_gpu_raise(ips);
811 else
812 ips_gpu_lower(ips);
813
814sleep:
815 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
816 } while (!kthread_should_stop());
817
818 dev_dbg(&ips->dev->dev, "ips-adjust thread stopped\n");
819
820 return 0;
821}
822
823/*
824 * Helpers for reading out temp/power values and calculating their
825 * averages for the decision making and monitoring functions.
826 */
827
828static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
829{
830 u64 total = 0;
831 int i;
832 u16 avg;
833
834 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
835 total += (u64)(array[i] * 100);
836
837 do_div(total, IPS_SAMPLE_COUNT);
838
839 avg = (u16)total;
840
841 return avg;
842}
843
844static u16 read_mgtv(struct ips_driver *ips)
845{
846 u16 ret;
847 u64 slope, offset;
848 u64 val;
849
850 val = thm_readq(THM_MGTV);
851 val = (val & TV_MASK) >> TV_SHIFT;
852
853 slope = offset = thm_readw(THM_MGTA);
854 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
855 offset = offset & MGTA_OFFSET_MASK;
856
857 ret = ((val * slope + 0x40) >> 7) + offset;
858
859 return 0; /* MCH temp reporting buggy */
860}
861
862static u16 read_ptv(struct ips_driver *ips)
863{
864 u16 val, slope, offset;
865
866 slope = (ips->pta_val & PTA_SLOPE_MASK) >> PTA_SLOPE_SHIFT;
867 offset = ips->pta_val & PTA_OFFSET_MASK;
868
869 val = thm_readw(THM_PTV) & PTV_MASK;
870
871 return val;
872}
873
874static u16 read_ctv(struct ips_driver *ips, int cpu)
875{
876 int reg = cpu ? THM_CTV2 : THM_CTV1;
877 u16 val;
878
879 val = thm_readw(reg);
880 if (!(val & CTV_TEMP_ERROR))
881 val = (val) >> 6; /* discard fractional component */
882 else
883 val = 0;
884
885 return val;
886}
887
888static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
889{
890 u32 val;
891 u32 ret;
892
893 /*
894 * CEC is in joules/65535. Take difference over time to
895 * get watts.
896 */
897 val = thm_readl(THM_CEC);
898
899 /* period is in ms and we want mW */
900 ret = (((val - *last) * 1000) / period);
901 ret = (ret * 1000) / 65535;
902 *last = val;
903
904 return 0;
905}
906
907static const u16 temp_decay_factor = 2;
908static u16 update_average_temp(u16 avg, u16 val)
909{
910 u16 ret;
911
912 /* Multiply by 100 for extra precision */
913 ret = (val * 100 / temp_decay_factor) +
914 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
915 return ret;
916}
917
918static const u16 power_decay_factor = 2;
919static u16 update_average_power(u32 avg, u32 val)
920{
921 u32 ret;
922
923 ret = (val / power_decay_factor) +
924 (((power_decay_factor - 1) * avg) / power_decay_factor);
925
926 return ret;
927}
928
929static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
930{
931 u64 total = 0;
932 u32 avg;
933 int i;
934
935 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
936 total += array[i];
937
938 do_div(total, IPS_SAMPLE_COUNT);
939 avg = (u32)total;
940
941 return avg;
942}
943
944static void monitor_timeout(unsigned long arg)
945{
946 wake_up_process((struct task_struct *)arg);
947}
948
949/**
950 * ips_monitor - temp/power monitoring thread
951 * @data: ips driver structure
952 *
953 * This is the main function for the IPS driver. It monitors power and
954 * tempurature in the MCP and adjusts CPU and GPU power clams accordingly.
955 *
956 * We keep a 5s moving average of power consumption and tempurature. Using
957 * that data, along with CPU vs GPU preference, we adjust the power clamps
958 * up or down.
959 */
960static int ips_monitor(void *data)
961{
962 struct ips_driver *ips = data;
963 struct timer_list timer;
964 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
965 int i;
966 u32 *cpu_samples, *mchp_samples, old_cpu_power;
967 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
968 u8 cur_seqno, last_seqno;
969
970 mcp_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
971 ctv1_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
972 ctv2_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
973 mch_samples = kzalloc(sizeof(u16) * IPS_SAMPLE_COUNT, GFP_KERNEL);
974 cpu_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
975 mchp_samples = kzalloc(sizeof(u32) * IPS_SAMPLE_COUNT, GFP_KERNEL);
976 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
977 !cpu_samples || !mchp_samples) {
978 dev_err(&ips->dev->dev,
979 "failed to allocate sample array, ips disabled\n");
980 kfree(mcp_samples);
981 kfree(ctv1_samples);
982 kfree(ctv2_samples);
983 kfree(mch_samples);
984 kfree(cpu_samples);
985 kfree(mchp_samples);
986 return -ENOMEM;
987 }
988
989 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
990 ITV_ME_SEQNO_SHIFT;
991 seqno_timestamp = get_jiffies_64();
992
993 old_cpu_power = thm_readl(THM_CEC);
994 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
995
996 /* Collect an initial average */
997 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
998 u32 mchp, cpu_power;
999 u16 val;
1000
1001 mcp_samples[i] = read_ptv(ips);
1002
1003 val = read_ctv(ips, 0);
1004 ctv1_samples[i] = val;
1005
1006 val = read_ctv(ips, 1);
1007 ctv2_samples[i] = val;
1008
1009 val = read_mgtv(ips);
1010 mch_samples[i] = val;
1011
1012 cpu_power = get_cpu_power(ips, &old_cpu_power,
1013 IPS_SAMPLE_PERIOD);
1014 cpu_samples[i] = cpu_power;
1015
1016 if (ips->read_mch_val) {
1017 mchp = ips->read_mch_val();
1018 mchp_samples[i] = mchp;
1019 }
1020
1021 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1022 if (kthread_should_stop())
1023 break;
1024 }
1025
1026 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1027 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1028 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1029 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1030 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1031 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1032 kfree(mcp_samples);
1033 kfree(ctv1_samples);
1034 kfree(ctv2_samples);
1035 kfree(mch_samples);
1036 kfree(cpu_samples);
1037 kfree(mchp_samples);
1038
1039 /* Start the adjustment thread now that we have data */
1040 wake_up_process(ips->adjust);
1041
1042 /*
1043 * Ok, now we have an initial avg. From here on out, we track the
1044 * running avg using a decaying average calculation. This allows
1045 * us to reduce the sample frequency if the CPU and GPU are idle.
1046 */
1047 old_cpu_power = thm_readl(THM_CEC);
1048 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1049 last_sample_period = IPS_SAMPLE_PERIOD;
1050
1051 setup_deferrable_timer_on_stack(&timer, monitor_timeout,
1052 (unsigned long)current);
1053 do {
1054 u32 cpu_val, mch_val;
1055 u16 val;
1056
1057 /* MCP itself */
1058 val = read_ptv(ips);
1059 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1060
1061 /* Processor 0 */
1062 val = read_ctv(ips, 0);
1063 ips->ctv1_avg_temp =
1064 update_average_temp(ips->ctv1_avg_temp, val);
1065 /* Power */
1066 cpu_val = get_cpu_power(ips, &old_cpu_power,
1067 last_sample_period);
1068 ips->cpu_avg_power =
1069 update_average_power(ips->cpu_avg_power, cpu_val);
1070
1071 if (ips->second_cpu) {
1072 /* Processor 1 */
1073 val = read_ctv(ips, 1);
1074 ips->ctv2_avg_temp =
1075 update_average_temp(ips->ctv2_avg_temp, val);
1076 }
1077
1078 /* MCH */
1079 val = read_mgtv(ips);
1080 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1081 /* Power */
1082 if (ips->read_mch_val) {
1083 mch_val = ips->read_mch_val();
1084 ips->mch_avg_power =
1085 update_average_power(ips->mch_avg_power,
1086 mch_val);
1087 }
1088
1089 /*
1090 * Make sure ME is updating thermal regs.
1091 * Note:
1092 * If it's been more than a second since the last update,
1093 * the ME is probably hung.
1094 */
1095 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1096 ITV_ME_SEQNO_SHIFT;
1097 if (cur_seqno == last_seqno &&
1098 time_after(jiffies, seqno_timestamp + HZ)) {
1099 dev_warn(&ips->dev->dev, "ME failed to update for more than 1s, likely hung\n");
1100 } else {
1101 seqno_timestamp = get_jiffies_64();
1102 last_seqno = cur_seqno;
1103 }
1104
1105 last_msecs = jiffies_to_msecs(jiffies);
1106 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1107
1108 __set_current_state(TASK_INTERRUPTIBLE);
1109 mod_timer(&timer, expire);
1110 schedule();
1111
1112 /* Calculate actual sample period for power averaging */
1113 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1114 if (!last_sample_period)
1115 last_sample_period = 1;
1116 } while (!kthread_should_stop());
1117
1118 del_timer_sync(&timer);
1119 destroy_timer_on_stack(&timer);
1120
1121 dev_dbg(&ips->dev->dev, "ips-monitor thread stopped\n");
1122
1123 return 0;
1124}
1125
1126#if 0
1127#define THM_DUMPW(reg) \
1128 { \
1129 u16 val = thm_readw(reg); \
1130 dev_dbg(&ips->dev->dev, #reg ": 0x%04x\n", val); \
1131 }
1132#define THM_DUMPL(reg) \
1133 { \
1134 u32 val = thm_readl(reg); \
1135 dev_dbg(&ips->dev->dev, #reg ": 0x%08x\n", val); \
1136 }
1137#define THM_DUMPQ(reg) \
1138 { \
1139 u64 val = thm_readq(reg); \
1140 dev_dbg(&ips->dev->dev, #reg ": 0x%016x\n", val); \
1141 }
1142
1143static void dump_thermal_info(struct ips_driver *ips)
1144{
1145 u16 ptl;
1146
1147 ptl = thm_readw(THM_PTL);
1148 dev_dbg(&ips->dev->dev, "Processor temp limit: %d\n", ptl);
1149
1150 THM_DUMPW(THM_CTA);
1151 THM_DUMPW(THM_TRC);
1152 THM_DUMPW(THM_CTV1);
1153 THM_DUMPL(THM_STS);
1154 THM_DUMPW(THM_PTV);
1155 THM_DUMPQ(THM_MGTV);
1156}
1157#endif
1158
1159/**
1160 * ips_irq_handler - handle temperature triggers and other IPS events
1161 * @irq: irq number
1162 * @arg: unused
1163 *
1164 * Handle temperature limit trigger events, generally by lowering the clamps.
1165 * If we're at a critical limit, we clamp back to the lowest possible value
1166 * to prevent emergency shutdown.
1167 */
1168static irqreturn_t ips_irq_handler(int irq, void *arg)
1169{
1170 struct ips_driver *ips = arg;
1171 u8 tses = thm_readb(THM_TSES);
1172 u8 tes = thm_readb(THM_TES);
1173
1174 if (!tses && !tes)
1175 return IRQ_NONE;
1176
1177 dev_info(&ips->dev->dev, "TSES: 0x%02x\n", tses);
1178 dev_info(&ips->dev->dev, "TES: 0x%02x\n", tes);
1179
1180 /* STS update from EC? */
1181 if (tes & 1) {
1182 u32 sts, tc1;
1183
1184 sts = thm_readl(THM_STS);
1185 tc1 = thm_readl(THM_TC1);
1186
1187 if (sts & STS_NVV) {
1188 spin_lock(&ips->turbo_status_lock);
1189 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1190 STS_PCPL_SHIFT;
1191 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1192 STS_GPL_SHIFT;
1193 /* ignore EC CPU vs GPU pref */
1194 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1195 /*
1196 * Disable turbo for now, until we can figure
1197 * out why the power figures are wrong
1198 */
1199 ips->cpu_turbo_enabled = false;
1200 if (ips->gpu_busy)
1201 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1202 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1203 STS_PTL_SHIFT;
1204 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1205 STS_PPL_SHIFT;
1206 verify_limits(ips);
1207 spin_unlock(&ips->turbo_status_lock);
1208
1209 thm_writeb(THM_SEC, SEC_ACK);
1210 }
1211 thm_writeb(THM_TES, tes);
1212 }
1213
1214 /* Thermal trip */
1215 if (tses) {
1216 dev_warn(&ips->dev->dev,
1217 "thermal trip occurred, tses: 0x%04x\n", tses);
1218 thm_writeb(THM_TSES, tses);
1219 }
1220
1221 return IRQ_HANDLED;
1222}
1223
1224#ifndef CONFIG_DEBUG_FS
1225static void ips_debugfs_init(struct ips_driver *ips) { return; }
1226static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1227#else
1228
1229/* Expose current state and limits in debugfs if possible */
1230
1231struct ips_debugfs_node {
1232 struct ips_driver *ips;
1233 char *name;
1234 int (*show)(struct seq_file *m, void *data);
1235};
1236
1237static int show_cpu_temp(struct seq_file *m, void *data)
1238{
1239 struct ips_driver *ips = m->private;
1240
1241 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1242 ips->ctv1_avg_temp % 100);
1243
1244 return 0;
1245}
1246
1247static int show_cpu_power(struct seq_file *m, void *data)
1248{
1249 struct ips_driver *ips = m->private;
1250
1251 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1252
1253 return 0;
1254}
1255
1256static int show_cpu_clamp(struct seq_file *m, void *data)
1257{
1258 u64 turbo_override;
1259 int tdp, tdc;
1260
1261 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1262
1263 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1264 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1265
1266 /* Convert to .1W/A units */
1267 tdp = tdp * 10 / 8;
1268 tdc = tdc * 10 / 8;
1269
1270 /* Watts Amperes */
1271 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1272 tdc / 10, tdc % 10);
1273
1274 return 0;
1275}
1276
1277static int show_mch_temp(struct seq_file *m, void *data)
1278{
1279 struct ips_driver *ips = m->private;
1280
1281 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1282 ips->mch_avg_temp % 100);
1283
1284 return 0;
1285}
1286
1287static int show_mch_power(struct seq_file *m, void *data)
1288{
1289 struct ips_driver *ips = m->private;
1290
1291 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1292
1293 return 0;
1294}
1295
1296static struct ips_debugfs_node ips_debug_files[] = {
1297 { NULL, "cpu_temp", show_cpu_temp },
1298 { NULL, "cpu_power", show_cpu_power },
1299 { NULL, "cpu_clamp", show_cpu_clamp },
1300 { NULL, "mch_temp", show_mch_temp },
1301 { NULL, "mch_power", show_mch_power },
1302};
1303
1304static int ips_debugfs_open(struct inode *inode, struct file *file)
1305{
1306 struct ips_debugfs_node *node = inode->i_private;
1307
1308 return single_open(file, node->show, node->ips);
1309}
1310
1311static const struct file_operations ips_debugfs_ops = {
1312 .owner = THIS_MODULE,
1313 .open = ips_debugfs_open,
1314 .read = seq_read,
1315 .llseek = seq_lseek,
1316 .release = single_release,
1317};
1318
1319static void ips_debugfs_cleanup(struct ips_driver *ips)
1320{
1321 if (ips->debug_root)
1322 debugfs_remove_recursive(ips->debug_root);
1323 return;
1324}
1325
1326static void ips_debugfs_init(struct ips_driver *ips)
1327{
1328 int i;
1329
1330 ips->debug_root = debugfs_create_dir("ips", NULL);
1331 if (!ips->debug_root) {
1332 dev_err(&ips->dev->dev,
1333 "failed to create debugfs entries: %ld\n",
1334 PTR_ERR(ips->debug_root));
1335 return;
1336 }
1337
1338 for (i = 0; i < ARRAY_SIZE(ips_debug_files); i++) {
1339 struct dentry *ent;
1340 struct ips_debugfs_node *node = &ips_debug_files[i];
1341
1342 node->ips = ips;
1343 ent = debugfs_create_file(node->name, S_IFREG | S_IRUGO,
1344 ips->debug_root, node,
1345 &ips_debugfs_ops);
1346 if (!ent) {
1347 dev_err(&ips->dev->dev,
1348 "failed to create debug file: %ld\n",
1349 PTR_ERR(ent));
1350 goto err_cleanup;
1351 }
1352 }
1353
1354 return;
1355
1356err_cleanup:
1357 ips_debugfs_cleanup(ips);
1358 return;
1359}
1360#endif /* CONFIG_DEBUG_FS */
1361
1362/**
1363 * ips_detect_cpu - detect whether CPU supports IPS
1364 *
1365 * Walk our list and see if we're on a supported CPU. If we find one,
1366 * return the limits for it.
1367 */
1368static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1369{
1370 u64 turbo_power, misc_en;
1371 struct ips_mcp_limits *limits = NULL;
1372 u16 tdp;
1373
1374 if (!(boot_cpu_data.x86 == 6 && boot_cpu_data.x86_model == 37)) {
1375 dev_info(&ips->dev->dev, "Non-IPS CPU detected.\n");
1376 goto out;
1377 }
1378
1379 rdmsrl(IA32_MISC_ENABLE, misc_en);
1380 /*
1381 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1382 * turbo manually or we'll get an illegal MSR access, even though
1383 * turbo will still be available.
1384 */
1385 if (misc_en & IA32_MISC_TURBO_EN)
1386 ips->turbo_toggle_allowed = true;
1387 else
1388 ips->turbo_toggle_allowed = false;
1389
1390 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1391 limits = &ips_sv_limits;
1392 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1393 limits = &ips_lv_limits;
1394 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1395 limits = &ips_ulv_limits;
1396 else {
1397 dev_info(&ips->dev->dev, "No CPUID match found.\n");
1398 goto out;
1399 }
1400
1401 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1402 tdp = turbo_power & TURBO_TDP_MASK;
1403
1404 /* Sanity check TDP against CPU */
1405 if (limits->core_power_limit != (tdp / 8) * 1000) {
1406 dev_info(&ips->dev->dev, "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1407 tdp / 8, limits->core_power_limit / 1000);
1408 limits->core_power_limit = (tdp / 8) * 1000;
1409 }
1410
1411out:
1412 return limits;
1413}
1414
1415/**
1416 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1417 * @ips: IPS driver
1418 *
1419 * The i915 driver exports several interfaces to allow the IPS driver to
1420 * monitor and control graphics turbo mode. If we can find them, we can
1421 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1422 * thermal and power limits in the MCP.
1423 */
1424static bool ips_get_i915_syms(struct ips_driver *ips)
1425{
1426 ips->read_mch_val = symbol_get(i915_read_mch_val);
1427 if (!ips->read_mch_val)
1428 goto out_err;
1429 ips->gpu_raise = symbol_get(i915_gpu_raise);
1430 if (!ips->gpu_raise)
1431 goto out_put_mch;
1432 ips->gpu_lower = symbol_get(i915_gpu_lower);
1433 if (!ips->gpu_lower)
1434 goto out_put_raise;
1435 ips->gpu_busy = symbol_get(i915_gpu_busy);
1436 if (!ips->gpu_busy)
1437 goto out_put_lower;
1438 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1439 if (!ips->gpu_turbo_disable)
1440 goto out_put_busy;
1441
1442 return true;
1443
1444out_put_busy:
1445 symbol_put(i915_gpu_busy);
1446out_put_lower:
1447 symbol_put(i915_gpu_lower);
1448out_put_raise:
1449 symbol_put(i915_gpu_raise);
1450out_put_mch:
1451 symbol_put(i915_read_mch_val);
1452out_err:
1453 return false;
1454}
1455
1456static bool
1457ips_gpu_turbo_enabled(struct ips_driver *ips)
1458{
1459 if (!ips->gpu_busy && late_i915_load) {
1460 if (ips_get_i915_syms(ips)) {
1461 dev_info(&ips->dev->dev,
1462 "i915 driver attached, reenabling gpu turbo\n");
1463 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1464 }
1465 }
1466
1467 return ips->gpu_turbo_enabled;
1468}
1469
1470void
1471ips_link_to_i915_driver(void)
1472{
1473 /* We can't cleanly get at the various ips_driver structs from
1474 * this caller (the i915 driver), so just set a flag saying
1475 * that it's time to try getting the symbols again.
1476 */
1477 late_i915_load = true;
1478}
1479EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1480
1481static const struct pci_device_id ips_id_table[] = {
1482 { PCI_DEVICE(PCI_VENDOR_ID_INTEL,
1483 PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1484 { 0, }
1485};
1486
1487MODULE_DEVICE_TABLE(pci, ips_id_table);
1488
1489static int ips_blacklist_callback(const struct dmi_system_id *id)
1490{
1491 pr_info("Blacklisted intel_ips for %s\n", id->ident);
1492 return 1;
1493}
1494
1495static const struct dmi_system_id ips_blacklist[] = {
1496 {
1497 .callback = ips_blacklist_callback,
1498 .ident = "HP ProBook",
1499 .matches = {
1500 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1501 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1502 },
1503 },
1504 { } /* terminating entry */
1505};
1506
1507static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1508{
1509 u64 platform_info;
1510 struct ips_driver *ips;
1511 u32 hts;
1512 int ret = 0;
1513 u16 htshi, trc, trc_required_mask;
1514 u8 tse;
1515
1516 if (dmi_check_system(ips_blacklist))
1517 return -ENODEV;
1518
1519 ips = kzalloc(sizeof(struct ips_driver), GFP_KERNEL);
1520 if (!ips)
1521 return -ENOMEM;
1522
1523 pci_set_drvdata(dev, ips);
1524 ips->dev = dev;
1525
1526 ips->limits = ips_detect_cpu(ips);
1527 if (!ips->limits) {
1528 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1529 ret = -ENXIO;
1530 goto error_free;
1531 }
1532
1533 spin_lock_init(&ips->turbo_status_lock);
1534
1535 ret = pci_enable_device(dev);
1536 if (ret) {
1537 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1538 goto error_free;
1539 }
1540
1541 if (!pci_resource_start(dev, 0)) {
1542 dev_err(&dev->dev, "TBAR not assigned, aborting\n");
1543 ret = -ENXIO;
1544 goto error_free;
1545 }
1546
1547 ret = pci_request_regions(dev, "ips thermal sensor");
1548 if (ret) {
1549 dev_err(&dev->dev, "thermal resource busy, aborting\n");
1550 goto error_free;
1551 }
1552
1553
1554 ips->regmap = ioremap(pci_resource_start(dev, 0),
1555 pci_resource_len(dev, 0));
1556 if (!ips->regmap) {
1557 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1558 ret = -EBUSY;
1559 goto error_release;
1560 }
1561
1562 tse = thm_readb(THM_TSE);
1563 if (tse != TSE_EN) {
1564 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1565 ret = -ENXIO;
1566 goto error_unmap;
1567 }
1568
1569 trc = thm_readw(THM_TRC);
1570 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1571 if ((trc & trc_required_mask) != trc_required_mask) {
1572 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1573 ret = -ENXIO;
1574 goto error_unmap;
1575 }
1576
1577 if (trc & TRC_CORE2_EN)
1578 ips->second_cpu = true;
1579
1580 update_turbo_limits(ips);
1581 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1582 ips->mcp_power_limit / 10);
1583 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1584 ips->core_power_limit / 10);
1585 /* BIOS may update limits at runtime */
1586 if (thm_readl(THM_PSC) & PSP_PBRT)
1587 ips->poll_turbo_status = true;
1588
1589 if (!ips_get_i915_syms(ips)) {
1590 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1591 ips->gpu_turbo_enabled = false;
1592 } else {
1593 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1594 ips->gpu_turbo_enabled = true;
1595 }
1596
1597 /*
1598 * Check PLATFORM_INFO MSR to make sure this chip is
1599 * turbo capable.
1600 */
1601 rdmsrl(PLATFORM_INFO, platform_info);
1602 if (!(platform_info & PLATFORM_TDP)) {
1603 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1604 ret = -ENODEV;
1605 goto error_unmap;
1606 }
1607
1608 /*
1609 * IRQ handler for ME interaction
1610 * Note: don't use MSI here as the PCH has bugs.
1611 */
1612 pci_disable_msi(dev);
1613 ret = request_irq(dev->irq, ips_irq_handler, IRQF_SHARED, "ips",
1614 ips);
1615 if (ret) {
1616 dev_err(&dev->dev, "request irq failed, aborting\n");
1617 goto error_unmap;
1618 }
1619
1620 /* Enable aux, hot & critical interrupts */
1621 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1622 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1623 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1624
1625 /* Collect adjustment values */
1626 ips->cta_val = thm_readw(THM_CTA);
1627 ips->pta_val = thm_readw(THM_PTA);
1628 ips->mgta_val = thm_readw(THM_MGTA);
1629
1630 /* Save turbo limits & ratios */
1631 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1632
1633 ips_disable_cpu_turbo(ips);
1634 ips->cpu_turbo_enabled = false;
1635
1636 /* Create thermal adjust thread */
1637 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1638 if (IS_ERR(ips->adjust)) {
1639 dev_err(&dev->dev,
1640 "failed to create thermal adjust thread, aborting\n");
1641 ret = -ENOMEM;
1642 goto error_free_irq;
1643
1644 }
1645
1646 /*
1647 * Set up the work queue and monitor thread. The monitor thread
1648 * will wake up ips_adjust thread.
1649 */
1650 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1651 if (IS_ERR(ips->monitor)) {
1652 dev_err(&dev->dev,
1653 "failed to create thermal monitor thread, aborting\n");
1654 ret = -ENOMEM;
1655 goto error_thread_cleanup;
1656 }
1657
1658 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1659 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1660 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1661
1662 thm_writew(THM_HTSHI, htshi);
1663 thm_writel(THM_HTS, hts);
1664
1665 ips_debugfs_init(ips);
1666
1667 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1668 ips->mcp_temp_limit);
1669 return ret;
1670
1671error_thread_cleanup:
1672 kthread_stop(ips->adjust);
1673error_free_irq:
1674 free_irq(ips->dev->irq, ips);
1675error_unmap:
1676 iounmap(ips->regmap);
1677error_release:
1678 pci_release_regions(dev);
1679error_free:
1680 kfree(ips);
1681 return ret;
1682}
1683
1684static void ips_remove(struct pci_dev *dev)
1685{
1686 struct ips_driver *ips = pci_get_drvdata(dev);
1687 u64 turbo_override;
1688
1689 if (!ips)
1690 return;
1691
1692 ips_debugfs_cleanup(ips);
1693
1694 /* Release i915 driver */
1695 if (ips->read_mch_val)
1696 symbol_put(i915_read_mch_val);
1697 if (ips->gpu_raise)
1698 symbol_put(i915_gpu_raise);
1699 if (ips->gpu_lower)
1700 symbol_put(i915_gpu_lower);
1701 if (ips->gpu_busy)
1702 symbol_put(i915_gpu_busy);
1703 if (ips->gpu_turbo_disable)
1704 symbol_put(i915_gpu_turbo_disable);
1705
1706 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1707 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1708 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1709 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1710
1711 free_irq(ips->dev->irq, ips);
1712 if (ips->adjust)
1713 kthread_stop(ips->adjust);
1714 if (ips->monitor)
1715 kthread_stop(ips->monitor);
1716 iounmap(ips->regmap);
1717 pci_release_regions(dev);
1718 kfree(ips);
1719 dev_dbg(&dev->dev, "IPS driver removed\n");
1720}
1721
1722static void ips_shutdown(struct pci_dev *dev)
1723{
1724}
1725
1726static struct pci_driver ips_pci_driver = {
1727 .name = "intel ips",
1728 .id_table = ips_id_table,
1729 .probe = ips_probe,
1730 .remove = ips_remove,
1731 .shutdown = ips_shutdown,
1732};
1733
1734module_pci_driver(ips_pci_driver);
1735
1736MODULE_LICENSE("GPL");
1737MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1738MODULE_DESCRIPTION("Intelligent Power Sharing Driver");
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2009-2010 Intel Corporation
4 *
5 * Authors:
6 * Jesse Barnes <jbarnes@virtuousgeek.org>
7 */
8
9/*
10 * Some Intel Ibex Peak based platforms support so-called "intelligent
11 * power sharing", which allows the CPU and GPU to cooperate to maximize
12 * performance within a given TDP (thermal design point). This driver
13 * performs the coordination between the CPU and GPU, monitors thermal and
14 * power statistics in the platform, and initializes power monitoring
15 * hardware. It also provides a few tunables to control behavior. Its
16 * primary purpose is to safely allow CPU and GPU turbo modes to be enabled
17 * by tracking power and thermal budget; secondarily it can boost turbo
18 * performance by allocating more power or thermal budget to the CPU or GPU
19 * based on available headroom and activity.
20 *
21 * The basic algorithm is driven by a 5s moving average of temperature. If
22 * thermal headroom is available, the CPU and/or GPU power clamps may be
23 * adjusted upwards. If we hit the thermal ceiling or a thermal trigger,
24 * we scale back the clamp. Aside from trigger events (when we're critically
25 * close or over our TDP) we don't adjust the clamps more than once every
26 * five seconds.
27 *
28 * The thermal device (device 31, function 6) has a set of registers that
29 * are updated by the ME firmware. The ME should also take the clamp values
30 * written to those registers and write them to the CPU, but we currently
31 * bypass that functionality and write the CPU MSR directly.
32 *
33 * UNSUPPORTED:
34 * - dual MCP configs
35 *
36 * TODO:
37 * - handle CPU hotplug
38 * - provide turbo enable/disable api
39 *
40 * Related documents:
41 * - CDI 403777, 403778 - Auburndale EDS vol 1 & 2
42 * - CDI 401376 - Ibex Peak EDS
43 * - ref 26037, 26641 - IPS BIOS spec
44 * - ref 26489 - Nehalem BIOS writer's guide
45 * - ref 26921 - Ibex Peak BIOS Specification
46 */
47
48#include <linux/debugfs.h>
49#include <linux/delay.h>
50#include <linux/interrupt.h>
51#include <linux/kernel.h>
52#include <linux/kthread.h>
53#include <linux/module.h>
54#include <linux/pci.h>
55#include <linux/sched.h>
56#include <linux/sched/loadavg.h>
57#include <linux/seq_file.h>
58#include <linux/string.h>
59#include <linux/tick.h>
60#include <linux/timer.h>
61#include <linux/dmi.h>
62#include <drm/intel/i915_drm.h>
63#include <asm/msr.h>
64#include <asm/processor.h>
65#include <asm/cpu_device_id.h>
66#include "intel_ips.h"
67
68#include <linux/io-64-nonatomic-lo-hi.h>
69
70#define PCI_DEVICE_ID_INTEL_THERMAL_SENSOR 0x3b32
71
72/*
73 * Package level MSRs for monitor/control
74 */
75#define PLATFORM_INFO 0xce
76#define PLATFORM_TDP (1<<29)
77#define PLATFORM_RATIO (1<<28)
78
79#define IA32_MISC_ENABLE 0x1a0
80#define IA32_MISC_TURBO_EN (1ULL<<38)
81
82#define TURBO_POWER_CURRENT_LIMIT 0x1ac
83#define TURBO_TDC_OVR_EN (1UL<<31)
84#define TURBO_TDC_MASK (0x000000007fff0000UL)
85#define TURBO_TDC_SHIFT (16)
86#define TURBO_TDP_OVR_EN (1UL<<15)
87#define TURBO_TDP_MASK (0x0000000000003fffUL)
88
89/*
90 * Core/thread MSRs for monitoring
91 */
92#define IA32_PERF_CTL 0x199
93#define IA32_PERF_TURBO_DIS (1ULL<<32)
94
95/*
96 * Thermal PCI device regs
97 */
98#define THM_CFG_TBAR 0x10
99#define THM_CFG_TBAR_HI 0x14
100
101#define THM_TSIU 0x00
102#define THM_TSE 0x01
103#define TSE_EN 0xb8
104#define THM_TSS 0x02
105#define THM_TSTR 0x03
106#define THM_TSTTP 0x04
107#define THM_TSCO 0x08
108#define THM_TSES 0x0c
109#define THM_TSGPEN 0x0d
110#define TSGPEN_HOT_LOHI (1<<1)
111#define TSGPEN_CRIT_LOHI (1<<2)
112#define THM_TSPC 0x0e
113#define THM_PPEC 0x10
114#define THM_CTA 0x12
115#define THM_PTA 0x14
116#define PTA_SLOPE_MASK (0xff00)
117#define PTA_SLOPE_SHIFT 8
118#define PTA_OFFSET_MASK (0x00ff)
119#define THM_MGTA 0x16
120#define MGTA_SLOPE_MASK (0xff00)
121#define MGTA_SLOPE_SHIFT 8
122#define MGTA_OFFSET_MASK (0x00ff)
123#define THM_TRC 0x1a
124#define TRC_CORE2_EN (1<<15)
125#define TRC_THM_EN (1<<12)
126#define TRC_C6_WAR (1<<8)
127#define TRC_CORE1_EN (1<<7)
128#define TRC_CORE_PWR (1<<6)
129#define TRC_PCH_EN (1<<5)
130#define TRC_MCH_EN (1<<4)
131#define TRC_DIMM4 (1<<3)
132#define TRC_DIMM3 (1<<2)
133#define TRC_DIMM2 (1<<1)
134#define TRC_DIMM1 (1<<0)
135#define THM_TES 0x20
136#define THM_TEN 0x21
137#define TEN_UPDATE_EN 1
138#define THM_PSC 0x24
139#define PSC_NTG (1<<0) /* No GFX turbo support */
140#define PSC_NTPC (1<<1) /* No CPU turbo support */
141#define PSC_PP_DEF (0<<2) /* Perf policy up to driver */
142#define PSP_PP_PC (1<<2) /* BIOS prefers CPU perf */
143#define PSP_PP_BAL (2<<2) /* BIOS wants balanced perf */
144#define PSP_PP_GFX (3<<2) /* BIOS prefers GFX perf */
145#define PSP_PBRT (1<<4) /* BIOS run time support */
146#define THM_CTV1 0x30
147#define CTV_TEMP_ERROR (1<<15)
148#define CTV_TEMP_MASK 0x3f
149#define CTV_
150#define THM_CTV2 0x32
151#define THM_CEC 0x34 /* undocumented power accumulator in joules */
152#define THM_AE 0x3f
153#define THM_HTS 0x50 /* 32 bits */
154#define HTS_PCPL_MASK (0x7fe00000)
155#define HTS_PCPL_SHIFT 21
156#define HTS_GPL_MASK (0x001ff000)
157#define HTS_GPL_SHIFT 12
158#define HTS_PP_MASK (0x00000c00)
159#define HTS_PP_SHIFT 10
160#define HTS_PP_DEF 0
161#define HTS_PP_PROC 1
162#define HTS_PP_BAL 2
163#define HTS_PP_GFX 3
164#define HTS_PCTD_DIS (1<<9)
165#define HTS_GTD_DIS (1<<8)
166#define HTS_PTL_MASK (0x000000fe)
167#define HTS_PTL_SHIFT 1
168#define HTS_NVV (1<<0)
169#define THM_HTSHI 0x54 /* 16 bits */
170#define HTS2_PPL_MASK (0x03ff)
171#define HTS2_PRST_MASK (0x3c00)
172#define HTS2_PRST_SHIFT 10
173#define HTS2_PRST_UNLOADED 0
174#define HTS2_PRST_RUNNING 1
175#define HTS2_PRST_TDISOP 2 /* turbo disabled due to power */
176#define HTS2_PRST_TDISHT 3 /* turbo disabled due to high temp */
177#define HTS2_PRST_TDISUSR 4 /* user disabled turbo */
178#define HTS2_PRST_TDISPLAT 5 /* platform disabled turbo */
179#define HTS2_PRST_TDISPM 6 /* power management disabled turbo */
180#define HTS2_PRST_TDISERR 7 /* some kind of error disabled turbo */
181#define THM_PTL 0x56
182#define THM_MGTV 0x58
183#define TV_MASK 0x000000000000ff00
184#define TV_SHIFT 8
185#define THM_PTV 0x60
186#define PTV_MASK 0x00ff
187#define THM_MMGPC 0x64
188#define THM_MPPC 0x66
189#define THM_MPCPC 0x68
190#define THM_TSPIEN 0x82
191#define TSPIEN_AUX_LOHI (1<<0)
192#define TSPIEN_HOT_LOHI (1<<1)
193#define TSPIEN_CRIT_LOHI (1<<2)
194#define TSPIEN_AUX2_LOHI (1<<3)
195#define THM_TSLOCK 0x83
196#define THM_ATR 0x84
197#define THM_TOF 0x87
198#define THM_STS 0x98
199#define STS_PCPL_MASK (0x7fe00000)
200#define STS_PCPL_SHIFT 21
201#define STS_GPL_MASK (0x001ff000)
202#define STS_GPL_SHIFT 12
203#define STS_PP_MASK (0x00000c00)
204#define STS_PP_SHIFT 10
205#define STS_PP_DEF 0
206#define STS_PP_PROC 1
207#define STS_PP_BAL 2
208#define STS_PP_GFX 3
209#define STS_PCTD_DIS (1<<9)
210#define STS_GTD_DIS (1<<8)
211#define STS_PTL_MASK (0x000000fe)
212#define STS_PTL_SHIFT 1
213#define STS_NVV (1<<0)
214#define THM_SEC 0x9c
215#define SEC_ACK (1<<0)
216#define THM_TC3 0xa4
217#define THM_TC1 0xa8
218#define STS_PPL_MASK (0x0003ff00)
219#define STS_PPL_SHIFT 16
220#define THM_TC2 0xac
221#define THM_DTV 0xb0
222#define THM_ITV 0xd8
223#define ITV_ME_SEQNO_MASK 0x00ff0000 /* ME should update every ~200ms */
224#define ITV_ME_SEQNO_SHIFT (16)
225#define ITV_MCH_TEMP_MASK 0x0000ff00
226#define ITV_MCH_TEMP_SHIFT (8)
227#define ITV_PCH_TEMP_MASK 0x000000ff
228
229#define thm_readb(off) readb(ips->regmap + (off))
230#define thm_readw(off) readw(ips->regmap + (off))
231#define thm_readl(off) readl(ips->regmap + (off))
232#define thm_readq(off) readq(ips->regmap + (off))
233
234#define thm_writeb(off, val) writeb((val), ips->regmap + (off))
235#define thm_writew(off, val) writew((val), ips->regmap + (off))
236#define thm_writel(off, val) writel((val), ips->regmap + (off))
237
238static const int IPS_ADJUST_PERIOD = 5000; /* ms */
239static bool late_i915_load = false;
240
241/* For initial average collection */
242static const int IPS_SAMPLE_PERIOD = 200; /* ms */
243static const int IPS_SAMPLE_WINDOW = 5000; /* 5s moving window of samples */
244#define IPS_SAMPLE_COUNT (IPS_SAMPLE_WINDOW / IPS_SAMPLE_PERIOD)
245
246/* Per-SKU limits */
247struct ips_mcp_limits {
248 int mcp_power_limit; /* mW units */
249 int core_power_limit;
250 int mch_power_limit;
251 int core_temp_limit; /* degrees C */
252 int mch_temp_limit;
253};
254
255/* Max temps are -10 degrees C to avoid PROCHOT# */
256
257static struct ips_mcp_limits ips_sv_limits = {
258 .mcp_power_limit = 35000,
259 .core_power_limit = 29000,
260 .mch_power_limit = 20000,
261 .core_temp_limit = 95,
262 .mch_temp_limit = 90
263};
264
265static struct ips_mcp_limits ips_lv_limits = {
266 .mcp_power_limit = 25000,
267 .core_power_limit = 21000,
268 .mch_power_limit = 13000,
269 .core_temp_limit = 95,
270 .mch_temp_limit = 90
271};
272
273static struct ips_mcp_limits ips_ulv_limits = {
274 .mcp_power_limit = 18000,
275 .core_power_limit = 14000,
276 .mch_power_limit = 11000,
277 .core_temp_limit = 95,
278 .mch_temp_limit = 90
279};
280
281struct ips_driver {
282 struct device *dev;
283 void __iomem *regmap;
284 int irq;
285
286 struct task_struct *monitor;
287 struct task_struct *adjust;
288 struct dentry *debug_root;
289 struct timer_list timer;
290
291 /* Average CPU core temps (all averages in .01 degrees C for precision) */
292 u16 ctv1_avg_temp;
293 u16 ctv2_avg_temp;
294 /* GMCH average */
295 u16 mch_avg_temp;
296 /* Average for the CPU (both cores?) */
297 u16 mcp_avg_temp;
298 /* Average power consumption (in mW) */
299 u32 cpu_avg_power;
300 u32 mch_avg_power;
301
302 /* Offset values */
303 u16 cta_val;
304 u16 pta_val;
305 u16 mgta_val;
306
307 /* Maximums & prefs, protected by turbo status lock */
308 spinlock_t turbo_status_lock;
309 u16 mcp_temp_limit;
310 u16 mcp_power_limit;
311 u16 core_power_limit;
312 u16 mch_power_limit;
313 bool cpu_turbo_enabled;
314 bool __cpu_turbo_on;
315 bool gpu_turbo_enabled;
316 bool __gpu_turbo_on;
317 bool gpu_preferred;
318 bool poll_turbo_status;
319 bool second_cpu;
320 bool turbo_toggle_allowed;
321 struct ips_mcp_limits *limits;
322
323 /* Optional MCH interfaces for if i915 is in use */
324 unsigned long (*read_mch_val)(void);
325 bool (*gpu_raise)(void);
326 bool (*gpu_lower)(void);
327 bool (*gpu_busy)(void);
328 bool (*gpu_turbo_disable)(void);
329
330 /* For restoration at unload */
331 u64 orig_turbo_limit;
332 u64 orig_turbo_ratios;
333};
334
335static bool
336ips_gpu_turbo_enabled(struct ips_driver *ips);
337
338/**
339 * ips_cpu_busy - is CPU busy?
340 * @ips: IPS driver struct
341 *
342 * Check CPU for load to see whether we should increase its thermal budget.
343 *
344 * RETURNS:
345 * True if the CPU could use more power, false otherwise.
346 */
347static bool ips_cpu_busy(struct ips_driver *ips)
348{
349 if ((avenrun[0] >> FSHIFT) > 1)
350 return true;
351
352 return false;
353}
354
355/**
356 * ips_cpu_raise - raise CPU power clamp
357 * @ips: IPS driver struct
358 *
359 * Raise the CPU power clamp by %IPS_CPU_STEP, in accordance with TDP for
360 * this platform.
361 *
362 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR upwards (as
363 * long as we haven't hit the TDP limit for the SKU).
364 */
365static void ips_cpu_raise(struct ips_driver *ips)
366{
367 u64 turbo_override;
368 u16 cur_tdp_limit, new_tdp_limit;
369
370 if (!ips->cpu_turbo_enabled)
371 return;
372
373 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
374
375 cur_tdp_limit = turbo_override & TURBO_TDP_MASK;
376 new_tdp_limit = cur_tdp_limit + 8; /* 1W increase */
377
378 /* Clamp to SKU TDP limit */
379 if (((new_tdp_limit * 10) / 8) > ips->core_power_limit)
380 new_tdp_limit = cur_tdp_limit;
381
382 thm_writew(THM_MPCPC, (new_tdp_limit * 10) / 8);
383
384 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
385 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
386
387 turbo_override &= ~TURBO_TDP_MASK;
388 turbo_override |= new_tdp_limit;
389
390 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
391}
392
393/**
394 * ips_cpu_lower - lower CPU power clamp
395 * @ips: IPS driver struct
396 *
397 * Lower CPU power clamp b %IPS_CPU_STEP if possible.
398 *
399 * We do this by adjusting the TURBO_POWER_CURRENT_LIMIT MSR down, going
400 * as low as the platform limits will allow (though we could go lower there
401 * wouldn't be much point).
402 */
403static void ips_cpu_lower(struct ips_driver *ips)
404{
405 u64 turbo_override;
406 u16 cur_limit, new_limit;
407
408 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
409
410 cur_limit = turbo_override & TURBO_TDP_MASK;
411 new_limit = cur_limit - 8; /* 1W decrease */
412
413 /* Clamp to SKU TDP limit */
414 if (new_limit < (ips->orig_turbo_limit & TURBO_TDP_MASK))
415 new_limit = ips->orig_turbo_limit & TURBO_TDP_MASK;
416
417 thm_writew(THM_MPCPC, (new_limit * 10) / 8);
418
419 turbo_override |= TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN;
420 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
421
422 turbo_override &= ~TURBO_TDP_MASK;
423 turbo_override |= new_limit;
424
425 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
426}
427
428/**
429 * do_enable_cpu_turbo - internal turbo enable function
430 * @data: unused
431 *
432 * Internal function for actually updating MSRs. When we enable/disable
433 * turbo, we need to do it on each CPU; this function is the one called
434 * by on_each_cpu() when needed.
435 */
436static void do_enable_cpu_turbo(void *data)
437{
438 u64 perf_ctl;
439
440 rdmsrl(IA32_PERF_CTL, perf_ctl);
441 if (perf_ctl & IA32_PERF_TURBO_DIS) {
442 perf_ctl &= ~IA32_PERF_TURBO_DIS;
443 wrmsrl(IA32_PERF_CTL, perf_ctl);
444 }
445}
446
447/**
448 * ips_enable_cpu_turbo - enable turbo mode on all CPUs
449 * @ips: IPS driver struct
450 *
451 * Enable turbo mode by clearing the disable bit in IA32_PERF_CTL on
452 * all logical threads.
453 */
454static void ips_enable_cpu_turbo(struct ips_driver *ips)
455{
456 /* Already on, no need to mess with MSRs */
457 if (ips->__cpu_turbo_on)
458 return;
459
460 if (ips->turbo_toggle_allowed)
461 on_each_cpu(do_enable_cpu_turbo, ips, 1);
462
463 ips->__cpu_turbo_on = true;
464}
465
466/**
467 * do_disable_cpu_turbo - internal turbo disable function
468 * @data: unused
469 *
470 * Internal function for actually updating MSRs. When we enable/disable
471 * turbo, we need to do it on each CPU; this function is the one called
472 * by on_each_cpu() when needed.
473 */
474static void do_disable_cpu_turbo(void *data)
475{
476 u64 perf_ctl;
477
478 rdmsrl(IA32_PERF_CTL, perf_ctl);
479 if (!(perf_ctl & IA32_PERF_TURBO_DIS)) {
480 perf_ctl |= IA32_PERF_TURBO_DIS;
481 wrmsrl(IA32_PERF_CTL, perf_ctl);
482 }
483}
484
485/**
486 * ips_disable_cpu_turbo - disable turbo mode on all CPUs
487 * @ips: IPS driver struct
488 *
489 * Disable turbo mode by setting the disable bit in IA32_PERF_CTL on
490 * all logical threads.
491 */
492static void ips_disable_cpu_turbo(struct ips_driver *ips)
493{
494 /* Already off, leave it */
495 if (!ips->__cpu_turbo_on)
496 return;
497
498 if (ips->turbo_toggle_allowed)
499 on_each_cpu(do_disable_cpu_turbo, ips, 1);
500
501 ips->__cpu_turbo_on = false;
502}
503
504/**
505 * ips_gpu_busy - is GPU busy?
506 * @ips: IPS driver struct
507 *
508 * Check GPU for load to see whether we should increase its thermal budget.
509 * We need to call into the i915 driver in this case.
510 *
511 * RETURNS:
512 * True if the GPU could use more power, false otherwise.
513 */
514static bool ips_gpu_busy(struct ips_driver *ips)
515{
516 if (!ips_gpu_turbo_enabled(ips))
517 return false;
518
519 return ips->gpu_busy();
520}
521
522/**
523 * ips_gpu_raise - raise GPU power clamp
524 * @ips: IPS driver struct
525 *
526 * Raise the GPU frequency/power if possible. We need to call into the
527 * i915 driver in this case.
528 */
529static void ips_gpu_raise(struct ips_driver *ips)
530{
531 if (!ips_gpu_turbo_enabled(ips))
532 return;
533
534 if (!ips->gpu_raise())
535 ips->gpu_turbo_enabled = false;
536
537 return;
538}
539
540/**
541 * ips_gpu_lower - lower GPU power clamp
542 * @ips: IPS driver struct
543 *
544 * Lower GPU frequency/power if possible. Need to call i915.
545 */
546static void ips_gpu_lower(struct ips_driver *ips)
547{
548 if (!ips_gpu_turbo_enabled(ips))
549 return;
550
551 if (!ips->gpu_lower())
552 ips->gpu_turbo_enabled = false;
553
554 return;
555}
556
557/**
558 * ips_enable_gpu_turbo - notify the gfx driver turbo is available
559 * @ips: IPS driver struct
560 *
561 * Call into the graphics driver indicating that it can safely use
562 * turbo mode.
563 */
564static void ips_enable_gpu_turbo(struct ips_driver *ips)
565{
566 if (ips->__gpu_turbo_on)
567 return;
568 ips->__gpu_turbo_on = true;
569}
570
571/**
572 * ips_disable_gpu_turbo - notify the gfx driver to disable turbo mode
573 * @ips: IPS driver struct
574 *
575 * Request that the graphics driver disable turbo mode.
576 */
577static void ips_disable_gpu_turbo(struct ips_driver *ips)
578{
579 /* Avoid calling i915 if turbo is already disabled */
580 if (!ips->__gpu_turbo_on)
581 return;
582
583 if (!ips->gpu_turbo_disable())
584 dev_err(ips->dev, "failed to disable graphics turbo\n");
585 else
586 ips->__gpu_turbo_on = false;
587}
588
589/**
590 * mcp_exceeded - check whether we're outside our thermal & power limits
591 * @ips: IPS driver struct
592 *
593 * Check whether the MCP is over its thermal or power budget.
594 *
595 * Returns: %true if the temp or power has exceeded its maximum, else %false
596 */
597static bool mcp_exceeded(struct ips_driver *ips)
598{
599 unsigned long flags;
600 bool ret = false;
601 u32 temp_limit;
602 u32 avg_power;
603
604 spin_lock_irqsave(&ips->turbo_status_lock, flags);
605
606 temp_limit = ips->mcp_temp_limit * 100;
607 if (ips->mcp_avg_temp > temp_limit)
608 ret = true;
609
610 avg_power = ips->cpu_avg_power + ips->mch_avg_power;
611 if (avg_power > ips->mcp_power_limit)
612 ret = true;
613
614 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
615
616 return ret;
617}
618
619/**
620 * cpu_exceeded - check whether a CPU core is outside its limits
621 * @ips: IPS driver struct
622 * @cpu: CPU number to check
623 *
624 * Check a given CPU's average temp or power is over its limit.
625 *
626 * Returns: %true if the temp or power has exceeded its maximum, else %false
627 */
628static bool cpu_exceeded(struct ips_driver *ips, int cpu)
629{
630 unsigned long flags;
631 int avg;
632 bool ret = false;
633
634 spin_lock_irqsave(&ips->turbo_status_lock, flags);
635 avg = cpu ? ips->ctv2_avg_temp : ips->ctv1_avg_temp;
636 if (avg > (ips->limits->core_temp_limit * 100))
637 ret = true;
638 if (ips->cpu_avg_power > ips->core_power_limit * 100)
639 ret = true;
640 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
641
642 if (ret)
643 dev_info(ips->dev, "CPU power or thermal limit exceeded\n");
644
645 return ret;
646}
647
648/**
649 * mch_exceeded - check whether the GPU is over budget
650 * @ips: IPS driver struct
651 *
652 * Check the MCH temp & power against their maximums.
653 *
654 * Returns: %true if the temp or power has exceeded its maximum, else %false
655 */
656static bool mch_exceeded(struct ips_driver *ips)
657{
658 unsigned long flags;
659 bool ret = false;
660
661 spin_lock_irqsave(&ips->turbo_status_lock, flags);
662 if (ips->mch_avg_temp > (ips->limits->mch_temp_limit * 100))
663 ret = true;
664 if (ips->mch_avg_power > ips->mch_power_limit)
665 ret = true;
666 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
667
668 return ret;
669}
670
671/**
672 * verify_limits - verify BIOS provided limits
673 * @ips: IPS structure
674 *
675 * BIOS can optionally provide non-default limits for power and temp. Check
676 * them here and use the defaults if the BIOS values are not provided or
677 * are otherwise unusable.
678 */
679static void verify_limits(struct ips_driver *ips)
680{
681 if (ips->mcp_power_limit < ips->limits->mcp_power_limit ||
682 ips->mcp_power_limit > 35000)
683 ips->mcp_power_limit = ips->limits->mcp_power_limit;
684
685 if (ips->mcp_temp_limit < ips->limits->core_temp_limit ||
686 ips->mcp_temp_limit < ips->limits->mch_temp_limit ||
687 ips->mcp_temp_limit > 150)
688 ips->mcp_temp_limit = min(ips->limits->core_temp_limit,
689 ips->limits->mch_temp_limit);
690}
691
692/**
693 * update_turbo_limits - get various limits & settings from regs
694 * @ips: IPS driver struct
695 *
696 * Update the IPS power & temp limits, along with turbo enable flags,
697 * based on latest register contents.
698 *
699 * Used at init time and for runtime BIOS support, which requires polling
700 * the regs for updates (as a result of AC->DC transition for example).
701 *
702 * LOCKING:
703 * Caller must hold turbo_status_lock (outside of init)
704 */
705static void update_turbo_limits(struct ips_driver *ips)
706{
707 u32 hts = thm_readl(THM_HTS);
708
709 ips->cpu_turbo_enabled = !(hts & HTS_PCTD_DIS);
710 /*
711 * Disable turbo for now, until we can figure out why the power figures
712 * are wrong
713 */
714 ips->cpu_turbo_enabled = false;
715
716 if (ips->gpu_busy)
717 ips->gpu_turbo_enabled = !(hts & HTS_GTD_DIS);
718
719 ips->core_power_limit = thm_readw(THM_MPCPC);
720 ips->mch_power_limit = thm_readw(THM_MMGPC);
721 ips->mcp_temp_limit = thm_readw(THM_PTL);
722 ips->mcp_power_limit = thm_readw(THM_MPPC);
723
724 verify_limits(ips);
725 /* Ignore BIOS CPU vs GPU pref */
726}
727
728/**
729 * ips_adjust - adjust power clamp based on thermal state
730 * @data: ips driver structure
731 *
732 * Wake up every 5s or so and check whether we should adjust the power clamp.
733 * Check CPU and GPU load to determine which needs adjustment. There are
734 * several things to consider here:
735 * - do we need to adjust up or down?
736 * - is CPU busy?
737 * - is GPU busy?
738 * - is CPU in turbo?
739 * - is GPU in turbo?
740 * - is CPU or GPU preferred? (CPU is default)
741 *
742 * So, given the above, we do the following:
743 * - up (TDP available)
744 * - CPU not busy, GPU not busy - nothing
745 * - CPU busy, GPU not busy - adjust CPU up
746 * - CPU not busy, GPU busy - adjust GPU up
747 * - CPU busy, GPU busy - adjust preferred unit up, taking headroom from
748 * non-preferred unit if necessary
749 * - down (at TDP limit)
750 * - adjust both CPU and GPU down if possible
751 *
752 * |cpu+ gpu+ cpu+gpu- cpu-gpu+ cpu-gpu-
753 * cpu < gpu < |cpu+gpu+ cpu+ gpu+ nothing
754 * cpu < gpu >= |cpu+gpu-(mcp<) cpu+gpu-(mcp<) gpu- gpu-
755 * cpu >= gpu < |cpu-gpu+(mcp<) cpu- cpu-gpu+(mcp<) cpu-
756 * cpu >= gpu >=|cpu-gpu- cpu-gpu- cpu-gpu- cpu-gpu-
757 *
758 * Returns: %0
759 */
760static int ips_adjust(void *data)
761{
762 struct ips_driver *ips = data;
763 unsigned long flags;
764
765 dev_dbg(ips->dev, "starting ips-adjust thread\n");
766
767 /*
768 * Adjust CPU and GPU clamps every 5s if needed. Doing it more
769 * often isn't recommended due to ME interaction.
770 */
771 do {
772 bool cpu_busy = ips_cpu_busy(ips);
773 bool gpu_busy = ips_gpu_busy(ips);
774
775 spin_lock_irqsave(&ips->turbo_status_lock, flags);
776 if (ips->poll_turbo_status)
777 update_turbo_limits(ips);
778 spin_unlock_irqrestore(&ips->turbo_status_lock, flags);
779
780 /* Update turbo status if necessary */
781 if (ips->cpu_turbo_enabled)
782 ips_enable_cpu_turbo(ips);
783 else
784 ips_disable_cpu_turbo(ips);
785
786 if (ips->gpu_turbo_enabled)
787 ips_enable_gpu_turbo(ips);
788 else
789 ips_disable_gpu_turbo(ips);
790
791 /* We're outside our comfort zone, crank them down */
792 if (mcp_exceeded(ips)) {
793 ips_cpu_lower(ips);
794 ips_gpu_lower(ips);
795 goto sleep;
796 }
797
798 if (!cpu_exceeded(ips, 0) && cpu_busy)
799 ips_cpu_raise(ips);
800 else
801 ips_cpu_lower(ips);
802
803 if (!mch_exceeded(ips) && gpu_busy)
804 ips_gpu_raise(ips);
805 else
806 ips_gpu_lower(ips);
807
808sleep:
809 schedule_timeout_interruptible(msecs_to_jiffies(IPS_ADJUST_PERIOD));
810 } while (!kthread_should_stop());
811
812 dev_dbg(ips->dev, "ips-adjust thread stopped\n");
813
814 return 0;
815}
816
817/*
818 * Helpers for reading out temp/power values and calculating their
819 * averages for the decision making and monitoring functions.
820 */
821
822static u16 calc_avg_temp(struct ips_driver *ips, u16 *array)
823{
824 u64 total = 0;
825 int i;
826 u16 avg;
827
828 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
829 total += (u64)(array[i] * 100);
830
831 do_div(total, IPS_SAMPLE_COUNT);
832
833 avg = (u16)total;
834
835 return avg;
836}
837
838static u16 read_mgtv(struct ips_driver *ips)
839{
840 u16 __maybe_unused ret;
841 u64 slope, offset;
842 u64 val;
843
844 val = thm_readq(THM_MGTV);
845 val = (val & TV_MASK) >> TV_SHIFT;
846
847 slope = offset = thm_readw(THM_MGTA);
848 slope = (slope & MGTA_SLOPE_MASK) >> MGTA_SLOPE_SHIFT;
849 offset = offset & MGTA_OFFSET_MASK;
850
851 ret = ((val * slope + 0x40) >> 7) + offset;
852
853 return 0; /* MCH temp reporting buggy */
854}
855
856static u16 read_ptv(struct ips_driver *ips)
857{
858 u16 val;
859
860 val = thm_readw(THM_PTV) & PTV_MASK;
861
862 return val;
863}
864
865static u16 read_ctv(struct ips_driver *ips, int cpu)
866{
867 int reg = cpu ? THM_CTV2 : THM_CTV1;
868 u16 val;
869
870 val = thm_readw(reg);
871 if (!(val & CTV_TEMP_ERROR))
872 val = (val) >> 6; /* discard fractional component */
873 else
874 val = 0;
875
876 return val;
877}
878
879static u32 get_cpu_power(struct ips_driver *ips, u32 *last, int period)
880{
881 u32 val;
882 u32 ret;
883
884 /*
885 * CEC is in joules/65535. Take difference over time to
886 * get watts.
887 */
888 val = thm_readl(THM_CEC);
889
890 /* period is in ms and we want mW */
891 ret = (((val - *last) * 1000) / period);
892 ret = (ret * 1000) / 65535;
893 *last = val;
894
895 return 0;
896}
897
898static const u16 temp_decay_factor = 2;
899static u16 update_average_temp(u16 avg, u16 val)
900{
901 u16 ret;
902
903 /* Multiply by 100 for extra precision */
904 ret = (val * 100 / temp_decay_factor) +
905 (((temp_decay_factor - 1) * avg) / temp_decay_factor);
906 return ret;
907}
908
909static const u16 power_decay_factor = 2;
910static u16 update_average_power(u32 avg, u32 val)
911{
912 u32 ret;
913
914 ret = (val / power_decay_factor) +
915 (((power_decay_factor - 1) * avg) / power_decay_factor);
916
917 return ret;
918}
919
920static u32 calc_avg_power(struct ips_driver *ips, u32 *array)
921{
922 u64 total = 0;
923 u32 avg;
924 int i;
925
926 for (i = 0; i < IPS_SAMPLE_COUNT; i++)
927 total += array[i];
928
929 do_div(total, IPS_SAMPLE_COUNT);
930 avg = (u32)total;
931
932 return avg;
933}
934
935static void monitor_timeout(struct timer_list *t)
936{
937 struct ips_driver *ips = from_timer(ips, t, timer);
938 wake_up_process(ips->monitor);
939}
940
941/**
942 * ips_monitor - temp/power monitoring thread
943 * @data: ips driver structure
944 *
945 * This is the main function for the IPS driver. It monitors power and
946 * temperature in the MCP and adjusts CPU and GPU power clamps accordingly.
947 *
948 * We keep a 5s moving average of power consumption and temperature. Using
949 * that data, along with CPU vs GPU preference, we adjust the power clamps
950 * up or down.
951 *
952 * Returns: %0 on success or -errno on error
953 */
954static int ips_monitor(void *data)
955{
956 struct ips_driver *ips = data;
957 unsigned long seqno_timestamp, expire, last_msecs, last_sample_period;
958 int i;
959 u32 *cpu_samples, *mchp_samples, old_cpu_power;
960 u16 *mcp_samples, *ctv1_samples, *ctv2_samples, *mch_samples;
961 u8 cur_seqno, last_seqno;
962
963 mcp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
964 ctv1_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
965 ctv2_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
966 mch_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u16), GFP_KERNEL);
967 cpu_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
968 mchp_samples = kcalloc(IPS_SAMPLE_COUNT, sizeof(u32), GFP_KERNEL);
969 if (!mcp_samples || !ctv1_samples || !ctv2_samples || !mch_samples ||
970 !cpu_samples || !mchp_samples) {
971 dev_err(ips->dev,
972 "failed to allocate sample array, ips disabled\n");
973 kfree(mcp_samples);
974 kfree(ctv1_samples);
975 kfree(ctv2_samples);
976 kfree(mch_samples);
977 kfree(cpu_samples);
978 kfree(mchp_samples);
979 return -ENOMEM;
980 }
981
982 last_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
983 ITV_ME_SEQNO_SHIFT;
984 seqno_timestamp = get_jiffies_64();
985
986 old_cpu_power = thm_readl(THM_CEC);
987 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
988
989 /* Collect an initial average */
990 for (i = 0; i < IPS_SAMPLE_COUNT; i++) {
991 u32 mchp, cpu_power;
992 u16 val;
993
994 mcp_samples[i] = read_ptv(ips);
995
996 val = read_ctv(ips, 0);
997 ctv1_samples[i] = val;
998
999 val = read_ctv(ips, 1);
1000 ctv2_samples[i] = val;
1001
1002 val = read_mgtv(ips);
1003 mch_samples[i] = val;
1004
1005 cpu_power = get_cpu_power(ips, &old_cpu_power,
1006 IPS_SAMPLE_PERIOD);
1007 cpu_samples[i] = cpu_power;
1008
1009 if (ips->read_mch_val) {
1010 mchp = ips->read_mch_val();
1011 mchp_samples[i] = mchp;
1012 }
1013
1014 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1015 if (kthread_should_stop())
1016 break;
1017 }
1018
1019 ips->mcp_avg_temp = calc_avg_temp(ips, mcp_samples);
1020 ips->ctv1_avg_temp = calc_avg_temp(ips, ctv1_samples);
1021 ips->ctv2_avg_temp = calc_avg_temp(ips, ctv2_samples);
1022 ips->mch_avg_temp = calc_avg_temp(ips, mch_samples);
1023 ips->cpu_avg_power = calc_avg_power(ips, cpu_samples);
1024 ips->mch_avg_power = calc_avg_power(ips, mchp_samples);
1025 kfree(mcp_samples);
1026 kfree(ctv1_samples);
1027 kfree(ctv2_samples);
1028 kfree(mch_samples);
1029 kfree(cpu_samples);
1030 kfree(mchp_samples);
1031
1032 /* Start the adjustment thread now that we have data */
1033 wake_up_process(ips->adjust);
1034
1035 /*
1036 * Ok, now we have an initial avg. From here on out, we track the
1037 * running avg using a decaying average calculation. This allows
1038 * us to reduce the sample frequency if the CPU and GPU are idle.
1039 */
1040 old_cpu_power = thm_readl(THM_CEC);
1041 schedule_timeout_interruptible(msecs_to_jiffies(IPS_SAMPLE_PERIOD));
1042 last_sample_period = IPS_SAMPLE_PERIOD;
1043
1044 timer_setup(&ips->timer, monitor_timeout, TIMER_DEFERRABLE);
1045 do {
1046 u32 cpu_val, mch_val;
1047 u16 val;
1048
1049 /* MCP itself */
1050 val = read_ptv(ips);
1051 ips->mcp_avg_temp = update_average_temp(ips->mcp_avg_temp, val);
1052
1053 /* Processor 0 */
1054 val = read_ctv(ips, 0);
1055 ips->ctv1_avg_temp =
1056 update_average_temp(ips->ctv1_avg_temp, val);
1057 /* Power */
1058 cpu_val = get_cpu_power(ips, &old_cpu_power,
1059 last_sample_period);
1060 ips->cpu_avg_power =
1061 update_average_power(ips->cpu_avg_power, cpu_val);
1062
1063 if (ips->second_cpu) {
1064 /* Processor 1 */
1065 val = read_ctv(ips, 1);
1066 ips->ctv2_avg_temp =
1067 update_average_temp(ips->ctv2_avg_temp, val);
1068 }
1069
1070 /* MCH */
1071 val = read_mgtv(ips);
1072 ips->mch_avg_temp = update_average_temp(ips->mch_avg_temp, val);
1073 /* Power */
1074 if (ips->read_mch_val) {
1075 mch_val = ips->read_mch_val();
1076 ips->mch_avg_power =
1077 update_average_power(ips->mch_avg_power,
1078 mch_val);
1079 }
1080
1081 /*
1082 * Make sure ME is updating thermal regs.
1083 * Note:
1084 * If it's been more than a second since the last update,
1085 * the ME is probably hung.
1086 */
1087 cur_seqno = (thm_readl(THM_ITV) & ITV_ME_SEQNO_MASK) >>
1088 ITV_ME_SEQNO_SHIFT;
1089 if (cur_seqno == last_seqno &&
1090 time_after(jiffies, seqno_timestamp + HZ)) {
1091 dev_warn(ips->dev,
1092 "ME failed to update for more than 1s, likely hung\n");
1093 } else {
1094 seqno_timestamp = get_jiffies_64();
1095 last_seqno = cur_seqno;
1096 }
1097
1098 last_msecs = jiffies_to_msecs(jiffies);
1099 expire = jiffies + msecs_to_jiffies(IPS_SAMPLE_PERIOD);
1100
1101 __set_current_state(TASK_INTERRUPTIBLE);
1102 mod_timer(&ips->timer, expire);
1103 schedule();
1104
1105 /* Calculate actual sample period for power averaging */
1106 last_sample_period = jiffies_to_msecs(jiffies) - last_msecs;
1107 if (!last_sample_period)
1108 last_sample_period = 1;
1109 } while (!kthread_should_stop());
1110
1111 del_timer_sync(&ips->timer);
1112
1113 dev_dbg(ips->dev, "ips-monitor thread stopped\n");
1114
1115 return 0;
1116}
1117
1118/**
1119 * ips_irq_handler - handle temperature triggers and other IPS events
1120 * @irq: irq number
1121 * @arg: unused
1122 *
1123 * Handle temperature limit trigger events, generally by lowering the clamps.
1124 * If we're at a critical limit, we clamp back to the lowest possible value
1125 * to prevent emergency shutdown.
1126 *
1127 * Returns: IRQ_NONE or IRQ_HANDLED
1128 */
1129static irqreturn_t ips_irq_handler(int irq, void *arg)
1130{
1131 struct ips_driver *ips = arg;
1132 u8 tses = thm_readb(THM_TSES);
1133 u8 tes = thm_readb(THM_TES);
1134
1135 if (!tses && !tes)
1136 return IRQ_NONE;
1137
1138 dev_info(ips->dev, "TSES: 0x%02x\n", tses);
1139 dev_info(ips->dev, "TES: 0x%02x\n", tes);
1140
1141 /* STS update from EC? */
1142 if (tes & 1) {
1143 u32 sts, tc1;
1144
1145 sts = thm_readl(THM_STS);
1146 tc1 = thm_readl(THM_TC1);
1147
1148 if (sts & STS_NVV) {
1149 spin_lock(&ips->turbo_status_lock);
1150 ips->core_power_limit = (sts & STS_PCPL_MASK) >>
1151 STS_PCPL_SHIFT;
1152 ips->mch_power_limit = (sts & STS_GPL_MASK) >>
1153 STS_GPL_SHIFT;
1154 /* ignore EC CPU vs GPU pref */
1155 ips->cpu_turbo_enabled = !(sts & STS_PCTD_DIS);
1156 /*
1157 * Disable turbo for now, until we can figure
1158 * out why the power figures are wrong
1159 */
1160 ips->cpu_turbo_enabled = false;
1161 if (ips->gpu_busy)
1162 ips->gpu_turbo_enabled = !(sts & STS_GTD_DIS);
1163 ips->mcp_temp_limit = (sts & STS_PTL_MASK) >>
1164 STS_PTL_SHIFT;
1165 ips->mcp_power_limit = (tc1 & STS_PPL_MASK) >>
1166 STS_PPL_SHIFT;
1167 verify_limits(ips);
1168 spin_unlock(&ips->turbo_status_lock);
1169
1170 thm_writeb(THM_SEC, SEC_ACK);
1171 }
1172 thm_writeb(THM_TES, tes);
1173 }
1174
1175 /* Thermal trip */
1176 if (tses) {
1177 dev_warn(ips->dev, "thermal trip occurred, tses: 0x%04x\n",
1178 tses);
1179 thm_writeb(THM_TSES, tses);
1180 }
1181
1182 return IRQ_HANDLED;
1183}
1184
1185#ifndef CONFIG_DEBUG_FS
1186static void ips_debugfs_init(struct ips_driver *ips) { return; }
1187static void ips_debugfs_cleanup(struct ips_driver *ips) { return; }
1188#else
1189
1190/* Expose current state and limits in debugfs if possible */
1191
1192static int cpu_temp_show(struct seq_file *m, void *data)
1193{
1194 struct ips_driver *ips = m->private;
1195
1196 seq_printf(m, "%d.%02d\n", ips->ctv1_avg_temp / 100,
1197 ips->ctv1_avg_temp % 100);
1198
1199 return 0;
1200}
1201DEFINE_SHOW_ATTRIBUTE(cpu_temp);
1202
1203static int cpu_power_show(struct seq_file *m, void *data)
1204{
1205 struct ips_driver *ips = m->private;
1206
1207 seq_printf(m, "%dmW\n", ips->cpu_avg_power);
1208
1209 return 0;
1210}
1211DEFINE_SHOW_ATTRIBUTE(cpu_power);
1212
1213static int cpu_clamp_show(struct seq_file *m, void *data)
1214{
1215 u64 turbo_override;
1216 int tdp, tdc;
1217
1218 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1219
1220 tdp = (int)(turbo_override & TURBO_TDP_MASK);
1221 tdc = (int)((turbo_override & TURBO_TDC_MASK) >> TURBO_TDC_SHIFT);
1222
1223 /* Convert to .1W/A units */
1224 tdp = tdp * 10 / 8;
1225 tdc = tdc * 10 / 8;
1226
1227 /* Watts Amperes */
1228 seq_printf(m, "%d.%dW %d.%dA\n", tdp / 10, tdp % 10,
1229 tdc / 10, tdc % 10);
1230
1231 return 0;
1232}
1233DEFINE_SHOW_ATTRIBUTE(cpu_clamp);
1234
1235static int mch_temp_show(struct seq_file *m, void *data)
1236{
1237 struct ips_driver *ips = m->private;
1238
1239 seq_printf(m, "%d.%02d\n", ips->mch_avg_temp / 100,
1240 ips->mch_avg_temp % 100);
1241
1242 return 0;
1243}
1244DEFINE_SHOW_ATTRIBUTE(mch_temp);
1245
1246static int mch_power_show(struct seq_file *m, void *data)
1247{
1248 struct ips_driver *ips = m->private;
1249
1250 seq_printf(m, "%dmW\n", ips->mch_avg_power);
1251
1252 return 0;
1253}
1254DEFINE_SHOW_ATTRIBUTE(mch_power);
1255
1256static void ips_debugfs_cleanup(struct ips_driver *ips)
1257{
1258 debugfs_remove_recursive(ips->debug_root);
1259}
1260
1261static void ips_debugfs_init(struct ips_driver *ips)
1262{
1263 ips->debug_root = debugfs_create_dir("ips", NULL);
1264
1265 debugfs_create_file("cpu_temp", 0444, ips->debug_root, ips, &cpu_temp_fops);
1266 debugfs_create_file("cpu_power", 0444, ips->debug_root, ips, &cpu_power_fops);
1267 debugfs_create_file("cpu_clamp", 0444, ips->debug_root, ips, &cpu_clamp_fops);
1268 debugfs_create_file("mch_temp", 0444, ips->debug_root, ips, &mch_temp_fops);
1269 debugfs_create_file("mch_power", 0444, ips->debug_root, ips, &mch_power_fops);
1270}
1271#endif /* CONFIG_DEBUG_FS */
1272
1273/**
1274 * ips_detect_cpu - detect whether CPU supports IPS
1275 * @ips: IPS driver struct
1276 *
1277 * Walk our list and see if we're on a supported CPU. If we find one,
1278 * return the limits for it.
1279 *
1280 * Returns: the &ips_mcp_limits struct that matches the boot CPU or %NULL
1281 */
1282static struct ips_mcp_limits *ips_detect_cpu(struct ips_driver *ips)
1283{
1284 u64 turbo_power, misc_en;
1285 struct ips_mcp_limits *limits = NULL;
1286 u16 tdp;
1287
1288 if (!(boot_cpu_data.x86_vfm == INTEL_WESTMERE)) {
1289 dev_info(ips->dev, "Non-IPS CPU detected.\n");
1290 return NULL;
1291 }
1292
1293 rdmsrl(IA32_MISC_ENABLE, misc_en);
1294 /*
1295 * If the turbo enable bit isn't set, we shouldn't try to enable/disable
1296 * turbo manually or we'll get an illegal MSR access, even though
1297 * turbo will still be available.
1298 */
1299 if (misc_en & IA32_MISC_TURBO_EN)
1300 ips->turbo_toggle_allowed = true;
1301 else
1302 ips->turbo_toggle_allowed = false;
1303
1304 if (strstr(boot_cpu_data.x86_model_id, "CPU M"))
1305 limits = &ips_sv_limits;
1306 else if (strstr(boot_cpu_data.x86_model_id, "CPU L"))
1307 limits = &ips_lv_limits;
1308 else if (strstr(boot_cpu_data.x86_model_id, "CPU U"))
1309 limits = &ips_ulv_limits;
1310 else {
1311 dev_info(ips->dev, "No CPUID match found.\n");
1312 return NULL;
1313 }
1314
1315 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_power);
1316 tdp = turbo_power & TURBO_TDP_MASK;
1317
1318 /* Sanity check TDP against CPU */
1319 if (limits->core_power_limit != (tdp / 8) * 1000) {
1320 dev_info(ips->dev,
1321 "CPU TDP doesn't match expected value (found %d, expected %d)\n",
1322 tdp / 8, limits->core_power_limit / 1000);
1323 limits->core_power_limit = (tdp / 8) * 1000;
1324 }
1325
1326 return limits;
1327}
1328
1329/**
1330 * ips_get_i915_syms - try to get GPU control methods from i915 driver
1331 * @ips: IPS driver
1332 *
1333 * The i915 driver exports several interfaces to allow the IPS driver to
1334 * monitor and control graphics turbo mode. If we can find them, we can
1335 * enable graphics turbo, otherwise we must disable it to avoid exceeding
1336 * thermal and power limits in the MCP.
1337 *
1338 * Returns: %true if the required symbols are found, else %false
1339 */
1340static bool ips_get_i915_syms(struct ips_driver *ips)
1341{
1342 ips->read_mch_val = symbol_get(i915_read_mch_val);
1343 if (!ips->read_mch_val)
1344 goto out_err;
1345 ips->gpu_raise = symbol_get(i915_gpu_raise);
1346 if (!ips->gpu_raise)
1347 goto out_put_mch;
1348 ips->gpu_lower = symbol_get(i915_gpu_lower);
1349 if (!ips->gpu_lower)
1350 goto out_put_raise;
1351 ips->gpu_busy = symbol_get(i915_gpu_busy);
1352 if (!ips->gpu_busy)
1353 goto out_put_lower;
1354 ips->gpu_turbo_disable = symbol_get(i915_gpu_turbo_disable);
1355 if (!ips->gpu_turbo_disable)
1356 goto out_put_busy;
1357
1358 return true;
1359
1360out_put_busy:
1361 symbol_put(i915_gpu_busy);
1362out_put_lower:
1363 symbol_put(i915_gpu_lower);
1364out_put_raise:
1365 symbol_put(i915_gpu_raise);
1366out_put_mch:
1367 symbol_put(i915_read_mch_val);
1368out_err:
1369 return false;
1370}
1371
1372static bool
1373ips_gpu_turbo_enabled(struct ips_driver *ips)
1374{
1375 if (!ips->gpu_busy && late_i915_load) {
1376 if (ips_get_i915_syms(ips)) {
1377 dev_info(ips->dev,
1378 "i915 driver attached, reenabling gpu turbo\n");
1379 ips->gpu_turbo_enabled = !(thm_readl(THM_HTS) & HTS_GTD_DIS);
1380 }
1381 }
1382
1383 return ips->gpu_turbo_enabled;
1384}
1385
1386void
1387ips_link_to_i915_driver(void)
1388{
1389 /* We can't cleanly get at the various ips_driver structs from
1390 * this caller (the i915 driver), so just set a flag saying
1391 * that it's time to try getting the symbols again.
1392 */
1393 late_i915_load = true;
1394}
1395EXPORT_SYMBOL_GPL(ips_link_to_i915_driver);
1396
1397static const struct pci_device_id ips_id_table[] = {
1398 { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_THERMAL_SENSOR), },
1399 { 0, }
1400};
1401
1402MODULE_DEVICE_TABLE(pci, ips_id_table);
1403
1404static int ips_blacklist_callback(const struct dmi_system_id *id)
1405{
1406 pr_info("Blacklisted intel_ips for %s\n", id->ident);
1407 return 1;
1408}
1409
1410static const struct dmi_system_id ips_blacklist[] = {
1411 {
1412 .callback = ips_blacklist_callback,
1413 .ident = "HP ProBook",
1414 .matches = {
1415 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
1416 DMI_MATCH(DMI_PRODUCT_NAME, "HP ProBook"),
1417 },
1418 },
1419 { } /* terminating entry */
1420};
1421
1422static int ips_probe(struct pci_dev *dev, const struct pci_device_id *id)
1423{
1424 u64 platform_info;
1425 struct ips_driver *ips;
1426 u32 hts;
1427 int ret = 0;
1428 u16 htshi, trc, trc_required_mask;
1429 u8 tse;
1430
1431 if (dmi_check_system(ips_blacklist))
1432 return -ENODEV;
1433
1434 ips = devm_kzalloc(&dev->dev, sizeof(*ips), GFP_KERNEL);
1435 if (!ips)
1436 return -ENOMEM;
1437
1438 spin_lock_init(&ips->turbo_status_lock);
1439 ips->dev = &dev->dev;
1440
1441 ips->limits = ips_detect_cpu(ips);
1442 if (!ips->limits) {
1443 dev_info(&dev->dev, "IPS not supported on this CPU\n");
1444 return -ENXIO;
1445 }
1446
1447 ret = pcim_enable_device(dev);
1448 if (ret) {
1449 dev_err(&dev->dev, "can't enable PCI device, aborting\n");
1450 return ret;
1451 }
1452
1453 ret = pcim_iomap_regions(dev, 1 << 0, pci_name(dev));
1454 if (ret) {
1455 dev_err(&dev->dev, "failed to map thermal regs, aborting\n");
1456 return ret;
1457 }
1458 ips->regmap = pcim_iomap_table(dev)[0];
1459
1460 pci_set_drvdata(dev, ips);
1461
1462 tse = thm_readb(THM_TSE);
1463 if (tse != TSE_EN) {
1464 dev_err(&dev->dev, "thermal device not enabled (0x%02x), aborting\n", tse);
1465 return -ENXIO;
1466 }
1467
1468 trc = thm_readw(THM_TRC);
1469 trc_required_mask = TRC_CORE1_EN | TRC_CORE_PWR | TRC_MCH_EN;
1470 if ((trc & trc_required_mask) != trc_required_mask) {
1471 dev_err(&dev->dev, "thermal reporting for required devices not enabled, aborting\n");
1472 return -ENXIO;
1473 }
1474
1475 if (trc & TRC_CORE2_EN)
1476 ips->second_cpu = true;
1477
1478 update_turbo_limits(ips);
1479 dev_dbg(&dev->dev, "max cpu power clamp: %dW\n",
1480 ips->mcp_power_limit / 10);
1481 dev_dbg(&dev->dev, "max core power clamp: %dW\n",
1482 ips->core_power_limit / 10);
1483 /* BIOS may update limits at runtime */
1484 if (thm_readl(THM_PSC) & PSP_PBRT)
1485 ips->poll_turbo_status = true;
1486
1487 if (!ips_get_i915_syms(ips)) {
1488 dev_info(&dev->dev, "failed to get i915 symbols, graphics turbo disabled until i915 loads\n");
1489 ips->gpu_turbo_enabled = false;
1490 } else {
1491 dev_dbg(&dev->dev, "graphics turbo enabled\n");
1492 ips->gpu_turbo_enabled = true;
1493 }
1494
1495 /*
1496 * Check PLATFORM_INFO MSR to make sure this chip is
1497 * turbo capable.
1498 */
1499 rdmsrl(PLATFORM_INFO, platform_info);
1500 if (!(platform_info & PLATFORM_TDP)) {
1501 dev_err(&dev->dev, "platform indicates TDP override unavailable, aborting\n");
1502 return -ENODEV;
1503 }
1504
1505 /*
1506 * IRQ handler for ME interaction
1507 * Note: don't use MSI here as the PCH has bugs.
1508 */
1509 ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_INTX);
1510 if (ret < 0)
1511 return ret;
1512
1513 ips->irq = pci_irq_vector(dev, 0);
1514
1515 ret = request_irq(ips->irq, ips_irq_handler, IRQF_SHARED, "ips", ips);
1516 if (ret) {
1517 dev_err(&dev->dev, "request irq failed, aborting\n");
1518 return ret;
1519 }
1520
1521 /* Enable aux, hot & critical interrupts */
1522 thm_writeb(THM_TSPIEN, TSPIEN_AUX2_LOHI | TSPIEN_CRIT_LOHI |
1523 TSPIEN_HOT_LOHI | TSPIEN_AUX_LOHI);
1524 thm_writeb(THM_TEN, TEN_UPDATE_EN);
1525
1526 /* Collect adjustment values */
1527 ips->cta_val = thm_readw(THM_CTA);
1528 ips->pta_val = thm_readw(THM_PTA);
1529 ips->mgta_val = thm_readw(THM_MGTA);
1530
1531 /* Save turbo limits & ratios */
1532 rdmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1533
1534 ips_disable_cpu_turbo(ips);
1535 ips->cpu_turbo_enabled = false;
1536
1537 /* Create thermal adjust thread */
1538 ips->adjust = kthread_create(ips_adjust, ips, "ips-adjust");
1539 if (IS_ERR(ips->adjust)) {
1540 dev_err(&dev->dev,
1541 "failed to create thermal adjust thread, aborting\n");
1542 ret = -ENOMEM;
1543 goto error_free_irq;
1544
1545 }
1546
1547 /*
1548 * Set up the work queue and monitor thread. The monitor thread
1549 * will wake up ips_adjust thread.
1550 */
1551 ips->monitor = kthread_run(ips_monitor, ips, "ips-monitor");
1552 if (IS_ERR(ips->monitor)) {
1553 dev_err(&dev->dev,
1554 "failed to create thermal monitor thread, aborting\n");
1555 ret = -ENOMEM;
1556 goto error_thread_cleanup;
1557 }
1558
1559 hts = (ips->core_power_limit << HTS_PCPL_SHIFT) |
1560 (ips->mcp_temp_limit << HTS_PTL_SHIFT) | HTS_NVV;
1561 htshi = HTS2_PRST_RUNNING << HTS2_PRST_SHIFT;
1562
1563 thm_writew(THM_HTSHI, htshi);
1564 thm_writel(THM_HTS, hts);
1565
1566 ips_debugfs_init(ips);
1567
1568 dev_info(&dev->dev, "IPS driver initialized, MCP temp limit %d\n",
1569 ips->mcp_temp_limit);
1570 return ret;
1571
1572error_thread_cleanup:
1573 kthread_stop(ips->adjust);
1574error_free_irq:
1575 free_irq(ips->irq, ips);
1576 pci_free_irq_vectors(dev);
1577 return ret;
1578}
1579
1580static void ips_remove(struct pci_dev *dev)
1581{
1582 struct ips_driver *ips = pci_get_drvdata(dev);
1583 u64 turbo_override;
1584
1585 ips_debugfs_cleanup(ips);
1586
1587 /* Release i915 driver */
1588 if (ips->read_mch_val)
1589 symbol_put(i915_read_mch_val);
1590 if (ips->gpu_raise)
1591 symbol_put(i915_gpu_raise);
1592 if (ips->gpu_lower)
1593 symbol_put(i915_gpu_lower);
1594 if (ips->gpu_busy)
1595 symbol_put(i915_gpu_busy);
1596 if (ips->gpu_turbo_disable)
1597 symbol_put(i915_gpu_turbo_disable);
1598
1599 rdmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1600 turbo_override &= ~(TURBO_TDC_OVR_EN | TURBO_TDP_OVR_EN);
1601 wrmsrl(TURBO_POWER_CURRENT_LIMIT, turbo_override);
1602 wrmsrl(TURBO_POWER_CURRENT_LIMIT, ips->orig_turbo_limit);
1603
1604 free_irq(ips->irq, ips);
1605 pci_free_irq_vectors(dev);
1606 if (ips->adjust)
1607 kthread_stop(ips->adjust);
1608 if (ips->monitor)
1609 kthread_stop(ips->monitor);
1610 dev_dbg(&dev->dev, "IPS driver removed\n");
1611}
1612
1613static struct pci_driver ips_pci_driver = {
1614 .name = "intel ips",
1615 .id_table = ips_id_table,
1616 .probe = ips_probe,
1617 .remove = ips_remove,
1618};
1619
1620module_pci_driver(ips_pci_driver);
1621
1622MODULE_LICENSE("GPL v2");
1623MODULE_AUTHOR("Jesse Barnes <jbarnes@virtuousgeek.org>");
1624MODULE_DESCRIPTION("Intelligent Power Sharing Driver");