Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
Note: File does not exist in v4.6.
  1// SPDX-License-Identifier: MIT
  2/*
  3 * Copyright © 2019 Intel Corporation
  4 */
  5
  6#include <linux/string_helpers.h>
  7
  8#include "i915_drv.h"
  9#include "i915_perf_types.h"
 10#include "intel_engine_regs.h"
 11#include "intel_gt_regs.h"
 12#include "intel_sseu.h"
 13
 14void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
 15			 u8 max_subslices, u8 max_eus_per_subslice)
 16{
 17	sseu->max_slices = max_slices;
 18	sseu->max_subslices = max_subslices;
 19	sseu->max_eus_per_subslice = max_eus_per_subslice;
 20}
 21
 22unsigned int
 23intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
 24{
 25	unsigned int i, total = 0;
 26
 27	if (sseu->has_xehp_dss)
 28		return bitmap_weight(sseu->subslice_mask.xehp,
 29				     XEHP_BITMAP_BITS(sseu->subslice_mask));
 30
 31	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
 32		total += hweight8(sseu->subslice_mask.hsw[i]);
 33
 34	return total;
 35}
 36
 37unsigned int
 38intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
 39{
 40	WARN_ON(sseu->has_xehp_dss);
 41	if (WARN_ON(slice >= sseu->max_slices))
 42		return 0;
 43
 44	return sseu->subslice_mask.hsw[slice];
 45}
 46
 47static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
 48			int subslice)
 49{
 50	if (sseu->has_xehp_dss) {
 51		WARN_ON(slice > 0);
 52		return sseu->eu_mask.xehp[subslice];
 53	} else {
 54		return sseu->eu_mask.hsw[slice][subslice];
 55	}
 56}
 57
 58static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
 59			 u16 eu_mask)
 60{
 61	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
 62	if (sseu->has_xehp_dss) {
 63		GEM_WARN_ON(slice > 0);
 64		sseu->eu_mask.xehp[subslice] = eu_mask;
 65	} else {
 66		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
 67	}
 68}
 69
 70static u16 compute_eu_total(const struct sseu_dev_info *sseu)
 71{
 72	int s, ss, total = 0;
 73
 74	for (s = 0; s < sseu->max_slices; s++)
 75		for (ss = 0; ss < sseu->max_subslices; ss++)
 76			if (sseu->has_xehp_dss)
 77				total += hweight16(sseu->eu_mask.xehp[ss]);
 78			else
 79				total += hweight16(sseu->eu_mask.hsw[s][ss]);
 80
 81	return total;
 82}
 83
 84/**
 85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
 86 * @to: Pointer to userspace buffer to copy to
 87 * @sseu: SSEU structure containing EU mask to copy
 88 *
 89 * Copies the EU mask to a userspace buffer in the format expected by
 90 * the query ioctl's topology queries.
 91 *
 92 * Returns the result of the copy_to_user() operation.
 93 */
 94int intel_sseu_copy_eumask_to_user(void __user *to,
 95				   const struct sseu_dev_info *sseu)
 96{
 97	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
 98	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
 99	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
100	int s, ss, i;
101
102	for (s = 0; s < sseu->max_slices; s++) {
103		for (ss = 0; ss < sseu->max_subslices; ss++) {
104			int uapi_offset =
105				s * sseu->max_subslices * eu_stride +
106				ss * eu_stride;
107			u16 mask = sseu_get_eus(sseu, s, ss);
108
109			for (i = 0; i < eu_stride; i++)
110				eu_mask[uapi_offset + i] =
111					(mask >> (BITS_PER_BYTE * i)) & 0xff;
112		}
113	}
114
115	return copy_to_user(to, eu_mask, len);
116}
117
118/**
119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120 * @to: Pointer to userspace buffer to copy to
121 * @sseu: SSEU structure containing subslice mask to copy
122 *
123 * Copies the subslice mask to a userspace buffer in the format expected by
124 * the query ioctl's topology queries.
125 *
126 * Returns the result of the copy_to_user() operation.
127 */
128int intel_sseu_copy_ssmask_to_user(void __user *to,
129				   const struct sseu_dev_info *sseu)
130{
131	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133	int len = sseu->max_slices * ss_stride;
134	int s, ss, i;
135
136	for (s = 0; s < sseu->max_slices; s++) {
137		for (ss = 0; ss < sseu->max_subslices; ss++) {
138			i = s * ss_stride * BITS_PER_BYTE + ss;
139
140			if (!intel_sseu_has_subslice(sseu, s, ss))
141				continue;
142
143			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
144		}
145	}
146
147	return copy_to_user(to, ss_mask, len);
148}
149
150static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151				    u32 ss_en, u16 eu_en)
152{
153	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
154	int ss;
155
156	sseu->slice_mask |= BIT(0);
157	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
158
159	for (ss = 0; ss < sseu->max_subslices; ss++)
160		if (intel_sseu_has_subslice(sseu, 0, ss))
161			sseu_set_eus(sseu, 0, ss, eu_en);
162
163	sseu->eu_per_subslice = hweight16(eu_en);
164	sseu->eu_total = compute_eu_total(sseu);
165}
166
167static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
168				   u16 eu_en)
169{
170	int ss;
171
172	sseu->slice_mask |= BIT(0);
173
174	bitmap_or(sseu->subslice_mask.xehp,
175		  sseu->compute_subslice_mask.xehp,
176		  sseu->geometry_subslice_mask.xehp,
177		  XEHP_BITMAP_BITS(sseu->subslice_mask));
178
179	for (ss = 0; ss < sseu->max_subslices; ss++)
180		if (intel_sseu_has_subslice(sseu, 0, ss))
181			sseu_set_eus(sseu, 0, ss, eu_en);
182
183	sseu->eu_per_subslice = hweight16(eu_en);
184	sseu->eu_total = compute_eu_total(sseu);
185}
186
187static void
188xehp_load_dss_mask(struct intel_uncore *uncore,
189		   intel_sseu_ss_mask_t *ssmask,
190		   int numregs,
191		   ...)
192{
193	va_list argp;
194	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
195	int i;
196
197	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
198		numregs = I915_MAX_SS_FUSE_REGS;
199
200	va_start(argp, numregs);
201	for (i = 0; i < numregs; i++)
202		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
203	va_end(argp);
204
205	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
206}
207
208static void xehp_sseu_info_init(struct intel_gt *gt)
209{
210	struct sseu_dev_info *sseu = &gt->info.sseu;
211	struct intel_uncore *uncore = gt->uncore;
212	u16 eu_en = 0;
213	u8 eu_en_fuse;
214	int num_compute_regs, num_geometry_regs;
215	int eu;
216
217	num_geometry_regs = 1;
218	num_compute_regs = 1;
219
220	/*
221	 * The concept of slice has been removed in Xe_HP.  To be compatible
222	 * with prior generations, assume a single slice across the entire
223	 * device. Then calculate out the DSS for each workload type within
224	 * that software slice.
225	 */
226	intel_sseu_set_info(sseu, 1,
227			    32 * max(num_geometry_regs, num_compute_regs),
228			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
229	sseu->has_xehp_dss = 1;
230
231	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
232			   num_geometry_regs,
233			   GEN12_GT_GEOMETRY_DSS_ENABLE);
234	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
235			   num_compute_regs,
236			   GEN12_GT_COMPUTE_DSS_ENABLE,
237			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
238
239	eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
240
241	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
242		eu_en = eu_en_fuse;
243	else
244		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
245			if (eu_en_fuse & BIT(eu))
246				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
247
248	xehp_compute_sseu_info(sseu, eu_en);
249}
250
251static void gen12_sseu_info_init(struct intel_gt *gt)
252{
253	struct sseu_dev_info *sseu = &gt->info.sseu;
254	struct intel_uncore *uncore = gt->uncore;
255	u32 g_dss_en;
256	u16 eu_en = 0;
257	u8 eu_en_fuse;
258	u8 s_en;
259	int eu;
260
261	/*
262	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
263	 * Instead of splitting these, provide userspace with an array
264	 * of DSS to more closely represent the hardware resource.
265	 */
266	intel_sseu_set_info(sseu, 1, 6, 16);
267
268	/*
269	 * Although gen12 architecture supported multiple slices, TGL, RKL,
270	 * DG1, and ADL only had a single slice.
271	 */
272	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
273		GEN11_GT_S_ENA_MASK;
274	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
275
276	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
277
278	/* one bit per pair of EUs */
279	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
280		       GEN11_EU_DIS_MASK);
281
282	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
283		if (eu_en_fuse & BIT(eu))
284			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
285
286	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
287
288	/* TGL only supports slice-level power gating */
289	sseu->has_slice_pg = 1;
290}
291
292static void gen11_sseu_info_init(struct intel_gt *gt)
293{
294	struct sseu_dev_info *sseu = &gt->info.sseu;
295	struct intel_uncore *uncore = gt->uncore;
296	u32 ss_en;
297	u8 eu_en;
298	u8 s_en;
299
300	if (IS_JASPERLAKE(gt->i915) || IS_ELKHARTLAKE(gt->i915))
301		intel_sseu_set_info(sseu, 1, 4, 8);
302	else
303		intel_sseu_set_info(sseu, 1, 8, 8);
304
305	/*
306	 * Although gen11 architecture supported multiple slices, ICL and
307	 * EHL/JSL only had a single slice in practice.
308	 */
309	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
310		GEN11_GT_S_ENA_MASK;
311	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
312
313	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
314
315	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
316		  GEN11_EU_DIS_MASK);
317
318	gen11_compute_sseu_info(sseu, ss_en, eu_en);
319
320	/* ICL has no power gating restrictions. */
321	sseu->has_slice_pg = 1;
322	sseu->has_subslice_pg = 1;
323	sseu->has_eu_pg = 1;
324}
325
326static void cherryview_sseu_info_init(struct intel_gt *gt)
327{
328	struct sseu_dev_info *sseu = &gt->info.sseu;
329	u32 fuse;
330
331	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
332
333	sseu->slice_mask = BIT(0);
334	intel_sseu_set_info(sseu, 1, 2, 8);
335
336	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
337		u8 disabled_mask =
338			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
339			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
340			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
341			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
342
343		sseu->subslice_mask.hsw[0] |= BIT(0);
344		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
345	}
346
347	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
348		u8 disabled_mask =
349			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
350			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
351			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
352			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
353
354		sseu->subslice_mask.hsw[0] |= BIT(1);
355		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
356	}
357
358	sseu->eu_total = compute_eu_total(sseu);
359
360	/*
361	 * CHV expected to always have a uniform distribution of EU
362	 * across subslices.
363	 */
364	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
365		sseu->eu_total /
366		intel_sseu_subslice_total(sseu) :
367		0;
368	/*
369	 * CHV supports subslice power gating on devices with more than
370	 * one subslice, and supports EU power gating on devices with
371	 * more than one EU pair per subslice.
372	 */
373	sseu->has_slice_pg = 0;
374	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
375	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
376}
377
378static void gen9_sseu_info_init(struct intel_gt *gt)
379{
380	struct drm_i915_private *i915 = gt->i915;
381	struct sseu_dev_info *sseu = &gt->info.sseu;
382	struct intel_uncore *uncore = gt->uncore;
383	u32 fuse2, eu_disable, subslice_mask;
384	const u8 eu_mask = 0xff;
385	int s, ss;
386
387	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
388	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
389
390	/* BXT has a single slice and at most 3 subslices. */
391	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
392			    IS_GEN9_LP(i915) ? 3 : 4, 8);
393
394	/*
395	 * The subslice disable field is global, i.e. it applies
396	 * to each of the enabled slices.
397	 */
398	subslice_mask = (1 << sseu->max_subslices) - 1;
399	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
400			   GEN9_F2_SS_DIS_SHIFT);
401
402	/*
403	 * Iterate through enabled slices and subslices to
404	 * count the total enabled EU.
405	 */
406	for (s = 0; s < sseu->max_slices; s++) {
407		if (!(sseu->slice_mask & BIT(s)))
408			/* skip disabled slice */
409			continue;
410
411		sseu->subslice_mask.hsw[s] = subslice_mask;
412
413		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
414		for (ss = 0; ss < sseu->max_subslices; ss++) {
415			int eu_per_ss;
416			u8 eu_disabled_mask;
417
418			if (!intel_sseu_has_subslice(sseu, s, ss))
419				/* skip disabled subslice */
420				continue;
421
422			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
423
424			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
425
426			eu_per_ss = sseu->max_eus_per_subslice -
427				hweight8(eu_disabled_mask);
428
429			/*
430			 * Record which subslice(s) has(have) 7 EUs. we
431			 * can tune the hash used to spread work among
432			 * subslices if they are unbalanced.
433			 */
434			if (eu_per_ss == 7)
435				sseu->subslice_7eu[s] |= BIT(ss);
436		}
437	}
438
439	sseu->eu_total = compute_eu_total(sseu);
440
441	/*
442	 * SKL is expected to always have a uniform distribution
443	 * of EU across subslices with the exception that any one
444	 * EU in any one subslice may be fused off for die
445	 * recovery. BXT is expected to be perfectly uniform in EU
446	 * distribution.
447	 */
448	sseu->eu_per_subslice =
449		intel_sseu_subslice_total(sseu) ?
450		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
451		0;
452
453	/*
454	 * SKL+ supports slice power gating on devices with more than
455	 * one slice, and supports EU power gating on devices with
456	 * more than one EU pair per subslice. BXT+ supports subslice
457	 * power gating on devices with more than one subslice, and
458	 * supports EU power gating on devices with more than one EU
459	 * pair per subslice.
460	 */
461	sseu->has_slice_pg =
462		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
463	sseu->has_subslice_pg =
464		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
465	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
466
467	if (IS_GEN9_LP(i915)) {
468#define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
469		RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
470
471		sseu->min_eu_in_pool = 0;
472		if (HAS_POOLED_EU(i915)) {
473			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
474				sseu->min_eu_in_pool = 3;
475			else if (IS_SS_DISABLED(1))
476				sseu->min_eu_in_pool = 6;
477			else
478				sseu->min_eu_in_pool = 9;
479		}
480#undef IS_SS_DISABLED
481	}
482}
483
484static void bdw_sseu_info_init(struct intel_gt *gt)
485{
486	struct sseu_dev_info *sseu = &gt->info.sseu;
487	struct intel_uncore *uncore = gt->uncore;
488	int s, ss;
489	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
490	u32 eu_disable0, eu_disable1, eu_disable2;
491
492	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
493	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
494	intel_sseu_set_info(sseu, 3, 3, 8);
495
496	/*
497	 * The subslice disable field is global, i.e. it applies
498	 * to each of the enabled slices.
499	 */
500	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
501	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
502			   GEN8_F2_SS_DIS_SHIFT);
503	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
504	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
505	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
506	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
507	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
508		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
509		 (32 - GEN8_EU_DIS0_S1_SHIFT));
510	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
511		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
512		 (32 - GEN8_EU_DIS1_S2_SHIFT));
513
514	/*
515	 * Iterate through enabled slices and subslices to
516	 * count the total enabled EU.
517	 */
518	for (s = 0; s < sseu->max_slices; s++) {
519		if (!(sseu->slice_mask & BIT(s)))
520			/* skip disabled slice */
521			continue;
522
523		sseu->subslice_mask.hsw[s] = subslice_mask;
524
525		for (ss = 0; ss < sseu->max_subslices; ss++) {
526			u8 eu_disabled_mask;
527			u32 n_disabled;
528
529			if (!intel_sseu_has_subslice(sseu, s, ss))
530				/* skip disabled subslice */
531				continue;
532
533			eu_disabled_mask =
534				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
535
536			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
537
538			n_disabled = hweight8(eu_disabled_mask);
539
540			/*
541			 * Record which subslices have 7 EUs.
542			 */
543			if (sseu->max_eus_per_subslice - n_disabled == 7)
544				sseu->subslice_7eu[s] |= 1 << ss;
545		}
546	}
547
548	sseu->eu_total = compute_eu_total(sseu);
549
550	/*
551	 * BDW is expected to always have a uniform distribution of EU across
552	 * subslices with the exception that any one EU in any one subslice may
553	 * be fused off for die recovery.
554	 */
555	sseu->eu_per_subslice =
556		intel_sseu_subslice_total(sseu) ?
557		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
558		0;
559
560	/*
561	 * BDW supports slice power gating on devices with more than
562	 * one slice.
563	 */
564	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
565	sseu->has_subslice_pg = 0;
566	sseu->has_eu_pg = 0;
567}
568
569static void hsw_sseu_info_init(struct intel_gt *gt)
570{
571	struct drm_i915_private *i915 = gt->i915;
572	struct sseu_dev_info *sseu = &gt->info.sseu;
573	u32 fuse1;
574	u8 subslice_mask = 0;
575	int s, ss;
576
577	/*
578	 * There isn't a register to tell us how many slices/subslices. We
579	 * work off the PCI-ids here.
580	 */
581	switch (INTEL_INFO(i915)->gt) {
582	default:
583		MISSING_CASE(INTEL_INFO(i915)->gt);
584		fallthrough;
585	case 1:
586		sseu->slice_mask = BIT(0);
587		subslice_mask = BIT(0);
588		break;
589	case 2:
590		sseu->slice_mask = BIT(0);
591		subslice_mask = BIT(0) | BIT(1);
592		break;
593	case 3:
594		sseu->slice_mask = BIT(0) | BIT(1);
595		subslice_mask = BIT(0) | BIT(1);
596		break;
597	}
598
599	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
600	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
601	default:
602		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
603		fallthrough;
604	case HSW_F1_EU_DIS_10EUS:
605		sseu->eu_per_subslice = 10;
606		break;
607	case HSW_F1_EU_DIS_8EUS:
608		sseu->eu_per_subslice = 8;
609		break;
610	case HSW_F1_EU_DIS_6EUS:
611		sseu->eu_per_subslice = 6;
612		break;
613	}
614
615	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
616			    hweight8(subslice_mask),
617			    sseu->eu_per_subslice);
618
619	for (s = 0; s < sseu->max_slices; s++) {
620		sseu->subslice_mask.hsw[s] = subslice_mask;
621
622		for (ss = 0; ss < sseu->max_subslices; ss++) {
623			sseu_set_eus(sseu, s, ss,
624				     (1UL << sseu->eu_per_subslice) - 1);
625		}
626	}
627
628	sseu->eu_total = compute_eu_total(sseu);
629
630	/* No powergating for you. */
631	sseu->has_slice_pg = 0;
632	sseu->has_subslice_pg = 0;
633	sseu->has_eu_pg = 0;
634}
635
636void intel_sseu_info_init(struct intel_gt *gt)
637{
638	struct drm_i915_private *i915 = gt->i915;
639
640	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
641		xehp_sseu_info_init(gt);
642	else if (GRAPHICS_VER(i915) >= 12)
643		gen12_sseu_info_init(gt);
644	else if (GRAPHICS_VER(i915) >= 11)
645		gen11_sseu_info_init(gt);
646	else if (GRAPHICS_VER(i915) >= 9)
647		gen9_sseu_info_init(gt);
648	else if (IS_BROADWELL(i915))
649		bdw_sseu_info_init(gt);
650	else if (IS_CHERRYVIEW(i915))
651		cherryview_sseu_info_init(gt);
652	else if (IS_HASWELL(i915))
653		hsw_sseu_info_init(gt);
654}
655
656u32 intel_sseu_make_rpcs(struct intel_gt *gt,
657			 const struct intel_sseu *req_sseu)
658{
659	struct drm_i915_private *i915 = gt->i915;
660	const struct sseu_dev_info *sseu = &gt->info.sseu;
661	bool subslice_pg = sseu->has_subslice_pg;
662	u8 slices, subslices;
663	u32 rpcs = 0;
664
665	/*
666	 * No explicit RPCS request is needed to ensure full
667	 * slice/subslice/EU enablement prior to Gen9.
668	 */
669	if (GRAPHICS_VER(i915) < 9)
670		return 0;
671
672	/*
673	 * If i915/perf is active, we want a stable powergating configuration
674	 * on the system. Use the configuration pinned by i915/perf.
675	 */
676	if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
677		req_sseu = &gt->perf.sseu;
678
679	slices = hweight8(req_sseu->slice_mask);
680	subslices = hweight8(req_sseu->subslice_mask);
681
682	/*
683	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
684	 * wide and Icelake has up to eight subslices, specfial programming is
685	 * needed in order to correctly enable all subslices.
686	 *
687	 * According to documentation software must consider the configuration
688	 * as 2x4x8 and hardware will translate this to 1x8x8.
689	 *
690	 * Furthemore, even though SScount is three bits, maximum documented
691	 * value for it is four. From this some rules/restrictions follow:
692	 *
693	 * 1.
694	 * If enabled subslice count is greater than four, two whole slices must
695	 * be enabled instead.
696	 *
697	 * 2.
698	 * When more than one slice is enabled, hardware ignores the subslice
699	 * count altogether.
700	 *
701	 * From these restrictions it follows that it is not possible to enable
702	 * a count of subslices between the SScount maximum of four restriction,
703	 * and the maximum available number on a particular SKU. Either all
704	 * subslices are enabled, or a count between one and four on the first
705	 * slice.
706	 */
707	if (GRAPHICS_VER(i915) == 11 &&
708	    slices == 1 &&
709	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
710		GEM_BUG_ON(subslices & 1);
711
712		subslice_pg = false;
713		slices *= 2;
714	}
715
716	/*
717	 * Starting in Gen9, render power gating can leave
718	 * slice/subslice/EU in a partially enabled state. We
719	 * must make an explicit request through RPCS for full
720	 * enablement.
721	 */
722	if (sseu->has_slice_pg) {
723		u32 mask, val = slices;
724
725		if (GRAPHICS_VER(i915) >= 11) {
726			mask = GEN11_RPCS_S_CNT_MASK;
727			val <<= GEN11_RPCS_S_CNT_SHIFT;
728		} else {
729			mask = GEN8_RPCS_S_CNT_MASK;
730			val <<= GEN8_RPCS_S_CNT_SHIFT;
731		}
732
733		GEM_BUG_ON(val & ~mask);
734		val &= mask;
735
736		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
737	}
738
739	if (subslice_pg) {
740		u32 val = subslices;
741
742		val <<= GEN8_RPCS_SS_CNT_SHIFT;
743
744		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
745		val &= GEN8_RPCS_SS_CNT_MASK;
746
747		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
748	}
749
750	if (sseu->has_eu_pg) {
751		u32 val;
752
753		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
754		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
755		val &= GEN8_RPCS_EU_MIN_MASK;
756
757		rpcs |= val;
758
759		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
760		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
761		val &= GEN8_RPCS_EU_MAX_MASK;
762
763		rpcs |= val;
764
765		rpcs |= GEN8_RPCS_ENABLE;
766	}
767
768	return rpcs;
769}
770
771void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
772{
773	int s;
774
775	if (sseu->has_xehp_dss) {
776		drm_printf(p, "subslice total: %u\n",
777			   intel_sseu_subslice_total(sseu));
778		drm_printf(p, "geometry dss mask=%*pb\n",
779			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
780			   sseu->geometry_subslice_mask.xehp);
781		drm_printf(p, "compute dss mask=%*pb\n",
782			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
783			   sseu->compute_subslice_mask.xehp);
784	} else {
785		drm_printf(p, "slice total: %u, mask=%04x\n",
786			   hweight8(sseu->slice_mask), sseu->slice_mask);
787		drm_printf(p, "subslice total: %u\n",
788			   intel_sseu_subslice_total(sseu));
789
790		for (s = 0; s < sseu->max_slices; s++) {
791			u8 ss_mask = sseu->subslice_mask.hsw[s];
792
793			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
794				   s, hweight8(ss_mask), ss_mask);
795		}
796	}
797
798	drm_printf(p, "EU total: %u\n", sseu->eu_total);
799	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
800	drm_printf(p, "has slice power gating: %s\n",
801		   str_yes_no(sseu->has_slice_pg));
802	drm_printf(p, "has subslice power gating: %s\n",
803		   str_yes_no(sseu->has_subslice_pg));
804	drm_printf(p, "has EU power gating: %s\n",
805		   str_yes_no(sseu->has_eu_pg));
806}
807
808static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
809				    struct drm_printer *p)
810{
811	int s, ss;
812
813	for (s = 0; s < sseu->max_slices; s++) {
814		u8 ss_mask = sseu->subslice_mask.hsw[s];
815
816		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
817			   s, hweight8(ss_mask), ss_mask);
818
819		for (ss = 0; ss < sseu->max_subslices; ss++) {
820			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
821
822			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
823				   ss, hweight16(enabled_eus), enabled_eus);
824		}
825	}
826}
827
828static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
829				     struct drm_printer *p)
830{
831	int dss;
832
833	for (dss = 0; dss < sseu->max_subslices; dss++) {
834		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
835
836		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
837			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
838			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
839			   hweight16(enabled_eus), enabled_eus);
840	}
841}
842
843void intel_sseu_print_topology(struct drm_i915_private *i915,
844			       const struct sseu_dev_info *sseu,
845			       struct drm_printer *p)
846{
847	if (sseu->max_slices == 0)
848		drm_printf(p, "Unavailable\n");
849	else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55))
850		sseu_print_xehp_topology(sseu, p);
851	else
852		sseu_print_hsw_topology(sseu, p);
853}
854
855void intel_sseu_print_ss_info(const char *type,
856			      const struct sseu_dev_info *sseu,
857			      struct seq_file *m)
858{
859	int s;
860
861	if (sseu->has_xehp_dss) {
862		seq_printf(m, "  %s Geometry DSS: %u\n", type,
863			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
864					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
865		seq_printf(m, "  %s Compute DSS: %u\n", type,
866			   bitmap_weight(sseu->compute_subslice_mask.xehp,
867					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
868	} else {
869		for (s = 0; s < fls(sseu->slice_mask); s++)
870			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
871				   s, hweight8(sseu->subslice_mask.hsw[s]));
872	}
873}
874
875u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
876				      int dss_per_slice)
877{
878	intel_sseu_ss_mask_t per_slice_mask = {};
879	unsigned long slice_mask = 0;
880	int i;
881
882	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
883		8 * sizeof(slice_mask));
884
885	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
886	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
887		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
888			slice_mask |= BIT(i);
889
890		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
891				   XEHP_BITMAP_BITS(dss_mask));
892	}
893
894	return slice_mask;
895}